Powered by Deep Web Technologies
Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geologic CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

2

CO2 sequestration | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

3

EMSL - CO2 sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

4

CO2 Mineral Sequestration Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Studies Sequestration Studies Introduction, Issues and Plans Philip Goldberg National Energy Technology Laboratory Workshop on CO 2 Sequestration with Minerals August 8, 2001 Mineral Sequestration Program Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Goals: * Understand the fundamental mechanisms involved in mineral carbonation * Generate data to support process development * Operate continuous, integrated small-scale process unit to support design Current Partnerships In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include: * Albany Research Center * Arizona State University * Los Alamos National Laboratory

5

CO2 Sequestration short course  

SciTech Connect (OSTI)

Given the publics interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

2014-12-08T23:59:59.000Z

6

Modeling CO2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial,

7

CO2 Sequestration in Basalt Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

8

MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter  

E-Print Network [OSTI]

MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

Turova, Varvara

9

Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach  

E-Print Network [OSTI]

CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

Akinnikawe, Oyewande

2012-10-19T23:59:59.000Z

10

Geologic CO2 sequestration inhibits microbial growth | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

11

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

12

numerical methodology to model and monitor co2 sequestration  

E-Print Network [OSTI]

CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths...

santos,,,

13

Sequestration of CO2 by Concrete Carbonation  

Science Journals Connector (OSTI)

Sequestration of CO2 by Concrete Carbonation ... Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. ... This work attempts to advance the knowledge of the carbon footprint of cement. ...

Isabel Galan; Carmen Andrade; Pedro Mora; Miguel A. Sanjuan

2010-03-12T23:59:59.000Z

14

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network [OSTI]

CO 2 enhanced oil recovery (EOR) and sequestration in afor a coalbed methane formation. EOR/sequestration petroleumbut shallow compared to either EOR or brine formations. The

Gasperikova, E.

2008-01-01T23:59:59.000Z

15

Formation Damage due to CO2 Sequestration in Saline Aquifers  

E-Print Network [OSTI]

Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

Mohamed, Ibrahim Mohamed 1984-

2012-10-25T23:59:59.000Z

16

CO2 Hydrate Composite for Ocean Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 Hydrate Composite for Ocean Carbon Sequestration ... Further studies are needed to address hydrate conversion efficiency, scale-up criteria, sequestration longevity, and impact on the ocean biota before in-situ production of sinking CO2 hydrate composite can be applied to oceanic CO2 storage and sequestration. ...

Sangyong Lee; Liyuan Liang; David Riestenberg; Olivia R. West; Costas Tsouris; Eric Adams

2003-07-18T23:59:59.000Z

17

B.2 Subproject Brokate Simulating CO2 Sequestration  

E-Print Network [OSTI]

79 B.2 Subproject Brokate Simulating CO2 Sequestration Hysteretic Aspects of CO2 Sequestration and implement models describing the hysteresis in the context of the CO2 sequestration process. The hysteresis's law but in contrast to most Darcy's law based models it assumes the phases to be weakly compressible

Turova, Varvara

18

CO2 Mineral Sequestration Studies in US  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral Sequestration Studies in US Mineral Sequestration Studies in US Philip Goldberg 1 , Zhong-Ying Chen 2 , William O'Connor 3 , Richard Walters 3 , and Hans Ziock 4 1 National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, goldberg@netl.doe.gov, (412)386-5806 2 Science Applications International Corporation, 1710 Goodridge Dr. McLean, VA, zhong- ying.chen@saic.com, (703)676-7328 3 Albany Research Center, Albany, OR oconner@arc.doe.gov, walters@alrc.doe, (541)967-5834 4 Los Alamos National Laboratory, Los Alamos, NM, ksl@lanl.gov, ziock@lanl.gov, (505)667- 7265 Abstract Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO

19

Cost Assessment of CO2 Sequestration by Mineral Carbonation  

E-Print Network [OSTI]

Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

2006-01-01T23:59:59.000Z

20

Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico  

SciTech Connect (OSTI)

Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

Advanced Resources International

2010-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Broader source: Energy.gov (indexed) [DOE]

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

22

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-Print Network [OSTI]

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

23

CO2 Sequestration Potential of Texas Low-Rank Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

24

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration  

Science Journals Connector (OSTI)

Aqueous Carbonation of Natural Brucite: Relevance to CO2 Sequestration ... Products and reaction kinetics of natural brucite carbonation are studied at room temperature and moderate pCO2. ... Carbonation of natural brucite in H2O and diluted HCl is investigated at room temperature and moderate pCO2 to explore the products mineralogy and reaction kinetics. ...

Liang Zhao; Liqin Sang; Jun Chen; Junfeng Ji; H. Henry Teng

2009-11-30T23:59:59.000Z

25

Geological Sequestration of CO2: The GEO-SEQ Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

26

Regional Carbon Sequestration Partnerships | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Carbon Capture and Storage » Regional Science & Innovation » Carbon Capture and Storage » Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent of industrial CO2 emissions; 96 percent of the total land mass; and essentially all the geologic sequestration sites in the U.S. potentially available for carbon storage.

27

A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration  

E-Print Network [OSTI]

CO 2 enhanced oil recovery (EOR) and sequestration in athe measurement configuration. EOR/sequestration projects inshow that a CO 2 based EOR could increase oil recovery by

Gasperikova, Erika; Hoversten, G. Michael

2006-01-01T23:59:59.000Z

28

Advanced Research Power Program--CO2 Mineral Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

29

Modeling the Sequestration of CO2 in Deep Geological Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

30

Efficiency of Sequestrating CO2 in the Ocean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency of Sequestrating CO Efficiency of Sequestrating CO 2 in the Ocean Richard Dewey (RDewey@uvic.ca ; 250-472-4009) University of Victoria, P.O. Box 3055, Victoria BC Canada V8N 3P6 Gilbert Stegen (Dr_Stegen@hotmail.com ; 425-869-7236) SAIC and GRS Associates 17257 NE 116 th St., Redmond WA USA 98052 Abstract Ocean disposal of CO 2 continues to be of great interest as a possible mitigation strategy for reducing atmospheric emissions of anthropogenic CO 2 . The ocean, and ultimately ocean sediments, naturally represents the single largest sink of CO 2 , and annually sequesters several gigatons of carbon from the atmosphere. The injection of additional CO 2 to artificially accelerate the use of the ocean as a sink for atmospheric CO 2 and avoid a short-term build-up of greenhouse gases has been investigated for

31

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES  

SciTech Connect (OSTI)

In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

Bert R. Bock; Richard G. Rhudy; David E. Nichols

2001-07-01T23:59:59.000Z

32

Numerical Simulation of CO2 Sequestration in Natural CO2 Reservoirs on the Colorado Plateau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of CO Simulation of CO 2 Sequestration in Natural CO 2 Reservoirs on the Colorado Plateau Stephen P. White (S.White@irl.cri.nz, (64) 4 5690000) Graham J. Weir (G.Weir@irl.cri.nz, (64) 4 5690000) Warwick M. Kissling (W.Kissling@irl.cri.nz, (64) 4 5690000) Industrial Research Ltd. P.O. Box 31310 Lower Hutt, New Zealand Abstract This paper outlines the proposed research and summarizes pre-project work that forms a basis for a new research program on CO 2 sequestration in saline aquifers. The pre-project work considers storage and disposal of CO 2 several kilometers beneath the surface in generic aquifers and demonstrates the use of reactive chemical transport modeling to simulate mineral sequestration of CO 2. The current research project applies these techniques to particular saline

33

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION  

SciTech Connect (OSTI)

On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

Howard J. Herzog; E. Eric Adams

2005-04-01T23:59:59.000Z

34

International Collaboration on CO2 Sequestration  

SciTech Connect (OSTI)

On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be successfully designed to largely avoid zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively, but not analyzed quantitatively.

Peter H. Israelsson; E. Eric Adams

2007-06-30T23:59:59.000Z

35

INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION  

SciTech Connect (OSTI)

The primary focus of this reporting period was to prepare for conducting the ocean carbon sequestration field experiment during the summer of 2002. We discuss four key aspects of this preparation: (1) Design criteria for a CO{sub 2} flow system mounted on a ship; (2) Inter-model comparison of plume models; (3) Application of a double plume model to compute near field mixing; and (4) Evaluation of tracers.

Howard J. Herzog; E. Eric Adams

2002-09-01T23:59:59.000Z

36

Aquifer Management for CO2 Sequestration  

E-Print Network [OSTI]

Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

Anchliya, Abhishek

2010-07-14T23:59:59.000Z

37

Small Scale Field Test Demonstrating CO2 Sequestration in Arbuckle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCUS projects. Existing small-scale field projects have been conducted by the Regional Carbon Sequestration Partnerships (RCSP) during their Validation Phase. These small-scale...

