National Library of Energy BETA

Sample records for regional dynamics model

  1. Regional Dynamics Model (REDYN) | Open Energy Information

    Open Energy Info (EERE)

    use the REDYN model to estimate the effects of actions and policies on people and the economy. The REDYN model powers the unique Regional Dynamics Economic Service, an...

  2. System Dynamics Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACSystem Dynamics Model

  3. Observing and modelling f-region ionospheric dynamics using the (OII) 7320a emission. Doctoral thesis

    SciTech Connect (OSTI)

    Carr, S.S.

    1992-01-01

    Limb-scan observations of Doppler line profiles from the (OII) lambda 7320A emission at F-Region altitudes, made with the Fabry-Perot interferometer (FPI) on the Dynamics Explorer-2 (DE-2) spacecraft, have been analyzed to provide measurements of the meridional component of the ion convection velocity along the instrument line-of-sight. The DE-2 results presented here demonstrate the first spaceborne use of the remote-sensing Doppler techniques for measurements of ionospheric convection. The FPI meridional ion drift measurements have been compared with nearly simultaneous in situ ion drift measurements from the Retarding Potential Analyzer (RPA) on DE 2. Once allowance is made for the temporal lag between the in situ and remote measurements, the results from the two techniques are found to be in good agreement, within specified experimental errors, giving confidence in the FPI measurements.

  4. THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50

    SciTech Connect (OSTI)

    Pancoast, Anna; Brewer, Brendon J.; Treu, Tommaso; Bennert, Vardha N.; Sand, David J.; Barth, Aaron J.; Cooper, Michael C.; Canalizo, Gabriela; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Clubb, Kelsey I.; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Stern, Daniel; Assef, Roberto J.; Woo, Jong-Hak; Bae, Hyun-Jin; Buehler, Tabitha; and others

    2012-07-20

    We present dynamical modeling of the broad-line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6{sup +1.2}{sub -0.9} light days, a width of the BLR of 6.9{sup +1.2}{sub -1.1} light days, and a disk opening angle of 25 {+-} 10 deg above the plane. We also constrain the inclination angle to be 9{sup +7}{sub -5} deg, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log{sub 10}(M{sub BH}/M{sub Sun }) = 7.57{sup +0.44}{sub -0.27}. By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log{sub 10} f = 0.78{sup +0.44}{sub -0.27}, consistent with the commonly adopted mean value of 0.74 based on aligning the M{sub BH}-{sigma}* relation for active galactic nuclei and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.

  5. [CII] dynamics in the S140 region

    SciTech Connect (OSTI)

    Dedes, C.; Rllig, M.; Okada, Y.; Ossenkopf, V.; Mookerjea, B.; Collaboration: WADI Team

    2015-01-22

    We report the observation of [C II] emission in a cut through the S140 region together with single pointing observations of several molecular tracers, including hydrides, in key regions of the photon-dominated region (PDR) and molecular cloud [1]. At a distance of 910 pc, a BOV star ionizes the edge of the molecular cloud L1204, creating S140. In addition, the dense molecular cloud hosts a cluster of embedded massive young stellar objects only 75' from the H II region [e.g. 2, 3]. We used HIFI on Herschel to observe [CII] in a strip following the direction of the impinging radiation across the ionisation front and through the cluster of embedded YSOs. With [C II], we can trace the ionising radiation and, together with the molecular tracers such as CO isotopologues and HCO{sup +}, study the dynamical processes in the region. Combining HIFIs high spectral resolution data with ground based molecular data allows us to study the dynamics and excitation conditions both in the ionization front and the dense molecular star forming region and model their physical conditions [4].

  6. Final Technical Report for Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models, DE-FG02-07ER64429

    SciTech Connect (OSTI)

    Smyth, Padhraic

    2013-07-22

    This is the final report for a DOE-funded research project describing the outcome of research on non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. The main results consist of extensive development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to downscaling of rainfall projections over India; identification and analysis of decadal climate signals in data and models; and, studies of climate variability in terms of the dynamics of atmospheric flow regimes.

  7. Dynamic cable analysis models

    SciTech Connect (OSTI)

    Palo, P.A.; Meggitt, D.J.; Nordell, W.J.

    1983-05-01

    This paper presents a summary of the development and validation of undersea cable dynamics computer models by the Naval Civil Engineering Laboratory (NCEL) under the sponsorship of the Naval Facilities Engineering Command. These models allow for the analysis of both small displacement (strumming) and large displacement (static and dynamic) deformations of arbitrarily configured cable structures. All of the large displacement models described in this paper are available to the public. This paper does not emphasize the theoretical development of the models (this information is available in other references) but emphasizes the various features of the models, the comparisons between model output and experimental data, and applications for which the models have been used.

  8. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect (OSTI)

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in physics parameterizations in both GCMs and RCMs remain a priority for climate modeling community.

  9. The Challenges to Coupling Dynamic Geospatial Models

    SciTech Connect (OSTI)

    Goldstein, N

    2006-06-23

    Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.

  10. A reduced order modeling approach to represent subgrid-scale hydrological dynamics for regional- and climate-scale land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-04-04

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from molecular scale (pore-scale O2 consumption) to tens of kilometer scale (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a particular reduced-order modeling (ROM) technique known as "Proper Orthogonal Decomposition mapping method" that reconstructs temporally-resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We applied this technique to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the four study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for two validation years not used in training the ROM. We also demonstrated that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training dataset with relatively good accuracy (< 1.5% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. This method has the potential to efficiently increase the resolution of land models for coupled climate simulations, allowing LSMs to be used at spatial scales consistent with mechanistic physical process representation.« less

  11. Regional Wave Field Modeling and Array Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1C Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - Broomfield, CO July 9 th , 2012 Regional Wave Field Modeling and Array Effects Outline  Overview of SNL's Large-Scale Wave and WEC Array Modeling Activities * WEC Farm Modeling on Roadmap * SNL Current Modeling Capabilities * SNL WEC Farm Model Tool Development WEC Farm Modeling  WEC Farms * Currently focused on improving large scale wave models for environmental assessments WEC Farm Modeling: WEC

  12. Regions in Energy Market Models

    SciTech Connect (OSTI)

    Short, W.

    2007-02-01

    This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  13. Regions in Energy Market Models

    SciTech Connect (OSTI)

    2009-01-18

    This report explores the different options for spatial resolution of an energy market model and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

  14. Developing a Dynamic Pharmacophore Model for HIV-1 Integrase

    SciTech Connect (OSTI)

    Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen; Bushman, Frederic; Jorgensen, William L.; Lins, Roberto; Briggs, James; Mccammon, Andy

    2000-05-11

    We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.

  15. Scenario Evaluation and Regionalization Analysis (SERA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Evaluation and Regionalization Analysis (SERA) Model (National Renewable Energy Laboratory) Objectives Determine optimal regional infrastructure development patterns for hydrogen and other transportation fuels, given resource availability and technology cost estimates. Geospatially and temporally resolve the expansion of production, transmission, and distribution infrastructure components. Identify and characterize niche markets and synergies related to refueling station placement and

  16. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: REMI AgencyCompany Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Resource Type: Softwaremodeling tools User Interface:...

  17. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  18. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  19. Dynamics Modelling of Biolistic Gene Guns

    SciTech Connect (OSTI)

    Zhang, M.; Tao, W.; Pianetta, P.A.

    2009-06-04

    The gene transfer process using biolistic gene guns is a highly dynamic process. To achieve good performance, the process needs to be well understood and controlled. Unfortunately, no dynamic model is available in the open literature for analysing and controlling the process. This paper proposes such a model. Relationships of the penetration depth with the helium pressure, the penetration depth with the acceleration distance, and the penetration depth with the micro-carrier radius are presented. Simulations have also been conducted. The results agree well with experimental results in the open literature. The contribution of this paper includes a dynamic model for improving and manipulating performance of the biolistic gene gun.

  20. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L.

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  1. COER Hydrodynamic Modeling Competition: Modeling the Dynamic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... decades to model land-based and offshore wind turbines, although it is capable of modeling a ... 2015 34th International Conference on Ocean, Offshore and Arctic Engineering ...

  2. COER Hydrodynamic Modeling Competition: Modeling the Dynamic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Accordingly, although FAST was developed for wind-turbine modeling applications, it has the capability to model arbitrary-geometry floating bodies, such as the COER competition ...

  3. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  4. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  5. Modeling-Computer Simulations At Yellowstone Region (Laney, 2005...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location...

  6. Modeling of Reactor Kinetics and Dynamics

    SciTech Connect (OSTI)

    Matthew Johnson; Scott Lucas; Pavel Tsvetkov

    2010-09-01

    In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

  7. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  8. Modeling Crabbing Dynamics in an Electron-Ion Collider

    SciTech Connect (OSTI)

    Castilla, Alejandro; Morozov, Vasiliy S.; Satogata, Todd J.; Delayen, Jean R.

    2015-09-01

    A local crabbing scheme requires ?/2 (mod ?) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from ?/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing.

  9. EXTENDED MAGNETOHYDRODYNAMIC MODELING OF PLASMA RELAXATION DYNAMICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EXTENDED MAGNETOHYDRODYNAMIC MODELING OF PLASMA RELAXATION DYNAMICS IN THE REVERSED-FIELD PINCH by Joshua Paul Sauppe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN-MADISON 2015 Date of final oral examination: 11/23/2015 The dissertation is approved by the following members of the Final Oral Committee: Carl R. Sovinec, Professor, Engineering Physics Chris C. Hegna, Professor, Engineering Physics

  10. DYNAMICAL MODELING OF GALAXY MERGERS USING IDENTIKIT

    SciTech Connect (OSTI)

    Privon, G. C.; Evans, A. S.; Barnes, J. E.; Hibbard, J. E.; Yun, M. S.; Mazzarella, J. M.; Armus, L.; Surace, J.

    2013-07-10

    We present dynamical models of four interacting systems: NGC 5257/8, The Mice, the Antennae, and NGC 2623. The parameter space of the encounters are constrained using the Identikit model-matching and visualization tool. Identikit utilizes hybrid N-body and test particle simulations to enable rapid exploration of the parameter space of galaxy mergers. The Identikit-derived matches of these systems are reproduced with self-consistent collisionless simulations which show very similar results. The models generally reproduce the observed morphology and H I kinematics of the tidal tails in these systems with reasonable properties inferred for the progenitor galaxies. The models presented here are the first to appear in the literature for NGC 5257/8 and NGC 2623, and The Mice and the Antennae are compared with previously published models. Based on the assumed mass model and our derived initial conditions, the models indicate that the four systems are currently being viewed 175-260 Myr after first passage and cover a wide range of merger stages. In some instances there are mismatches between the models and the data (e.g., in the length of a tail); these are likely due to our adoption of a single mass model for all galaxies. Despite the use of a single mass model, these results demonstrate the utility of Identikit in constraining the parameter space for galaxy mergers when applied to real data.

  11. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  12. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    SciTech Connect (OSTI)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of NPP for 0.5{sup o}-grid cells for which inventory, modeling, or remote-sensing tools were used to scale up the point measurements. Documentation of the content and organization of the EMDI databases are provided.

  13. Restoration of the Potosi Dynamic Model 2010

    SciTech Connect (OSTI)

    Adushita, Yasmin; Leetaru, Hannes

    2014-09-30

    In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate falls within the tubing erosional velocity limit. After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions. After injection is completed, the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post-injection, the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions. The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually decreases away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from injector. The initial reservoir pressure is restored after approximately 20 years post-injection. This result, however, is associated with uncertainties on the boundary conditions, and a sensitivity analysis could be considered for the succeeding tasks. It is important to remember that the respective plume extent and areal pressure increase corresponds to an injection of 43 Mt CO2. Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent and areal pressure increase could be expected. Re-evaluating the permeability modeling, vugs and heterogeneity distributions, and relative permeability input could be considered for the succeeding Potosi formation evaluations. A simulation using several injectors could also be considered to determine the required number of wells to achieve the injection target while taking into account the pressure interference.

  14. BETR North America: A regionally segmented multimedia contaminant fate model for North America

    SciTech Connect (OSTI)

    MacLeod, M.; Woodfine, D.G.; Mackay, D.; McKone, T.E.; Bennett, D.H.; Maddalena, R.L.

    2001-03-01

    We present the Berkeley-Trent North American contaminant fate model (BETR North America), a regionally segmented multimedia contaminant fate model based on the fugacity concept. The model is built on a framework that links contaminant fate models of individual regions, and is generally applicable to large, spatially heterogeneous areas. The North American environment is modeled as 24 ecological regions, within each region contaminant fate is described using a 7 compartment multimedia fugacity model including a vertically segmented atmosphere, freshwater, freshwater sediment, soil, coastal water and vegetation compartments. Inter-regional transport of contaminants in the atmosphere, freshwater and coastal water is described using a database of hydrological and meteorological data compiled with Geographical Information Systems (GIS) techniques. Steady-state and dynamic solutions to the 168 mass balance equations that make up the linked model for North America are discussed, and an illustrative case study of toxaphene transport from the southern United States to the Great Lakes Basin is presented. Regionally segmented models such as BETR North America can provide a critical link between evaluative models of long-range transport potential and contaminant concentrations observed in remote regions. The continent-scale mass balance calculated by the model provides a sound basis for evaluating long-range transport potential of organic pollutants, and formulation of continent scale management and regulatory strategies for chemicals.

  15. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  16. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity...

  17. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  18. Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in

    Office of Scientific and Technical Information (OSTI)

    Turbulent, Self-Gravitating Molecular Clouds (Technical Report) | SciTech Connect Technical Report: Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds Citation Details In-Document Search Title: Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds Authors: Low, Mordecai-Mark Mac ; Toraskar, Jayashree ; /Amer. Museum Natural Hist. ; Oishi, Jeffrey S. ; /Amer.

  19. Dynamical model for light composite fermions

    SciTech Connect (OSTI)

    Derman, E.

    1981-04-01

    A simple dynamical model for the internal structure of the three light lepton and quark generations (..nu../sub e/,e,u,d), (..nu../sub ..mu../,..mu..,c,s), and (..nu../sub tau/,tau,t,b) is proposed. Each generation is constructed of only one fundamental massive generation F=(L-italic/sup 0/,L/sup -/,U,D) with the same (SU/sub 3/)/sub c/ x SU/sub 2/ x U/sub 1/ quantum numbers as the light generations, bound to a core of one or more massive Higgs bosons H, where H is the single physical Higgs boson necessary for spontaneous symmetry breaking in the standard model. For example, e/sup -/=L/sup -/H), ..mu../sup -/=L/sup -/HH), tau/sup -/=L/sup -/HHH). It is shown that the known binding force due to H exchange is attractive and strong enough to produce light bound states. Dynamical calculations for the bound-state composite fermions using the Bethe-Salpeter equation, together with some phenomenological imput, suggest M/sub H/approx.16 TeV and M/sub F/approx.100 GeV. It is likely that such bound states can have properties compatible with the up to now apparently elementary appearance of known fermions, for example, their Dirac magnetic moments and absence of intergeneration radiative decays (such as ..mu -->..e..gamma..). Phenomenological consequences and tests of the model are discussed.

  20. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    SciTech Connect (OSTI)

    Blount, G.; Greeley, R.; Christensen, P.R. (Arizona State Univ., Tempe (USA)); Smith, M.O.; Adams, J.B. (Univ. of Washington, Seattle (USA))

    1990-09-10

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combing thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  1. F region above kauai: Measurement, model, modification

    SciTech Connect (OSTI)

    Johnson, C.Y.; Sjolander, G.W.; Oran, E.S.; Young, T.R.; Bernhardt, P.A.; Da Rosa, A.V.

    1980-08-01

    A detailed description and analysis is presented of the Lagopedo II results. The rocket was launched on September 11, 1977. Prior to an explosive chemical release a rocket-borne ion mass spectrometer and dual-frequency beacon measured the ion composition and electron content of the undisturbed F region above Kauai, Hawaii. These results are compared to a detailed calculation of ionospheric ion denities. Considerable H/sub 2/O outgassing produced measurable 18/sup +/(H/sub 2/O/sup +/) and 19/sup +/(H/sub 3/O/sup +/) currents which together with O/sup +/ current were used to determine the H/sup 3/O/sup +//H/sub 2/O/sup +/ dissociative recombination rate ratio. The explosive event at 283 km swept clean a l-km-radius region. The boundary of the ionic void was characterized by a steep gradient in the ion density. Results for the first 60 s after the event are presented which show changes in ambient ion species 14/sup +/, 16/sup +/, 30/sup +/, new reactant species 15/sup +/, 17/sup +/, 18/sup +/, 19/sup +/, 27/sup +/, and 46/sup +/, and evidence of ionic depletion by sweeping.

  2. Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems

    DOE Patents [OSTI]

    Bailey, David A. (Schenectady, NY)

    2004-11-16

    An automated process defines and maintains connectivity regions within a dynamic network. The automated process requires an initial input of a network component around which a connectivity region will be defined. The process automatically and autonomously generates a region around the initial input, stores the region's definition, and monitors the network for a change. Upon detecting a change in the network, the effect is evaluated, and if necessary the regions are adjusted and redefined to accommodate the change. Only those regions of the network affected by the change will be updated. This process eliminates the need for an operator to manually evaluate connectivity regions within a network. Since the automated process maintains the network, the reliance on an operator is minimized; thus, reducing the potential for operator error. This combination of region maintenance and reduced operator reliance, results in a reduction of overall error.

  3. Reduced Form Energy Model Elasticities from EIA's Regional Short-Term Energy Model (RSTEM)

    Reports and Publications (EIA)

    2006-01-01

    This analysis examines the price and weather elasticities derived from EIA's Regional Short-term Energy Model (RSTEM).

  4. Particle model for skyrmions in metallic chiral magnets: Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Title: Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep Authors: Lin, Shi-Zeng ; Reichhardt, Charles ; Batista, Cristian D. ; Saxena, Avadh ...

  5. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect (OSTI)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that the method provides realistic dynamical CG models that have non-Markovian or close to Markovian behavior that is consistent with the actual dynamical behavior of the all-atom system used to construct the CG model. Both the construction and the simulation of such a dynamic CG model have computational requirements that are similar to those of the corresponding MS-CG model and are good candidates for CG modeling of very large systems.

  6. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  7. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  8. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  9. Dynamic model predicts well bore surge and swab pressures

    SciTech Connect (OSTI)

    Bing, Z.; Kaiji, Z.

    1996-12-30

    A dynamic well control model predicts surge and swab pressures more accurately than a steady-state model, thereby providing better estimates of pressure fluctuations when pipe is tripped. Pressure fluctuations from tripping pipe into a well can contribute to lost circulation, kicks,and well control problems. This dynamic method of predicting surge and swab pressures was verified in a full-scale test well in the Zhong Yuan oil field in China. Both the dynamic model and steady state model were verified through the test data. The test data showed the dynamic model can correctly predict downhole pressures from running or pulling pipe in a well; steady state models may result in relatively large prediction errors, especially in deeper wells.

  10. Applied Dynamic Analysis of the Global Economy (ADAGE) Model...

    Open Energy Info (EERE)

    model capable of examining many types of economic, energy, environmental, climate change mitigation, and trade policies at the international, national, U.S. regional, and U.S....

  11. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  12. The challenges of modelling antibody repertoire dynamics in HIV infection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, Shishi; Perelson, Alan S.

    2015-07-20

    Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selectionmore » and compare this to the observed temporal patterns of antibody evolution in HIV infection. In addition, we describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.« less

  13. Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models Citation Details In-Document Search Title: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models Authors: Ranalli, Joseph A. ; Ferguson, Donald ; Martin, Christopher Publication Date: 2012-11-01 OSTI Identifier: 1160232 Report Number(s): A-NETL-PUB-020 Journal ID: ISSN 0748-4658 Resource Type: Journal Article Resource Relation: Journal Name:

  14. A Fundamental Investigation on the Structural Dynamics of Model Siloxane

    Office of Scientific and Technical Information (OSTI)

    Networks under Extreme Pressure (Technical Report) | SciTech Connect Technical Report: A Fundamental Investigation on the Structural Dynamics of Model Siloxane Networks under Extreme Pressure Citation Details In-Document Search Title: A Fundamental Investigation on the Structural Dynamics of Model Siloxane Networks under Extreme Pressure Authors: Harley, S J ; Lewicki, J P Publication Date: 2013-04-24 OSTI Identifier: 1097752 Report Number(s): LLNL-TR-640514 DOE Contract Number:

  15. Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning,

    Office of Scientific and Technical Information (OSTI)

    and creep (Journal Article) | SciTech Connect Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep Citation Details In-Document Search Title: Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep Authors: Lin, Shi-Zeng ; Reichhardt, Charles ; Batista, Cristian D. ; Saxena, Avadh Publication Date: 2013-06-17 OSTI Identifier: 1103826 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal

  16. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    SciTech Connect (OSTI)

    Kou, Gefei; Hadley, Stanton W; Markham, Penn N; Liu, Yilu

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  17. Regional-Scale Climate Change: Observations and Model Simulations

    SciTech Connect (OSTI)

    Raymond S. Bradley; Henry F. Diaz

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth??s climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  18. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect (OSTI)

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  19. Regional Climate Effects of Aerosols Over China: Modeling and Observation

    SciTech Connect (OSTI)

    Qian, Yun; Leung, Lai R.; Ghan, Steven J.; Giorgi, Filippo

    2003-09-01

    We present regional simulations of aerosol properties, direct radiative forcing and aerosol climatic effects over China, and compare the simulations with observed aerosol characteristics and climatic data over the region. The climate simulations are performed with a regional climate model, which is shown to capture the spatial distribution and seasonal pattern of temperature and precipitation. Aerosol concentrations are obtained from a global tracer-transport model and are provided to the regional model for the calculation of radiative forcing. Different aerosols are included: sulfate, organic carbon, black carbon, mineral dust, and sea salt and MSA particles. Generally, the aerosol optical depth is well simulated in both magnitude and spatial distribution. The direct radiative forcing of the aerosol is in the range of –1 to –14 W m-2 in autumn and summer and -1 to –9 W m-2 in spring and winter, with substantial spatial variability at the regional scale. A strong maximum in aerosol optical depth and negative radiative forcing is found over the Sichuan Basin. The negative radiative forcing of aerosol induces a surface cooling in the range of –0.6 to –1.2oC in autumn and winter, –0.3 to –0.6oC in spring and 0.0 to –0.9oC in summer throughout East China. The aerosol-induced cooling is mainly due to a decrease in day-time maximum temperature. The cooling is maximum and is statistically significant over the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of the temperature trends observed in the second half of the twentieth century, including different trends for daily maximum and minimum temperature, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. This result supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the Sichuan Basin and some parts of East China, are at least partly related to the cooling induced by increasing atmospheric aerosol loadings over the region.

  20. Approximate Bisimulation-Based Reduction of Power System Dynamic Models

    SciTech Connect (OSTI)

    Stankovic, AM; Dukic, SD; Saric, AT

    2015-05-01

    In this paper we propose approximate bisimulation relations and functions for reduction of power system dynamic models in differential- algebraic (descriptor) form. The full-size dynamic model is obtained by linearization of the nonlinear transient stability model. We generalize theoretical results on approximate bisimulation relations and bisimulation functions, originally derived for a class of constrained linear systems, to linear systems in descriptor form. An algorithm for transient stability assessment is proposed and used to determine whether the power system is able to maintain the synchronism after a large disturbance. Two benchmark power systems are used to illustrate the proposed algorithm and to evaluate the applicability of approximate bisimulation relations and bisimulation functions for reduction of the power system dynamic models.

  1. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J (Decision and Information Sciences); (Auburn Univ.)

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  2. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    SciTech Connect (OSTI)

    Kobelski, Adam R.; McKenzie, David E.

    2014-10-20

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (?0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.

  3. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tolle, Merja; Gutjahr, Oliver; Feser, Frauke; et al

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less

  4. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    SciTech Connect (OSTI)

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tolle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole; Leung, Lai-Yung R.

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.

  5. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect (OSTI)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  6. Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Technical Report NREL/TP-540-39446 February 2006 Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Prepared under Task Nos. HS04.2000 and HS06.1002 Technical Report NREL/TP-540-39446 February 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of

  7. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    SciTech Connect (OSTI)

    Saravanan, Ramalingam

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Nio-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  8. Impacts of Climate Change and Vegetation Dynamics on Runoff in the Mountainous Region of the Haihe River Basin in the Past Five Decades

    SciTech Connect (OSTI)

    Lei, Huimin; Yang, Dawen; Huang, Maoyi

    2014-04-16

    Climate and atmospheric CO2 concentration have changed significantly in the mountainous region of the Haihe River basin over the past five decades. In the study, a process-based terrestrial model, version 4 of the Community Land Model (CLM4), was used to quantify the spatiotemporal changes in runoff over the region, driven by the varying climate factors and CO2 concentration. Overall, our simulations suggest that climate-induced change in runoff in this region show a decreasing trend since 1960. Changes in precipitation, solar radiation, air temperature, and wind speed accounts for 56%, -14%, 13%, -5% of the overall decrease in annual runoff, respectively, but their relative contributions vary across the study area. Rising atmospheric CO2 concentration was found to have limited impacts on runoff. Significant decrease in runoff over the southern and northeastern portion of the region is primarily attributed to decreasing precipitation, while decreasing solar radiation and increasing air temperature are the main causes of slight runoff increase in the northern portion. Our results also suggest that the magnitude of decreasing trend could be greatly underestimated if the dynamical interactions of vegetation phenology with the environmental factors are not considered in the modeling, highlighting the importance of including dynamic vegetation phenology in the prediction of runoff in this region.