38

Uncertainty quantification for CO2 sequestration and enhanced oil recovery  

E-Print Network [OSTI]

This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

2014-01-01T23:59:59.000Z

39

Center for By-Products Utilization CO2 SEQUESTRATION  

E-Print Network [OSTI]

Center for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik. Maximize environmental benefits: resource conservation, clean water, and clean air. #12;Center for By-Products, Italy, June 30, 2010. #12;Center for By-Products Utilization UWM Center for By-Products Utilization

Saldin, Dilano

40

UPDATE ON THE INTERNATIONAL EXPERIMENT ON CO2 OCEAN SEQUESTRATION  

E-Print Network [OSTI]

in the deep ocean, forming a buoyant plume. Sea water will be entrained into the rising droplet plume Center, Bergen, Norway 4 Norwegian Institute for Water Research (NIVA), Bergen, Norway 5 University objective of our project on CO2 ocean sequestration is to investigate its technical feasibility

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Journals Connector (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

42

NETL: News Release - Carbon Sequestration Partner Initiates Drilling of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2009 7, 2009 Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Large-Scale Test to Inject One Million Metric Tonnes of Carbon Dioxide into Saline Formation Washington, DC-The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change.

43

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network [OSTI]

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

Hilley, George

44

Capture and Sequestration of CO2 at the Boise White Paper Mill  

SciTech Connect (OSTI)

This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporations Econamine Plus carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOEs Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

2010-06-16T23:59:59.000Z

45

Practical and Economic Aspects of the Ex-Situ Process: Implications for CO2 Sequestration  

Science Journals Connector (OSTI)

Practical and Economic Aspects of the Ex-Situ Process: Implications for CO2 Sequestration ... The cost for capturing CO2 from a coal and/or gas fired plant varies between 30 to 60 $/t CO2. ...

Sohrab Zendehboudi; Alireza Bahadori; Ali Lohi; Ali Elkamel; Ioannis Chatzis

2012-11-13T23:59:59.000Z

46

Natural CO2 Reservoirs on the Colorado Plateau … Candidates for CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Reservoirs on the Colorado Plateau and Southern Rocky Mountains: Candidates for CO 2 Sequestration. R. Allis (nrugs.rallis@state.ut.us; 801-537-3301) T. Chidsey (nrugs.tchidsey@state.ut.us; 801-537-3364) W. Gwynn (nrugs.wgwynn@state.ut.us; 801-537-3366) C. Morgan (nrugs.cmorgan@state.ut.us; 801-537-3370) Utah Geological Survey P.O. Box 146100 Salt Lake City, UT 84114 S. White (s.white@irl.cri.nz; 64-4-569-0000) Industrial Research Ltd. P.O. Box 31-310 Lower Hutt, New Zealand M. Adams (madams@egi.utah.edu; 801-585-7784) J. Moore (jmoore@egi.utah.edu; 801-585-6931) Energy and Geoscience Institute, 427 Wakara Way, Suite 300 Salt Lake City, UT84107 Abstract Numerous natural accumulations of CO 2 -dominant gases have been discovered as a result of

47

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

48

Laboratory Measurement of Geophysical Properties for Monitoring of CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Measurement of Geophysical Properties for Monitoring of Laboratory Measurement of Geophysical Properties for Monitoring of CO 2 Sequestration Larry R. Myer (LRMyer@lbl.gov; 510/486-6456) Lawrence Berkeley National Laboratory Earth Science Division One Cyclotron Road, MS 90-1116 Berkeley, CA 94720 Introduction Geophysical techniques will be used in monitoring of geologic sequestration projects. Seismic and electrical geophysical techniques will be used to map the movement of CO 2 in the subsurface and to establish that the storage volume is being efficiently utilized and the CO 2 is being safely contained within a known region. Rock physics measurements are required for interpretation of the geophysical surveys. Seismic surveys map the subsurface velocities and attenuation while electrical surveys map the conductivity. Laboratory measurements are required to convert field

49

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

10 th Annual Conference on Carbon Capture and Sequestration,2 saturated brines. In 10th Carbon Capture and SequestrationIn: 9 th Annual Carbon Capture & Sequestration Meeting,

Varadharajan, C.

2013-01-01T23:59:59.000Z

50

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

51

Efficient parallel simulation of CO2 geologic sequestration insaline aquifers  

SciTech Connect (OSTI)

An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The new parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.

Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

2007-01-01T23:59:59.000Z

52

CO2 displacement mechanisms: phase equilibria effects and carbon dioxide sequestration studies.  

E-Print Network [OSTI]

??Supercritical carbon dioxide is injected into underground formations to enhance oil recovery and for subsurface sequestration to minimize the impact of CO2 emissions due to (more)

Pasala, Sangeetha M.

2010-01-01T23:59:59.000Z

53

A numerical procedure to model and monitor CO2 sequestration in ...  

E-Print Network [OSTI]

Sep 7, 2012 ... analyze storage integrity, providing early warning should any leakage occurs. A numerical procedure to model and monitor CO2 sequestration...

santos

54

CO2 leakage in a Geological Carbon Sequestration system: Scenario development and analysis.  

E-Print Network [OSTI]

?? The aim of this project was to study the leakage of CO2 in a Geological Carbon Sequestration (GCS) system. To define the GCS system, (more)

Basirat, Farzad

2011-01-01T23:59:59.000Z

55

In-Situ MVA of CO2 Sequestration Using Smart Field Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In-Situ MVA of CO 2 Sequestration Using Smart Field Technology Background Through its core research and development program administered by the National Energy Technology...

56

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network [OSTI]

) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

Mammadova, Elnara

2012-10-19T23:59:59.000Z

57

West Coast Regional Carbon Sequestration Partnership--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

West Coast Regional Carbon Sequestration West Coast Regional Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies,

58

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) estimate the potential for CO{sub 2} sequestration in, and methane production from, low-rank coals of the Lower Calvert Bluff Formation of the Wilcox Group in the east-central Texas region, (2) quantify uncertainty associated with these estimates, (3) conduct reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells, and (4) compare the results with those obtained from previous studies of vertical wells. To estimate the total volumes of CO{sub 2} that may be sequestered in, and total volumes of methane that can be produced from, the Wilcox Group low-rank coals in east-central Texas, we used data provided by Anadarko Petroleum Corporation, data obtained during this research, and results of probabilistic simulation modeling studies we conducted. For the analysis, we applied our base-case coal seam characteristics to a 2,930-mi{sup 2} (1,875,200-ac) area where Calvert Bluff coal seams range between 4,000 and 6,200 ft deep. Results of the probabilistic analysis indicate that potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources, assuming a 71.3% recovery factor, range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf. As part of the technology transfer for this project, we presented the paper SPE 100584 at the 2006 SPE Gas Technology Symposium held in Calgary, Alberta, Canada, on May 15-18, 2006. Also, we submitted an abstract to be considered for inclusion in a special volume dedicated to CO{sub 2} sequestration in geologic media, which is planned for publication by the American Association of Petroleum Geologists.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-07-01T23:59:59.000Z

59

Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2  

E-Print Network [OSTI]

1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

Paris-Sud XI, Université de

60

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to perform pressure transient testing to determine permeability of deep Wilcox coal to use as additional, necessary data for modeling performance of CO{sub 2} sequestration and enhanced coalbed methane recovery. To perform permeability testing of the Wilcox coal, we worked with Anadarko Petroleum Corporation in selecting the well and intervals to test and in designing the pressure transient test. Anadarko agreed to allow us to perform permeability tests in coal beds in an existing shut-in well (Well APCT2). This well is located in the region of the Sam K. Seymour power station, a site that we earlier identified as a major point source of CO{sub 2} emissions. A service company, Pinnacle Technologies Inc. (Pinnacle) was contracted to conduct the tests in the field. Intervals tested were 2 coal beds with thicknesses of 3 and 7 feet, respectively, at approximately 4,100 ft depth in the Lower Calvert Bluff Formation of the Wilcox Group in east-central Texas. Analyses of pressure transient test data indicate that average values for coalbed methane reservoir permeability in the tested coals are between 1.9 and 4.2 mD. These values are in the lower end of the range of permeability used in the preliminary simulation modeling. These new coal fracture permeability data from the APCT2 well, along with the acquired gas compositional analyses and sorption capacities of CO{sub 2}, CH{sub 4}, and N{sub 2}, complete the reservoir description phase of the project. During this quarter we also continued work on reservoir and economic modeling to evaluate performance of CO{sub 2} sequestration and enhanced coalbed methane recovery.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2005-05-01T23:59:59.000Z