  9. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect (OSTI)

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  10. Dynamic crack initiation toughness : experiments and peridynamic modeling.

    SciTech Connect (OSTI)

    Foster, John T.

    2009-10-01

    This is a dissertation on research conducted studying the dynamic crack initiation toughness of a 4340 steel. Researchers have been conducting experimental testing of dynamic crack initiation toughness, K{sub Ic}, for many years, using many experimental techniques with vastly different trends in the results when reporting K{sub Ic} as a function of loading rate. The dissertation describes a novel experimental technique for measuring K{sub Ic} in metals using the Kolsky bar. The method borrows from improvements made in recent years in traditional Kolsky bar testing by using pulse shaping techniques to ensure a constant loading rate applied to the sample before crack initiation. Dynamic crack initiation measurements were reported on a 4340 steel at two different loading rates. The steel was shown to exhibit a rate dependence, with the recorded values of K{sub Ic} being much higher at the higher loading rate. Using the knowledge of this rate dependence as a motivation in attempting to model the fracture events, a viscoplastic constitutive model was implemented into a peridynamic computational mechanics code. Peridynamics is a newly developed theory in solid mechanics that replaces the classical partial differential equations of motion with integral-differential equations which do not require the existence of spatial derivatives in the displacement field. This allows for the straightforward modeling of unguided crack initiation and growth. To date, peridynamic implementations have used severely restricted constitutive models. This research represents the first implementation of a complex material model and its validation. After showing results comparing deformations to experimental Taylor anvil impact for the viscoplastic material model, a novel failure criterion is introduced to model the dynamic crack initiation toughness experiments. The failure model is based on an energy criterion and uses the K{sub Ic} values recorded experimentally as an input. The failure model is then validated against one class of problems showing good agreement with experimental results.

  11. Improvement of snowpack simulations in a regional climate model

    SciTech Connect (OSTI)

    Jin, J.; Miller, N.L.

    2011-01-10

    To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5Noah is now more accurately predicted by MM5CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5Noah is significantly decreased in MM5 CLM3 due to the lower evaporation resulting from the longer snow duration.

  12. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  13. Integrated dynamic modeling and management system mission analysis

    SciTech Connect (OSTI)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  14. Development of a Dynamic DOE Calibration Model | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A dynamic heavy duty diesel engine model was developed. The model can be applied for calibration and control system optimization. PDF icon p-22_anderson.pdf More Documents & Publications Reducing the Particulate Emission Numbers in DI Gasoline Engines LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A Systems Approach Vehicle Technologies Office Merit Review 2014: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency

  15. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    SciTech Connect (OSTI)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dnes

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of YangMills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  16. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  17. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    SciTech Connect (OSTI)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States) [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  18. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    SciTech Connect (OSTI)

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan

    2014-10-17

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.

  19. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect (OSTI)

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  20. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    SciTech Connect (OSTI)

    Melintescu, A.; Galeriu, D.; Diabate, S.; Strack, S.

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  1. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    SciTech Connect (OSTI)

    Yurchyshyn, V.; Abramenko, V.; Kilcik, A.

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  2. Office Of Nuclear Energy Annual Review Meeting Dynamic Simulation Modeling Tool

    Energy Savers [EERE]

    Annual Review Meeting Dynamic Simulation Modeling Tool Lou Qualls ORNL September 16-18, 2014 2 Work Package SR-14OR130108 - Modeling Tools for Dynamic Behavior Simulations of SMRs 2 ü FY14 molten salt cooled model deliverable due. n FY15 web application deliverable due. n FY15 model repository establishment due. n FY15 working collaboration with University partners. n Simplified Dynamic Modeling for Advanced SMRs - Numerous dynamic models are needed to simulate plant behavior

  3. Model of a deterministic detector and dynamical decoherence

    SciTech Connect (OSTI)

    Lee, Jae Weon; Shepelyansky, Dima L. [Laboratoire de Physique Theorique, UMR 5152 du CNRS, Univ. P. Sabatier, 31062 Toulouse Cedex 4 (France); Averin, Dmitri V. [Department of Physics, University of Stony Brook, SUNY, Stony Brook, New York 11794 (United States); Benenti, Giuliano [Center for Nonlinear and Complex Systems, Universita degli Studi dell'Insubria and Istituto Nazionale per la Fisica della Materia, Unita di Como, Via Valleggio 11, 22100 Como (Italy)

    2005-07-15

    We discuss a deterministic model of detector coupled to a two-level system (a qubit). The detector is a quasiclassical object whose dynamics is described by the kicked rotator Hamiltonian. We show that in the regime of quantum chaos the detector acts as a chaotic bath and induces decoherence of the qubit. We discuss the dephasing and relaxation rates and demonstrate that the main features of single-qubit decoherence due to a heat bath can be reproduced by our fully deterministic dynamical model. Moreover, we show that, for strong enough qubit-detector coupling, the dephasing rate is given by the rate of exponential instability of the detector's dynamics, that is, by the Lyapunov exponent of classical motion. Finally, we discuss the measurement in the regimes of strong and weak qubit-detector coupling. For the case of strong coupling the detector performs a measurement of the up/down state of the qubit. In the case of weak coupling, due to chaos, the dynamical evolution of the detector is strongly sensitive to the state of the qubit. However, in this case it is unclear how to extract a signal from any measurement with a coarse-graining in the phase space on a size much larger than the Planck cell.

  4. NREL: Regional Energy Deployment System (ReEDS) Model - Model Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qualitative Model Description The Regional Energy Deployment System (ReEDS) is a long-term capacity-expansion model for the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States. Developed by the National Renewable Energy Laboratory's (NREL's) Strategic Energy Analysis Center (SEAC) with support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, ReEDS is designed to analyze critical issues

  5. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al

    2015-09-02

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (?500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore(?500 ?1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d?1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.less

  6. Modeling the dynamic crush of impact mitigating materials

    SciTech Connect (OSTI)

    Logan, R.W.; McMichael, L.D.

    1995-05-12

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  7. EMERGING DIMMINGS OF ACTIVE REGIONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Zhang Jun; Yang Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Liu Yang; Sun Xudong, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: yliu@sun.stanford.edu, E-mail: xudong@sun.stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)

    2012-12-01

    Using the observations from the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the emerging dimmings (EDs) of 24 isolated active regions (IARs) from 2010 June to 2011 May. All the IARs show EDs in lower-temperature lines (e.g., 171 A) at their early emerging stages. Meanwhile, in higher temperature lines (e.g., 211 A), the ED regions brighten continuously. There are two types of EDs: fan-shaped and halo-shaped. There are 19 fan-shaped EDs and 5 halo-shaped ones. The EDs appear to be delayed by several to more than ten hours relative to the first emergence of the IARs. The shortest delay is 3.6 hr and the longest is 19.0 hr. The EDs last from 3.3 hr to 14.2 hr, with a mean duration of 8.3 hr. Before the appearance of the EDs, the emergence rate of the magnetic flux of the IARs is between 1.2 Multiplication-Sign 10{sup 19} Mx hr{sup -1} to 1.4 Multiplication-Sign 10{sup 20} Mx hr{sup -1}. The larger the emergence rate is, the shorter the delay time is. While the dimmings appear, the magnetic flux of the IARs ranges from 8.8 Multiplication-Sign 10{sup 19} Mx to 1.3 Multiplication-Sign 10{sup 21} Mx. These observations imply that the reconfiguration of the coronal magnetic fields due to reconnection between the newly emerging flux and the surrounding existing fields results in a new thermal distribution which leads to a dimming for the cooler channel (171 A) and brightening in the warmer channels.

  8. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  9. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  10. Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)

    SciTech Connect (OSTI)

    Burkett, Michael W; Clancy, Sean P

    2009-01-01

    Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.

  11. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  12. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  13. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  14. Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks

    SciTech Connect (OSTI)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

    2012-07-19

    The transition to the new generation power grid, or smart grid, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

  15. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    SciTech Connect (OSTI)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    AbstractIt is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  16. A Dynamic Approach to Modeling Dependence Between Human Failure Events

    SciTech Connect (OSTI)

    Boring, Ronald Laurids

    2015-09-01

    In practice, most HRA methods use direct dependence from THERP—the notion that error be- gets error, and one human failure event (HFE) may increase the likelihood of subsequent HFEs. In this paper, we approach dependence from a simulation perspective in which the effects of human errors are dynamically modeled. There are three key concepts that play into this modeling: (1) Errors are driven by performance shaping factors (PSFs). In this context, the error propagation is not a result of the presence of an HFE yielding overall increases in subsequent HFEs. Rather, it is shared PSFs that cause dependence. (2) PSFs have qualities of lag and latency. These two qualities are not currently considered in HRA methods that use PSFs. Yet, to model the effects of PSFs, it is not simply a matter of identifying the discrete effects of a particular PSF on performance. The effects of PSFs must be considered temporally, as the PSFs will have a range of effects across the event sequence. (3) Finally, there is the concept of error spilling. When PSFs are activated, they not only have temporal effects but also lateral effects on other PSFs, leading to emergent errors. This paper presents the framework for tying together these dynamic dependence concepts.

  17. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2014-11-01

    This document describes the dynamic photovoltaic model developed by the National Renewable Energy Laboratory and is intended as a guide for users of these models.

  18. Dynamic Models for Wind Turbines and Wind Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Models for Wind Turbines and Wind Power Plants January 11, 2008 - May 31, 2011 Mohit Singh Surya Santoso (Principal Investigator) The University of Texas at Austin Austin, Texas NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Subcontract Report NREL/SR-5500-52780 October 2011 Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 1617 Cole Boulevard

  19. Double and single pion photoproduction within a dynamical coupled-channels model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hiroyuki Kamano; Julia-Diaz, Bruno; Lee, T. -S. H.; Matsuyama, Akihiko; Sato, Toru

    2009-12-16

    Within a dynamical coupled-channels model which has already been fixed from analyzing the data of the πN → πN and γN → πN reactions, we present the predicted double pion photoproduction cross sections up to the second resonance region, W < 1.7 GeV. The roles played by the different mechanisms within our model in determining both the single and double pion photoproduction reactions are analyzed, focusing on the effects due to the direct γN → ππN mechanism, the interplay between the resonant and non-resonant amplitudes, and the coupled-channels effects. As a result, the model parameters which can be determined mostmore » effectively in the combined studies of both the single and double pion photoproduction data are identified for future studies.« less

  20. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect (OSTI)

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.

  1. Modeling-Computer Simulations At U.S. West Region (Sabin, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At U.S. West Region (Sabin, Et Al., 2004) Exploration Activity Details...

  2. Modeling-Computer Simulations At U.S. West Region (Williams ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity...

  3. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    SciTech Connect (OSTI)

    Rossi, R; Gallagher, B; Neville, J; Henderson, K

    2011-11-11

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

  4. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect (OSTI)

    Xu, Chonggang [Los Alamos National Laboratory (LANL); Fisher, Rosie [National Center for Atmospheric Research (NCAR); Wullschleger, Stan D [ORNL; Wilson, Cathy [Los Alamos National Laboratory (LANL); Cai, Michael [Los Alamos National Laboratory (LANL); McDowell, Nathan [Los Alamos National Laboratory (LANL)

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.

  5. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    SciTech Connect (OSTI)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen; Brooks, Paul; Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  6. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  7. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  8. New methods for identifying value added by a regional climate model |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory methods for identifying value added by a regional climate model By Brian Grabowski * January 26, 2015 Tweet EmailPrint Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model's ability

  9. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

  10. Regional & Global Climate Modeling (RGCM) Program | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Regional & Global Climate Modeling (RGCM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global

  11. THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND

    Office of Scientific and Technical Information (OSTI)

    OBSERVATIONS IN SDO/AIA (Journal Article) | SciTech Connect THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND OBSERVATIONS IN SDO/AIA Citation Details In-Document Search Title: THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND OBSERVATIONS IN SDO/AIA The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the

  12. Description of waste pretreatment and interfacing systems dynamic simulation model

    SciTech Connect (OSTI)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  13. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  14. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  15. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecules structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecules structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electrons orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecules time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or e

  16. NREL: Energy Analysis - Regional Energy Deployment System (ReEDS) Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Energy Deployment System (ReEDS) Model Energy Analysis The Regional Energy Deployment System (ReEDS) helps the U.S. Department of Energy, utilities, public utility commissions, state/local regulators and others optimize and visualize the build-out of U.S. electricity generation and transmission systems. Learn more about ReEDS: Model Description Unique Value Documentation Publications Transformation of the Electric Sector (Compare to Baseline Projections) Printable Version Model

  17. NREL: Regional Energy Deployment System (ReEDS) Model - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version ReEDS Home Model Description Unique Value Documentation Publications Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how

  18. Dynamical dipole gamma radiation in heavy-ion collisions on the basis of a quantum molecular dynamics model

    SciTech Connect (OSTI)

    Wu, H. L.; Tian, W. D.; Ma, Y. G.; Cai, X. Z.; Chen, J. G.; Fang, D. Q.; Guo, W.; Wang, H. W.

    2010-04-15

    Dynamical dipole gamma-ray emission in heavy-ion collisions is explored in the framework of the quantum molecular dynamics model. The studies are focused on systems of {sup 40}Ca bombarding {sup 48}Ca and its isotopes at different incident energies and impact parameters. Yields of gamma rays are calculated and the centroid energy and dynamical dipole emission width of the gamma spectra are extracted to investigate the properties of gamma emission. In addition, sensitivities of dynamical dipole gamma-ray emission to the isospin and the symmetry energy coefficient of the equation of state are studied. The results show that detailed study of dynamical dipole gamma radiation can provide information on the equation of state and the symmetry energy around the normal nuclear density.

  19. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine

    SciTech Connect (OSTI)

    Jonkman, J. M.

    2007-12-01

    This report describes the development, verification, and application of a comprehensive simulation tool for modeling coupled dynamic responses of offshore floating wind turbines.

  20. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Citation Details In-Document Search Title: Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9(tm) software package. Three phases of an insitu retort were consider; a construction

  1. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect (OSTI)

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  2. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS)

    SciTech Connect (OSTI)

    Professor Isaak Mayergoyz

    2006-08-21

    This research has further advanced the current state of the art in the areas of dynamic aspects of hysteresis and nonlinear large scale magnetization dynamics. The results of this research will find important engineering applications in the areas of magnetic data storage technology and the emerging technology of “spintronics”. Our research efforts have been focused on the following tasks: • Study of fast (pulse) precessional switching of magnetization in magnetic materials. • Analysis of critical fields and critical angles for precessional switching of magnetization. • Development of inverse problem approach to the design of magnetic field pulses for precessional switching of magnetization. • Study of magnetization dynamics induced by spin polarized current injection. • Construction of complete stability diagrams for spin polarized current induced magnetization dynamics. • Development of the averaging technique for the analysis of the slow time scale magnetization dynamics. • Study of thermal effects on magnetization dynamics by using the theory of stochastic processes on graphs.

  3. Global and regional modeling of clouds and aerosols in the marine...

    Office of Scientific and Technical Information (OSTI)

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean ...

  4. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect (OSTI)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  5. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: Energy.gov [DOE]

    In this report, we introduce a new transparent regional capacity expansion model with high spatio-temporal resolution and detailed representation of dispatch. The development of this model, referred to as the Resource Planning Model (RPM), is motivated by the lack of a tool in the public domain that can be used to characterize optimal regional deployment of resources with detailed dispatch modeling. In particular, RPM is designed to evaluate scenarios of renewable technology deployment to meet renewable portfolio standard (RPS) and emission-reduction goals, and to project possible deployment levels for various projections of future technology and fuel prices.

  6. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    SciTech Connect (OSTI)

    Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A.

    2013-01-01

    This report introduces a new capacity expansion model, the Resource Planning Model (RPM), with high spatial and temporal resolution that can be used for mid- and long-term scenario planning of regional power systems. Although RPM can be adapted to any geographic region, the report describes an initial version of the model adapted for the power system in Colorado. It presents examples of scenario results from the first version of the model, including an example of a 30%-by-2020 renewable electricity penetration scenario.

  7. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  8. Evaluation of tools for renewable energy policy analysis: The ten federal region model

    SciTech Connect (OSTI)

    Engle, J.

    1994-04-01

    The Energy Policy Act of 1992 establishes a program to support development of renewable energy technologies including a production incentive to public power utilities. Because there is a wide range of possible policy actions that could be taken to increase electric market share for renewables, modeling tools are needed to help make informed decisions regarding future policy. Previous energy modeling tools did not contain the region or infrastructure focus necessary to examine renewable technologies. As a result, the Department of Energy Office of Utility Technologies (OUT) supported the development of tools for renewable energy policy analysis. Three models were developed: The Renewable Energy Penetration (REP) model, which is a spreadsheet model for determining first-order estimates of policy effects for each of the ten federal regions; the Ten Federal Region Model (TFRM), which employs utility capacity expansion and dispatching decision; and the Region Electric Policy Analysis Model (REPAM), which was constructed to allow detailed insight into interactions between policy and technology within an individual region. These Models were developed to provide a suite of fast, personal-computer based policy analysis tools; as one moves from the REP model to the TFRM to the REPAM the level of detail (and complexity) increases. In 1993 a panel was formed to identify model strengths, weaknesses (including any potential biases) and to suggest potential improvements. The panel met in January 1994 to discuss model simulations and to deliberate regarding evaluation outcomes. This report is largely a result of this meeting. This report is organized as follows. It provides a description of the TFRM and summarizes the panel`s findings. Individual chapters examine various aspects of the model: demand and load, capacity expansion, dispatching and production costing, reliability, renewables, storage, financial and regulatory concerns, and environmental effects.

  9. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    SciTech Connect (OSTI)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  10. A reassessment of surface friction model for maximum cold fusion reactions in superheavy mass region

    SciTech Connect (OSTI)

    Fukushima, A.; Wada, T.; Ohta, M.; Nasirov, A.; Aritomo, Y.

    2007-02-26

    We have made a study on the capture process of 40,48Ca+ 208Pb systems with a dynamical approach based on the surface friction model. The deformation of the nuclei due to the mutual excitation is taken into account. We have calculated the capture cross sections for several values of the friction coefficients. It was shown that, in the cold fusion reactions, the friction parameters of the surface friction model needs to be reexamined.

  11. NREL: Regional Energy Deployment System (ReEDS) Model - Unique Value of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReEDS Unique Value of ReEDS Spatial Resolution and Variability Consideration The Regional Energy Deployment System (ReEDS) model has singular capabilities that differentiate it from other models and that make it uniquely suitable for certain types of analyses. While ReEDS can model all types of power generators and fuels-coal, gas, nuclear, renewables-it was designed primarily to address considerations for integrating renewable electric technologies into the power grid. In particular, it was

  12. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat

    SciTech Connect (OSTI)

    Kimbell, J.S.; Gross, E.A.; Joyner, D.R.; Godo, M.N.; Morgan, K.T. (Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States))

    1993-08-01

    For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.

  13. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    SciTech Connect (OSTI)

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  14. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    DOE Patents [OSTI]

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  15. Imbedding dynamic responses with imperfect information into static portraits of the regional impact of climate change

    SciTech Connect (OSTI)

    Yohe, G.W. )

    1990-11-01

    It is becoming increasingly clear, at least on a theoretical level, that modelers of the potential impacts of climate change must impose that change upon the world as it will be configured sometime in the future rather than confine their attention to considerations of what would happen to the world as it looks now. Initial baselines which focus on current circumstances are certainly worthwhile points of departure in any study, of course, but the truth is that social, economic, and political systems will evolve as the future unfolds; and careful analysis of that evolution across a globe experiencing changes in its climate must be undertaken, as well. In the vernacular of the analysts' workroom, while it may be interesting to try to see what would happen to dumb farmers'' who continue to do things as they always have regardless of what happens, it is critically important to evaluate the need for any sort of policy response to climate change in a world of smart farmers'' who will have observed the ramifications of climate change and responded in their own best interest. 9 refs., 2 figs.

  16. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect (OSTI)

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  17. Transforming the representation of the boundary layer and low clouds for high-resolution regional climate modeling: Final report

    SciTech Connect (OSTI)

    Huang, Hsin-Yuan; Hall, Alex

    2013-07-24

    Stratocumulus and shallow cumulus clouds in subtropical oceanic regions (e.g., Southeast Pacific) cover thousands of square kilometers and play a key role in regulating global climate (e.g., Klein and Hartmann, 1993). Numerical modeling is an essential tool to study these clouds in regional and global systems, but the current generation of climate and weather models has difficulties in representing them in a realistic way (e.g., Siebesma et al., 2004; Stevens et al., 2007; Teixeira et al., 2011). While numerical models resolve the large-scale flow, subgrid-scale parameterizations are needed to estimate small-scale properties (e.g. boundary layer turbulence and convection, clouds, radiation), which have significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. To represent the contribution of these fine-scale processes to the resolved scale, climate models use various parameterizations, which are the main pieces in the model that contribute to the low clouds dynamics and therefore are the major sources of errors or approximations in their representation. In this project, we aim to 1) improve our understanding of the physical processes in thermal circulation and cloud formation, 2) examine the performance and sensitivity of various parameterizations in the regional weather model (Weather Research and Forecasting model; WRF), and 3) develop, implement, and evaluate the advanced boundary layer parameterization in the regional model to better represent stratocumulus, shallow cumulus, and their transition. Thus, this project includes three major corresponding studies. We find that the mean diurnal cycle is sensitive to model domain in ways that reveal the existence of different contributions originating from the Southeast Pacific land-masses. The experiments suggest that diurnal variations in circulations and thermal structures over this region are influenced by convection over the Peruvian sector of the Andes cordillera, while the mostly dry mountain-breeze circulations force an additional component that results in semi-diurnal variations near the coast. A series of numerical tests, however, reveal sensitivity of the simulations to the choice of vertical grid, limiting the possibility of solid quantitative statements on the amplitudes and phases of the diurnal and semidiurnal components across the domain. According to our experiments, the Mellor-Yamada-Nakanishi-Niino (MYNN) boundary layer scheme and the WSM6 microphysics scheme is the combination of schemes that performs best. For that combination, mean cloud cover, liquid water path, and cloud depth are fairly wellsimulated, while mean cloud top height remains too low in comparison to observations. Both microphysics and boundary layer schemes contribute to the spread in liquid water path and cloud depth, although the microphysics contribution is slightly more prominent. Boundary layer schemes are the primary contributors to cloud top height, degree of adiabaticity, and cloud cover. Cloud top height is closely related to surface fluxes and boundary layer structure. Thus, our study infers that an appropriate tuning of cloud top height would likely improve the low-cloud representation in the model. Finally, we show that entrainment governs the degree of adiabaticity, while boundary layer decoupling is a control on cloud cover. In the intercomparison study using WRF single-column model experiments, most parameterizations show a poor agreement of the vertical boundary layer structure when compared with large-eddy simulation models. We also implement a new Total-Energy/Mass- Flux boundary layer scheme into the WRF model and evaluate its ability to simulate both stratocumulus and shallow cumulus clouds. Result comparisons against large-eddy simulation show that this advanced parameterization based on the new Eddy-Diffusivity/Mass-Flux approach provides a better performance than other boundary layer parameterizations.

  18. Modelling vegetation dynamics at global scale due to climate changes: Comparison of two approaches

    SciTech Connect (OSTI)

    Belotelov, N.V.; Bogatyrev, B.G.; Lobanov, A.I.

    1996-12-31

    Climate changes will influence vegetation dynamics. One of the ways of forecasting these changes is the creation of mathematical models describing vegetation dynamics. Computer experiments can then be conducted under climate change scenarios. Two main approaches are used to create such models. The first approach is based on a bioclimatic dynamic approach. The second approach is based on modelling the main eco-physiological processes. The bioclimatic dynamic approach consists of hypotheses about vegetation types or biomes, and their interrelationships with climate. In the eco-physiological approach, a detailed description of the processes, such as production, mortality, plants migration and their competition is presented. A number of computer experiments has been conducted for several climatic scenario for Russia and the whole world. A qualitative comparison of the results with the results of an earlier bioclimatic model has been done.

  19. A Mechanical Fluid-Dynamical Model For Ground Movements At Campi...

    Open Energy Info (EERE)

    Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Mechanical...

  20. Incorporating Stakeholder Decision Support Needs into an Integrated Regional Earth System Model

    SciTech Connect (OSTI)

    Rice, Jennie S.; Moss, Richard H.; Runci, Paul J.; Anderson, K. L.; Malone, Elizabeth L.