62

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main tasks for this reporting period were to correlate well logs and refine coal property maps, evaluate methane content and gas composition of Wilcox Group coals, and initiate discussions concerning collection of additional, essential data with Anadarko. To assess the volume of CO{sub 2} that may be sequestered and volume of methane that can be produced in the vicinity of the proposed Sam Seymour sequestration site, we used approximately 200 additional wells logs from Anadarko Petroleum Corp. to correlate and map coal properties of the 3 coal-bearing intervals of Wilcox group. Among the maps we are making are maps of the number of coal beds, number of coal beds greater than 5 ft thick, and cumulative coal thickness for each coal interval. This stratigraphic analysis validates the presence of abundant coal for CO{sub 2} sequestration in the Wilcox Group in the vicinity of Sam Seymour power plant. A typical wellbore in this region may penetrate 20 to 40 coal beds with cumulative coal thickness between 80 and 110 ft. Gas desorption analyses of approximately 75 coal samples from the 3 Wilcox coal intervals indicate that average methane content of Wilcox coals in this area ranges between 216 and 276 scf/t, basinward of the freshwater boundary indicated on a regional hydrologic map. Vitrinite reflectance data indicate that Wilcox coals are thermally immature for gas generation in this area. Minor amounts of biogenic gas may be present, basinward of the freshwater line, but we infer that most of the Wilcox coalbed gas in the deep coal beds is migrated thermogenic gas. Analysis based on limited data suggest that sites for CO{sub 2} sequestration and enhanced coalbed gas recovery should be located basinward of the Wilcox freshwater contour, where methane content is high and the freshwater aquifer can be avoided.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-07-01T23:59:59.000Z

63

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Broader source: Energy.gov (indexed) [DOE]

73: W.A. Parish Post-Combustion CO2 Capture and Sequestration 73: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

64

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project  

Broader source: Energy.gov (indexed) [DOE]

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX SUMMARY This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG's proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson

65

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Broader source: Energy.gov (indexed) [DOE]

886: Big Sky Regional Carbon Sequestration Partnership - Phase 886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

66

EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III:  

Broader source: Energy.gov (indexed) [DOE]

6: Big Sky Regional Carbon Sequestration Partnership - Phase 6: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana EA-1886: Big Sky Regional Carbon Sequestration Partnership - Phase III: Large Volume CO2 Injection-Site Characterization, Well Drilling, and Infrastructure Development, Injection, MVA, and Site Closure, Kevin Dome, Toole County, Montana SUMMARY This EA will evaluate the environmental impacts of a proposal for the Big Sky Carbon Sequestration Regional Partnership to demonstrate the viability and safety of CO2 storage in a regionally significant subsurface formation in Toole County, Montana and to promote the commercialization of future

67

Small Scale Field Test Demonstrating CO2 sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington field, Sumner County, Kansas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Field Test Demonstrating CO Scale Field Test Demonstrating CO 2 sequestration in Arbuckle Saline Aquifer and by CO 2 -EOR at Wellington field, Sumner County, Kansas -- W. Lynn Watney and Jason Rush Kansas Geological Survey Lawrence, KS 66047 Regional Carbon Sequestration Partnerships Annual Review Meeting October 15-17, 2011 Pittsburgh, PA Funding Opportunity Number: DE-FOA-0000441 Contract #FE0006821 $11,484,499 DOE $3.236 million cost share KANSAS STATE UNIVERSITY 12/2/2011 1 Outline * Background * The Participants * The Plan * Leveraging Current Research at Wellington Field * Inject, Monitor, Verification, and Accounting of CO 2 2 ORGANIZATION CHART Kansas Geological Survey Name Project Job Title Primary Responsibility Lynn Watney Project Leader, Joint Principal Investigator

68

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Methods for Integrated Leak Detection Inference at CO2 Sequestration Sites Speaker(s): Mitchell Small Date: March 23, 2010 - 12:00pm Location: 90-3122 This seminar will explain a methodology for combining site characterization and soil CO2 monitoring for detecting leaks at geologic CO2 sequestration sites. Near surface CO2 fluxes resulting from a leak are simulated using the TOUGH2 model for different values of soil permeability, leakage rate and vadose zone thickness. Natural background soil CO2 flux rates are characterized by a Bayesian hierarchical model that predicts the background flux as a function of soil temperature. A presumptive leak is assumed if the monitored flux rate exceeds a critical value corresponding to a very high (e.g., 99%) prediction interval for the natural flux conditioned on

69

Gravity monitoring of CO2 movement during sequestration: Model studies  

E-Print Network [OSTI]

2 Sequestration in Coalbed Methane Reservoirs of the Black2006 International Coalbed Methane Symposium Proceedings,and the third is for a coalbed methane formation. EOR/

Gasperikova, E.

2008-01-01T23:59:59.000Z

70

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

Injection of CO{sub 2} in coalbeds is a plausible method of reducing atmospheric emissions of CO{sub 2}, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO{sub 2} disposal in high-rank coals. The objective of this research was to determine the technical and economic feasibility of CO{sub 2} sequestration in, and enhanced coalbed methane (ECBM) recovery from, low-rank coals in the Texas Gulf Coast area. Our research included an extensive coal characterization program, including acquisition and analysis of coal core samples and well transient test data. We conducted deterministic and probabilistic reservoir simulation and economic studies to evaluate the effects of injectant fluid composition (pure CO{sub 2} and flue gas), well spacing, injection rate, and dewatering on CO{sub 2} sequestration and ECBM recovery in low-rank coals of the Calvert Bluff formation of the Texas Wilcox Group. Shallow and deep Calvert Bluff coals occur in two, distinct, coalbed gas petroleum systems that are separated by a transition zone. Calvert Bluff coals < 3,500 ft deep are part of a biogenic coalbed gas system. They have low gas content and are part of a freshwater aquifer. In contrast, Wilcox coals deeper than 3,500 ft are part of a thermogenic coalbed gas system. They have high gas content and are part of a saline aquifer. CO{sub 2} sequestration and ECBM projects in Calvert Bluff low-rank coals of East-Central Texas must be located in the deeper, unmineable coals, because shallow Wilcox coals are part of a protected freshwater aquifer. Probabilistic simulation of 100% CO{sub 2} injection into 20 feet of Calvert Bluff coal in an 80-acre 5-spot pattern indicates that these coals can store 1.27 to 2.25 Bcf of CO{sub 2} at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of flue gas injection (87% N{sub 2}-13% CO{sub 2}) indicate that these same coals can store 0.34 to 0.59 Bcf of CO{sub 2} with an ECBM recovery of 0.68 to 1.20 Bcf. Economic modeling of CO{sub 2} sequestration and ECBM recovery indicates predominantly negative economic indicators for the reservoir depths (4,000 to 6,200 ft) and well spacings investigated, using natural gas prices ranging from $2 to $12 per Mscf and CO{sub 2} credits based on carbon market prices ranging from $0.05 to $1.58 per Mscf CO{sub 2} ($1.00 to $30.00 per ton CO{sub 2}). Injection of flue gas (87% N{sub 2} - 13% CO{sub 2}) results in better economic performance than injection of 100% CO{sub 2}. CO{sub 2} sequestration potential and methane resources in low-rank coals of the Lower Calvert Bluff formation in East-Central Texas are significant. The potential CO{sub 2} sequestration capacity of the coals ranges between 27.2 and 49.2 Tcf (1.57 and 2.69 billion tons), with a mean value of 38 Tcf (2.2 billion tons), assuming a 72.4% injection efficiency. Estimates of recoverable methane resources range between 6.3 and 13.6 Tcf, with a mean of 9.8 Tcf, assuming a 71.3% recovery factor. Moderate increases in gas prices and/or carbon credits could generate attractive economic conditions that, combined with the close proximity of many CO{sub 2} point sources near unmineable coalbeds, could enable commercial CO{sub 2} sequestration and ECBM projects in Texas low-rank coals. Additional studies are needed to characterize Wilcox regional methane coalbed gas systems and their boundaries, and to assess potential of other low-rank coal beds. Results from this study may be transferable to other low-rank coal formations and regions.

Duane McVay; Walter Ayers, Jr.; Jerry Jensen; Jorge Garduno; Gonzola Hernandez; Rasheed Bello; Rahila Ramazanova

2006-08-31T23:59:59.000Z

71

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

2 exposure in both CO 2 -EOR and natural CO 2 reservoirs (as enhanced oil recovery (EOR) and enhanced gas recovery (2 field injections for CCS-EOR, where the water quality of

Varadharajan, C.

2013-01-01T23:59:59.000Z

72

Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production, using a CO2 injection process (CO2-ECBM). A high volatile bituminous coal, Pittsburgh No. 8, was reacted with synthetic produced water and gaseous carbon dioxide at 40C and 50 bar to evaluate the potential for mobilisation of toxic metals during CO2-ECBM/sequestration. Microscopic and X-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction and chemical analysis of the synthetic produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilising toxic trace elements from coal beds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Y.; Jones, R.J.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; White, C.M.

2007-01-01T23:59:59.000Z

73

DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam |  

Broader source: Energy.gov (indexed) [DOE]

Initiates CO2 Injection in Lignite Coal Initiates CO2 Injection in Lignite Coal Seam DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam March 10, 2009 - 1:00pm Addthis Washington, DC -- A U.S. Department of Energy/National Energy Technology Laboratory (NETL) team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. Ultimately, geologic carbon sequestration is expected to play an important role in mitigating greenhouse gas emissions and combating climate change. The Lignite Field Validation Test is being conducted by the Plains CO2 Reduction (PCOR) Partnership, one of seven regional partnerships under DOE's Regional Carbon Sequestration Partnership Program. The seven

74

Southwest Regional Partnership for Carbon Sequestration--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwest Regional Partnership for Southwest Regional Partnership for Carbon Sequestration-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

75

Offsetting China's CO2 Emissions by Soil Carbon Sequestration  

Science Journals Connector (OSTI)

Fossil fuel emissions of carbon (C) in China in 2000 was ... % or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted ... . A crude estimated potential of soil C sequestration in China is 1...