    2012-03-21

    A new modeling effort exploring the opportunities, constraints, and interactions between mitigation and adaptation at regional scale is utilizing stakeholder engagement in an innovative approach to guide model development and demonstration, including uncertainty characterization, to effectively inform regional decision making. This project, the integrated Regional Earth System Model (iRESM), employs structured stakeholder interactions and literature reviews to identify the most relevant adaptation and mitigation alternatives and decision criteria for each regional application of the framework. The information is used to identify important model capabilities and to provide a focus for numerical experiments. This paper presents the stakeholder research results from the first iRESM pilot region. The pilot region includes the Great Lakes Basin in the Midwest portion of the United States as well as other contiguous states. This geographic area (14 states in total) permits cohesive modeling of hydrologic systems while also providing gradients in climate, demography, land cover/land use, and energy supply and demand. The results from the stakeholder research indicate that iRESM should prioritize addressing adaptation alternatives in the water resources, urban infrastructure, and agriculture sectors, such as water conservation, expanded water quality monitoring, altered reservoir releases, lowered water intakes, urban infrastructure upgrades, increased electric power reserves in urban areas, and land use management/crop selection changes. Regarding mitigation alternatives, the stakeholder research shows a need for iRESM to focus on policies affecting the penetration of renewable energy technologies, and the costs and effectiveness of energy efficiency, bioenergy production, wind energy, and carbon capture and sequestration.

  1. Solid State NMR Investigations of Chain Dynamics and Network Order in Model

    Office of Scientific and Technical Information (OSTI)

    Poly(dimethylsiloxane) Elastomers (Conference) | SciTech Connect Conference: Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers Citation Details In-Document Search Title: Solid State NMR Investigations of Chain Dynamics and Network Order in Model Poly(dimethylsiloxane) Elastomers This work is at a relatively early stage, however it has been demonstrated that we can reliably probe basic network architectures using the MQ-NMR

  2. Using Multi-scale Dynamic Rupture Models to Improve Ground Motion

    Office of Scientific and Technical Information (OSTI)

    Estimates: ALCF-2 Early Science Program Technical Report (Technical Report) | SciTech Connect Technical Report: Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report Citation Details In-Document Search Title: Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report Authors: Ely, G.P. [1] + Show Author Affiliations (LCF) [LCF Publication Date: 2013-10-31 OSTI

  3. Dynamic-Feature Extraction, Attribution and Reconstruction (DEAR) Method for Power System Model Reduction

    SciTech Connect (OSTI)

    Wang, Shaobu; Lu, Shuai; Zhou, Ning; Lin, Guang; Elizondo, Marcelo A.; Pai, M. A.

    2014-09-04

    In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highest similarity, forming a suboptimal basis of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.

  4. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  5. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT

  6. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    SciTech Connect (OSTI)

    Wang, Gangsheng; Mayes, Melanie; Gu, Lianhong; Schadt, Christopher Warren

    2014-01-01

    Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

  7. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  8. Modeling icesheets dynamics: forward and inverse problems. (Conference...

    Office of Scientific and Technical Information (OSTI)

    for Modeling and Scientific Computing MOX Seminar held September 9, 2013 in Milano, Italy. ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  9. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  10. STOIC: An Assessment of Coupled Model Climatology and Variability in Tropical Ocean Regions

    SciTech Connect (OSTI)

    Davey, M.K.; Sperber, K.R.; Huddleston, M

    2000-08-30

    The tropics are regions of strong ocean-atmosphere interaction on seasonal and interannual timescales, so a good representation of observed tropical behavior is a desirable objective for coupled ocean-atmosphere general circulation models (CGCMs). To broaden and update previous assessments (Mechoso et al. 1995, Neelin et al. 1992), two complementary projects were initiated by the CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP): the El Nino Simulation Intercomparison Project (ENSIP, by Mojib Latif) and STOIC (Study of Tropical Oceans In Coupled models). The aim was to compare models against observations to identify common weaknesses and strengths. Results from ENSIP concentrating on the equatorial Pacific have been described by Latif et al. (2000), hereafter ENSIP2000. A detailed report on STOIC is available via anonymous ftp at email.meto.gov.uk/pub/cr/ ''stoic'' and is summarized in Davey et al. (2000). The STOIC analyses extend beyond the equatorial Pacific, to examine behavior in all three tropical ocean regions.

  11. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    SciTech Connect (OSTI)

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T; Foley, Brian

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, result from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.

  12. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect (OSTI)

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulators current capabilities through a particular startup and shutdown scenario.

  13. Advanced Modeling of Renewable Energy Market Dynamics: May 2006

    SciTech Connect (OSTI)

    Evans, M.; Little, R.; Lloyd, K.; Malikov, G.; Passolt, G.; Arent, D.; Swezey, B.; Mosey, G.

    2007-08-01

    This report documents a year-long academic project, presenting selected techniques for analysis of market growth, penetration, and forecasting applicable to renewable energy technologies. Existing mathematical models were modified to incorporate the effects of fiscal policies and were evaluated using available data. The modifications were made based on research and classification of current mathematical models used for predicting market penetration. An analysis of the results was carried out, based on available data. MATLAB versions of existing and new models were developed for research and policy analysis.

  14. Human Performance Modeling for Dynamic Human Reliability Analysis

    SciTech Connect (OSTI)

    Boring, Ronald Laurids; Joe, Jeffrey Clark; Mandelli, Diego

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  15. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    SciTech Connect (OSTI)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.

  16. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    SciTech Connect (OSTI)

    Jackson, Bret; Nattino, Francesco; Kroes, Geert-Jan

    2014-08-07

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.

  17. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect (OSTI)

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  18. Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12

    SciTech Connect (OSTI)

    Deng, Yueying; Kruger, Albert A.

    2013-12-16

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

  19. Modeling microbial dynamics in heterogeneous environments: Growth on soil carbon sources

    SciTech Connect (OSTI)

    Resat, Haluk; Bailey, Vanessa L.; McCue, Lee Ann; Konopka, Allan

    2012-01-01

    We have developed a new hybrid model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment. The modeling framework can represent porous media such as soil. The individual based biological model can explicitly simulate microbial diversity, and cell metabolism is regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions and by the functional attributes of individual microbes. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences may suggest different functional roles for these two classes of microbes in cellulose utilization. Our model predicted an emergent behavior in which co-existence led to higher cellulose utilization efficiency and reduced stochasticity. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20 {micro}m size portions of the soil physical structure and in 111 {micro}m size soil aggregates with a random pore structure. Trends in dynamic properties were very similar at these two scales, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied.

  20. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  1. North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael; Gershunov, Alexander; Gutowski, Jr., William J.; Gyakum, John R.; Katz, Richard W.; et al

    2015-05-22

    This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less

  2. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems Trieu Mai, Easan Drury, Kelly Eurek, Natalie Bodington, Anthony Lopez, and Andrew Perry Technical Report NREL/TP-6A20- 56723 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  3. NREL: Regional Energy Deployment System (ReEDS) Model - Documentation of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReEDS Base Case Data Documentation of ReEDS Base Case Data The Regional Energy Deployment System (ReEDS) documentation summarizes the key data inputs to the Base Case of the ReEDS model. The Base Case was developed simply as a point of departure for other analyses to be conducted with the ReEDS model. It does not represent a forecast of the future, but rather is a consensus scenario whose inputs depend strongly on others' results and forecasts. For example, the ReEDS Base Case derives many

  4. An integrated computer modeling environment for regional land use, air quality, and transportation planning

    SciTech Connect (OSTI)

    Hanley, C.J.; Marshall, N.L.

    1997-04-01

    The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menu-driven query system is utilized to review link-based results and regional and area-wide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future projections. 16 refs., 3 figs., 2 tabs.

  5. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    SciTech Connect (OSTI)

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  6. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Broader source: Energy.gov (indexed) [DOE]

    Emissions | Department of Energy 05 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_reitz.pdf More Documents & Publications Experiments and Modeling of Two-Stage Combustion in Low-Emissions Diesel Engines Comparison of Conventional Diesel and Reactivity Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  7. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  8. Modeling aspects of the dynamic response of heterogeneous materials

    SciTech Connect (OSTI)

    Ionita, Axinte; Clements, Brad; Mas, Eric

    2009-01-01

    In numerical simulations of engineering applications involving heterogeneous materials capturing the local response coming from a distribution of heterogeneities can lead to a very large model thus making simulations difficult. The use of homogenization techniques can reduce the size of the problem but will miss the local effects. Homogenization can also be difficult if the constituents obey different types of constitutive laws. Additional complications arise if inelastic deformation. In such cases a two-scale approach is prefened and tills work addresses these issues in the context of a two-scale Finite Element Method (FEM). Examples of using two-scale FEM approaches are presented.

  9. Multiple dynamical resonances in a discrete neuronal model

    SciTech Connect (OSTI)

    Jiang Yu

    2005-05-01

    The conditions for the occurrence of different multiple resonances in an excitable neuron model are analyzed numerically. It is shown that the excitable system may display both stochastic and coherence resonance, in response to periodic stimuli in the presence of different intensities of additive and parametric noises. It is found that double coherence resonances may take place in the low-amplitude oscillation regimes, and coherence resonance may persists even in the weak oscillatory regimes for control parameters slightly larger than the Hopf bifurcation point, where the system is in the incipient stage of large-amplitude excitation regime.

  10. Parameter Estimation and Model Validation of Nonlinear Dynamical Networks

    SciTech Connect (OSTI)

    Abarbanel, Henry; Gill, Philip

    2015-03-31

    In the performance period of this work under a DOE contract, the co-PIs, Philip Gill and Henry Abarbanel, developed new methods for statistical data assimilation for problems of DOE interest, including geophysical and biological problems. This included numerical optimization algorithms for variational principles, new parallel processing Monte Carlo routines for performing the path integrals of statistical data assimilation. These results have been summarized in the monograph: “Predicting the Future: Completing Models of Observed Complex Systems” by Henry Abarbanel, published by Spring-Verlag in June 2013. Additional results and details have appeared in the peer reviewed literature.

  11. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region

    SciTech Connect (OSTI)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2005-12-01

    Despite their long history and wide range of applicability that includes electric propulsion, detailed understanding of the driving physics inside orificed hollow cathodes remains elusive. The theoretical complexity associated with the multicomponent fluid inside the cathode, and the difficulty of accessing empirically this region, have limited our ability to design cathodes that perform better and last longer. A two-dimensional axisymmetric theoretical model of the multispecies fluid inside an orificed hollow cathode is presented. The level of detail attained by the model is allowed by its extended system of governing equations not solved for in the past within the hollow cathode. Such detail is motivated in part by the need to quantify the effect(s) of the plasma on the emitter life, and by the need to build the foundation for future modeling that will assess erosion of the keeper plate. Results from numerical simulations of a 1.2-cm-diam cathode operating at a discharge current of 25 A and a gas flow rate of 5 SCCM show that approximately 10 A of electron current, and 3.45 A of ion current return back to the emitter surface. The total emitted electron current is 33.8 A and the peak emitter temperature is found to be 1440 K. Comparisons with the measurements suggest that anomalous heating of the plasma is possible near the orifice region. The model predicts heavy species temperatures as high as 2034 K and peak voltage drops near the emitting surface not exceeding 8 V.

  12. Advanced Neutron Source Dynamic Model (ANSDM) code description and user guide

    SciTech Connect (OSTI)

    March-Leuba, J.

    1995-08-01

    A mathematical model is designed that simulates the dynamic behavior of the Advanced Neutron Source (ANS) reactor. Its main objective is to model important characteristics of the ANS systems as they are being designed, updated, and employed; its primary design goal, to aid in the development of safety and control features. During the simulations the model is also found to aid in making design decisions for thermal-hydraulic systems. Model components, empirical correlations, and model parameters are discussed; sample procedures are also given. Modifications are cited, and significant development and application efforts are noted focusing on examination of instrumentation required during and after accidents to ensure adequate monitoring during transient conditions.

  13. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect (OSTI)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  14. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    SciTech Connect (OSTI)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Qualls, A L.; Borum, Robert C.; Chaleff, Ethan S.; Rogerson, Doug W.; Batteh, John J.; Tiller, Michael M.

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  15. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect (OSTI)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  16. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.; Mohanpurkar, M.; Havsapian, R.; Koritarov, V.

    2015-04-06

    Hydropower is the largest producer of renewable energy in the U.S. More than 60% of the total renewable generation comes from hydropower. There is also approximately 22 GW of pumped storage hydropower (PSH). Conventional PSH uses a synchronous generator, and thus the rotational speed is constant at synchronous speed. This work details a hydrodynamic model and generator/power converter dynamic model. The optimization of the hydrodynamic model is executed by the hydro-turbine controller, and the electrical output real/reactive power is controlled by the power converter. All essential controllers to perform grid-interface functions and provide ancillary services are included in the model.

  17. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect (OSTI)

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (?100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  18. Overview of the synergia 3-D multi-particle dynamics modeling framework

    SciTech Connect (OSTI)

    Spentzouris, P.; Amundson, J.F.; Dechow, D.R.; /Tech-X, Boulder

    2005-05-01

    High precision modeling of space-charge effects is essential for designing future accelerators as well as optimizing the performance of existing machines. Synergia is a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher-order optics implementation. We describe the Synergia framework and model benchmarks we obtained by comparing to semi-analytic results and other codes. We also present Synergia simulations of the Fermilab Booster accelerator and comparisons with experiment.

  19. TWO-DIMENSIONAL CELLULAR AUTOMATON MODEL FOR THE EVOLUTION OF ACTIVE REGION CORONAL PLASMAS

    SciTech Connect (OSTI)

    Lpez Fuentes, Marcelo; Klimchuk, James A.

    2015-02-01

    We study a two-dimensional cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops model to compute the response of the plasma to the heating events. Using the known response of the X-Ray Telescope on board Hinode, we also obtain synthetic data. The model obeys easy-to-understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of 2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.

  20. Two-Way Integration of WRF and CCSM for Regional Climate Simulations...

    Office of Scientific and Technical Information (OSTI)

    the process of dynamical downscaling by avoiding massive intermediate model outputs at high frequency that are typically required for offline regional downscaling. The inline...

  1. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.

  2. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  3. Coupled-channel model for K¯N scattering in the resonant region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernández-Ramírez, Cesar; Danilkin, Igor V.; Manley, D. Mark; Mathieu, Vincent; Szczepaniak, Adam P.

    2016-02-18

    We present a unitary multichannel model for K¯N scattering in the resonance region that fulfills unitarity. It has the correct analytical properties for the amplitudes once they are extended to the complex-$s$ plane and the partial waves have the right threshold behavior. To determine the parameters of the model, we have fitted single-energy partial waves up to J = 7/2 and up to 2.15 GeV of energy in the center-of-mass reference frame obtaining the poles of the Λ* and Σ* resonances, which are compared to previous analyses. We provide the most comprehensive picture of the S = –1 hyperon spectrummore » to date. Here, important differences are found between the available analyses making the gathering of further experimental information on K¯N scattering mandatory to make progress in the assessment of the hyperon spectrum.« less

  4. THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND OBSERVATIONS IN SDO/AIA

    SciTech Connect (OSTI)

    Viall, Nicholeen M.; Klimchuk, James A.

    2015-01-20

    The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. Whereas the corona cools sequentially, emitting first at higher temperatures and then at lower temperatures, the TR is multithermal and the emission at all temperatures responds in unison. We have previously applied the automated time lag technique of Viall and Klimchuk to disk observations of an active region (AR) made by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Lines of sight passing through coronal plasma show clear evidence for post-nanoflare cooling, while lines of sight intersecting the TR footpoints of coronal strands show zero time lag. In this paper, we use the EBTEL hydrodynamics code to demonstrate that this is precisely the expected behavior when the corona is heated by nanoflares. We also apply the time lag technique for the first time to off-limb observations of an AR. Since TR emission is not present above the limb, the occurrence of zero time lags is greatly diminished, supporting the conclusion that zero time lags measured on the disk are due to TR plasma. Lastly, we show that the ''coronal'' channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3MK and higher, well within the range of the ''coronal'' AIA channels.

  5. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect (OSTI)

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

  6. Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2010-12-01

    The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

  7. On an improved sub-regional water resources management representation for integration into earth system models

    SciTech Connect (OSTI)

    Voisin, Nathalie; Li, Hongyi; Ward, Duane L.; Huang, Maoyi; Wigmosta, Mark S.; Leung, Lai-Yung R.

    2013-09-30

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities, withdrawals vs. consumptive demand, as well as natural vs. regulated mean flow for calibrating operating rules. Overall the best performing implementation is the use of the combined priorities (flood control storage targets and irrigation release targets) operating rules calibrated with mean annual natural flow and mean monthly withdrawals. The challenge of not accounting for groundwater withdrawals, or on the contrary, assuming that all remaining demand is met through groundwater extractions, is discussed.

  8. Using a dynamic point-source percolation model to simulate bubble growth.

    SciTech Connect (OSTI)

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-05-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.

  9. Compartment modeling of dynamic brain PETThe impact of scatter corrections on parameter errors

    SciTech Connect (OSTI)

    Hggstrm, Ida Karlsson, Mikael; Larsson, Anne; Schmidtlein, C. Ross

    2014-11-01

    Purpose: The aim of this study was to investigate the effect of scatter and its correction on kinetic parameters in dynamic brain positron emission tomography (PET) tumor imaging. The 2-tissue compartment model was used, and two different reconstruction methods and two scatter correction (SC) schemes were investigated. Methods: The GATE Monte Carlo (MC) software was used to perform 2 15 full PET scan simulations of a voxelized head phantom with inserted tumor regions. The two sets of kinetic parameters of all tissues were chosen to represent the 2-tissue compartment model for the tracer 3?-deoxy-3?-({sup 18}F)fluorothymidine (FLT), and were denoted FLT{sub 1} and FLT{sub 2}. PET data were reconstructed with both 3D filtered back-projection with reprojection (3DRP) and 3D ordered-subset expectation maximization (OSEM). Images including true coincidences with attenuation correction (AC) and true+scattered coincidences with AC and with and without one of two applied SC schemes were reconstructed. Kinetic parameters were estimated by weighted nonlinear least squares fitting of image derived timeactivity curves. Calculated parameters were compared to the true input to the MC simulations. Results: The relative parameter biases for scatter-eliminated data were 15%, 16%, 4%, 30%, 9%, and 7% (FLT{sub 1}) and 13%, 6%, 1%, 46%, 12%, and 8% (FLT{sub 2}) for K{sub 1}, k{sub 2}, k{sub 3}, k{sub 4}, V{sub a}, and K{sub i}, respectively. As expected, SC was essential for most parameters since omitting it increased biases by 10 percentage points on average. SC was not found necessary for the estimation of K{sub i} and k{sub 3}, however. There was no significant difference in parameter biases between the two investigated SC schemes or from parameter biases from scatter-eliminated PET data. Furthermore, neither 3DRP nor OSEM yielded the smallest parameter biases consistently although there was a slight favor for 3DRP which produced less biased k{sub 3} and K{sub i} estimates while OSEM resulted in a less biased V{sub a}. The uncertainty in OSEM parameters was about 26% (FLT{sub 1}) and 12% (FLT{sub 2}) larger than for 3DRP although identical postfilters were applied. Conclusions: SC was important for good parameter estimations. Both investigated SC schemes performed equally well on average and properly corrected for the scattered radiation, without introducing further bias. Furthermore, 3DRP was slightly favorable over OSEM in terms of kinetic parameter biases and SDs.

  10. Three-phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems with Synchronous Machines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  11. Geometric phase effects in low-energy dynamics near conical intersections: A study of the multidimensional linear vibronic coupling model

    SciTech Connect (OSTI)

    Joubert-Doriol, Loc; Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6

    2013-12-21

    In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N ? 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model.

  12. A moist aquaplanet variant of the HeldSuarez test for atmospheric model dynamical cores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thatcher, D. R.; Jablonowski, C.

    2015-09-29

    A moist idealized test case (MITC) for atmospheric model dynamical cores is presented. The MITC is based on the HeldSuarez (HS) test that was developed for dry simulations on a flat Earth and replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of the low-level winds. This new variant of the HS test includes moisture and thereby sheds light on the non-linear dynamics-physics moisture feedbacks without the complexity of full physics parameterization packages. In particular, it adds simplified moist processes to the HS forcing to model large-scale condensation, boundary layer mixing, and the exchange ofmorelatent and sensible heat between the atmospheric surface and an ocean-covered planet. Using a variety of dynamical cores of NCAR's Community Atmosphere Model (CAM), this paper demonstrates that the inclusion of the moist idealized physics package leads to climatic states that closely resemble aquaplanet simulations with complex physical parameterizations. This establishes that the MITC approach generates reasonable atmospheric circulations and can be used for a broad range of scientific investigations. This paper provides examples of two application areas. First, the test case reveals the characteristics of the physics-dynamics coupling technique and reproduces coupling issues seen in full-physics simulations. In particular, it is shown that sudden adjustments of the prognostic fields due to moist physics tendencies can trigger undesirable large-scale gravity waves, which can be remedied by a more gradual application of the physical forcing. Second, the moist idealized test case can be used to intercompare dynamical cores. These examples demonstrate the versatility of the MITC approach and suggestions are made for further application areas. The new moist variant of the HS test can be considered a test case of intermediate complexity.less

  13. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  14. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore » observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less

  15. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

  16. Understanding polarization properties of InAs quantum dots by atomistic modeling of growth dynamics

    SciTech Connect (OSTI)

    Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; Passaseo, Adriana; Usman, Muhammad

    2013-12-04

    A model for realistic InAs quantum dot composition profile is proposed and analyzed, consisting of a double region scheme with an In-rich internal core and an In-poor external shell, in order to mimic the atomic scale phenomena such as In-Ga intermixing and In segregation during the growth and overgrowth with GaAs. The parameters of the proposed model are derived by reproducing the experimentally measured polarization data. Further understanding is developed by analyzing the strain fields which suggests that the two-composition model indeed results in lower strain energies than the commonly applied uniform composition model.

  17. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOE Patents [OSTI]

    Danko, George

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  18. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  19. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect (OSTI)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  20. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles. Interim Task Report

    SciTech Connect (OSTI)

    Bossard, J.A.; Peck, R.E.; Schmidt, D.K.

    1993-03-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  1. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant Preprint E. Muljadi, M. Singh, and V. Gevorgian National Renewable Energy Laboratory M. Mohanpurkar and R. Hovsapian Idaho National Laboratory V. Koritarov Argonne National Laboratory To be presented at the 2015 IEEE Power and Energy Society General Meeting Denver, Colorado July 26-30, 2015 Conference Paper NREL/CP-5D00-63587 April 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for

  2. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect (OSTI)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  3. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    SciTech Connect (OSTI)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  4. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    SciTech Connect (OSTI)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary system relate to flows within the reactor vessel during severe events and the resulting temperature profiles (temperature and duration) for major components. Critical components include the fuel, reactor vessel, primary piping, and the primary-to-intermediate heat exchangers (P-IHXs). The major AHTR power system loops are shown in Fig. 3. The intermediate heat transfer system is a group of three pumped salt loops that transports the energy produced in the primary system to the power conversion system. Two dynamic system models are used to analyze the AHTR. A Matlab/Simulink-based model initiated in 2011 has been updated to reflect the evolving design parameters related to the heat flows associated with the reactor vessel. The Matlab model utilizes simplified flow assumptions within the vessel and incorporates an empirical representation of the Direct Reactor Auxiliary Cooling System (DRACS). A Dymola/Modelica model incorporates a more sophisticated representation of primary coolant flow and a physics-based representation of the three-loop DRACS thermal hydraulics. This model is not currently operating in a fully integrated mode. The Matlab model serves as a prototype and provides verification for the Dymola model, and its use will be phased out as the Dymola model nears completion. The heat exchangers in the system are sized using spreadsheet-based, steady-state calculations. The detail features of the heat exchangers are programmed into the dynamic models, and the overall dimensions are used to generate realistic plant designs. For the modeling cases where the emphasis is on understanding responses within the intermediate and primary systems, the power conversion system may be modeled as a simple boundary condition at the intermediate-to-power conversion system heat exchangers.

  5. Equilibrium Response and Transient Dynamics Datasets from VEMAP: Vegetation/Ecosystem Modeling and Analysis Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Users of the VEMAP Portal can access input files of numerical data that include monthly and daily files of geographic data, soil and site files, scenario files, etc. Model results from Phase I, the Equilibrium Response datasets, are available through the NCAR anonymous FTP site at http://www.cgd.ucar.edu/vemap/vresults.html. Phase II, Transient Dynamics, include climate datasets, models results, and analysis tools. Many supplemental files are also available from the main data page at http://www.cgd.ucar.edu/vemap/datasets.html.

  6. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    SciTech Connect (OSTI)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  7. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect (OSTI)

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li

    2008-05-15

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  8. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAGâ??s advanced dynamics core with the â??physicsâ? of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  9. Options of system integrated environment modelling in the predicated dynamic cyberspace

    SciTech Connect (OSTI)

    Janková, Martina; Dvořák, Jiří

    2015-03-10

    In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.