R. Lal

2004-08-01T23:59:59.000Z

76

Evaluation of CO2 enhanced oil recovery and sequestration potential in low permeability reservoirs, Yanchang Oilfield, China  

Science Journals Connector (OSTI)

Abstract Sequestrating CO2 in reservoirs can substantially enhance oil recovery and effectively reduce greenhouse gas emission. To evaluate the potential of CO2 enhanced oil recovery (EOR) and sequestration for Yanchang Oilfield in China, a screening standard which was suitable for CO2-EOR and sequestration in Yanchang Oilfield was proposed based on its characteristics of strong heterogeneity, high water content and severe fluid channeling after water flooding. In addition, an efficient calculation method stream tube simulation method was presented to figure out CO2 sequestration coefficient and oil recovery factor. After screening and evaluating, it turned out that 148 out of 176 blocks in 22 oilfields were suitable for CO2-EOR and sequestration. CO2 flooding after water flooding can produce 180.21נ106t more crude oil and sequestrate 223.38נ106t CO2. The average incremental oil recovery rate of miscible reservoirs was 12.49% and the average CO2 sequestration coefficient was 0.27t/t while the two values were 6.83% and 0.18t/t for immiscible reservoirs. There are comparatively more reservoirs that are suitable for CO2-EOR and sequestration in Yanchang Oilfield than normal, which can obviously enhance oil recovery and means a great potential for CO2 sequestration. CO2-EOR and sequestration in Yanchang Oilfield has a bright application prospect.

D.F. Zhao; X.W. Liao; D.D. Yin

2014-01-01T23:59:59.000Z

77

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

SciTech Connect (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

78

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objective for this reporting period was to further characterize the three areas selected as potential CO{sub 2} sequestration sites. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Thus, we purchased 12 hardcopy well logs (in addition to 15 well logs obtained during previous quarter) from a commercial source and digitized them to make coal-occurrence maps and cross sections. Detailed correlation of coal zones is important for reservoir analysis and modeling. Thus, we correlated and mapped Wilcox Group subdivisions--the Hooper, Simsboro and Calvert Bluff formations, as well as the coal-bearing intervals of the Yegua and Jackson formations in well logs. To assess cleat properties and describe coal characteristics, we made field trips to Big Brown and Martin Lake coal mines. This quarter we also received CO{sub 2} and methane sorption analyses of the Sandow Mine samples, and we are assessing the results. GEM, a compositional simulator developed by the Computer Modeling Group (CMG), was selected for performing the CO{sub 2} sequestration and enhanced CBM modeling tasks for this project. This software was used to conduct preliminary CO{sub 2} sequestration and methane production simulations in a 5-spot injection pattern. We are continuing to pursue a cooperative agreement with Anadarko Petroleum, which has already acquired significant relevant data near one of our potential sequestration sites.

Duane A. McVay; Walter B. Ayers Jr.; Jerry L. Jensen

2003-10-01T23:59:59.000Z

79

A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration  

SciTech Connect (OSTI)

Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

Gasperikova, Erika; Hoversten, G. Michael

2006-07-01T23:59:59.000Z

80

NETL: ARRA Regional Carbon Sequestration Training Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARRA Regional Carbon Sequestration Training Centers ARRA Regional Carbon Sequestration Training Centers ARRA Logo Projects in this area are funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009 (ARRA) and will train personnel in the implementation of carbon capture and storage (CCS) technology. While CCS technologies offer great potential for reducing CO2 emissions and mitigating potential climate change, deploying these technologies will require a significantly expanded workforce trained in the various specialties that are currently underrepresented in the United States. Education and training activities undertaken in this area are developing a future generation of geologists, scientists, and engineers that will provide the human capital and skills required for implementing CCS technologies.

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue modeling studies of CO{sub 2} sequestration performance in coalbed methane reservoirs under various operational conditions. Detailed correlation of coal zones is important for reservoir analysis and modeling. Therefore, we interpreted and created isopleth maps of coal occurrences, and correlated individual coal seams within the coal bearing subdivisions of the Wilcox Group--the Hooper, Simsboro and Calvert Bluff formations. Preliminary modeling studies were run to determine if gravity effects would affect the performance of CO{sub 2} sequestration in coalbed methane reservoirs. Results indicated that gravity could adversely affect sweep efficiency and, thus, volumes of CO{sub 2} sequestered and methane produced in thick, vertically continuous coals. Preliminary modeling studies were also run to determine the effect of injection gas composition on sequestration in low-rank coalbeds. Injected gas composition was varied from pure CO{sub 2} to pure N{sub 2}, and results show that increasing N{sub 2} content degrades CO{sub 2} sequestration and methane production performance. We have reached a Data Exchange Agreement with Anadarko Petroleum Corporation. We are currently incorporating the Anadarko data into our work, and expect these data to greatly enhance the accuracy and value of our studies.

Duane A. Mcvay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-02-01T23:59:59.000Z

82

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. In this reporting period we revised all of the economic calculations, participated in technology transfer of project results, and began working on project closeout tasks in anticipation of the project ending December 31, 2005. In this research, we conducted five separate simulation investigations, or cases. These cases are (1) CO{sub 2} sequestration base case scenarios for 4,000-ft and 6,200-ft depth coal beds in the Lower Calvert Bluff Formation of east-central Texas, (2) sensitivity study of the effects of well spacing on sequestration, (3) sensitivity study of the effects of injection gas composition, (4) sensitivity study of the effects of injection rate, and (5) sensitivity study of the effects of coal dewatering prior to CO{sub 2} injection/sequestration. Results show that, in most cases, revenue from coalbed methane production does not completely offset the costs of CO{sub 2} sequestration in Texas low-rank coals, indicating that CO{sub 2} injection is not economically feasible for the ranges of gas prices and carbon credits investigated. The best economic performance is obtained with flue gas (13% CO{sub 2} - 87% N{sub 2}) injection, as compared to injection of 100% CO{sub 2} and a mixture of 50% CO{sub 2} and 50% N{sub 2}. As part of technology transfer for this project, we presented results at the West Texas Geological Society Fall Symposium in October 2005 and at the COAL-SEQ Forum in November 2005.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2006-03-01T23:59:59.000Z

83

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to (1) determine the effects of permeability anisotropy on performance of CO{sub 2} sequestration and ECBM production in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas, and (2) begin reservoir and economic analyses of CO{sub 2} sequestration and ECBM production using horizontal wells. To evaluate the effects of permeability anisotropy on CO{sub 2} sequestration and ECBM in LCB coal beds, we conducted deterministic reservoir modeling studies of 100% CO{sub 2} gas injection for the 6,200-ft depth base case (Case 1b) using the most likely values of the reservoir parameters. Simulation results show significant differences in the cumulative volumes of CH{sub 4} produced and CO{sub 2} injected due to permeability anisotropy, depending on the orientation of injection patterns relative to the orientation of permeability anisotropy. This indicates that knowledge of the magnitude and orientation of permeability anisotropy will be an important consideration in the design of CO{sub 2} sequestration and ECBM projects. We continued discussions with Anadarko Petroleum regarding plans for additional coal core acquisition and laboratory work to further characterize Wilcox low-rank coals. As part of the technology transfer for this project, we submitted the paper SPE 100584 for presentation at the 2006 SPE Gas Technology Symposium to be held in Calgary, Alberta, Canada on May 15-18, 2006.

Duane A. McVay; Walter B. Ayers, Jr; Jerry L. Jensen

2006-05-01T23:59:59.000Z

84

CO2-H2O mixtures in the geological sequestration of CO2. II ...  

E-Print Network [OSTI]

sequestration (e.g., Garcia, 2003; Pruess et al., 2004; Xu et al.,. 2004) deal with ...... Cramer S. D. (1982) The solubility of methane, carbon dioxide and oxygen in

2005-07-01T23:59:59.000Z

85

CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to work on Tasks 1 and 2, which consisted of the following subtasks: review literature on CO{sub 2} sequestration and the effect of CO{sub 2} injection on methane production from coalbeds; acquire information on power plant flue gas emissions; acquire data on Texas coal occurrences and properties and formation water quality; construct a digital base map; and select geographic areas and geologic formations for study. Flue gas information, including volumes and compositions, were obtained for major Texas power plants and other industrial sources, such as cement plants. We evaluated and obtained computer mapping software and began building a digital base map that will be used to depict industrial emissions, coal occurrence, and water quality information. Digital data sets allow us to superpose data for visualization and for assessment of CO{sub 2}sequestration issues.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2003-02-01T23:59:59.000Z

86

electroseismic monitoring of co2 sequestration: a finite element ...  