  10. The ArcSDE GIS Dynamic Population Model Tool for Savannah River Site Emergency Response

    SciTech Connect (OSTI)

    MCLANE, TRACY; JONES, DWIGHT

    2005-10-03

    The Savannah River Site (SRS) is a 310-square-mile Department of Energy site located near Aiken, South Carolina. With a workforce of over 10,000 employees and subcontractors, SRS emergency personnel must be able to respond to an emergency event in a timely and effective manner, in order to ensure the safety and security of the Site. Geographic Information Systems (GIS) provides the technology needed to give managers and emergency personnel the information they need to make quick and effective decisions. In the event of a site evacuation, knowing the number of on-site personnel to evacuate from a given area is an essential piece of information for emergency staff. SRS has developed a GIS Dynamic Population Model Tool to quickly communicate real-time information that summarizes employee populations by facility area and building and then generates dynamic maps that illustrate output statistics.

  11. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect (OSTI)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  12. Smoothed particle hydrodynamics Non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface ?ows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is veri?ed by simulating Poiseuille ?ow, plane shear ?ow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian ?uid. In the present work, however, the ice is modeled as both viscous Newtonian ?uid and non-Newtonian ?uid, such that the e?ect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glens law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  13. Thermoacoustic wave propagation modeling using a dynamically adaptive wavelet collocation method

    SciTech Connect (OSTI)

    Vasilyev, O.V.; Paolucci, S.

    1996-12-31

    When a localized region of a solid wall surrounding a compressible medium is subjected to a sudden temperature change, the medium in the immediate neighborhood of that region expands. This expansion generates pressure waves. These thermally-generated waves are referred to as thermoacoustic (TAC) waves. The main interest in thermoacoustic waves is motivated by their property to enhance heat transfer by inducing convective motion away from the heated area. Thermoacoustic wave propagation in a two-dimensional rectangular cavity is studied numerically. The thermoacoustic waves are generated by raising the temperature locally at the walls. The waves, which decay at large time due to thermal and viscous diffusion, propagate and reflect from the walls creating complicated two-dimensional patterns. The accuracy of numerical simulation is ensured by using a highly accurate, dynamically adaptive, multilevel wavelet collocation method, which allows local refinements to adapt to local changes in solution scales. Subsequently, high resolution computations are performed only in regions of large gradients. The computational cost of the method is independent of the dimensionality of the problem and is O(N), where N is the total number of collation points.

  14. Modeling the Potential Effects of New Tobacco Products and Policies: A Dynamic Population Model for Multiple Product Use and Harm

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.

  15. Modeling the Potential Effects of New Tobacco Products and Policies. A Dynamic Population Model for Multiple Product Use and Harm

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use for the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.

  16. Modeling the Potential Effects of New Tobacco Products and Policies. A Dynamic Population Model for Multiple Product Use and Harm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vugrin, Eric D.; Rostron, Brian L.; Verzi, Stephen J.; Brodsky, Nancy S.; Brown, Theresa J.; Choiniere, Conrad J.; Coleman, Blair N.; Paredes, Antonio; Apelberg, Benjamin J.

    2015-03-27

    Background Recent declines in US cigarette smoking prevalence have coincided with increases in use of other tobacco products. Multiple product tobacco models can help assess the population health impacts associated with use of a wide range of tobacco products. Methods and Findings We present a multi-state, dynamical systems population structure model that can be used to assess the effects of tobacco product use behaviors on population health. The model incorporates transition behaviors, such as initiation, cessation, switching, and dual use, related to the use of multiple products. The model tracks product use prevalence and mortality attributable to tobacco use formore » the overall population and by sex and age group. The model can also be used to estimate differences in these outcomes between scenarios by varying input parameter values. We demonstrate model capabilities by projecting future cigarette smoking prevalence and smoking-attributable mortality and then simulating the effects of introduction of a hypothetical new lower-risk tobacco product under a variety of assumptions about product use. Sensitivity analyses were conducted to examine the range of population impacts that could occur due to differences in input values for product use and risk. We demonstrate that potential benefits from cigarette smokers switching to the lower-risk product can be offset over time through increased initiation of this product. Model results show that population health benefits are particularly sensitive to product risks and initiation, switching, and dual use behaviors. Conclusion Our model incorporates the variety of tobacco use behaviors and risks that occur with multiple products. As such, it can evaluate the population health impacts associated with the introduction of new tobacco products or policies that may result in product switching or dual use. Further model development will include refinement of data inputs for non-cigarette tobacco products and inclusion of health outcomes such as morbidity and disability.« less

  17. KINETIC MODELING OF PARTICLE ACCELERATION IN A SOLAR NULL-POINT RECONNECTION REGION

    SciTech Connect (OSTI)

    Baumann, G.; Haugbolle, T.; Nordlund, A.

    2013-07-10

    The primary focus of this paper is on the particle acceleration mechanism in solar coronal three-dimensional reconnection null-point regions. Starting from a potential field extrapolation of a Solar and Heliospheric Observatory (SOHO) magnetogram taken on 2002 November 16, we first performed magnetohydrodynamics (MHD) simulations with horizontal motions observed by SOHO applied to the photospheric boundary of the computational box. After a build-up of electric current in the fan plane of the null point, a sub-section of the evolved MHD data was used as initial and boundary conditions for a kinetic particle-in-cell model of the plasma. We find that sub-relativistic electron acceleration is mainly driven by a systematic electric field in the current sheet. A non-thermal population of electrons with a power-law distribution in energy forms in the simulated pre-flare phase, featuring a power-law index of about -1.78. This work provides a first step toward bridging the gap between macroscopic scales on the order of hundreds of Mm and kinetic scales on the order of centimeter in the solar corona, and explains how to achieve such a cross-scale coupling by utilizing either physical modifications or (equivalent) modifications of the constants of nature. With their exceptionally high resolution-up to 135 billion particles and 3.5 billion grid cells of size 17.5 km-these simulations offer a new opportunity to study particle acceleration in solar-like settings.

  18. Dynamic model verification studies for the thermal response of the Fort St. Vrain HTGR Core

    SciTech Connect (OSTI)

    Ball, S J

    1980-01-01

    The safety research program for high-temperature gas-cooled reactors at ORNL is directed primarily at addressing licensing questions on the Fort St. Vrain reactor near Denver, CO. An important part of the program is to make use of experimental data from the reactor to at least partially verify the dynamic simulations that are used to predict the effects of postulated accident sequences. Comparisons were made of predictions with data from four different reactor scram (trip) events from operating power levels between 30 and 50%. An optimization program was used to rationalize the differences between predictions and measurements, and, in general, excellent agreement can be obtained by adjustment of models and parameters within their uncertainty ranges. Although the optimized models are not necessarily unique, results of the study have identified areas in which some of the models were deficient.

  19. Modeling the influence of polls on elections: a population dynamics approach

    SciTech Connect (OSTI)

    Hyman, James M; Restrepo, Juan M; Rael, Rosalyn C

    2009-01-01

    We propose a population dynamics model for quantifying the effects of polling data on the outcome of multi-party elections decided by a majority-rule voting process. We divide the population into two groups: committed voters impervious to polling data, and susceptible voters whose decision to vote is influenced by data, depending on its reliability. This population-based approach to modeling the process sidesteps the problem of upscaling models based upon the choices made by individuals. We find releasing poll data is not advantageous to leading candidates, but it can be exploited by those closely trailing. The analysis identifies the particular type of voting impetus at play in different stages of an election and could help strategists optimize their influence on susceptible voters.

  20. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  1. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  2. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect (OSTI)

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  3. An assessment of possible climate change in the Australian region based on intercomparison of general circulation modeling results

    SciTech Connect (OSTI)

    Whetton, P.H.; Pittock, A.B.; Haylock, M.R. ); Rayner, P.J. )

    1994-03-01

    To assist in estimating likely future climate change in the Australian region, the authors examine the results of four different general circulation modeling experiments run to assess the equilibrium impact of doubling greenhouse gases. The results examined were the most recent available at the time of study from various research centers in North America and Europe, as well as those of the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The approach used is, first, to assess the quality of the control (1 x CO[sub 2]) simulations from each of the models of mean sea level (MSL) pressure and precipitation in the Australian region by comparing these with the corresponding observed patterns; and, second, to then analyze the 2 x CO[sub 2] results of only those model experiments with the best control simulations. Of the models examined two are chosen on the basis of their simulation of current climate in the region: the CSIRO four-level model (CSIRO4) and the United Kingdom Meteorological Office (UKMO) model. For conditions of equivalent doubling of CO[sub 2], both models show substantial increases in surface air temperature of around 4[degrees]-6[degrees] inland and 2[degrees]-4[degrees]C in coastal regions. Both models show decreased MSL pressure over the Australian continent and increases in rainfall over northern, central, and eastern Australia, particularly in the summer half of the year. The CSIRO4 model, but not the UKMO model, also shows increased pressure to the south of the continent and decreased winter rainfall in southwest and southern Australia. Generally, field significance tests show the pattern and magnitude of the changes to be significant of CSIRO4 (for which the necessary monthly simulated data were available). 42 refs., 20 figs., 5 tabs.

  4. Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model

    SciTech Connect (OSTI)

    Earl D Mattson; Larry Hull

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.

  5. Multichannel Pseudogap Kondo Model: Large-N Solution and Quantum-Critical Dynamics

    SciTech Connect (OSTI)

    Vojta, Matthias

    2001-08-27

    We discuss a multichannel SU(N) Kondo model which displays nontrivial zero-temperature phase transitions due to a conduction electron density of states vanishing with a power law at the Fermi level. In a particular large-N limit, the system is described by coupled integral equations corresponding to a dynamic saddle point. We exactly determine the universal low-energy behavior of spectral densities at the scale-invariant fixed points, obtain anomalous exponents, and compute scaling functions describing the crossover near the quantum-critical points. We argue that our findings are relevant to recent experiments on impurity-doped d -wave superconductors.

  6. Cohesive Modeling of Dynamic Crack Growth in Homogeneous and Functionally Graded Materials

    SciTech Connect (OSTI)

    Zhang Zhengyu; Paulino, Glaucio H.; Celes, Waldemar

    2008-02-15

    This paper presents a Cohesive Zone Model (CZM) approach for investigating dynamic crack propagation in homogeneous and Functionally Graded Materials (FGMs). The failure criterion is incorporated in the CZM using both a finite cohesive strength and work to fracture in the material description. A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gradation is approximated at the element level using a graded element formulation. A numerical example is provided to demonstrate the efficacy of the CZM approach, in which the influence of the material gradation on the crack growth pattern is studied.

  7. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide for PV Dynamic Model Simulation Written on PSCAD Platform E. Muljadi, M. Singh, and V. Gevorgian National Renewable Energy Laboratory Technical Report NREL/TP-5D00-62053 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  8. AFDM: An advanced fluid-dynamics model. Volume 6: EOS-AFDM interface

    SciTech Connect (OSTI)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices.

  9. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; Brady, Michael P.; Evans, R. David; Kruger, Chad E.; Lamb, Brian K.; Liu, Mingliang; Stöckle, Claudio O.; Vaughan, Joseph K.; et al

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  10. Aeroelastic Modeling of Offshore Turbines and Support Structures in Hurricane-Prone Regions (Poster)

    SciTech Connect (OSTI)

    Damiani, R.

    2014-03-01

    US offshore wind turbines (OWTs) will likely have to contend with hurricanes and the associated loading conditions. Current industry standards do not account for these design load cases (DLCs), thus a new approach is required to guarantee that the OWTs achieve an appropriate level of reliability. In this study, a sequentially coupled aero-hydro-servo-elastic modeling technique was used to address two design approaches: 1.) The ABS (American Bureau of Shipping) approach; and 2.) The Hazard Curve or API (American Petroleum Institute) approach. The former employs IEC partial load factors (PSFs) and 100-yr return-period (RP) metocean events. The latter allows setting PSFs and RP to a prescribed level of system reliability. The 500-yr RP robustness check (appearing in [2] and [3] upcoming editions) is a good indicator of the target reliability for L2 structures. CAE tools such as NREL's FAST and Bentley's' SACS (offshore analysis and design software) can be efficiently coupled to simulate system loads under hurricane DLCs. For this task, we augmented the latest FAST version (v. 8) to include tower aerodynamic drag that cannot be ignored in hurricane DLCs. In this project, a 6 MW turbine was simulated on a typical 4-legged jacket for a mid-Atlantic site. FAST-calculated tower base loads were fed to SACS at the interface level (transition piece); SACS added hydrodynamic and wind loads on the exposed substructure, and calculated mudline overturning moments, and member and joint utilization. Results show that CAE tools can be effectively used to compare design approaches for the design of OWTs in hurricane regions and to achieve a well-balanced design, where reliability levels and costs are optimized.

  11. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect (OSTI)

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  12. Implementation of the nonlocal microplane concrete model within an explicit dynamic finite element program

    SciTech Connect (OSTI)

    Cofer, W.F.

    1992-03-01

    The microplane concrete material model is based upon assumptions regarding the behavior of the material components. At any point, the response to the strain tensor on arbitrarily oriented surfaces is considered. Simple, softening stress-strain relationships are assumed in directions perpendicular and parallel to the surfaces. The macroscopic material behavior is then composed of the sum of the effects. The implementation of this model into the explicit, nonlinear, dynamic finite element program, DYNA3D, is described. To avoid the spurious mesh sensitivity that accompanies material failure, a weighted integral strain averaging approach is used to ensure that softening is nonlocal. This method is shown to be effective for limiting the failure zone in a concrete rod subjected to an impulse loading. 36 refs., 7 figs.

  13. Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model

    SciTech Connect (OSTI)

    Earl D. Mattson; Larry Hull; Kara Cafferty

    2012-12-01

    A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.

  14. Quench dynamics near a quantum critical point: Application to the sine-Gordon model

    SciTech Connect (OSTI)

    De Grandi, C.; Polkovnikov, A.; Gritsev, V.

    2010-06-01

    We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter {lambda}(t) changes in time as {lambda}(t){approx}{upsilon}t{sup r}, based on the adiabatic expansion of the excitation probability in powers of {upsilon}. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility {chi}{sub 2r+2}({lambda}), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.

  15. Intelligent Object-Oriented GIS Engine W/dynamic Coupling to Modeled Objects

    Energy Science and Technology Software Center (OSTI)

    1997-02-12

    The GEOVIEWER is an intelligent object-oriented Geographic Information System (GIS) engine that provides not only a spatially-optimized object representation, but also direct linkage to the underlying object, its data and behaviors. Tools are incorporated to perform tasks involving typical GIS functionality, data ingestion, linkage to external models, and integration with other application frameworks. The GOEVIEWER module was designed to provide GIS functionality to create, query, view, and manipulate software objects within a selected area undermore » investigation in a simulation system. Many of these objects are not stored in a format conductive to efficient GIS usage. Their dynamic nature, complexity, and the sheer number of possible entity classes preclude effective integration with traditional GIS technologies due to the loosely coupled nature of their data representations. The primary difference between GEOVIEWER and standard GIS packages is that standard GIS packages offer static views of geospatial data while GEOVIEWER can be dynamically coupled to models and/or applications producing data and, therefore, display changes in geometry, attributes or behavior as they occur in the simulation.« less

  16. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink Wind Generator Modeling Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security, Modeling, Modeling & Analysis, News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Wind Generator Modeling This modular block diagram represents the major components of the generic dynamic wind turbine generator models. Model blocks and parameters are used to represent the different wind

  17. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  18. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    SciTech Connect (OSTI)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.; ,

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  19. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  20. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  1. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  2. Dynamic materials testing and constitutive modeling of structural sheet steel for automotive applications. Final progress report

    SciTech Connect (OSTI)

    Cady, C.M.; Chen, S.R.; Gray, G.T. III

    1996-08-23

    The objective of this study was to characterize the dynamic mechanical properties of four different structural sheet steels used in automobile manufacture. The analysis of a drawing quality, special killed (DQSK) mild steel; high strength, low alloy (HSLA) steel; interstitial free (IF); and a high strength steel (M-190) have been completed. In addition to the true stress-true strain data, coefficients for the Johnson-Cook, Zerilli-Armstrong, and Mechanical Threshold Stress constitutive models have been determined from the mechanical test results at various strain rates and temperatures and are summarized. Compression, tensile, and biaxial bulge tests and low (below 0.1/s) strain rate tests were completed for all four steels. From these test results it was determined to proceed with the material modeling optimization using the through thickness compression results. Compression tests at higher strain rates and temperatures were also conducted and analyzed for all the steels. Constitutive model fits were generated from the experimental data. This report provides a compilation of information generated from mechanical tests, the fitting parameters for each of the constitutive models, and an index and description of data files.

  3. Dynamic optimization model of energy related economic planning and development for the Navajo nation

    SciTech Connect (OSTI)

    Beladi, S.A.

    1983-01-01

    The Navajo reservation located in portions of Arizona, New Mexico and Utah is rich in low sulfur coal deposits, ideal for strip mining operation. The Navajo Nation has been leasing the mineral resources to non-Indian enterprises for purposes of extraction. Since the early 1950s the Navajo Nation has entered into extensive coal leases with several large companies and utilities. Contracts have committed huge quantities of Navajo coal for mining. This research was directed to evaluate the shadow prices of Navajo coal and identify optimal coal extraction. An economic model of coal resource extraction over time was structured within an optimal control theory framework. The control problem was formulated as a discrete dynamic optimization problem. A comparison of the shadow prices of coal deposits derived from the dynamic model with the royalty payments the tribe receives on the basis of the present long-term lease contracts indicates that, in most cases, the tribe is paid considerably less than the amount of royalty projected by the model. Part of these discrepancies may be explained in terms of the low coal demand condition at the time of leasing and due to greater uncertainties with respect to the geologic information and other risks associated with mining operations. However, changes in the demand for coal with rigidly fixed terms of royalty rates will lead to non-optimal extraction of coal. A corrective tax scheme is suggested on the basis of the results of this research. The proposed tax per unit of coal shipped from a site is the difference between the shadow price and the present royalty rate. The estimated tax rates over time are derived.

  4. A NEW DYNAMICAL MODEL FOR THE BLACK HOLE BINARY LMC X-1

    SciTech Connect (OSTI)

    Orosz, Jerome A.; Steeghs, Danny; McClintock, Jeffrey E. E-mail: D.T.H.Steeghs@warwick.ac.uk

    2009-05-20

    We present a dynamical model of the high mass X-ray binary LMC X-1 based on high-resolution optical spectroscopy and extensive optical and near-infrared photometry. From our new optical data we find an orbital period of P = 3.90917 {+-} 0.00005 days. We present a refined analysis of the All Sky Monitor data from RXTE and find an X-ray period of P = 3.9094 {+-} 0.0008 days, which is consistent with the optical period. A simple model of Thomson scattering in the stellar wind can account for the modulation seen in the X-ray light curves. The V - K color of the star (1.17 {+-} 0.05) implies A{sub V} = 2.28 {+-} 0.06, which is much larger than previously assumed. For the secondary star, we measure a radius of R {sub 2} = 17.0 {+-} 0.8 R {sub sun} and a projected rotational velocity of V {sub rot}sin i = 129.9 {+-} 2.2 km s{sup -1}. Using these measured properties to constrain the dynamical model, we find an inclination of i = 36.{sup 0}38 {+-} 1.{sup 0}92, a secondary star mass of M {sub 2} = 31.79 {+-} 3.48 M {sub sun}, and a black hole mass of 10.91 {+-} 1.41 M {sub sun}. The present location of the secondary star in a temperature-luminosity diagram is consistent with that of a star with an initial mass of 35 M {sub sun} that is 5 Myr past the zero-age main sequence. The star nearly fills its Roche lobe ({approx}90% or more), and owing to the rapid change in radius with time in its present evolutionary state, it will encounter its Roche lobe and begin rapid and possibly unstable mass transfer on a timescale of a few hundred thousand years.

  5. Numerical modeling of the groundwater contaminant transport for the Lake Karachai Area: The methodological approach and the basic two- dimensional regional model

    SciTech Connect (OSTI)

    Petrov, A.V.; Samsonova, L.M.; Vasil`kova, N.A.; Zinin, A.I.; Zinina, G.A. |

    1994-06-01

    Methodological aspects of the numerical modeling of the groundwater contaminant transport for the Lake Karachay area are discussed. Main features of conditions of the task are the high grade of non-uniformity of the aquifer in the fractured rock massif and the high density of the waste solutions, and also the high volume of the input data: both on the part of parameters of the aquifer (number of pump tests) and on the part of observations of functions of processes (long-time observations by the monitoring well grid). The modeling process for constructing the two dimensional regional model is described, and this model is presented as the basic model for subsequent full three-dimensional modeling in sub-areas of interest. Original powerful mathematical apparatus and computer codes for finite-difference numerical modeling are used.

  6. Integrated Experimental and Model-based Analysis Reveals the Spatial Aspects of EGFR Activation Dynamics

    SciTech Connect (OSTI)

    Shankaran, Harish; Zhang, Yi; Chrisler, William B.; Ewald, Jonathan A.; Wiley, H. S.; Resat, Haluk

    2012-10-02

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases, and controls a diverse set of cellular responses relevant to development and tumorigenesis. ErbB activation is a complex process involving receptor-ligand binding, receptor dimerization, phosphorylation, and trafficking (internalization, recycling and degradation), which together dictate the spatio-temporal distribution of active receptors within the cell. The ability to predict this distribution, and elucidation of the factors regulating it, would help to establish a mechanistic link between ErbB expression levels and the cellular response. Towards this end, we constructed mathematical models for deconvolving the contributions of receptor dimerization and phosphorylation to EGFR activation, and to examine the dependence of these processes on sub-cellular location. We collected experimental datasets for EGFR activation dynamics in human mammary epithelial cells, with the specific goal of model parameterization, and used the data to estimate parameters for several alternate models. Model-based analysis indicated that: 1) signal termination via receptor dephosphorylation in late endosomes, prior to degradation, is an important component of the response, 2) less than 40% of the receptors in the cell are phosphorylated at any given time, even at saturating ligand doses, and 3) receptor dephosphorylation rates at the cell surface and early endosomes are comparable. We validated the last finding by measuring EGFR dephosphorylation rates at various times following ligand addition both in whole cells, and in endosomes using ELISAs and fluorescent imaging. Overall, our results provide important information on how EGFR phosphorylation levels are regulated within cells. Further, the mathematical model described here can be extended to determine receptor dimer abundances in cells co-expressing various levels of ErbB receptors. This study demonstrates that an iterative cycle of experiments and modeling can be used to gain mechanistic insight regarding complex cell signaling networks.

  7. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    SciTech Connect (OSTI)

    Kaper, Tasso J. Kramer, Mark A.; Rotstein, Horacio G.

    2013-12-15

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  8. Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions

    SciTech Connect (OSTI)

    Oprisan, Sorinel Adrian; Oprisan, Ana

    2005-03-31

    Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells -- EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.

  9. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    SciTech Connect (OSTI)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  10. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  11. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4)

    SciTech Connect (OSTI)

    Shalaby, A. K.; Zakey, A. S.; Tawfik, A. B.; Solmon, F.; Giorgi, Filippo; Stordal, F.; Sillman, S.; Zaveri, Rahul A.; Steiner, A. L.

    2012-05-22

    The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a sixyear simulation (2000-2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  12. Modeling the resuspension of radionuclides in Ukranian regions impacted by Chernobyl fallout

    SciTech Connect (OSTI)

    Nair, S.K.; Thiessen, K.M.; Hoffman, F.O.

    1997-01-01

    Following the 1986 Chernobyl event, large amounts of radioactive materials were deposited in nearby areas. Concentrations of various radionuclides were measured in air and surface soil. To study the resuspension of radioactive particulate, three different exposure situations were developed on the basis of the collected data under the auspices of the international BIOMOVS II (BIOspheric MOdel Validation Study) project. Modelers were asked to predict seasonal air concentrations and resuspension factors at several locations at different distances from Chernobyl for six successive years following the accident. Measurements of radionuclide deposition on topsoil were provided for each site along with information on soil, vegetation, land use, surface roughness, meteorology, and climate. In this paper, the three exposure situations are described, along with the initial data set provided to the modelers; two modeling approaches used to make the endpoint predictions are also presented. After the model predictions were submitted, the measured air concentrations and resuspension factors were released to the modelers. Generally, the predictions were well within an order of magnitude of the measured values. Time-dependent trends in predictions and measurements were in good agreement with one of the models, which (a) explicitly accounted for loss processes in soil and (b) used calibration to improve its predictive capabilities. Reasons for variations between predictions and measurements, suggestions for the improvement of models, and conclusions from the model validation study are presented. 12 refs., 15 figs., 4 tabs.

  13. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect (OSTI)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in predicted weekly average regional latent heat fluxes were smaller than for NEE, but larger than for either ecosystem respiration or assimilation alone. However, spatial and diurnal variations of hundreds of W m{sup -2} in latent heat fluxes were common. We conclude that, in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy fluxes.

  14. Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012

    SciTech Connect (OSTI)

    Tossas, L. A. M.; Leonardi, S.

    2013-07-01

    With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

  15. Modelling on dynamics properties of a stationary argon cascaded arc plasma flows

    SciTech Connect (OSTI)

    Wei, G. D.; Qi, X.; Yang, L.

    2014-03-15

    The gas dynamics properties of a stationary arc plasma flows are studied through the numerical simulations. A two dimensional axis-symmetric turbulent magneto-hydrodynamic plasma model is developed with the commercial code ANSYS FLUENT. The reliable ?-? model is used to account for turbulence. In this paper, the plasma is assumed to be a fluid following NavierStokes equations, respecting local thermodynamic equilibrium, and described by only one temperature. Distributions of the pressure, velocity, temperature, density, and electric potential inside of thus cascaded arc are obtained for an arc current density of 10{sup 6}?A/m{sup 2}. The pressure inside the arc varies from 10{sup 5}?Pa to 100?Pa. The temperature at the arc axis can reach as high as 13?600?K. The electric potential drops uniformly along the axis with a magnitude of 160?V. In addition, distributions of the sonic velocity and Mach number are shown to describe supersonic behavior of thus cascaded arc, which have a good agreement with the analytical formula.

  16. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    SciTech Connect (OSTI)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-07-15

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of {sup 192,194,196}Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the {gamma}-vibration bands are compared to the corresponding sequences of experimental states.

  17. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect (OSTI)

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  18. Investigating the Nexus of Climate, Energy, Water, and Land at Decision-Relevant Scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA)

    SciTech Connect (OSTI)

    Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.; Hathaway, John E.; Hejazi, Mohamad I.; Hibbard, Kathleen A.; Huang, Maoyi; Jin, Chunlian; Kintner-Meyer, Michael C.W.; Kleese van Dam, Kerstin; Leung, Lai-Yung R.; Li, Hongyi; Moss, Richard H.; Peterson, Marty J.; Rice, Jennie S.; Scott, Michael J.; Thomson, Allison M.; Voisin, Nathalie; West, Tristram O.

    2015-04-01

    The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization. Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.

  19. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  20. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste

    SciTech Connect (OSTI)

    Yuan Hongping; Chini, Abdol R.; Lu Yujie; Shen Liyin

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We proposes a model for projecting C and D waste reduction of construction projects. Black-Right-Pointing-Pointer The model can simulate effects of various management strategies on waste reduction. Black-Right-Pointing-Pointer The model integrates all essential variables that affect C and D waste reduction. Black-Right-Pointing-Pointer By using the model, best strategies could be identified before being implemented. - Abstract: During the past few decades, construction and demolition (C and D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C and D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C and D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C and D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C and D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C and D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C and D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C and D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C and D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented in practice.

  1. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  2. Validation of a Fast-Fluid-Dynamics Model for Predicting Distribution of Particles with Low Stokes Number

    SciTech Connect (OSTI)

    Zuo, Wangda; Chen, Qingyan

    2011-06-01

    To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.

  3. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants

    SciTech Connect (OSTI)

    Wang, D.P.

    1985-07-01

    Ocean thermal energy conversion (OTEC) plants discharge large volumes of cold water into the upper ocean. A three-dimensional, limited-area model was developed to investigate the regional influence of the far-field effluent plume created by the negatively buoyant discharge. The model was applied to discharges from a 40-MW/sub e/ OTEC plant into coastal waters characterized by various ambient ocean conditions. A typical ambient temperature structure and nutrient distribution, as well as the behavior of the effluent plume itself, were strongly modified by the discharge-induced circulation. Although temperature perturbations in the plume were small, upward entrainment of nutrients from below the thermocline was significant. The regional influence of discharges from an 80-MW/sub e/ OTEC plant, the interactions between the discharges from two adjacent 40-MW/sub e/ OTEC plants, and the effects of coastal boundary and bottom discharge were examined with respect to the regional influence of a 40-MW/sub e/ OTEC plant located in deep water off a coast (base case).

  4. Modeling regional/urban ozone and particulate matter in Beijing, China.

    SciTech Connect (OSTI)

    Fu, J.S.; Streets, D.G.; Jang, C.J.; Hao, J.; He, K.; Wang, L.; Zhang, Q.

    2009-01-15

    This paper examines Beijing air quality in the winter and summer of 2001 using an integrated air quality modeling system (Fifth Generation Mesoscale Meteorological Model (MM5)/Community Multiscale Air Quality (CMAQ)) in nested mode. The National Aeronautics and Space Administration (NASA) Transport and Chemical Evolution over the Pacific (TRACE-P) emission inventory is used in the 36- (East Asia), 12- (East China), and 4-km (greater Beijing area) domains. Furthermore, we develop a local Beijing emission inventory that is used in the 4-km domain. We also construct a corroborated mapping of chemical species between the TRACE-P inventory and the Carbon Bond IV (CB-IV) chemical mechanism before the integrated modeling system is applied to study ozone (O{sub 3}) and particulate matter (PM) in Beijing. Meteorological data for the integrated modeling runs are extracted from MM5. Model results show O{sub 3} hourly concentrations in the range of 80-159 parts per billion (ppb) during summer in the urban areas and up to 189 ppb downwind of the city. High fine PM (PM2.5) concentrations (monthly average of 75 {mu}g.m{sup -3} in summer and 150 {mu}g.m{sup -3} in winter) are simulated over the metropolitan and down-wind areas with significant secondary constituents. Major sources of particulates were biomass burning, coal combustion and industry. A comparison against available O{sub 3} and PM measurement data in Beijing is described. We recommend refinements to the developed local Beijing emission inventory to improve the simulation of Beijing's air quality. The 4-km modeling configuration is also recommended for the development of air pollution control strategies. 31 refs., 5 figs., 3 tabs.

  5. Regional Transportation Simulation Tool for Emergency Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rtstep-diag TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Regional Transportation Simulation Tool for Emergency Evacuation Planning (Click to play movie) Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the

  6. Quantum diffusion dynamics in nonlinear systems: A modified kicked-rotor model

    SciTech Connect (OSTI)

    Gong Jiangbin [Department of Physics and Centre of Computational Science and Engineering, National University of Singapore, 117542 (Singapore); Wang Jiao [Temasek Laboratories and Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Singapore), National University of Singapore, 117542 (Singapore)

    2007-09-15

    Using a simple method analogous to a quantum rephasing technique, a simple modification to a paradigm of classical and quantum chaos is proposed. The interesting quantum maps thus obtained display remarkably rich quantum dynamics. Emphasis is placed on the destruction of dynamical localization without breaking periodicity, unbounded quantum anomalous diffusion in integrable systems, and transient dynamical localization. Experimental realizations of this work are also discussed.

  7. Quasi-static and dynamic responses of advanced high strength steels: Experiments and modeling

    SciTech Connect (OSTI)

    Khan, Akhtar; Baig, Muneer; Choi, Shi Hoon; Yang, Hoe Seok; Sun, Xin

    2012-03-01

    Measured responses of advanced high strength steels (AHSS) and their tailor welded blanks (TWBs), over a wide range of strain-rates (10*4 to 103 s*1) are presented. The steels investigated include transformation induced plasticity (TRIP), dual phase (DP), and drawing quality (DQ) steels. The TWBs include DQ-DQ and DP-DP laser welds. A tensile split Hopkinson pressure bar (SHPB) was used for the dynamic experiments. AHSS and their TWB's were found to exhibit positive strain-rate sensitivity. The Khan-Huang-Liang (KHL) constitutive model is shown to correlate and predict the observed responses reasonably well. Micro-texture characterization of DQ steels, DQ-DQ and DP-DP laser welds were performed to investigate the effect of strain-rate on texture evolution of these materials. Electron backscatter diffraction (EBSD) technique was used to analyze the micro-texture evolution and kernel average misorientation (KAM) map. Measurement of micro-hardness profile across the cross section of tensile samples was conducted to understand the effect of initial microstructure on ductility of laser weld samples.

  8. A Numerical Model For The Dynamics Of Pyroclastic Flows At Galeras...

    Open Energy Info (EERE)

    with the time; (2) dynamic pressure change; and (3) particle concentration along the computer domain from the eruption to the impact with a topographic barrier located more than...

  9. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor

    SciTech Connect (OSTI)

    Nopharatana, Annop; Pullammanappallil, Pratap C.; Clarke, William P.

    2007-07-01

    A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

  10. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    SciTech Connect (OSTI)

    Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L.; Burge, S.W.

    1994-05-12

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

  11. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models

    SciTech Connect (OSTI)

    Corley, Richard A.; Minard, Kevin R.; Kabilan, Senthil; Einstein, Daniel R.; Kuprat, Andrew P.; harkema, J. R.; Kimbell, Julia; Gargas, M. L.; Kinzell, John H.

    2009-06-01

    The percentages of total air?ows over the nasal respiratory and olfactory epithelium of female rabbits were cal-culated from computational ?uid dynamics (CFD) simulations of steady-state inhalation. These air?ow calcula-tions, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, mon-keys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the ?ne structures of the nasal turbinates and air?ows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired air?ows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (air?ows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These di?erences in regional air?ows can have signi?cant implications in interspecies extrapolations of nasal dosimetry.

  12. Neutron lifetimes behavior analysis considering the two-region kinetic model in the IPEN/MB-01 reactor

    SciTech Connect (OSTI)

    Gonnelli, Eduardo; Diniz, Ricardo

    2014-11-11

    This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.

  13. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use change simulated by a regional model

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubs and an increase in surface air temperature.

  14. A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region

    SciTech Connect (OSTI)

    Forcey, Greg, M.

    2012-08-28

    Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in the forested areas of the western portion; the lowest risk was predicted in the treeless portions of the northwest portion of the study area. Mallard collision risk was predicted to be highest in the eastern central portion of the prairie potholes and in Iowa which has a high density of pothole wetlands; lower risk was predicted in the more arid portions of the study area. Predicted collision risk for American Avocet was similar to Mallard and was highest in the prairie pothole region and lower elsewhere. Golden Eagle collision risk was predicted to be highest in the mountainous areas of the western portion of the study area and lowest in the eastern portion of the prairie potholes. Whooping Crane predicted collision risk was highest within the migration corridor that the birds follow through in the central portion of the study region; predicted collision risk was much lower elsewhere. Red bat collision risk was highly driven by large tracts of forest and river corridors which made up most of the areas of higher collision risk. Silver-haired bat and hoary bat predicted collision risk were nearly identical and driven largely by forest and river corridors as well as locations with warmer temperatures, and lower average wind speeds. Horned Lark collisions were mostly influenced by abundance and predictions showed a moderate correlation between observed and predicted mortality (r = 0.55). Red bat, silver-haired bat, and hoary bat predictions were much higher and shown a strong correlations with observed mortality with correlations of 0.85, 0.90, and 0.91 respectively. Red bat collisions were influenced primarily by habitat, while hoary bat and silver-haired bat collisions were influenced mainly by exposure variables. Stronger correlations between observed and predicted collision for bats than for Horned Larks can likely be attributed to stronger habitat associations and greater influences of weather on behavior for bats. Although the collision predictions cannot be compared among species, our model outputs provide a convenient and easy landscape-level tool to quickly screen for siting issues at a high level. The model resolution is suitable for state or multi-county siting but users are cautioned against using these models for micrositing. The U.S. Fish and Wildlife Service recently released voluntary land-based wind energy guidelines for assessing impacts of a wind facility to wildlife using a tiered approach. The tiered approach uses an iterative approach for assessing impacts to wildlife in levels of increasing detail from landscape-level screening to site-specific field studies. Our models presented in this paper would be applicable to be used as tools to conduct screening at the tier 1 level and would not be appropriate to complete smaller scale tier 2 and tier 3 level studies. For smaller scale screening ancillary field studies should be conducted at the site-specific level to validate collision predictions.

  15. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    SciTech Connect (OSTI)

    Harrison, Alan K; Shashkov, Mikhail J; Fung, Jimmy; Canfield, Thomas R; Kamm, James R

    2010-10-14

    We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  16. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, M.

    2015-03-23

    This presentation provides an overview of the Scenario Evaluation and Regionalization Analysis (SERA) model, describes the methodology for developing scenarios for hydrogen infrastructure development, outlines an example "Hydrogen Success" scenario, and discusses detailed scenario metrics for a particular case study region, the Northeast Corridor.

  17. "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System" Study Now Available

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) has released a study entitled "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)”. Funded by OE, this study documents a development effort that created a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors in the NREL Regional Energy Deployment System model.

  18. Moisture Flux Convergence in Regional and Global Climate Models: Implications for Droughts in the Southwestern United States Under Climate Change

    SciTech Connect (OSTI)

    Gao, Yanhong; Leung, Lai-Yung R.; Salathe, E.; Dominguez, Francina; Nijssen, Bart; Lettenmaier, D. P.

    2012-05-10

    The water cycle of the southwestern United States (SW) is dominated by winter storms that maintain a positive annual net precipitation. Analysis of the control and future climate from four pairs of regional and global climate models (RCMs and GCMs) shows that the RCMs simulate a higher fraction of transient eddy moisture fluxes because the hydrodynamic instabilities associated with flow over complex terrain are better resolved. Under global warming, this enables the RCMs to capture the response of transient eddies to increased atmospheric stability that allows more moisture to converge on the windward side of the mountains by blocking. As a result, RCMs simulate enhanced transient eddy moisture convergence in the SW compared to GCMs, although both robustly simulate drying due to enhanced moisture divergence by the divergent mean flow in a warmer climate. This enhanced convergence leads to reduced susceptibility to hydrological change in the RCMs compared to GCMs.

  19. Assessment of Uncertainties in the Response of the African Monsoon Precipitation to Land Use change simulated by a regional model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagos, Samson M.; Leung, Lai-Yung Ruby; Xue, Yongkang; Boone, Aaron; de Sales, Fernando; Neupane, Naresh; Huang, Maoyi; Yoon, Jin-Ho

    2014-02-22

    Land use and land cover over Africa have changed substantially over the last sixty years and this change has been proposed to affect monsoon circulation and precipitation. This study examines the uncertainties on the effect of these changes on the African Monsoon system and Sahel precipitation using an ensemble of regional model simulations with different combinations of land surface and cumulus parameterization schemes. Although the magnitude of the response covers a broad range of values, most of the simulations show a decline in Sahel precipitation due to the expansion of pasture and croplands at the expense of trees and shrubsmore » and an increase in surface air temperature.« less

  20. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    SciTech Connect (OSTI)

    Skinner, F. K.; Department of Medicine , University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8 ; Ferguson, K. A.; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  1. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    SciTech Connect (OSTI)

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  2. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect (OSTI)

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  3. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  4. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  5. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect (OSTI)

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  6. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  7. SU-E-QI-03: Compartment Modeling of Dynamic Brain PET - The Effect of Scatter and Random Corrections On Parameter Errors

    SciTech Connect (OSTI)

    Häggström, I; Karlsson, M; Larsson, A; Schmidtlein, C

    2014-06-15

    Purpose: To investigate the effects of corrections for random and scattered coincidences on kinetic parameters in brain tumors, by using ten Monte Carlo (MC) simulated dynamic FLT-PET brain scans. Methods: The GATE MC software was used to simulate ten repetitions of a 1 hour dynamic FLT-PET scan of a voxelized head phantom. The phantom comprised six normal head tissues, plus inserted regions for blood and tumor tissue. Different time-activity-curves (TACs) for all eight tissue types were used in the simulation and were generated in Matlab using a 2-tissue model with preset parameter values (K1,k2,k3,k4,Va,Ki). The PET data was reconstructed into 28 frames by both ordered-subset expectation maximization (OSEM) and 3D filtered back-projection (3DFBP). Five image sets were reconstructed, all with normalization and different additional corrections C (A=attenuation, R=random, S=scatter): Trues (AC), trues+randoms (ARC), trues+scatters (ASC), total counts (ARSC) and total counts (AC). Corrections for randoms and scatters were based on real random and scatter sinograms that were back-projected, blurred and then forward projected and scaled to match the real counts. Weighted non-linearleast- squares fitting of TACs from the blood and tumor regions was used to obtain parameter estimates. Results: The bias was not significantly different for trues (AC), trues+randoms (ARC), trues+scatters (ASC) and total counts (ARSC) for either 3DFBP or OSEM (p<0.05). Total counts with only AC stood out however, with an up to 160% larger bias. In general, there was no difference in bias found between 3DFBP and OSEM, except in parameter Va and Ki. Conclusion: According to our results, the methodology of correcting the PET data for randoms and scatters performed well for the dynamic images where frames have much lower counts compared to static images. Generally, no bias was introduced by the corrections and their importance was emphasized since omitting them increased bias extensively.

  8. RF system models for the CERN Large Hadron Collider with application to longitudinal dynamics

    SciTech Connect (OSTI)

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Winkle, D.Van; Baudrenghien, P.; /CERN

    2011-03-03

    The LHC RF station-beam interaction strongly influences the longitudinal beam dynamics, both single bunch and collective effects. Non-linearities and noise generated within the Radio Frequency (RF) accelerating system interact with the beam and contribute to beam motion and longitudinal emittance blowup. Thus, the noise power spectrum of the RF accelerating voltage strongly affects the longitudinal beam distribution. Furthermore, the coupled-bunch instabilities are also directly affected by the RF components and the configuration of the Low Level RF (LLRF) feedback loops. In this work we present a formalism relating the longitudinal beam dynamics with the RF system configurations, an estimation of collective effects stability margins, and an evaluation of longitudinal sensitivity to various LLRF parameters and configurations.

  9. Using System Dynamics to Model the Transition to Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-06-01

    Transitioning to a biofuels industry that is expected to displace about 30% of current U.S. gasoline consumption requires a robust biomass-to-biofuels system-of-systems that operates in concert with the existing markets. This paper discusses employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol and to help government decision makers focus on areas with greatest potential.

  10. Steady state and dynamic modeling of a packed bed reactor for the partial oxidation of methanol to formaldehyde: experimental results compared with model predictions

    SciTech Connect (OSTI)

    Schwedock, M.J.; Windes, L.C.; Ray, W.H.

    1985-01-01

    Heterogeneous and pseudohomogeneous models are compared to experimental data from a packed bed reactor for the partical oxidation of methanol to formaldehyde over an iron oxide-molybdenum oxide catalyst. Heat transfer parameters which were successful in matching data from experiments without reaction were not successful in matching temperature data from experiments with reaction. This made it necessary to decrease the fluid radial heat transfer to obtain good fit. A good fit was obtained for steady state composition profiles by optimizing selected frequency factors and the activation energy for methanol. A redox rate expression for the oxidation of formaldehyde to carbon monoxide was proposed since a simple first-order rate expression did not fit the data. The pseudohomogeneous model gave results similar to the heterogeneous model for both steady state and dynamic experiments and has been recommended for future experimental state estimation and control studies. 21 refs., 31 figs., 6 tabs.

  11. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.

  12. Dynamic modeling of injection-induced fault reactivation and ground motion and impact on surface structures and human perception

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, Jonny; Cappa, Frederic; Rinaldi, Antonio P.; Godano, Maxime

    2014-12-31

    We summarize recent modeling studies of injection-induced fault reactivation, seismicity, and its potential impact on surface structures and nuisance to the local human population. We used coupled multiphase fluid flow and geomechanical numerical modeling, dynamic wave propagation modeling, seismology theories, and empirical vibration criteria from mining and construction industries. We first simulated injection-induced fault reactivation, including dynamic fault slip, seismic source, wave propagation, and ground vibrations. From co-seismic average shear displacement and rupture area, we determined the moment magnitude to about Mw = 3 for an injection-induced fault reactivation at a depth of about 1000 m. We then analyzed themore » ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV), and frequency content, with comparison to the U.S. Bureau of Mines’ vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. For the considered synthetic Mw = 3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, and would not cause, in this particular case, upward CO2 leakage, but would certainly be felt by the local population.« less

  13. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect (OSTI)

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  14. Toward construction of the unified lepton-nucleus interaction model from a few hundred MeV to GeV region

    SciTech Connect (OSTI)

    Nakamura, S. X.; Hayato, Y.; Hirai, M.; Saito, K.; Kamano, H.; Kumano, S.; Sakuda, M.; Sato, T.

    2015-05-15

    Next generation neutrino oscillation experiments will need a quantitative understanding of neutrino-nucleus interaction far better than ever. Kinematics covered by the relevant neutrino-nucleus interaction spans wide region, from the quasi-elastic, through the resonance region, to the deeply inelastic scattering region. The neutrino-nucleus interaction in each region has quite different characteristics. Obviously, it is essential to combine different expertise to construct a unified model that covers all the kinematical region of the neutrino-nucleus interaction. Recently, several experimentalists and theorists got together to form a collaboration to tackle this problem. In this contribution, we report the collaborations recent activity and a goal in near future.

  15. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  16. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  17. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  18. Self-consistency tests of large-scale dynamics parameterizations for single-column modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edman, Jacob P.; Romps, David M.

    2015-03-18

    Large-scale dynamics parameterizations are tested numerically in cloud-resolving simulations, including a new version of the weak-pressure-gradient approximation (WPG) introduced by Edman and Romps (2014), the weak-temperature-gradient approximation (WTG), and a prior implementation of WPG. We perform a series of self-consistency tests with each large-scale dynamics parameterization, in which we compare the result of a cloud-resolving simulation coupled to WTG or WPG with an otherwise identical simulation with prescribed large-scale convergence. In self-consistency tests based on radiative-convective equilibrium (RCE; i.e., no large-scale convergence), we find that simulations either weakly coupled or strongly coupled to either WPG or WTG are self-consistent, butmore » WPG-coupled simulations exhibit a nonmonotonic behavior as the strength of the coupling to WPG is varied. We also perform self-consistency tests based on observed forcings from two observational campaigns: the Tropical Warm Pool International Cloud Experiment (TWP-ICE) and the ARM Southern Great Plains (SGP) Summer 1995 IOP. In these tests, we show that the new version of WPG improves upon prior versions of WPG by eliminating a potentially troublesome gravity-wave resonance.« less

  19. Model Fidelity Study of Dynamic Transient Loads in a Wind Turbine Gearbox: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Moan, T.; Xing, Y.

    2013-04-01

    Transient events cause high loads in the drivetrain components so measuring and calculating these loads can improve confidence in drivetrain design. This paper studies the Gearbox Reliability Collaborative 750kW wind turbine gearbox response during transient events using a combined experimental and modeling approach. The transient events include emergency shut-downs and start-ups measured during a field testing period in 2009. The drivetrain model is established in the multibody simulation tool Simpack. A detailed study of modeling fidelity required for accurate load prediction is performed and results are compared against measured loads. A high fidelity model that includes shaft and housing flexibility and accurate bearing stiffnesses is important for the higher-speed stage bearing loads. Each of the transient events has different modeling requirements.

  20. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-12-04

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ~1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer.

  1. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  2. Modelling of the internal dynamics and density in a tens of joules plasma focus device

    SciTech Connect (OSTI)

    Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Clausse, Alejandro

    2012-01-15

    Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

  3. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)’s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9°×2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1° x 1°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4º by 5º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between “clean marine” aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses were carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. We show that for very low (less than 4 m s-1) and very high (more than 12 m s-1) wind speed conditions the mean CALIPSO-derived aerosol optical depth (AOD) has little dependency on the surface wind speed. For an intermediate (between 4 and 12 m s-1) marine AOD was linearly correlated with the surface wind speed values, with a slope of 0.0062 s m-1. Results of our study suggest that considerable improvements to both optical properties of marine aerosols and their production mechanisms can be achieved by discriminating “clean marine” aerosols (or sea salt particles) from all other types of aerosols present over the ocean.

  4. Using System Dynamics to Model the Transition to Biofuels in the United States

    SciTech Connect (OSTI)

    Bush, B.; Duffy, M.; Sandor, D.; Peterson, S.

    2008-01-01

    Today, the U.S. consumes almost 21 million barrels of crude oil per day; approximately 60% of the U.S. demand is supplied by imports. The transportation sector alone accounts for two-thirds of U.S. petroleum use. Biofuels, liquid fuels produced from domestically-grown biomass, have the potential to displace about 30% of current U.S. gasoline consumption. Transitioning to a biofuels industry on this scale will require the creation of a robust biomass-to-biofuels system-of-systems that operates in concert with the existing agriculture, forestry, energy, and transportation markets. The U.S. Department of Energy is employing a system dynamics approach to investigate potential market penetration scenarios for cellulosic ethanol, and to aid decision makers in focusing government actions on the areas with greatest potential to accelerate the deployment of biofuels and ultimately reduce the nationpsilas dependence on imported oil.

  5. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    SciTech Connect (OSTI)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  6. STUDY OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD OF ACTIVE REGION 11117 AROUND THE TIME OF A CONFINED FLARE USING A DATA-DRIVEN CESE-MHD MODEL

    SciTech Connect (OSTI)

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2012-11-10

    We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solve a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.

  7. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  8. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes

    SciTech Connect (OSTI)

    Fisher, R. A.; Muszala, S.; Verteinstein, M.; Lawrence, P.; Xu, C.; McDowell, N. G.; Knox, R. G.; Koven, C.; Holm, J.; Rogers, B. M.; Lawrence, D.; Bonan, G.

    2015-04-29

    We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in Eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties determined by the parameter space defined by the GLOPNET global leaf trait database. Further, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked with each other, but we also find support for direct linkages to environmental conditions. We advocate for intensified study of the costs and benefits of plant life history strategies in different environments, and for the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.