E-Print Network [OSTI]

The injection of large amounts of man-produced CO2 in depleted oil wells below ..... [7] SANTOS, J. E., Global and domain-decomposed mixed methods for the...

Fabio Zyserman

87

A Benign Form of CO2 Sequestration in the Ocean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BENIGN FORM OF CO SEQUESTRATION IN THE OCEAN BENIGN FORM OF CO SEQUESTRATION IN THE OCEAN 2 Dan Golomb and Anastasios Angelopoulos University of Massachusetts Lowell, Lowell, MA 01854, USA Dan_Golomb@uml.edu or Taso_Angelopoulos@uml.edu ABSTRACT It is proposed that liquid CO is mixed with pulverized limestone (CaCO ) and seawater in a pressure 2 3 vessel. An emulsion is created which is piped to intermediate depth in the ocean, where the emulsion is released through a diffuser. The emulsion plume has a bulk density of 1.4 kg m , thus it will sink -3 as a gravity current to greater depth from the release point. Several kinetic processes occur simultaneously: (a) the entrainment of seawater by the emulsion plume, (b) the dissolution of CaCO , 3 (c) the dissolution of CO , and (d) the reaction of dissolved CO with CaCO to form bicarbonate.

88

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The primary objectives for this reporting period were to construct a coal geological model for reservoir analysis and to continue acquisition of data pertinent to coal characterization that would help in determining the feasibility of carbon dioxide sequestration. Structural analysis and detailed correlation of coal zones are important for reservoir analysis and modeling. Evaluation of existing well logs indicates local structural complexity that complicates interpretations of continuity of the Wilcox Group coal zones. Therefore, we have begun searching for published structural maps for the areas of potential injection CO{sub 2}, near the coal-fired power plants. Preliminary evaluations of data received from Anadarko Petroleum Corporation suggest that coal properties and gas content and chemical composition vary greatly among coal seams. We are assessing the stratigraphic and geographic distributions and the weight of coal samples that Anadarko has provided to select samples for further laboratory analysis. Our goal is to perform additional isotherm analyses with various pure and/or mixed gases to enhance our characterization model. Additionally, we are evaluating opportunities for field determination of permeability with Anadarko, utilizing one of their wells.

Duane A. McVay; Walter B. Ayers, Jr.; Jerry L. Jensen

2004-04-01T23:59:59.000Z

89

EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II  

Broader source: Energy.gov (indexed) [DOE]

35: Midwest Regional Carbon Sequestration Partnership (MRCSP) 35: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide approximately $65.5 million in financial assistance in a cost-sharing arrangement with the project proponent, MRCSP. MRCSP's proposed project would use CO2 captured from an existing natural gas processing plant in Chester Township, pipe it approximately 1 mile to an injection well, and inject it into a deep saline aquifer for geologic sequestration. This project would demonstrate the geologic sequestration of 1,000,000 metric

90

Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

91

Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations  

SciTech Connect (OSTI)

This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

Zoback, Mark; Kovscek, Anthony; Wilcox, Jennifer

2013-09-30T23:59:59.000Z

92

Gravity monitoring of CO2 movement during sequestration: Model studies  

SciTech Connect (OSTI)

We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

Gasperikova, E.; Hoversten, G.M.

2008-07-15T23:59:59.000Z

93

Semi-analytical Solution for Multiphase Fluid Flow Applied to CO 2 Sequestration in Geologic Porous Media  

E-Print Network [OSTI]

The increasing concentration of CO_(2) has been linked to global warming and changes in climate. Geologic sequestration of CO_(2) in deep saline aquifers is a proposed greenhouse gas mitigation technology with potential to significantly reduce...

Mohamed, Ahmed Mohamed Anwar Sayed

2013-08-01T23:59:59.000Z

94

Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization  

Science Journals Connector (OSTI)

This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with...2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creat...

Laura Chiaramonte; Mark D. Zoback; Julio Friedmann; Vicki Stamp

2008-06-01T23:59:59.000Z

95

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada December 1, 2010 - 12:00pm Addthis Washington, DC - There could be as much as 5,700 years of carbon dioxide (CO2) storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy's (DOE) Carbon Sequestration Atlas (Atlas III). The updated preliminary estimate, based on current emission rates, documents 1,800 billion to more than 20,000 billion metric tons of CO2 storage potential in saline formations, oil and gas reservoirs, and unmineable coal areas. This suggests the availability of approximately

96

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues  

Science Journals Connector (OSTI)

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues ... Furthermore, because fossil fuels are projected to be a dominant energy resource in the 21st century,1 technologies for sequestering emissions from fossil fuel combustion in a safe and definitive manner are being developed and implemented. ... According to these authors, the solution containing free calcium could then be used in a carbonation process for capturing CO2 directly from air. ...

Renato Baciocchi; Alessandra Polettini; Raffaella Pomi; Valentina Prigiobbe; Viktoria Nikulshina Von Zedwitz; Aldo Steinfeld

2006-07-07T23:59:59.000Z

97

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to perform reservoir simulation and economic sensitivity studies to (1) determine the effects of injection gas composition, (2) determine the effects of injection rate, and (3) determine the effects of coal dewatering prior to CO{sub 2} injection on CO{sub 2} sequestration in the Lower Calvert Bluff Formation (LCB) of the Wilcox Group coals in east-central Texas. To predict CO{sub 2} sequestration and ECBM in LCB coal beds for these three sensitivity studies, we constructed a 5-spot pattern reservoir simulation model and selected reservoir parameters representative of a typical depth, approximately 6,200-ft, of potential LCB coalbed reservoirs in the focus area of East-Central Texas. Simulation results of flue gas injection (13% CO{sub 2} - 87% N{sub 2}) in an 80-acre 5-spot pattern (40-ac well spacing) indicate that LCB coals with average net thickness of 20 ft can store a median value of 0.46 Bcf of CO{sub 2} at depths of 6,200 ft, with a median ECBM recovery of 0.94 Bcf and median CO{sub 2} breakthrough time of 4,270 days (11.7 years). Simulation of 100% CO{sub 2} injection in an 80-acre 5-spot pattern indicated that these same coals with average net thickness of 20 ft can store a median value of 1.75 Bcf of CO{sub 2} at depths of 6,200 ft with a median ECBM recovery of 0.67 Bcf and median CO{sub 2} breakthrough time of 1,650 days (4.5 years). Breakthrough was defined as the point when CO{sub 2} comprised 5% of the production stream for all cases. The injection rate sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to injection rate. The main difference is in timing, with longer breakthrough times resulting as injection rate decreases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 670 days (1.8 years) to 7,240 days (19.8 years) for the reservoir parameters and well operating conditions investigated. The dewatering sensitivity study for pure CO{sub 2} injection in an 80-acre 5-spot pattern at 6,200-ft depth shows that total volumes of CO{sub 2} sequestered and methane produced do not have significant sensitivity to dewatering prior to CO{sub 2} injection. As time to start CO{sub 2} injection increases, the time to reach breakthrough also increases. Breakthrough times for 80-acre patterns (40-acre well spacing) ranged from 850 days (2.3 years) to 5,380 days (14.7 years) for the reservoir parameters and well injection/production schedules investigated. Preliminary economic modeling results using a gas price of $7-$8 per Mscf and CO{sub 2} credits of $1.33 per ton CO{sub 2} indicate that injection of flue gas (87% N{sub 2}-13% CO{sub 2}) and 50% N{sub 2}-50% CO{sub 2} are more economically viable than injecting 100% CO{sub 2}. Results also indicate that injection rate and duration and timing of dewatering prior to CO{sub 2} injection have no significant effect on the economic viability of the project(s).

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2005-10-01T23:59:59.000Z

98

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network [OSTI]

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration...

He, Ting

2011-02-22T23:59:59.000Z

99

Biochar and Carbon Sequestration: A Regional Perspective  

E-Print Network [OSTI]

Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

Everest, Graham R

100

Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration  

SciTech Connect (OSTI)

This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

Dooley, James J.

2011-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration  

SciTech Connect (OSTI)

Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure due to CO2 sorption.

Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

2007-11-01T23:59:59.000Z

102

Microbial electrolysis desalination and chemical-production cell for CO2 sequestration  

E-Print Network [OSTI]

Microbial electrolysis desalination and chemical-production cell for CO2 sequestration Xiuping Zhu organic matter. Desalinated water produced at the same time. Acid solutions used to accelerate Accepted 14 February 2014 Available online 23 February 2014 Keywords: Microbial electrolysis Desalination

103

Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method  

E-Print Network [OSTI]

for reducing greenhouse gas emission. A primary goal of geologic carbon sequestration is to ensure, tested, monitored, funded, and closed [2]. Recently, the US Department of Energy releases best practice manuals on risk analysis and management activities related to CO2 storage projects [3,4]. Anothe

Lu, Zhiming

104

Reducing Risk in Basin Scale CO2 Sequestration: A Framework for Integrated Monitoring Design  

Science Journals Connector (OSTI)

CO2 sequestration is an attractive option for mitigating climate change because it can be deployed immediately and at scale, with minimal disruption to the existing energy production and distribution infrastructures. ... These include constant fluid properties and wind velocity profiles. ... Sleipner, offshore Norway (113) ...