  9. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fisher, R. A.; Muszala, S.; Verteinstein, M.; Lawrence, P.; Xu, C.; McDowell, N. G.; Knox, R. G.; Koven, C.; Holm, J.; Rogers, B. M.; et al

    2015-04-29

    We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in Eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties determined by the parameter space defined by the GLOPNET global leafmore » trait database. Further, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked with each other, but we also find support for direct linkages to environmental conditions. We advocate for intensified study of the costs and benefits of plant life history strategies in different environments, and for the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.« less

  10. Dopant profile modeling by rare event enhanced domain-following molecular dynamics

    DOE Patents [OSTI]

    Beardmore, Keith M.; Jensen, Niels G.

    2002-01-01

    A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.

  11. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  12. Soil Machine Dynamics Ltd | Open Energy Information

    Open Energy Info (EERE)

    Machine Dynamics Ltd Jump to: navigation, search Name: Soil Machine Dynamics Ltd Region: United Kingdom Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  13. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; Kober, Edward M.; Shell, M. Scott; Squires, Todd M.

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  14. Integrated Dynamic Gloabal Modeling of Land Use, Energy and Economic Growth

    SciTech Connect (OSTI)

    Atul Jain, University of Illinois, Urbana-Champaign, IL Brian O'Neill, NCAR, Boulder, CO

    2009-10-14

    The overall objective of this collaborative project is to integrate an existing general equilibrium energy-economic growth model with a biogeochemical cycles and biophysical models in order to more fully explore the potential contribution of land use-related activities to future emissions scenarios. Land cover and land use change activities, including deforestation, afforestation, and agriculture management, are important source of not only CO2, but also non-CO2 GHGs. Therefore, contribution of land-use emissions to total emissions of GHGs is important, and consequently their future trends are relevant to the estimation of climate change and its mitigation. This final report covers the full project period of the award, beginning May 2006, which includes a sub-contract to Brown University later transferred to the National Center for Atmospheric Research (NCAR) when Co-PI Brian O'Neill changed institutional affiliations.

  15. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    SciTech Connect (OSTI)

    Melin, Alexander M.; Kisner, Roger A.; Fugate, David L.

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  16. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-08-28

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  17. A hybrid programming model for compressible gas dynamics using openCL

    SciTech Connect (OSTI)

    Bergen, Benjamin Karl; Daniels, Marcus G; Weber, Paul M

    2010-01-01

    The current trend towards multicore/manycore and accelerated architectures presents challenges, both in portability, and also in the choices that developers must make on how to use the resources that these architectures provide. This paper explores some of the possibilities that are enabled by the Open Computing Language (OpenCL), and proposes a programming model that allows developers and scientists to more fully subscribe hybrid compute nodes, while, at the same time, reducing the impact of system failure.

  18. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; Allan, James D.; Utembe, Steve; Ouyang, Bin; Aruffo, Eleonora; Le Breton, Michael; Zaveri, Rahul A.; di Carlo, Piero; et al

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlationsmore » with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for alkenes (× 80) and comparable for dimethylsulfide (DMS). However the suppression of NO3 mixing ratios across the domain by N2O5 heterogeneous chemistry has only a very slight, negative, influence on this oxidative capacity. The influence on regional particulate nitrate mass loadings is stronger. Night-time N2O5 heterogeneous chemistry maintains the production of particulate nitrate within polluted regions: when this process is taken into consideration, the daytime peak (for the 95th percentile) of PM10 nitrate mass loadings remains around 5.6 μg kg−1air, but the night-time minimum increases from 3.5 to 4.6 μg kg−1air. The sustaining of higher particulate mass loadings through the night by this process improves model skill at matching measured aerosol nitrate diurnal cycles and will negatively impact on regional air quality, requiring this process to be included in regional models.« less

  19. A dynamic model for the optimization of oscillatory low grade heat engines

    SciTech Connect (OSTI)

    Markides, Christos N.; Smith, Thomas C. B.

    2015-01-22

    The efficiency of a thermodynamic system is a key quantity on which its usefulness and wider application relies. This is especially true for a device that operates with marginal energy sources and close to ambient temperatures. Various definitions of efficiency are available, each of which reveals a certain performance characteristic of a device. Of these, some consider only the thermodynamic cycle undergone by the working fluid, whereas others contain additional information, including relevant internal components of the device that are not part of the thermodynamic cycle. Yet others attempt to factor out the conditions of the surroundings with which the device is interfacing thermally during operation. In this paper we present a simple approach for the modeling of complex oscillatory thermal-fluid systems capable of converting low grade heat into useful work. We apply the approach to the NIFTE, a novel low temperature difference heat utilization technology currently under development. We use the results from the model to calculate various efficiencies and comment on the usefulness of the different definitions in revealing performance characteristics. We show that the approach can be applied to make design optimization decisions, and suggest features for optimal efficiency of the NIFTE.

  20. Regional Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Partnerships Regional Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent

  1. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites

    SciTech Connect (OSTI)

    Campbell, Jerry; Van Landingham, Cynthia; Crowell, Susan; Gentry, Robinan; Kaden, Debra; Fiebelkorn, Stacy; Loccisano, Anne; Clewell, Harvey

    2015-06-12

    1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells)1 are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions vary throughout the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.

  2. A preliminary regional PBPK model of lung metabolism for improving species dependent descriptions of 1,3-butadiene and its metabolites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Jerry; Van Landingham, Cynthia; Crowell, Susan; Gentry, Robinan; Kaden, Debra; Fiebelkorn, Stacy; Loccisano, Anne; Clewell, Harvey

    2015-06-12

    1,3-Butadiene (BD), a volatile organic chemical (VOC), is used in synthetic rubber production and other industrial processes. It is detectable at low levels in ambient air as well as in tobacco smoke and gasoline vapors. Inhalation exposures to high concentrations of BD have been associated with lung cancer in both humans and experimental animals, although differences in species sensitivity have been observed. Metabolically active lung cells such as Pulmonary Type I and Type II epithelial cells and club cells (Clara cells)1 are potential targets of BD metabolite-induced toxicity. Metabolic capacities of these cells, their regional densities, and distributions vary throughoutmore » the respiratory tract as well as between species and cell types. Here we present a physiologically based pharmacokinetic (PBPK) model for BD that includes a regional model of lung metabolism, based on a previous model for styrene, to provide species-dependent descriptions of BD metabolism in the mouse, rat, and human. Since there are no in vivo data on BD pharmacokinetics in the human, the rat and mouse models were parameterized to the extent possible on the basis of in vitro metabolic data. Where it was necessary to use in vivo data, extrapolation from rat to mouse was performed to evaluate the level of uncertainty in the human model. A kidney compartment and description of downstream metabolism were also included in the model to allow for eventual use of available urinary and blood biomarker data in animals and humans to calibrate the model for estimation of BD exposures and internal metabolite levels. Results from simulated inhalation exposures to BD indicate that incorporation of differential lung region metabolism is important in describing species differences in pulmonary response and that these differences may have implications for risk assessments of human exposures to BD.« less

  3. Bifurcation and chaos in the simple passive dynamic walking model with upper body

    SciTech Connect (OSTI)

    Li, Qingdu; Guo, Jianli; Yang, Xiao-Song

    2014-09-01

    We present some rich new complex gaits in the simple walking model with upper body by Wisse et al. in [Robotica 22, 681 (2004)]. We first show that the stable gait found by Wisse et al. may become chaotic via period-doubling bifurcations. Such period-doubling routes to chaos exist for all parameters, such as foot mass, upper body mass, body length, hip spring stiffness, and slope angle. Then, we report three new gaits with period 3, 4, and 6; for each gait, there is also a period-doubling route to chaos. Finally, we show a practical method for finding a topological horseshoe in 3D Poincar map, and present a rigorous verification of chaos from these gaits.

  4. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    SciTech Connect (OSTI)

    Benjamin, A.S.

    1997-11-01

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted.

  5. High-order continuum kinetic method for modeling plasma dynamics in phase space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volumemore » algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.« less

  6. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  7. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect (OSTI)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  8. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.

    SciTech Connect (OSTI)

    Tentner, A.; Nuclear Engineering Division

    2009-10-13

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  9. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect (OSTI)

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song

    2009-07-01

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  10. High-order continuum kinetic method for modeling plasma dynamics in phase space

    SciTech Connect (OSTI)

    Vogman, G. V.; Colella, P.; Shumlak, U.

    2014-12-15

    Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,vx,vy) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuum finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,vr,vz) phase space are presented.

  11. FY08 LDRD Final Report Regional Climate

    SciTech Connect (OSTI)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or coarser spatial resolution. Further, LLNL has now built a capability in state-of-the-science mesoscale climate modeling that complements that which it has in global climate simulation, providing potential sponsors with an end-to-end simulation and analysis program.

  12. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  13. The earliest events in protein folding: Helix dynamics in proteins and model peptides

    SciTech Connect (OSTI)

    Dyer, R.B.; Williams, S.; Woodruff, W.H. [Los Alamos National Lab., NM (United States)] [and others

    1996-12-31

    The earliest events in protein folding are critically important in determining the folding pathway, but have proved difficult to study by conventional approaches. We have developed new rapid initiation methods and structure-specific probes to interrogate the earliest events of protein folding. Our focus is the pathways. Folding or unfolding reactions are initiated on a fast timescale (10 ns) using a laser induced temperature jump (15 C) and probed with time-resolved infrared spectroscopy. We obtained the kinetics of the helix-coil transition for a model 21-residue peptide. The observed rate constant k{sub obs} = k{sub f} + k{sub u} for reversible kinetics; from the observed rate (6 x 10{sup 6} s{sup -1}) and the equilibrium constant favoring folding of 7.5 at 27 C, we calculate a folding lifetime of 180 ns and an unfolding lifetime of 1.4 {mu}s. The {open_quotes}molten globule{close_quotes} form of apomyoglobin (horse, pH*3, 0.15M NaCl) shows similar kinetics for helix that is unconstrained by tertiary structure (helix with an unusually low Amide I frequency, near 1633 cm{sup -1}). In {open_quotes}native{close_quotes} apomyoglobin (horse, pH*5.3, 10 mM NaCl) two very different rates (45 ns and 70 {mu}s) are observed and we infer that a third occurs on a timescales inaccessible to our experiment (> 1 ms). We suggest that the slower processes are due to helix formation that is rate-limited by the formation of tertiary structure.

  14. Molecular eigenstate spectroscopy: Application to the intramolecular dynamics of some polyatomic molecules in the 3000 to 7000 cm{sup {minus}1} region

    SciTech Connect (OSTI)

    Perry, D.S.

    1993-12-01

    Intramolecular vibrational redistribution (IVR) appears to be a universal property of polyatomic molecules in energy regions where the vibrational density of states is greater than about 5 to 30 states per cm{sup {minus}1}. Interest in IVR stems from its central importance to the spectroscopy, photochemistry, and reaction kinetics of these molecules. A bright state, {var_phi}{sub s}, which may be a C-H stretching vibration, carries the oscillator strength from the ground state. This bright state may mix with bath rotational-vibrational levels to form a clump of molecular eigenstates, each of which carries a portion of the oscillator strength from the ground state. In this work the authors explicitly resolve transitions to each of these molecular eigenstates. Detailed information about the nature of IVR is contained in the frequencies and intensities of the observed discrete transitions. The primary goal of this research is to probe the coupling mechanisms by which IVR takes place. The most fundamental distinction to be made is between anharmonic coupling which is independent of molecular rotation and rotationally-mediated coupling. The authors are also interested in the rate at which IVR takes place. Measurements are strictly in the frequency domain but information is obtained about the decay of the zero order state, {var_phi}{sub s}, which could be prepared in a hypothetical experiment as a coherent excitation of the clump of molecular eigenstates. As the coherent superposition dephases, the energy would flow from the initially prepared mode into nearby overtones and combinations of lower frequency vibrational modes. The decay of the initially prepared mode is related to a pure sequence infrared absorption spectrum by a Fourier transform.

  15. Connecting the X(5)-{beta}{sup 2}, X(5)-{beta}{sup 4}, and X(3) models to the shape/phase-transition region of the interacting boson model

    SciTech Connect (OSTI)

    McCutchan, E. A.; Bonatsos, Dennis; Zamfir, N. V.

    2006-09-15

    The parameter independent (up to overall scale factors) predictions of the X(5)-{beta}{sup 2}, X(5)-{beta}{sup 4}, and X(3) models, which are variants of the X(5) critical point symmetry developed within the framework of the geometric collective model, are compared to two-parameter calculations in the framework of the interacting boson approximation (IBA) model. The results show that these geometric models coincide with IBA parameters consistent with the shape/phase-transition region of the IBA for boson numbers of physical interest (close to 10). Nuclei within the rare-earth region and select Os and Pt isotopes are identified as good examples of X(3), X(5)-{beta}{sup 2}, and X(5)-{beta}{sup 4} behavior.

  16. A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

    2013-11-01

    We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

  17. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model

    SciTech Connect (OSTI)

    Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK. GASFLOW is under continual development, assessment, and application by LANL and FzK. This manual is considered a living document and will be updated as warranted.

  18. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  19. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Liu, Xiaohong; Ghan, Steven J.; Singh, Balwinder

    2014-05-06

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 when the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.

  20. SIGMOIDAL ACTIVE REGION ON THE SUN: COMPARISON OF A MAGNETOHYDRODYNAMICAL SIMULATION AND A NONLINEAR FORCE-FREE FIELD MODEL

    SciTech Connect (OSTI)

    Savcheva, A.; Van Ballegooijen, A.; DeLuca, E.; Pariat, E.; Aulanier, G.

    2012-05-01

    In this paper we show that when accurate nonlinear force-free field (NLFFF) models are analyzed together with high-resolution magnetohydrodynamic (MHD) simulations, we can determine the physical causes for the coronal mass ejection (CME) eruption on 2007 February 12. We compare the geometrical and topological properties of the three-dimensional magnetic fields given by both methods in their pre-eruptive phases. We arrive at a consistent picture for the evolution and eruption of the sigmoid. Both the MHD simulation and the observed magnetic field evolution show that flux cancellation plays an important role in building the flux rope. We compute the squashing factor, Q, in different horizontal maps in the domains. The main shape of the quasi-separatrix layers (QSLs) is very similar between the NLFFF and MHD models. The main QSLs lie on the edge of the flux rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large complexity in the field, the QSLs in the MHD model are smooth and possess lower maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located under the twisted flux rope in both models, is identified as the most probable site for reconnection. We also show that there are electric current concentrations coinciding with the main QSLs. Finally, we perform torus instability analysis and show that a combination between reconnection at the HFT and the resulting expansion of the flux rope into the torus instability domain is the cause of the CME in both models.

  1. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biocatalysis.gif A model of the Michaelis complex for the TEM-1penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical...

  2. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  3. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    SciTech Connect (OSTI)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.

  4. Conceptual Model Summary Report Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States

    SciTech Connect (OSTI)

    2011-06-30

    A conceptual model was developed for the Arches Province that integrates geologic and hydrologic information on the Eau Claire and Mt. Simon formations into a geocellular model. The conceptual model describes the geologic setting, stratigraphy, geologic structures, hydrologic features, and distribution of key hydraulic parameters. The conceptual model is focused on the Mt. Simon sandstone and Eau Claire formations. The geocellular model depicts the parameters and conditions in a numerical array that may be imported into the numerical simulations of carbon dioxide (CO{sub 2}) storage. Geophysical well logs, rock samples, drilling logs, geotechnical test results, and reservoir tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. The geologic and hydraulic data were integrated into a three-dimensional (3D) grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mt. Simon injection wells. The final geocellular model covers an area of 600 km by 600 km centered on the Arches Province. The geocellular model includes a total of 24,500,000 cells representing estimated porosity and permeability distribution. CO{sub 2} injection scenarios were developed for on-site and regional injection fields at rates of 70 to 140 million metric tons per year.

  5. CAPITAL REGION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t 092007 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) ... 092007 15:29 FAX 301 903 4656 CAPITAL REGION 003 * Implemented a more robust ...

  6. Implications of Model Configurations on Capacity Planning Decisions: Scenario Case Studies of the Western Interconnection and Colorado Region using the Resource Planning Model

    Broader source: Energy.gov [DOE]

    In this report, we analyze the impacts of model configuration and detail in capacity expansion models, computational tools used by utility planners looking to find the least cost option for planning the system and by researchers or policy makers attempting to understand the effects of various policy implementations. The present analysis focuses on the importance of model configurations—particularly those related to capacity credit, dispatch modeling, and transmission modeling—to the construction of scenario futures. Our analysis is primarily directed toward advanced tools used for utility planning and is focused on those impacts that are most relevant to decisions with respect to future renewable capacity deployment. To serve this purpose, we develop and employ the NREL Resource Planning Model to conduct a case study analysis that explores 12 separate capacity expansion scenarios of the Western Interconnection through 2030.

  7. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences » Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. Contact Us Phil Jones Fluid Dynamics and Solid Mechanics Email Wilbert Weijer Computational Physics and Methods Email Elizabeth Hunke Fluid Dynamics and Solid Mechanics

  8. Detection and Attribution of Regional Climate Change

    SciTech Connect (OSTI)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and ocean circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.

  9. Method of evaluating, expanding, and collapsing connectivity regions within

    Office of Scientific and Technical Information (OSTI)

    dynamic systems (Patent) | SciTech Connect Patent: Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems Citation Details In-Document Search Title: Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems An automated process defines and maintains connectivity regions within a dynamic network. The automated process requires an initial input of a network component around which a connectivity region will be defined. The

  10. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal ?-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  11. Computational Fluid Dynamics Modeling of the Bonneville Project: Tailrace Spill Patterns for Low Flows and Corner Collector Smolt Egress

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01

    In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is concern for egress issues for smolt passing through the spillway, the spill pattern and volume need to be revisited.

  12. National and Regional Water and Wastewater Rates For Use inCost-Benefit Models and Evaluations of Water Efficiency Programs

    SciTech Connect (OSTI)

    Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

    2006-09-01

    Calculating the benefits and costs of water conservation orefficiency programs requires knowing the marginal cost of the water andwastewater saved by those programs. Developing an accurate picture of thepotential cost savings from water conservation requires knowing the costof the last few units of water consumed or wastewater released, becausethose are the units that would be saved by increased water efficiency.This report describes the data we obtained on water and wastewater ratesand costs, data gaps we identified, and other issues related to using thedata to estimate the cost savings that might accrue from waterconservation programs. We identified three water and wastewater ratesources. Of these, we recommend using Raftelis Financial Corporation(RFC) because it: a) has the most comprehensive national coverage; and b)provides greatest detail on rates to calculate marginal rates. The figurebelow shows the regional variation in water rates for a range ofconsumption blocks. Figure 1A Marginal Rates of Water Blocks by Regionfrom RFC 2004Water and wastewater rates are rising faster than the rateof inflation. For example, from 1996 to 2004 the average water rateincreased 39.5 percent, average wastewater rate increased 37.8 percent,the CPI (All Urban) increased 20.1 percent, and the CPI (Water andSewerage Maintenance) increased 31.1 percent. On average, annualincreases were 4.3 percent for water and 4.1 percent for wastewater,compared to 2.3 percent for the All Urban CPI and 3.7 percent for the CPIfor water and sewerage maintenance. If trends in rates for water andwastewater rates continue, water-efficient products will become morevaluable and more cost-effective.

  13. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  14. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  15. Connecting the X(5)-{beta}{sup 2}, X(5)-{beta}{sup 4}, and X(3) models to the shape/phase transition region of the interacting boson model

    SciTech Connect (OSTI)

    McCutchan, E. A. Bonatsos, D. Zamfir, N. V.

    2007-08-15

    The parameter-independent (up to overall scale factors) predictions of the X(5)-{beta}{sup 2},X(5)-{beta}{sup 4}, and X(3) models, which are variants of the X(5) critical point symmetry developed within the framework of the geometric collective model, are compared to two-parameter calculations in the framework of the interacting boson approximation (IBA) model. The results show that these geometric models coincide with IBA parameters consistent with the phase/shape transition region of the IBA for boson numbers of physical interest (close to 10). {sup 186}Pt and {sup 172}Os are identified as good examples of X(3), while {sup 146}Ce, {sup 174}Os, and {sup 158}Er, {sup 176}Os are identified as good examples of X(5)-{beta}{sub 2} and X(5)-{beta}{sup 4} behavior, respectively.

  16. Constraining UV continuum slopes of active galactic nuclei with cloudy models of broad-line region extreme-ultraviolet emission lines

    SciTech Connect (OSTI)

    Moloney, Joshua [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Michael Shull, J., E-mail: joshua.moloney@colorado.edu, E-mail: michael.shull@colorado.edu [Also at Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. (United Kingdom)

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 ? z ? 0.64, two AGNs with 0.32 ? z ? 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV ?765, O II ?833, and O III ?834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n {sub H} ? 10{sup 12} cm{sup 3}) and hydrogen ionizing photon fluxes (?{sub H} ? 10{sup 22} cm{sup 2} s{sup 1}).

  17. Modeling

    SciTech Connect (OSTI)

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  18. Dynamical principles in neuroscience

    SciTech Connect (OSTI)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-15

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.

  19. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  20. Graybox and adaptative dynamic neural network identification models to infer the steady state efficiency of solar thermal collectors starting from the transient condition

    SciTech Connect (OSTI)

    Roberto, Baccoli; Ubaldo, Carlini; Stefano, Mariotti; Roberto, Innamorati; Elisa, Solinas; Paolo, Mura

    2010-06-15

    This paper deals with the development of methods for non steady state test of solar thermal collectors. Our goal is to infer performances in steady-state conditions in terms of the efficiency curve when measures in transient conditions are the only ones available. We take into consideration the method of identification of a system in dynamic conditions by applying a Graybox Identification Model and a Dynamic Adaptative Linear Neural Network (ALNN) model. The study targets the solar collector with evacuated pipes, such as Dewar pipes. The mathematical description that supervises the functioning of the solar collector in transient conditions is developed using the equation of the energy balance, with the aim of determining the order and architecture of the two models. The input and output vectors of the two models are constructed, considering the measures of 4 days of solar radiation, flow mass, environment and heat-transfer fluid temperature in the inlet and outlet from the thermal solar collector. The efficiency curves derived from the two models are detected in correspondence to the test and validation points. The two synthetic simulated efficiency curves are compared with the actual efficiency curve certified by the Swiss Institute Solartechnik Puffung Forschung which tested the solar collector performance in steady-state conditions according to the UNI-EN 12975 standard. An acquisition set of measurements of only 4 days in the transient condition was enough to trace through a Graybox State Space Model the efficiency curve of the tested solar thermal collector, with a relative error of synthetic values with respect to efficiency certified by SPF, lower than 0.5%, while with the ALNN model the error is lower than 2.2% with respect to certified one. (author)

  1. Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within

    Office of Scientific and Technical Information (OSTI)

    Dynamic Systems (Patent Application) | SciTech Connect Patent Application: Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within Dynamic Systems Citation Details In-Document Search Title: Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within Dynamic Systems An automated process defines and maintains connectivity regions within a dynamic network. The automated process requires an initial input of a network component around which a connectivity

  2. Dynamic model of Italy`s Progetto Energia cogeneration plants aims to better predict plant performance, cut start-up costs

    SciTech Connect (OSTI)

    1996-12-31

    Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.

  3. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  4. Effect of parameter variations on the static and dynamic behaviour of a self-assembled quantum-dot laser using circuit-level modelling

    SciTech Connect (OSTI)

    Razm-Pa, M; Emami, F

    2015-01-31

    We report a new circuit model for a self-assembled quantum-dot (SAQD) laser made of InGaAs/GaAs structures. The model is based on the excited state and standard rate equations, improves the previously suggested circuit models and also provides and investigates the performance of this kind of laser. The carrier dynamic effects on static and dynamic characteristics of a SAQD laser are analysed. The phonon bottleneck problem is simulated. Quantum-dot lasers are shown to be quite sensitive to the crystal quality outside and inside quantum dots. The effects of QD coverage factor, inhomogeneous broadening, the physical source of which is the size fluctuation of quantum dots formed by self-assembly of atoms, and cavity length on the SAQD laser characteristics are analysed. The results of simulation show that an increase in the cavity length and in the QD coverage factor results in the growth of the output power. On the other hand, an increase in the coverage factor and a degradation of inhomogeneous broadening lead to an increase in the modulation bandwidth. The effect of the QD height (cylindrical shape) and stripe width of the laser cavity on QD laser modulation is also analysed. (lasers)

  5. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  6. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; Coon, Ethan T.; Wilson, Cathy J.; Liljedahl, Anna K.; Romanovsky, V. E.

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  7. Development and pilot testing of modular dynamic thermomechanical pulp mill model to develop energy reduction strategies. Final report

    SciTech Connect (OSTI)

    Coffin, D.W.

    1996-10-01

    With the development of on-line and real-time process simulations, one obtains the ability to predict and control the process; thus, the opportunity exists to improve energy efficiency, decrease materials wastes, and maintain product quality. Developing this capability was the objective of the this research program. A thermomechanical pulp mill was simulated using both a first principles model and a neural network. The models made use of actual process data and a model that calculated the mass and energy balance of the mill was successfully implemented and run at the mill on an hourly basis. The attempt to develop a model that accurately predicted the quality of the pulp was not successful. It was concluded that the key fro a successful implementation of a real-time control model, such as a neural net model, is availability of on-line sensors that sufficiently characterize the pulp.

  8. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    SciTech Connect (OSTI)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

  9. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Atchley, A. L.; Painter, S. L.; Harp, D. R.; Coon, E. T.; Wilson, C. J.; Liljedahl, A. K.; Romanovsky, V. E.

    2015-04-14

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth System Models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth System Models challenge validation and parameterization of hydrothermal models. A recently developed surface/subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to calibrate and identify fine scale controls of ALT in ice wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze/thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g. troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  10. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the western half of the study area (Eurasia and the Middle East) and (ii) identify well located seismic events with event-station paths isolated to individual tectonic provinces within the study area and collect broadband waveforms and source parameters for the selected events. The 1D models obtained from the joint inversion will then be combined with published geologic terrain maps to produce regionalized models for distinctive tectonic areas within the study area, and the models will be validated through full waveform modeling of well-located seismic events recorded at local and regional distances.

  11. Simulating coarse-scale vegetation dynamics using the Columbia River Basin succession model-crbsum. Forest Service general technical report

    SciTech Connect (OSTI)

    Keane, R.E.; Long, D.G.; Menakis, J.P.; Hann, W.J.; Bevins, C.D.

    1996-10-01

    The paper details the landscape succession model developed for the coarse-scale assessment called CRBSUM (Columbia River Basin SUccession Model) and presents some general results of the application of this model to the entire basin. CRBSUM was used to predict future landscape characteristics to evaluate management alternatives for both mid-and coarse-scale efforts. A test and sensitivity analysis of CRBSUM is also presented. This paper was written as a users guide for those who wish to run the model and interprete results, and its was also written as documentation for some results of the Interior Columbia River Basin simulation effort.

  12. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Fluid Dynamics and Solid Mechanics Basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical algorithm development, and large-scale computational simulations. Global climate modeling simulation The Art of Climate Modeling Global climate change ParaView visualization READ MORE Multiscale modeling Multiscale Modeling Strain contours illustrate the process of shear localization in metallic materials Projectile

  13. Nonlinear dynamics of the ion Weibel-filamentation instability: An analytical model for the evolution of the plasma and spectral properties

    SciTech Connect (OSTI)

    Ruyer, C. Gremillet, L. Debayle, A.; Bonnaud, G.

    2015-03-15

    We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters up to a stage close to complete isotropization, and is thus of prime interest to understand the dynamics of collisionless shock formation. Its predictions are supported by 2-D and 3-D particle-in-cell simulations of the ion Weibel instability. The derived approximate analytical solutions reveal the various dependencies of the ion relaxation to isotropy. In particular, it is found that the influence of the electron screening can affect the results of simulations using an unphysical electron mass.

  14. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  15. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    SciTech Connect (OSTI)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.

  16. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai -Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  17. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; et al

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore » (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.« less

  18. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.

  19. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  20. NV PFA Regional Data

    SciTech Connect (OSTI)

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  1. A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model

    SciTech Connect (OSTI)

    Bellotti, R.; De Carlo, F.; Gargano, G.; Tangaro, S.; Cascio, D.; Catanzariti, E.; Cerello, P.; Cheran, S. C.; Delogu, P.; De Mitri, I.; Fulcheri, C.; Grosso, D.; Retico, A.; Squarcia, S.; Tommasi, E.; Golosio, Bruno

    2007-12-15

    A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce the false positives (FPs). After having set the parameters on a clinical CT, the system works on whole scans, without the need for any manual selection. The CT database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with 6.6 FPs/CT on 15 CT scans (about 4700 sectional images) with 26 nodules: 15 internal and 11 pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency.

  2. Rigidity of a spherical capsule switches the localization of encapsulated particles between inner and peripheral regions under crowding condition: Simple model on cellular architecture

    SciTech Connect (OSTI)

    Shew, Chwen-Yang Kondo, Kenta; Yoshikawa, Kenichi

    2014-01-14

    We have investigated the inhomogeneous interior of confined spherical cavities as capsules containing encapsulated binary hard sphere mixtures for different compositions and cavity wall rigidity. Such a greatly simplified model manifests the effects of macromolecular crowding arising from excluded volume interactions in a tiny cell or a cellular nucleus. By fixing the number of large particles, the level of crowding is adjusted by changing the amount of small hard spheres in the cavity. For a rigid cavity, large spheres tend to pack in liquid-like order apart from the surface to the center of the cavity as the crowding level is increased. Whereas, for a soft cavity, larger spheres tend to blend with small spheres in the peripheral region at near the boundary of the cavity, and are susceptible to be depleted from the interior of the cavity as the cavity becomes more crowded. These results may help future elucidation of the thermodynamic pathways to stabilize the inhomogeneous structure of mixtures confined in cavities, such as the derepression of genome materials around the interior rim of the nucleus in a cancerous cell.

  3. Texas Panhandle soil-crop-beef food chain for uranium: a dynamic model validated by experimental data

    SciTech Connect (OSTI)

    Wenzel, W.J.; Wallwork-Barber, K.M.; Rodgers, J.C.; Gallegos, A.F.

    1982-01-01

    Long-term simulations of uranium transport in the soil-crop-beef food chain were performed using the BIOTRAN model. Experimental data means from an extensive Pantex beef cattle study are presented. Experimental data were used to validate the computer model. Measurements of uranium in air, soil, water, range grasses, feed, and cattle tissues are compared to simulated uranium output values in these matrices when the BIOTRAN model was set at the measured soil and air values. The simulations agreed well with experimental data even though metabolic details for ruminants and uranium chemical form in the environment remain to be studied.

  4. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects Capabilities, Computational Modeling & Simulation, CRF, Materials Science, Modeling, Modeling, Modeling & ...

  5. Vehicle Technologies Office Merit Review 2015: MA3T—Modeling Vehicle Market Dynamics with Consumer Segmentation

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about MA3T—modeling...

  6. Model-based statistical estimation of Sandia RF ohmic switch dynamic operation form stroboscopic, x-ray imaging.

    SciTech Connect (OSTI)

    Diegert, Carl F.

    2006-12-01

    We define a new diagnostic method where computationally-intensive numerical solutions are used as an integral part of making difficult, non-contact, nanometer-scale measurements. The limited scope of this report comprises most of a due diligence investigation into implementing the new diagnostic for measuring dynamic operation of Sandia's RF Ohmic Switch. Our results are all positive, providing insight into how this switch deforms during normal operation. Future work should contribute important measurements on a variety of operating MEMS devices, with insights that are complimentary to those from measurements made using interferometry and laser Doppler methods. More generally, the work opens up a broad front of possibility where exploiting massive high-performance computers enable new measurements.

  7. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  8. A direct numerical simulation-based investigation and modeling of pressure Hessian effects on compressible velocity gradient dynamics

    SciTech Connect (OSTI)

    Danish, Mohammad Suman, Sawan Srinivasan, Balaji

    2014-12-15

    The pressure Hessian tensor plays a key role in shaping the behavior of the velocity gradient tensor, and in turn, that of many incumbent non-linear processes in a turbulent flow field. In compressible flows, the role of pressure Hessian is even more important because it represents the level of fluid-thermodynamic coupling existing in the flow field. In this work, we first perform a direct numerical simulation-based study to clearly identify, isolate, and understand various important inviscid mechanisms that govern the evolution of the pressure Hessian tensor in compressible turbulence. The ensuing understanding is then employed to introduce major improvements to the existing Lagrangian model of the pressure Hessian tensor (the enhanced Homogenized Euler equation or EHEE) in terms of (i) non-symmetric, non-isentropic effects and (ii) improved representation of the anisotropic portion of the pressure Hessian tensor. Finally, we evaluate the new model extensively by comparing the new model results against known turbulence behavior over a range of Reynolds and Mach numbers. Indeed, the new model shows much improved performance as compared to the EHEE model.

  9. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less

  10. Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

    SciTech Connect (OSTI)

    Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

    2015-09-08

    In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

  11. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gasliquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: A new generalisation of van der Waals equation of state. Description of phase transitions in terms of shock dynamics of state curves. Proof of the universality of equations of state for a general class of models. Interpretation of triple points as confluence of classical shock waves. Correspondence table between thermodynamics and nonlinear conservation laws.

  12. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  13. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  14. LHC INTERACTION REGION CORRECTION IN HEAVY ION OPERATION

    SciTech Connect (OSTI)

    PTITSIN,V.; FISCHER,W.; WEI,J.

    1999-09-07

    In heavy ion operation the LHC interaction region at IP2 will have a low-{beta} optics for collisions. The dynamic aperture is therefore sensitive to magnetic field errors in the interaction region quadrupoles and dipoles. The authors investigate the effect of the magnetic field errors on the dynamic aperture and evaluate the effectiveness of local interaction region correctors. The dynamic aperture and the tune space are computed for different crossing angles.

  15. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1980-11-04

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method. Output of the calculations is presented in both tabular and graphical form.

  16. One-dimensional numerical fluid dynamics model of the spreading of liquefied gaseous fuel (LGF) on water

    SciTech Connect (OSTI)

    Stein, W.; Ermak, D.L.

    1981-01-01

    A computer model has been developed to simulate the spreading of an evaporating liquefied gaseous fuel that has been spilled on the surface of a denser liquid. This would correspond, for example, to the spreading of liquefied natural gas spilled onto water. The model is based on the one-dimensional, time-dependent equations of conservation of mass and momentum, with the assumption that the pool of liquid fuel spreads in a radially symmetric manner. It includes the effects of vaporization, shear at the fuel-liquid interface, and buoyancy due to the density difference between the fuel and the liquid onto which it is spilled. Both instantaneous and continuous spills of finite volume are treated. The height and spreading velocity of the pool of spilled fuel are calculated as functions of time and radius by numerically solving the conservation equations with a finite difference method.Output of the calculations is presented in both tabular and graphical form.

  17. OBSERVATIONS AND MODELING OF THE EMERGING EXTREME-ULTRAVIOLET LOOPS IN THE QUIET SUN AS SEEN WITH THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Chitta, L. P.; Van Ballegooijen, A. A.; DeLuca, E. E.; Kariyappa, R.; Hasan, S. S.; Hanslmeier, A.

    2013-05-01

    We used data from the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) to study coronal loops at small scales, emerging in the quiet Sun. With HMI line-of-sight magnetograms, we derive the integrated and unsigned photospheric magnetic flux at the loop footpoints in the photosphere. These loops are bright in the EUV channels of AIA. Using the six AIA EUV filters, we construct the differential emission measure (DEM) in the temperature range 5.7-6.5 in log T (K) for several hours of observations. The observed DEMs have a peak distribution around log T Almost-Equal-To 6.3, falling rapidly at higher temperatures. For log T < 6.3, DEMs are comparable to their peak values within an order of magnitude. The emission-weighted temperature is calculated, and its time variations are compared with those of magnetic flux. We present two possibilities for explaining the observed DEMs and temperatures variations. (1) Assuming that the observed loops are composed of a hundred thin strands with certain radius and length, we tested three time-dependent heating models and compared the resulting DEMs and temperatures with the observed quantities. This modeling used enthalpy-based thermal evolution of loops (EBTEL), a zero-dimensional (0D) hydrodynamic code. The comparisons suggest that a medium-frequency heating model with a population of different heating amplitudes can roughly reproduce the observations. (2) We also consider a loop model with steady heating and non-uniform cross-section of the loop along its length, and find that this model can also reproduce the observed DEMs, provided the loop expansion factor {gamma} {approx} 5-10. More observational constraints are required to better understand the nature of coronal heating in the short emerging loops on the quiet Sun.

  18. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    SciTech Connect (OSTI)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  19. Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non-stationary SOFC Cathode Behavior

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S; Gorte, R J; Orme, C A; Nelson, A J

    2009-01-05

    The interaction between nanoparticles of strontium-doped lanthanum manganite (LSM) and single crystal yttria-stabilized zirconia (YSZ) was investigated using atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM)/energy-dispersive x-ray spectroscopy (EDX). Nanoparticles of LSM were deposited directly onto single crystal YSZ substrates (100) using an ultrasonic spray nozzle. As samples were annealed from 850 C to 1250 C, nanoparticles gradually decreased in height and eventually disappeared completely. Subsequent reduction in H{sub 2}/H{sub 2}O at 700 C resulted in the reappearance of nanoparticles. Studies were carried out on identical regions of the sample allowing the same nanoparticles to be characterized at different temperatures. Morphological changes indicate the formation of a thin layer of LSM, and XPS results support the observation by indicating an increase in signal from the La and Sr and a decrease in signal from the Y and Zr with increasing temperature. SEM/EDX was used to verify that the nanoparticles in the reduced sample contained La. The changes in the LSM/YSZ morphology may be important in explaining the non-stationary behavior observed in operating fuel cells. The thin layer of LSM initially results in poor cathode performance; reducing conditions then lead to film disruptions, indicating nano/microporosity, that increase oxygen ion diffusion and performance.

  20. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect (OSTI)

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  1. THE 2011 FEBRUARY 15 X2 FLARE, RIBBONS, CORONAL FRONT, AND MASS EJECTION: INTERPRETING THE THREE-DIMENSIONAL VIEWS FROM THE SOLAR DYNAMICS OBSERVATORY AND STEREO GUIDED BY MAGNETOHYDRODYNAMIC FLUX-ROPE MODELING

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; Title, Alan M.; Aulanier, Guillaume; Pariat, Etienne; Delannee, Cecile E-mail: title@lmsal.com E-mail: etienne.pariat@obspm.fr

    2011-09-10

    The 2011 February 15 X2.2 flare and associated Earth-directed halo coronal mass ejection were observed in unprecedented detail with high resolution in spatial, temporal, and thermal dimensions by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, as well as by instruments on the two STEREO spacecraft, then at near-quadrature relative to the Sun-Earth line. These observations enable us to see expanding loops from a flux-rope-like structure over the shearing polarity-inversion line between the central {delta}-spot groups of AR 11158, developing a propagating coronal front ('EIT wave'), and eventually forming the coronal mass ejection moving into the inner heliosphere. The observations support the interpretation that all of these features, including the 'EIT wave', are signatures of an expanding volume traced by loops (much larger than the flux rope only), surrounded by a moving front rather than predominantly wave-like perturbations; this interpretation is supported by previously published MHD models for active-region and global scales. The lateral expansion of the eruption is limited to the local helmet-streamer structure and halts at the edges of a large-scale domain of connectivity (in the process exciting loop oscillations at the edge of the southern polar coronal hole). The AIA observations reveal that plasma warming occurs within the expansion front as it propagates over quiet Sun areas. This warming causes dimming in the 171 A (Fe IX and Fe X) channel and brightening in the 193 and 211 A (Fe XII-XIV) channels along the entire front, while there is weak 131 A (Fe VIII and Fe XXI) emission in some directions. An analysis of the AIA response functions shows that sections of the front running over the quiet Sun are consistent with adiabatic warming; other sections may require additional heating which MHD modeling suggests could be caused by Joule dissipation. Although for the events studied here the effects of volumetric expansion are much more obvious than true wave phenomena, we discuss how different magnetic environments within and around the erupting region can lead to the signatures of either or both of these aspects.

  2. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  3. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect (OSTI)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  4. A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Y.; Hunter, A.; Beyerlein, I. J.; Koslowski, M.

    2015-09-14

    In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τcrit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τcrit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results show that themore » value of τcrit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τcrit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τcrit values.« less

  5. A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces

    SciTech Connect (OSTI)

    Zeng, Y.; Hunter, A.; Beyerlein, I. J.; Koslowski, M.

    2015-09-14

    In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τcrit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τcrit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results show that the value of τcrit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τcrit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τcrit values.

  6. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    SciTech Connect (OSTI)

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; Allan, James D.; Utembe, Steve; Ouyang, Bin; Aruffo, Eleonora; Le Breton, Michael; Zaveri, Rahul A.; di Carlo, Piero; Percival, Carl; Coe, H.; Jones, Roderic L.; McFiggans, Gordon

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.70.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.50.7 ?g kg?1air, compared with measurements of 1.01.5 ?g kg?1air). Two flights from the campaign were used as test cases one with low relative humidity (RH) (6070%), the other with high RH (8090%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles.

    The night-time NO3 oxidation of VOCs across the whole region was found to be 100300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for alkenes ( 80) and comparable for dimethylsulfide (DMS). However the suppression of NO3 mixing ratios across the domain by N2O5 heterogeneous chemistry has only a very slight, negative, influence on this oxidative capacity. The influence on regional particulate nitrate mass loadings is stronger. Night-time N2O5 heterogeneous chemistry maintains the production of particulate nitrate within polluted regions: when this process is taken into consideration, the daytime peak (for the 95th percentile) of PM10 nitrate mass loadings remains around 5.6 ?g kg?1air, but the night-time minimum increases from 3.5 to 4.6 ?g kg?1air. The sustaining of higher particulate mass loadings through the night by this process improves model skill at matching measured aerosol nitrate diurnal cycles and will negatively impact on regional air quality, requiring this process to be included in regional models.

  7. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... Twitter Google + Vimeo GovDelivery SlideShare Chemical Dynamics HomeTransportation ...

  8. Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Zinaman, Owen; Ibanez, Eduardo; Heimiller, Donna; Eurek, Kelly; Mai, Trieu

    2015-07-02

    This document describes the development effort for creating a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors within the NREL ReEDS model. Thereafter, it demonstrates the newly established capability through an illustrative sensitivity analysis. In conducting the sensitivity analysis, we describe the value of an integrated modeling approach.

  9. CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

    2012-10-07

    Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.

  10. Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within

    Office of Scientific and Technical Information (OSTI)

    Dynamic Systems (Patent Application) | SciTech Connect Patent Application: Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within Dynamic Systems Citation Details In-Document Search Title: Method of Evaluating, Expanding, and Collapsing Connectivity Regions Within Dynamic Systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a

  11. Method of evaluating, expanding, and collapsing connectivity regions within

    Office of Scientific and Technical Information (OSTI)

    dynamic systems (Patent) | SciTech Connect Patent: Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems Citation Details In-Document Search Title: Method of evaluating, expanding, and collapsing connectivity regions within dynamic systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  12. Cyber Dynamic Impact Modeling Engine

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    As the rate, sophistication, and potential damage of cyber attacks continue to grow, the latency of human-speed analysis and response is becoming increasingly costly. Intelligent response to detected attacks and other malicious activity requires both knowledge of the characteristics of the attack as well as how resources involved in the attack related to the mission of the organization. Cydime fills this need by estimating a key component of intrusion detection and response automation: the relationshipmore » type and strength between the target organization and the potential attacker.« less

  13. Measuring the chargino mixing parameters of the minimal SUSY extension of the standard model at e sup + e sup minus colliders in the TeV region

    SciTech Connect (OSTI)

    Leike, A. )

    1989-01-01

    In this paper it is proposed to measure the parameters of the chargino mixing of the minimal supersymmetric extension of the standard model by chargino pair production at e{sup +} e{sup {minus}} colliders with TeV energies. Some information about the lightest SUSY particle and its mass can be gained. With a polarized beam the minimal SUSY extension of the Standard model could be ruled out.

  14. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    SciTech Connect (OSTI)

    Xu, Zuwei; Zhao, Haibo Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.

  15. State and Regional Energy Risk Assessment Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission Energy Infrastructure Modeling and Analysis State and Regional Energy Risk Assessment Initiative State and Regional Energy Risk Assessment Initiative The Office of...

  16. Collaborative Proposal: Transforming How Climate System Models are Used: A Global, Multi-Resolution Approach

    SciTech Connect (OSTI)

    Estep, Donald

    2013-04-15

    Despite the great interest in regional modeling for both weather and climate applications, regional modeling is not yet at the stage that it can be used routinely and effectively for climate modeling of the ocean. The overarching goal of this project is to transform how climate models are used by developing and implementing a robust, efficient, and accurate global approach to regional ocean modeling. To achieve this goal, we will use theoretical and computational means to resolve several basic modeling and algorithmic issues. The first task is to develop techniques for transitioning between parameterized and high-fidelity regional ocean models as the discretization grid transitions from coarse to fine regions. The second task is to develop estimates for the error in scientifically relevant quantities of interest that provide a systematic way to automatically determine where refinement is needed in order to obtain accurate simulations of dynamic and tracer transport in regional ocean models. The third task is to develop efficient, accurate, and robust time-stepping schemes for variable spatial resolution discretizations used in regional ocean models of dynamics and tracer transport. The fourth task is to develop frequency-dependent eddy viscosity finite element and discontinuous Galerkin methods and study their performance and effectiveness for simulation of dynamics and tracer transport in regional ocean models. These four projects share common difficulties and will be approach using a common computational and mathematical toolbox. This is a multidisciplinary project involving faculty and postdocs from Colorado State University, Florida State University, and Penn State University along with scientists from Los Alamos National Laboratory. The completion of the tasks listed within the discussion of the four sub-projects will go a long way towards meeting our goal of developing superior regional ocean models that will transform how climate system models are used.

  17. FAQ's for New Weekly Natural Gas Storage Report Regions

    Weekly Natural Gas Storage Report (EIA)

    FAQs about New Regions for Weekly Natural Gas Storage Report Originally Released: September 29, 2015 Updated: November 5, 2015 What led EIA to change the Weekly Natural Gas Storage Report (WNGSR) reporting from three to five regions? The three storage regions were developed more than 20 years ago when the dynamics of the natural gas market, including producing and consuming regions, were different than they are today. The new storage regions better reflect groupings of storage locations and the

  18. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  19. Aerosol Indirect Effect on the Grid-scale Clouds in the Two-way Coupled WRF-CMAQ: Model Description, Development, Evaluation and Regional Analysis

    SciTech Connect (OSTI)

    Yu, Shaocai; Mathur, Rohit; Pleim, Jonathan; Wong, David; Gilliam, R.; Alapaty, Kiran; Zhao, Chun; Liu, Xiaohong

    2014-10-24

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQpredicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental U.S. (CONUS) (12-km resolution) and eastern Texas (4-km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the NMB values for PM2.5 over the eastern/western U.S (EUS/WUS) and western U.S. (WUS) are 5.3% (?0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO4 2? by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and LWCF very well for the 4-km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF-CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, COD, cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August except for greater overestimation of PM2.5 due to the overestimations of SO4 2-, NH4 +, NO3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to about 10% lower SWCF values and less convective clouds in September.

  20. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  1. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVLibMatlab Permalink Gallery Sandia Labs Releases New Version of PVLib Toolbox Modeling, News, Photovoltaic, Solar Sandia Labs Releases New Version of PVLib Toolbox Sandia has released version 1.3 of PVLib, its widely used Matlab toolbox for modeling photovoltaic (PV) power systems. The version 1.3 release includes the following added functions: functions to estimate parameters for popular PV module models, including PVsyst and the CEC '5 parameter' model a new model of the effects of solar

  2. The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere

    SciTech Connect (OSTI)

    Tang, Wenbo Mahalov, Alex

    2014-04-15

    We present a three-dimensional numerical study for the E and lower F region ionosphere coupled with the neutral atmosphere dynamics. This model is developed based on a previous ionospheric model that examines the transport patterns of plasma density given a prescribed neutral atmospheric flow. Inclusion of neutral dynamics in the model allows us to examine the charge-neutral interactions over the full evolution cycle of an inertial gravity wave when the background flow spins up from rest, saturates and eventually breaks. Using Lagrangian analyses, we show the mixing patterns of the ionospheric responses and the formation of ionospheric layers. The corresponding plasma density in this flow develops complex wave structures and small-scale patches during the gravity wave breaking event.

  3. Groundwater in the Regional Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater in the Regional Aquifer Groundwater in the Regional Aquifer LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge http://farm3.staticflickr.com/2856/9804364405_b25f74cbb2_t.jpg En

  4. HAWT performance with dynamic stall

    SciTech Connect (OSTI)

    Hibbs, B.D.

    1986-02-01

    In this report we calculated the effects of flow nonuniformities (wing shear, tower wake, yaw, and large-scale turbulence) on the performance of a horizontal axis wind turbine, accounting for dynamic stall. We modified the PROP program to incorporate and compare these effects with the uniform flow case. The MIT model, which predicts dynamic lift coefficients substantially higher than the static maximum values and includes a crude model of the vortex roll-off phenomenon, represented dynamic stall. As associated model for drag was also used. The dynamic stall model was tested against experimental data for three typical reduced frequencies. Good instantaneous correlation was obtained. The effects of nonuniformities with and without the dynamic stall were calculated using the Westinghouse Mod O and Enertech 44/25 turbines. Modeling the dynamic stall has little effect on performance. Furthermore, the performance with nonuniform flow differed only slightly from the uniform flow case. Thus the now PROP model provides a powerful general capability to handle nonuniform flows.