C. J. Seto; G. J. McRae

2011-01-10T23:59:59.000Z

105

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION THE UNITED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southwest Regional Partnership on Carbon Sequestration The Southwest Regional Partnership on Carbon Sequestration (SWP) is investigating the CO 2 storage potential of the abundant oil and gas reservoirs, unmineable coal, and saline formations within the southwestern United States. In 2010, field-scale pilot injection tests were completed, paving the way for larger scale commercial projects, including an EOR project in Texas using an anthropogenic source of CO 2 . SWP draws on the experience of professionals within the fields of geology, engineering, economics, public policy, public outreach, and education. Stakeholders in SWP projects include private industry,

106

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17MPa to 1.56MPa and the gas saturation increased up to 50% in 30years for a 5.4נ105m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11נ103m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826m, in about 30years. During this period, about 160נ106m3 of CO2 could be stored within a 21.4נ105m2 of coal seam with a thickness of 3m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

107

In-Situ MVA of CO2 Sequestration Using Smart Field Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In-Situ MVA of CO In-Situ MVA of CO 2 Sequestration Using Smart Field Technology Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing

108

Southeast Regional Carbon Sequestration Partnership  

SciTech Connect (OSTI)

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

Kenneth J. Nemeth

2006-08-30T23:59:59.000Z

109

DOE Regional Partner Initiates CO2 Injection Study in Virginia | Department  

Broader source: Energy.gov (indexed) [DOE]

Partner Initiates CO2 Injection Study in Virginia Partner Initiates CO2 Injection Study in Virginia DOE Regional Partner Initiates CO2 Injection Study in Virginia February 11, 2009 - 12:00pm Addthis Washington, D.C. -- A U.S. Department of Energy (DOE) team of regional partners has begun injecting carbon dioxide (CO2) into coal seams in the Central Appalachian Basin to determine the feasibility of CO2 storage in unmineable coal seams and the potential for enhanced coalbed methane recovery. The results of the study will be vital in assessing the potential of carbon storage in coal seams as a safe and permanent method to mitigate greenhouse gas emissions while enhancing production of natural gas. DOE's Southeast Regional Carbon Sequestration Partnership (SECARB) began injecting CO2 at the test site in Russell County, Virginia, in mid January.

110

Regional Partner Announces Plans for Carbon Storage Project Using CO2  

Broader source: Energy.gov (indexed) [DOE]

Regional Partner Announces Plans for Carbon Storage Project Using Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant July 20, 2009 - 1:00pm Addthis Washington, DC - Southern Company and the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the U.S. Department of Energy (DOE) Regional Carbon Sequestration Partnerships program, have announced plans to store carbon dioxide (CO2) captured from an existing coal-fired power plant. The project represents a major step toward demonstrating the viability of integrating carbon capture and storage to mitigate climate change. This storage project, located in the Citronelle Oil Field north of Mobile,

111

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network [OSTI]

Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition...

Agrawal, Angeni

2007-09-17T23:59:59.000Z

112

Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1  

E-Print Network [OSTI]

: Mount Simon, Illinois Basin, CO2, earthquakes, pressure, brine transport69 #12;Page | 3 1. IntroductionPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4 sharp-interface models of CO2 injection were constructed for the Illinois49 Basin in which porosity

Gable, Carl W.

113

Capture and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and Sequestration of CO Capture and Sequestration of CO 2 From Stationary Combustion Systems by Photosynthesis of Microalgae Takashi Nakamura (nakamura@psicorp.com; 925-743-1110) Constance Senior (senior@psicorp.com; 978-689-0003) Physical Sciences Inc Andover, MA 01810 Miguel Olaizola (molaizola@aquasearch.com; 808-326-9301 Michael Cushman (mcushman@aquasearch.com; 808-326-9301) Aquasearch Inc. Kailua-Kona, HI 96740 Stephen Masutani (masutan@wiliki.eng.hawaii.edu; 808-956-7388) University of Hawaii Honolulu, HI 96822 Introduction Emissions of carbon dioxide are predicted to increase this century 1 leading to increases in the concentrations of carbon dioxide in the atmosphere. While there is still much debate on the effects of increased CO 2 levels on global climate, many scientists agree that the projected increases could have a

114

Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic Imaging of CO Electromagnetic Imaging of CO 2 Sequestration at an Enhanced Oil Recovery Site Barry Kirkendall (Kirkendall1@llnl.gov ; 925-423-1513) Jeff Roberts (Roberts17@llnl.gov ; 925-422-7108) Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 1.1 Introduction Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO 2 sequestration at an EOR site also operated by Chevron. The impetus for this study is

115

Scientific Considerations Related to Regulation Development for CO2 Sequestration in Brine Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION DEVELOPMENT FOR CO 2 SEQUESTRATION IN BRINE FORMATIONS Chin-Fu Tsang (cftsang@lbl.gov; (510) 486-5782) Sally M. Benson (smbenson@lbl.gov; (510) 486-7071) Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90-1116, Berkeley, CA 94720 Bruce Kobelski (kobelski.bruce@epa.gov) Robert Smith (smith.robert-eu@epamail.epa.gov) U.S. Environmental Protection Agency Office of Drinking Water and Ground Water, Washington D.C. Introduction Reduction of atmospheric emissions of CO 2 (DOE, 1999a) through injection of CO 2 into in deep brine formations is being actively studied both in the U.S. and internationally. If this technology is to be employed broadly enough to make a significant impact on global

116

Comparison of three options for geologic sequestration of CO2 - a case study for California  

SciTech Connect (OSTI)

Options for sequestration of CO{sub 2} are best viewed in light of the regional distribution of CO{sub 2} sources and potential sequestration sites. This study examines the distribution of carbon emissions from fossil fuel power plants in California and their proximity to three types of reservoirs that may be suitable for sequestration: (1) active or depleted oil fields, (2) active or depleted gas fields, and (3) brine formations. This paper also presents a preliminary assessment of the feasibility of sequestering CO{sub 2} generated from large fossil-fuel fired power plants in California and discusses the comparative advantages of three different types of reservoirs for this purpose. Based on a volumetric analysis of sequestration capacity and current CO{sub 2} emission rates from oil/gas fired power plants, this analysis suggests that oil reservoirs, gas fields and brine formations can all contribute significantly to sequestration in California. Together they could offer the opportunity to meet both short and long term needs. In the near term, oil and gas reservoirs are the most promising because the trapping structures have already stood the test of time and opportunities for offsetting the cost of sequestration with revenues from enhanced oil and gas production. In the long term, if the trapping mechanisms are adequately understood and deemed adequate, brine formations may provide an even larger capacity for geologic sequestration over much of California.

Benson, S.M.

2000-09-01T23:59:59.000Z

117

Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations  

SciTech Connect (OSTI)

Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

2014-03-01T23:59:59.000Z

118

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leveraging regionaL expLoration Leveraging regionaL expLoration to DeveLop geoLogic Framework For co 2 Storage in Deep FormationS Background The Midwestern region encompasses numerous coal-fired power plants that could be adversely impacted by carbon dioxide (CO 2 ) emission control restrictions. Geologic sequestration could be a viable option to mitigate the CO 2 emissions within this region. Unfortunately, the understanding of rock properties within deep forma- tions in the region is poorly understood due to lack of deep well data. Under this project, regional geologic characterization is being refined with new rock property data being collected in collaboration with regional oil and gas drilling companies. Description The project is designed to develop an improved understanding of the geologic frame-

119

Co-Location of Air Capture, Subseafloor CO2 Sequestration, and Energy Production on the Kerguelen Plateau  

Science Journals Connector (OSTI)

Reducing atmospheric CO2 using a combination of air capture and offshore geological storage can address technical and policy concerns with climate mitigation. ... Our analysis suggests that Kerguelen offers a remote and environmentally secure location for CO2 sequestration using renewable energy. ...

David S. Goldberg; Klaus S. Lackner; Patrick Han; Angela L. Slagle; Tao Wang

2013-06-07T23:59:59.000Z

120

Direct Nanoscale Observations of CO2 Sequestration during Brucite [Mg(OH)2] Dissolution  

Science Journals Connector (OSTI)

Direct Nanoscale Observations of CO2 Sequestration during Brucite [Mg(OH)2] Dissolution ... The dissolution and carbonation of brucite on (001) cleavage surfaces was investigated in a series of in situ and ex situ atomic force microscopy (AFM) experiments at varying pH (212), temperature (2340 C), aqueous NaHCO3 concentration (1051 M), and PCO2 (01 atm). ... Simultaneously with dissolution of brucite, the growth of a Mgcarbonate phase (probably dypingite) was directly observed. ...

J. Hvelmann; C. V. Putnis; E. Ruiz-Agudo; H. Austrheim

2012-04-13T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

122

An Intercomparison Study of Simulation Models for Geologic Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intercomparison Study of Simulation Models Intercomparison Study of Simulation Models for Geologic Sequestration of CO2 Karsten Pruess (K_Pruess@lbl.gov; 510/486-6732) Chin-Fu Tsang (CFTsang@lbl.gov; 510/486-5782) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. David H.-S. Law (Law@arc.ab.ca; 780/450-5034) Alberta Research Council 250 Karl Clark Rd., Edmonton, Alberta T6N 1E4, Canada Curtis M. Oldenburg (CMOldenburg@lbl.gov; 510/486-7419) Earth Sciences Division, E.O. Lawrence Berkeley National Laboratory One Cyclotron Rd., MS 90-1116, Berkeley, CA 94720, U.S.A. ABSTRACT Mathematical models and numerical simulation tools will play an important role in evaluating the feasibility of CO2 storage in subsurface reservoirs, such as brine aquifers,

123

Evaluation of Tracers for Use in the International Field Experiment on CO2 Ocean Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracers for Use in the International Field Experiment Tracers for Use in the International Field Experiment on CO 2 Ocean Sequestration E. Eric Adams (eeadams@mit.edu; 617-253-6595) Dept. of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge, MA 02139 USA Introduction An international field experiment is scheduled to take place off of the west coast of the big island of Hawaii during the second half of 2001 (Adams, et al., 1999; Herzog, et al., 2000). Scientists representing some dozen institutions in five countries on four continents are expected to participate. The experiment will involve several sub-experiments in which CO 2 will be released at a depth of 800 m as a buoyant liquid at rates of 0.1 to 1.0 kg/s. The releases will each be made for a duration of about one hour using nozzles with differing diameters and numbers of ports.

124

Southwest Regional Partnership on Carbon Sequestration Phase II  

SciTech Connect (OSTI)

The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

James Rutledge

2011-02-01T23:59:59.000Z

125

PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION  

SciTech Connect (OSTI)

University of Pittsburghs Transducer lab has teamed with the U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

2012-11-30T23:59:59.000Z

126

Cost Comparison Among Concepts of Injection for CO2 Offshore Underground Sequestration Envisaged in Japan  

Science Journals Connector (OSTI)

Publisher Summary Japan is in the process of 5-year R&D program of underground storage of CO2, and this study was carried out as part of this program. Offshore saline aquifers are the target geological formation in this program because (1) most of large-scale emission sources of CO2 are located near the coast in Japan, (2) aquifers of large volume are expected to be found more in offshore than on land, and (3) site acquisition is much more costly on land. At present, the total time scheme of the sequestration process is assumed, which is based on practical results from similar processes such as large-scale underground storage of natural gas in aquifers. The total system of underground sequestration can be roughly divided into three processes: recovery, transportation, and injection. Although the methods of recovery and transportation have been well studied, the injection process has not been established as it is significantly affected by geographic, geological, and topographic features of the site. The cost of injection into an offshore aquifer varies with the method applied. One reason is that there are a variety of applicable designs and construction methods of wells and surface facilities (especially offshore) that depend on the conditions of injection site. The other reason is that there are many uncertainties in exploration and operation, as is the case with petroleum development. This chapter presents the results of the preliminary analysis on the costs of injection facilities.

Hironori Kotsubo; Takashi Ohsumi; Hitoshi Koide; Motoo Uno; Takeshi Ito; Toshio Kobayashi; Kozo Ishida

2003-01-01T23:59:59.000Z

127

Highlights of the 2009 SEG summer research workshop on"CO2 Sequestration Geophysics"  

SciTech Connect (OSTI)

The 2009 SEG Summer Research Workshop on CO2 Sequestration Geophysics was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee (see side bar) representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier (Figures 1-2). Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO2 sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

Lumley, D.; Sherlock, D.; Daley, T.; Huang, L.; Lawton, D.; Masters, R.; Verliac, M.; White, D.

2010-01-15T23:59:59.000Z

128

Midwest Regional Carbon Sequestration Partnership-Validation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26507 304-285-4133 dawn.deel@netl.doe.gov Darrell Paul Project Manager Midwest Regional Carbon Sequestration Project Battelle 505 King Avenue Columbus, OH 43201 614-424-5890...

129

NETL: 2008 Conference Proceedings - Regional Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Monitoring, Verification, and Accounting (MVA) Webinar with the American Waterworks Association - Monitoring, Verification, and Accounting (MVA) Webinar with the American Waterworks Association December 8, 2008 Table of Contents Disclaimer Agenda [PDF-20KB] Presentations PRESENTATIONS Introductions of Webinar Participants Sarah Wade, Moderator, RCSP Public Outreach Working Group/ Midwest Regional Carbon Sequestration Partnership (MRCSP) Brief Overview of AWWA and Their Interest, Roles/Responsibilities, Specific Concerns Cynthia Lane, AWWA Brief Overview of DOE Regional Carbon Sequestration Partnership Program [PDF-1.4MB] Dawn Deel, Project Manager, National Energy Technology Laboratory Ensuring Integrity of Geologic Sequestration: Integrated Application of Simulation, Risk Assessment, and MVA [PDF-1.5MB] Brian McPherson, Principal Investigator, Southwest Regional Partnership on Carbon Sequestration (SWP)

130

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

131

Commerical-Scale CO2 Capture and Sequestration for the Cement Industry  

SciTech Connect (OSTI)

On June 8, 2009, DOE issued Funding Opportunity Announcement (FOA) Number DE-FOA-000015 seeking proposals to capture and sequester carbon dioxide from industrial sources. This FOA called for what was essentially a two-tier selection process. A number of projects would receive awards to conduct front-end engineering and design (FEED) studies as Phase I. Those project sponsors selected would be required to apply for Phase II, which would be the full design, construction, and operation of their proposed technology. Over forty proposals were received, and ten were awarded Phase I Cooperative Agreements. One of those proposers was CEMEX. CEMEX proposed to capture and sequester carbon dioxide (CO2) from one of their existing cement plants and either sequester the CO2 in a geologic formation or use it for enhanced oil recovery. The project consisted of evaluating their plants to identify the plant best suited for the demonstration, identify the best available capture technology, and prepare a design basis. The project also included evaluation of the storage or sequestration options in the vicinity of the selected plant.

Adolfo Garza

2010-07-28T23:59:59.000Z

132

Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration  

SciTech Connect (OSTI)

This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

Challener, William

2014-12-31T23:59:59.000Z

133

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network [OSTI]

and Co. (2008) Carbon capture and storage: Assessing theof Carbon Dioxide, in Carbon Capture and SequestrationWilson and Gerard, editors, Carbon Capture and Sequestration

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

134

Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, Montana  

SciTech Connect (OSTI)

Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-yr timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to nearinfrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9th, 2008, pure carbon dioxide gas was released through a 100-meter long horizontal injection well, at a flow rate of 300 kg/day. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a ''FieldSpec Pro'' spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants.

Male, E.J.; Pickles, W.L.; Silver, E.A.; Hoffmann, G.D.; Lewicki, J.; Apple, M.; Repasky, K.; Burton, E.A.

2009-11-01T23:59:59.000Z

135

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION  

SciTech Connect (OSTI)

The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

2004-11-01T23:59:59.000Z

136

Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water  

SciTech Connect (OSTI)

Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO{sub 2} and CH{sub 4} at three different seepage rates reveals that ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO{sub 2} solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO{sub 2} is stable between the deep regions where supercritical CO{sub 2} is stable and the shallow regions where gaseous CO{sub 2} is stable. The transition from liquid to gaseous CO{sub 2} is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO{sub 2} is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO{sub 2} migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO{sub 2} potentially preventing ebullition, depending on the CO{sub 2} leakage flux. However, as CO{sub 2} continues to move upward through shallower depths, CO{sub 2} solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO{sub 2} and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO{sub 2} leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO{sub 2} migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-06-17T23:59:59.000Z

137

Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"  

E-Print Network [OSTI]

CO 2 saturation at the Weyburn CO 2 EOR injection project inMonitoring CO 2 storage during EOR at the Weyburn-Midalean excellent example of a CO 2 EOR (enhanced oil recovery)

Lumley, D.

2010-01-01T23:59:59.000Z

138

Developing a Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO2 Mineral Sequestration Process Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanistic Understanding of Lamellar Hydroxide Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO 2 Mineral Sequestration Process Cost Michael J. McKelvy (mckelvy@asu.edu; 480-965-4535), Andrew V. G. Chizmeshya (chizmesh@asu.edu; 480-965-6072), Hamdallah Bearat (Hamdallah.Bearat@asu.edu; 480-965-2624), Renu Sharma (Renu.Sharma@asu.edu; 480-965-4541), and Ray W. Carpenter (carpenter@asu.edu; 480-965-4549) Center for Solid State Science and Science and Engineering of Materials PhD Program, P.O. Box 871704, Arizona State University, Tempe, Arizona 85287 USA ABSTRACT The potential environmental effects of increasing atmospheric CO 2 levels are of major worldwide concern. One alternative for managing CO 2 emissions is carbon sequestration: the capture and secure confinement of CO

139

SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION  

SciTech Connect (OSTI)

The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

Brian McPherson

2004-04-01T23:59:59.000Z

140

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect (OSTI)

The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

Brian McPherson

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

TheU-Tube: A Novel System for Acquiring Borehole Fluid Samplesfrom a Deep Geologic CO2 Sequestration Experiment  

SciTech Connect (OSTI)

A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase (supercritical CO2-brine) fluid from 1.5 km depth. The datasets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydro-geochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-Tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-Tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.