  5. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion/Modeling Modelingadmin2015-10-28T01:54:52+00:00 Modelers at the CRF are developing high-fidelity simulation tools for engine combustion and detailed micro-kinetic, surface chemistry modeling tools for catalyst-based exhaust aftertreatment systems. The engine combustion modeling is focused on developing Large Eddy Simulation (LES). LES is being used with closely coupled key target experiments to reveal new understanding of the fundamental processes involved in engine combustion

  6. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reacting Flow/Modeling Modelingadmin2015-10-28T02:39:13+00:00 Turbulence models typically involve coarse-graining and/or time averaging. Though adequate for modeling mean transport, this approach does not address turbulence-microphysics interactions that are important in combustion processes. Subgrid models are developed to represent these interactions. The CRF has developed a fundamentally different representation of these interactions that does not involve distinct coarse-grained and subgrid

  7. Critical interpretation of CH and OH stretching regions for infrared spectra of methanol clusters (CH{sub 3}OH){sub n} (n = 25) using self-consistent-charge density functional tight-binding molecular dynamics simulations

    SciTech Connect (OSTI)

    Nishimura, Yoshifumi; Lee, Yuan-Pern; Irle, Stephan; Witek, Henryk A.

    2014-09-07

    Vibrational infrared (IR) spectra of gas-phase OH???O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the CH stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the CH stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ?{sub 3}, ?{sub 9}, and ?{sub 2} CH stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.

  8. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico...

  9. Photodissociation Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photodissociation Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  10. Dynamical impurity problems

    SciTech Connect (OSTI)

    Emery, V.J.; Kivelson, S.A.

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  11. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect (OSTI)

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  12. Multi-epoch very long baseline interferometric observations of the nuclear starburst region of NGC 253: Improved modeling of the supernova and star formation rates

    SciTech Connect (OSTI)

    Rampadarath, H.; Morgan, J. S.; Tingay, S. J.; Lenc, E.

    2014-01-01

    The results of multi-epoch observations of the southern starburst galaxy, NGC 253, with the Australian Long Baseline Array at 2.3 GHz are presented. As with previous radio interferometric observations of this galaxy, no new sources were discovered. By combining the results of this survey with Very Large Array observations at higher frequencies from the literature, spectra were derived and a free-free absorption model was fitted of 20 known sources in NGC 253. The results were found to be consistent with previous studies. The supernova remnant, 5.48-43.3, was imaged with the highest sensitivity and resolution to date, revealing a two-lobed morphology. Comparisons with previous observations of similar resolution give an upper limit of 10{sup 4} km s{sup 1} for the expansion speed of this remnant. We derive a supernova rate of <0.2 yr{sup 1} for the inner 300 pc using a model that improves on previous methods by incorporating an improved radio supernova peak luminosity distribution and by making use of multi-wavelength radio data spanning 21 yr. A star formation rate of SFR(M ? 5 M {sub ?}) < 4.9 M {sub ?} yr{sup 1} was also estimated using the standard relation between supernova and star formation rates. Our improved estimates of supernova and star formation rates are consistent with studies at other wavelengths. The results of our study point to the possible existence of a small population of undetected supernova remnants, suggesting a low rate of radio supernova production in NGC 253.

  13. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WVMinputs-outputs Permalink Gallery Sandia Labs releases wavelet variability model (WVM) Modeling, News, Photovoltaic, Solar Sandia Labs releases wavelet variability model (WVM) When a single solar photovoltaic (PV) module is in full sunlight, then is shaded by a cloud, and is back in full sunlight in a matter of seconds, a sharp dip then increase in power output will result. However, over an entire PV plant, clouds will often uncover some modules even as they cover others, [...] By Andrea

  14. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A rail tank car of the type used to transport crude oil across North America. Recent incidents have raised concerns about the safety of this practice, which the DOE-DOT-sponsored team is investigating. (photo credit: Harvey Henkelmann) Permalink Gallery Expansion of DOE-DOT Tight Oil Research Work Capabilities, Carbon Capture & Storage, Carbon Storage, Energy, Energy Assurance, Energy Assurance, Fuel Options, Infrastructure Assurance, Infrastructure Security, Modeling, Modeling, Modeling

  15. Final report for DOE Award # DE- SC0010039*: Carbon dynamics of forest recovery under a changing climate: Forcings, feedbacks, and implications for earth system modeling

    SciTech Connect (OSTI)

    Anderson-Teixeira, Kristina J.; DeLucia, Evan H.; Duval, Benjamin D.

    2015-10-29

    To advance understanding of C dynamics of forests globally, we compiled a new database, the Forest C database (ForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 18,791 records from 2009 sites, making it the largest and most comprehensive database of C stocks and flows in forest ecosystems globally. The tropical component of the database will be published in conjunction with a manuscript that is currently under review (Anderson-Teixeira et al., in review). Database development continues, and we hope to maintain a dynamic instance of the entire (global) database.

  16. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monte Carlo modeling it was found that for noisy signals with a significant background component, accuracy is improved by fitting the total emission data which includes the...

  17. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Renewable Energy, Research & Capabilities, Wind Energy, Wind News|0 Comments Read More ... Energy, Research & Capabilities, Water Power Sandia Modifies Delft3D Turbine Model ...

  18. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  20. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

    SciTech Connect (OSTI)

    Akimov, Alexey V. E-mail: oleg.prezhdo@rochester.edu; Long, Run; Prezhdo, Oleg V. E-mail: oleg.prezhdo@rochester.edu

    2014-05-21

    We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrdinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fully quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.

  1. Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    SciTech Connect (OSTI)

    Fares, Silvano; Schnitzhofer, Ralf; Xiaoyan, Jiang; Guenther, Alex B.; Hansel, Armin; Loreto, Francesco

    2013-09-04

    Most vascular plants species, especially trees, emit biogenic volatile organic compounds (BVOC). Global estimates of BVOC emissions from plants range from 1 to 1.5 Pg C yr?1.1 Mediterranean forest trees have been described as high BVOC emitters, with emission depending primarily on light and temperature, and therefore being promoted by the warm Mediterranean climate. In the presence of sufficient sunlight and nitrogen oxides (NOx), the oxidation of BVOCs can lead to the formation of tropospheric ozone, a greenhouse gas with detrimental effects on plant health, crop yields, and human health. BVOCs are also precursors for aerosol formation, accounting for a significant fraction of secondary organic aerosol (SOA) produced in the atmosphere. The presidential Estate of Castelporziano covers an area of about 6000 ha located 25 km SW from the center of Rome, Italy (Figure 1) and hosts representative forest ecosystems typical of Mediterranean areas: holm oak forests, pine forests, dune vegetation, mixed oak and pine forests. Between 1995 and 2011, three intensive field campaigns were carried out on Mediterranean-type ecosystems inside the Estate. These campaigns were aimed at measuring BVOC emissions and environmental parameters, to improve formulation of basal emission factors (BEFs), that is, standardized emissions at 30 C and 1000 ?mol m?2s?1 of photosynthetic active radiation (PAR). BEFs are key input parameters of emission models. The first campaign in Castelporziano was a pioneering integrated study on biogenic emissions (1993? 19964). BVOC fluxes from different forest ecosystems were mainly investigated using plant- and leaf enclosures connected to adsorption tubes followed by GC?MS analysis in the laboratory. This allowed a first screening of Mediterranean species with respect to their BVOC emission potential, environmental control, and emission algorithms. In particular, deciduous oak species revealed high isoprene emissions (Quercus f rainetto, Quercus petrea, Quercus pubescens), while evergreen oaks emitted monoterpenes only, for example, Quercus ilex = holm oak. Differences in constitutive emission patterns discovered in Castelporziano supplied basic information to discriminate oak biodiversity in following studies.Ten years later, a second experimental campaign took place in spring and summer 2007 on a dune-shrubland experimental site. In this campaign, the use of a proton transfer reaction mass spectrometer (PTR-MS14) provided the fast BVOC observations necessary for quasi-real-time flux measurements using Disjunct Eddy Covariance. This allowed for the first time continuous measurements and BEFs calculation at canopy level. Finally, in September 2011 a third campaign was performed with the aim of further characterizing and improving estimates of BVOC fluxes from mixed Mediterranean forests dominated by a mixed holm oak and stone pine forest, using for the first time a proton transfer reaction?time-of-flight?mass spectrometer (PTR-TOF-MS). In contrast to the standard quadrupole PTR-MS, which can only measure one m/z ratio at a discrete time, thus being inadequate to quantify fluxes of more than a handful of compounds simultaneously, PTR-TOF-MS allowed simultaneous measurements (10 Hz) of fluxes of all BVOCs at the canopy level by Eddy Covariance.17?20, 50 In this work, we reviewed BEFs from previous campaigns in Castelporziano and calculated new BEFs from the campaign based on PTR-TOF-MS analysis. The new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.11).

  2. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect (OSTI)

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup 1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvn waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvn wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvn waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  3. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA Earth at Night Video EC, Energy, Energy Efficiency, Global, Modeling, News & Events, Solid-State Lighting, Videos NASA Earth at Night Video Have you ever wondered what the ...

  4. Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods

    SciTech Connect (OSTI)

    Miller, William H.

    2008-12-11

    In the late 1970's Meyer and Miller (MM) [J. Chem. Phys. 70, 3214 (1979)] presented a classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy surfaces and their couplings), so that classical trajectory simulations could be carried out treating the nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical mechanics), thereby describing non-adiabatic dynamics in a more unified manner. Much later Stock and Thoss (ST) [Phys. Rev. Lett. 78, 578 (1997)] showed that the MM model is actually not a 'model', but rather a 'representation' of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a Hamiltonian operator and used in the Schroedinger equation, the exact (quantum) nuclear-electronic dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe electronically non-adiabatic processes. Of special interest is the fact that though the classical trajectories generated by the MMST Hamiltonian (and which are the 'input' for an SC-IVR treatment) are 'Ehrenfest trajectories', when they are used within the SC-IVR framework the nuclear motion emerges from regions of non-adiabaticity on one potential energy surface (PES) or another, and not on an average PES as in the traditional Ehrenfest model. Examples are presented to illustrate and (hopefully) illuminate this behavior.

  5. Dynamical symmetries in nuclear structure

    SciTech Connect (OSTI)

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  6. NASEO Midwest Regional Meeting

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) is hosting its Midwest Regional Meeting in Des Moines, Iowa.

  7. Regional Education Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Education Partners Regional Education Partners One of the Laboratory's STEM education objectives is centered on strengthening the future workforce of Northern New Mexico and LANL through effective partnerships with regional secondary and higher education organizations, businesses and industry. Contact Executive Office Director Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Regional Partners Charlie McMillan talking with Rick Ulibarri and Dr. Fries, President of

  8. Evaluating sub-national building-energy efficiency policy options under uncertainty: Efficient sensitivity testing of alternative climate, technolgical, and socioeconomic futures in a regional intergrated-assessment model.

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Zhou, Yuyu; Rice, Jennie S.; Patel, Pralit L.; McJeon, Haewon C.; Kyle, G. Page; Kim, Son H.; Eom, Jiyong; Clarke, Leon E.

    2014-05-01

    Improving the energy efficiency of the building stock, commercial equipment and household appliances can have a major impact on energy use, carbon emissions, and building services. Subnational regions such as U.S. states wish to increase their energy efficiency, reduce carbon emissions or adapt to climate change. Evaluating subnational policies to reduce energy use and emissions is difficult because of the uncertainties in socioeconomic factors, technology performance and cost, and energy and climate policies. Climate change may undercut such policies. Assessing these uncertainties can be a significant modeling and computation burden. As part of this uncertainty assessment, this paper demonstrates how a decision-focused sensitivity analysis strategy using fractional factorial methods can be applied to reveal the important drivers for detailed uncertainty analysis.

  9. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in warm dense matter experiments with diffuse interface methods in the ALE-AMR code Wangyi Liu ∗ , John Barnard, Alex Friedman, Nathan Masters, Aaron Fisher, Velemir Mlaker, Alice Koniges, David Eder † August 4, 2011 Abstract In this paper we describe an implementation of a single-fluid inter- face model in the ALE-AMR code to simulate surface tension effects. The model does not require explicit information on the physical state of the two phases. The only change to the existing fluid

  10. Dynamical Expansion of HII Regions From Ultracompact to Compact...

    Office of Scientific and Technical Information (OSTI)

    Authors: Low, Mordecai-Mark Mac ; Toraskar, Jayashree ; Amer. Museum Natural Hist. ; Oishi, Jeffrey S. ; Amer. Museum Natural Hist. Virginia U., Astron. Dept. ; Abel, Tom ; ...

  11. Dynamical Expansion of HII Regions From Ultracompact to Compact...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2006-05-26 OSTI Identifier: 882832 Report Number(s): SLAC-PUB-11879 astro-ph0605501 DOE Contract Number: AC02-76SF00515 Resource Type: Technical Report Research ...

  12. Communication: Ro-vibrational control of chemical reactivity in H+CH{sub 4}→ H{sub 2}+CH{sub 3} : Full-dimensional quantum dynamics calculations and a sudden model

    SciTech Connect (OSTI)

    Welsch, Ralph Manthe, Uwe

    2014-08-07

    The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

  13. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    SciTech Connect (OSTI)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.

  14. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  15. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Co-Hosts "Climate Risk Forum: Bridging Climate Science and Actuarial Practice" This Fall event was a follow-up to a Climate and Environment Program Area meeting with the California governor's office in July. There, the California Insurance Commissioner, Dave Jones, recognized the value of Sandia's climate-impact modeling and analysis work, led by Stephen Conrad (manager of Sandia's Resilience and Regulatory Effects Dept.), and wanted to connect that [...] By

  16. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  17. Western Regional Partnership Overview

    Energy Savers [EERE]

    Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP

  18. Dynamical implantation of objects in the Kuiper Belt

    SciTech Connect (OSTI)

    Brasil, P. I. O.

    2014-09-01

    Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at ≲ 35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolution at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from ≲ 35 AU to >40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.

  19. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State October - December 2015 July - September 2015 October - December 2014 2015 2014 ...

  20. CEMI Western Regional Summit

    Broader source: Energy.gov [DOE]

    Please Join Assistant Secretary of Energy Dr. David Danielson for the Clean Energy Manufacturing Initiative's Western Regional Summit. Register now for this free event.

  1. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  2. Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse interface methods in ALE-AMR code with application in modeling NDCX-II experiments Wangyi Liu 1 , John Barnard 2 , Alex Friedman 2 , Nathan Masters 2 , Aaron Fisher 2 , Alice Koniges 2 , David Eder 2 1 LBNL, USA, 2 LLNL, USA This work was part of the Petascale Initiative in Computational Science at NERSC, supported by the Director, Office of Science, Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed

  3. Direct, spectroscopic measurement of electric fields in a plasma-RF antenna interaction region in Tore Supra

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Isler, Ralph C; Hillairet, J.; Martin, E. H.; Colas, L.; Ekedahl, A.; Goniche, M.; Lotte, Ph.; Colledani, G.; Martin, V.; Panayotis, Stephanie; Pegourie, B.; Harris, Jeffrey H

    2013-01-01

    Balmer-series spectral line profiles of deuterium emission near a lower-hybrid (3.7 GHz) wave, high power (1-4 MW) launcher were measured with high-spectral resolution in the Tore Supra tokamak and fitted to an atomic physics model which includes both Zeeman and dynamic Stark effects. The magnetic field is static and the electric field is assumed to be monochromatic at 3.7 GHz. The determined strength and direction of the high-frequency electric field is found to be in good agreement with the results of a simulation that computes the propagation of these lower hybrid waves into the plasma in the region around the launch antenna and specifically in the region of estimated peak emission contributing to the measurement. This agreement indicates feasibility for the use of dynamic Stark effect spectroscopy to study interaction at the plasma antenna interactions in a fusion plasma environment. (C) 2013 Elsevier B. V. All rights reserved.

  4. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    SciTech Connect (OSTI)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2014-09-01

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.

  5. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  6. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30- nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  7. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We alsomore » developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.« less

  8. Hierarchical probabilistic regionalization of volcanism for Sengan region, Japan.

    SciTech Connect (OSTI)

    Balasingam, Pirahas; Park, Jinyong; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2005-03-01

    A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty. The volcanic data cell locations that are in the medium volcanism region (group 3) showed relatively moderate mapping estimation uncertainty. Areas of high uncertainty provide locations where additional site characterization resources can be spent most effectively. The new data collected can be added to the existing database to perform future regionalized mapping and reduce the uncertainty level of the existing estimations.

  9. Regional Analysis Briefs

    Reports and Publications (EIA)

    2028-01-01

    Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

  10. RTSTEP regional transportation simulation tool for emergency planning - final report.

    SciTech Connect (OSTI)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X.

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.

  11. Regional Algal Feedstock Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rate modeling - Flask to field * Techno-economic model - BAT Culture Diagnostics * PCR diagnostics of invasive strains identified by 18S rRNA gene fragment sequencing * ...

  12. Regional Workforce Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Workforce Study Regional employers will need to fill more than 30,000 job openings over the next five years in the five-county region of South Carolina and Georgia represented by the SRS Community Reuse Organization (SRSCRO). That is a key finding of a new study released on April 22, 2015. TIP Strategies, an Austin, Texas-based economic consulting firm, performed the study for the SRSCRO by examining workforce trends in the five counties the SRSCRO represents - Aiken, Allendale and

  13. Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Regional Science Bowl Regional Science Bowl WHEN: Jan 23, 2016 8:00 AM - 5:00 PM WHERE: Highland High School 4700 Coal SE, Albuquerque, NM CONTACT: Janelle Vigil-Maestas (505) 665-4329 CATEGORY: Community INTERNAL: Calendar Login Event Description Five teams from Northern New Mexico area schools are among 16 participating in the middle school Regional Science Bowl competition. Northern area teams participating are from Los Alamos, Española, Cuba and Santa Fe. The winning team at this

  14. Regional Standards Enforcement

    Broader source: Energy.gov [DOE]

    Central air conditioners are now subject to a base national standard in the North and different, regional standards in the Southeast and Southwest. This page provides information about those standards and how DOE enforces them.

  15. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  16. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  17. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional companies eye growth Regional companies eye growth Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. were awarded from the Venture Acceleration Fund. August 21, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  18. Regional seismic discrimination research at LLNL

    SciTech Connect (OSTI)

    Walter, W.R.; Mayeda, K.M.; Goldstein, P.; Patton, H.J.; Jarpe, S.; Glenn, L.

    1995-10-01

    The ability to verify a Comprehensive Test Ban Treaty (CTBT) depends in part on the ability to seismically detect and discriminate between potential clandestine underground nuclear tests and other seismic sources, including earthquakes and mining activities. Regional techniques are necessary to push detection and discrimination levels down to small magnitudes, but existing methods of event discrimination are mainly empirical and show much variability from region to region. The goals of Lawrence Livermore National Laboratory`s (LLNL`s) regional discriminant research are to evaluate the most promising discriminants, improve the understanding of their physical basis and use this information to develop new and more effective discriminants that can be transported to new regions of high monitoring interest. In this report the authors discuss preliminary efforts to geophysically characterize the Middle East and North Africa. They show that the remarkable stability of coda allows one to develop physically based, stable single station magnitude scales in new regions. They then discuss progress to date on evaluating and improving physical understanding and ability to model regional discriminants, focusing on the comprehensive NTS dataset. The authors apply this modeling ability to develop improved discriminants including slopes of P to S ratios. They find combining disparate discriminant techniques is particularly effective in identifying consistent outliers such as shallow earthquakes and mine seismicity. Finally they discuss development and use of new coda and waveform modeling tools to investigate special events.

  19. Dynamic Information Architecture System

    Energy Science and Technology Software Center (OSTI)

    1997-02-12

    The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less

  20. Body Wave Tomography For Regional Scale Assessment Of Geothermal...

    Open Energy Info (EERE)

    . () : GRC; p. () Related Geothermal Exploration Activities Activities (8) Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009)...

  1. Modeling the effects of river flow on population dynamics of piping plovers (Charadrius melodus) and least terns (Sternula antillarum) nesting on the Missouri River

    SciTech Connect (OSTI)

    Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.

    2014-10-01

    Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlife species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover (Anteau et al., 2012). The amount of ESH available for nesting in a given year is strongly affected by the amount of water entering the Missouri River system through precipitation and the management of water flow from six reservoirs operated by the USACE on the mainstem Missouri River. Prior to the construction of dams, the Missouri River experienced bimodal peak flows in spring and early summer in concordance with the melting of plains and mountain snowpack (Galat and Lipkin, 2000). Flows decreased during summer months, with river stage then dependent upon rainfall. The combination of consistent high flows and occasional extreme high flows, together with the meandering characteristic of the river, regularly reshaped and scoured vegetation from ESH.

  2. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  3. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    SciTech Connect (OSTI)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of ice supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.

  4. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes. Part II. Sensitivity to heterogeneous ice nucleation parameterizations and dust emissions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yang; Chen, Ying; Fan, Jiwen; Leung, Lai -Yung

    2015-09-14

    Aerosol particles can affect cloud microphysical properties by serving as ice nuclei (IN). Large uncertainties exist in the ice nucleation parameterizations (INPs) used in current climate models. In this Part II paper, to examine the sensitivity of the model predictions to different heterogeneous INPs, WRF-CAM5 simulation using the INP of Niemand et al. (N12) [1] is conducted over East Asia for two full years, 2006 and 2011, and compared with simulation using the INP of Meyers et al. (M92) [2], which is the original INP used in CAM5. M92 calculates the nucleated ice particle concentration as a function of icemore » supersaturation, while N12 represents the nucleated ice particle concentration as a function of temperature and the number concentrations and surface areas of dust particles. Compared to M92, the WRF-CAM5 simulation with N12 produces significantly higher nucleated ice crystal number concentrations (ICNCs) in the northern domain where dust sources are located, leading to significantly higher cloud ice number and mass concentrations and ice water path, but the opposite is true in the southern domain where temperatures and moistures play a more important role in ice formation. Overall, the simulation with N12 gives lower downward shortwave radiation but higher downward longwave radiation, cloud liquid water path, cloud droplet number concentrations, and cloud optical depth. The increase in cloud optical depth and the decrease in downward solar flux result in a stronger shortwave and longwave cloud forcing, and decreases temperature at 2-m and precipitation. Changes in temperature and radiation lower surface concentrations of OH, O₃, SO₄²⁻, and PM2.5, but increase surface concentrations of CO, NO₂, and SO₂ over most of the domain. By acting as cloud condensation nuclei (CCN) and IN, dust particles have different impacts on cloud water and ice number concentrations, radiation, and temperature at 2-m and precipitation depending on whether the dominant role of dust is CCN or IN. These results indicate the importance of the heterogeneous ice nucleation treatments and dust emissions in accurately simulating regional climate and air quality.« less

  5. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  6. Final technical report [ACCELERATED MOLECULAR DYNAMICS SIMULATIONS OF REACTIVE HYDROCARBON SYSTEMS

    SciTech Connect (OSTI)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  7. Fissile solution dynamics: Student research

    SciTech Connect (OSTI)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  8. The handbook of fluid dynamics

    SciTech Connect (OSTI)

    Johnson, R.W.

    1998-07-01

    This book provides professionals in the field of fluid dynamics with a comprehensive guide and resource. The book balances three traditional areas of fluid mechanics--theoretical, computational, and experimental--and expounds on basic science and engineering techniques. Each chapter introduces a topic, discusses the primary issues related to this subject, outlines approaches taken by experts, and supplies references for further information. Topics discussed include: (1) basic engineering fluid dynamics; (2) classical fluid dynamics; (3) turbulence modeling; (4) reacting flows; (5) multiphase flows; (6) flow and porous media; (7) high Reynolds number asymptotic theories; (8) finite difference method; (9) finite volume method; (10) finite element methods; (11) spectral element methods for incompressible flows; (12) experimental methods, such as hot-wire anemometry, laser-Doppler velocimetry, and flow visualization; and (13) applications, such as axial-flow compressor and fan aerodynamics, turbomachinery, airfoils and wings, atmospheric flows, and mesoscale oceanic flows.

  9. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  10. Dimensions of invariant measures for continuous random dynamical systems

    SciTech Connect (OSTI)

    Bielaczyc, Tomasz; Horbacz, Katarzyna

    2015-03-10

    We consider continuous random dynamical systems with jumps. We estimate the dimension of the invariant measures and apply the results to a model of stochastic gene expression.

  11. Sandia Energy - Simulations Reveal Ion Dynamics in Polymer Electrolyte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and their effects on material properties is important for improved design. Recent molecular-dynamics simulations have revealed new details of ion motion in model ionomers....

  12. NMR Investigations of Network Formation and Motional Dynamics...

    Office of Scientific and Technical Information (OSTI)

    NMR Investigations of Network Formation and Motional Dynamics in Well-Defined Model Poly(dimethylsiloxane) Elastomers Citation Details In-Document Search Title: NMR Investigations ...

  13. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect (OSTI)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  14. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect (OSTI)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors.

  15. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  16. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect (OSTI)

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

  17. Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics...

    Office of Scientific and Technical Information (OSTI)

    Water Usage for In-Situ Oil Shale Retorting - A Systems Dynamics Model Earl D. Mattson; Larry Hull; Kara Cafferty 02 PETROLEUM Water Water A system dynamic model was construction...

  18. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2012-06-01

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are presented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices. Capsule: "Combining dynamical modeling of high-impact weather using traditional regional climate models with statistical techniques allows for comprehensive sampling of the full distribution, uncertainty estimation, direct assessment of impacts, and increased confidence in future changes."

  19. Sierra Structural Dynamics User's Notes

    SciTech Connect (OSTI)

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  20. Dynamical dipole mode in fusion reactions

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.