Freifeld, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.

2005-03-17T23:59:59.000Z

142

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

143

ECONOMIC MODELING OF CO2 CAPTURE AND SEQUESTRATION Sean Biggs, Howard Herzog, John Reilly, Henry Jacoby  

E-Print Network [OSTI]

of carbon capture and sequestration technologies using the MIT Emissions Prediction and Policy Analysis (EPPA) model. We model two of the most promising carbon capture and sequestration technologies, one, technological, and social issues of carbon capture and sequestration technologies. In 1997, the President

144

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect (OSTI)

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Youngs modulus, Poissons ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

145

Regional Partnerships in Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration November 6-7, 2001 Lexington, Kentucky Robert Addington AEI Incorporated 2000 Ashland Drive Ashland, KY 41101 Phone: 606-928-3433 Email: crystalj@aeiresources.com Jim Amonette MSIN K8-96 Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: 509-3765565 Email: jim.amonette@pnl.gov Patrick Angel Area Office Manager U.S. Department of Interior Office of Surface Mining P.O. Box 1048 London, KY 40741 Phone: 606-878-6440 Email: pangel@osmre.gov Hugh Archer Commissioner Kentucky Dept of Natural Resources 663 Teton Trail Frankfort, KY 40601 Phone: 502-564-2184 Email: hugh.archer@mail.state.ky.us Victor Badaker Mining Engineering Dept. University of Kentucky MML Bldg. Lexington, KY 40546 Phone: 859-257-3818

146

WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect (OSTI)

The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

Larry Myer; Terry Surles; Kelly Birkinshaw

2004-01-01T23:59:59.000Z

147

Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings  

SciTech Connect (OSTI)

A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

NONE

2006-07-01T23:59:59.000Z

148

An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery  

Science Journals Connector (OSTI)

CO2-EOR uses water-alternating-with-gas (WAG) cycles to control CO2 mobility and CO2 flood conformance and to tackle the clogging and scale issues in the depleted reservoir. ... The Morrow formation predominantly consists of incised valley-fill sandstones of the Lower Pennsylvanian that extend from Texas to Colorado. ... Grigg, R. B.; Schechter, D. S. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs, Final report 1997; New Mexico Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology: Socorro, NM, 1997; DOE/BC/14977-13. ...

Zhenxue Dai; Richard Middleton; Hari Viswanathan; Julianna Fessenden-Rahn; Jacob Bauman; Rajesh Pawar; Si-Yong Lee; Brian McPherson

2013-11-04T23:59:59.000Z

149

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect (OSTI)

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

Brian McPherson

2006-04-01T23:59:59.000Z

150

NETL: News Release - Regional Carbon Sequestration Partnerships Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 17, 2005 February 17, 2005 Regional Carbon Sequestration Partnerships Program Adds Canadian Provinces Will Develop, Deploy and Validate Carbon Sequestration Options WASHINGTON, DC - The Department of Energy (DOE) today announced that the Provinces of Alberta and British Columbia have joined Saskatchewan and Manitoba as Canadian partners in the Regional Carbon Sequestration Partnerships program, the centerpiece of North American efforts to validate and deploy carbon sequestration technologies. The program, a network of federal and state agencies, as well as private sector entities, will determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage, and sequestration in different areas of the country. MORE INFO

151

CO2 Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2013 1, 2013 James E. Locke & Richard A. Winschel CONSOL Energy Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS Presentation Outline  Benefit to the program  Project overview  Technical status  Accomplishments  Summary  Appendix 2 Benefit to the Program This project will demonstrate the effectiveness and the economics of carbon sequestration in an unmineable coal seam with enhanced coal bed methane (ECBM) production. 3 Project Overview: Goals and Objectives  Demonstrate horizontal drilling in underground coal seams,  Devise economical drilling strategies to maximize both CO 2 sequestration potential and CBM recovery,

152

Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation  

SciTech Connect (OSTI)

Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with continuous pressure and flow-rate monitoring in both wells, and continuous surface fluid sampling and periodic down-hole fluid sampling from the monitor well. Pre-injection site-characterization includes pump tests with pressure-transient analysis to estimate single-phase flow properties, establish hydraulic connectivity between the wells, determine appropriate boundary conditions, and analyze ambient phase conditions within the formation. Additionally, a pre-injection tracer test furnishes estimates of kinematic porosity and the geometry of flow paths between injection and monitor wells under single-phase conditions. Pre-injection geochemical sampling provides a baseline for subsequent geochemical monitoring and helps determine the optimal tracers to accompany CO2 injection. During CO2 injection, hydrological monitoring enables estimation of two-phase flow properties and helps track the movement of the injected CO2 plume, while geochemical sampling provides direct evidence of the arrival of CO2 and tracers at the monitor well. Furthermore, CO2-charged water acts as a weak acid, and reacts to some extent with the minerals in the aquifer, producing a distinct chemical signature in the water collected at the monitor well. Comparison of breakthrough curves for the single-phase tracer test and the CO2 (and its accompanying tracers) illuminates two-phase flow processes between the supercritical CO2 and native brine, an area of current uncertainty that must be better understood to effectively sequester CO2 in saline aquifers.

Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

2004-05-17T23:59:59.000Z

153

Comparative assessment of sub-critical versus advanced super-critical oxyfuel fired PF boilers with CO2 sequestration facilities  

Science Journals Connector (OSTI)

This work focuses on the techno-economic assessment of bituminous coal fired sub- and super-critical pulverised fuel boilers from an oxyfuel based CO2 capture point of view. At the initial stage, two conventional power plants with a nominal power output of above 600MWe based on the above steam cycles are designed, simulated and optimised. Built upon these technologies, CO2 capture facilities are incorporated within the base plants resulting in a nominal power output of 500MWe. In this manner, some sensible heat generated in the air separation unit and the CO2 capture train can be redirected to the steam cycle resulting in a higher plant efficiency. The simulation results of conventional sub- and super-critical plants are compared with their CO2 capture counterparts to disclose the effect of sequestration on the overall system performance attributes. This systematic approach allows the investigation of the effects of the CO2 capture on both cycles. In the literature, super-critical plants are often considered for a CO2 capture option. These, however, are not based on a systematic evaluation of these technologies and concentrate mainly on one or two key features. In this work several techno-economic plant attributes such as the fuel consumptions, the utility usages, the plant performance parameters as well as the specific CO2 generation and capture rates are calculated and weighed against each other. Finally, an economic evaluation of the system is conducted along with sensitivity analyses in connection with some key features such as discounted cash flow rates, capital investments and plant efficiencies as well as fuel and operating costs.

Sina Rezvani; Ye Huang; David McIlveen-Wright; Neil Hewitt; Yaodong Wang

2007-01-01T23:59:59.000Z

154

Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"  

E-Print Network [OSTI]

industrial applications, the CO 2 generated cannot easily be reduced by energy conservation or efficiency measures (for example LNG liquid natural gas

Lumley, D.

2010-01-01T23:59:59.000Z

155

New Jersey Joins the Energy Department's Carbon Sequestration Regional  

Broader source: Energy.gov (indexed) [DOE]

New Jersey Joins the Energy Department's Carbon Sequestration New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program June 24, 2009 - 1:00pm Addthis Washington, DC -- The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. The addition of New Jersey, the 43rd state to join the program, helps strengthen U.S. efforts to reduce greenhouse gas emissions and mitigate climate change. New Jersey--along with Indiana, Kentucky, Maryland, Michigan, New York, Ohio, Pennsylvania, and West Virginia--is a regional partner and a participant in the Midwest Regional Carbon Sequestration Partnership

156

New Jersey Joins the Energy Department's Carbon Sequestration Regional  

Broader source: Energy.gov (indexed) [DOE]

Jersey Joins the Energy Department's Carbon Sequestration Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program June 24, 2009 - 1:00pm Addthis Washington, DC -- The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. The addition of New Jersey, the 43rd state to join the program, helps strengthen U.S. efforts to reduce greenhouse gas emissions and mitigate climate change. New Jersey--along with Indiana, Kentucky, Maryland, Michigan, New York, Ohio, Pennsylvania, and West Virginia--is a regional partner and a participant in the Midwest Regional Carbon Sequestration Partnership

157

Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Investigation of Brine-Bearing Sands of the Frio Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO 2 Christine Doughty (cadoughty@lbl.gov; 510-486-6453) Karsten Pruess (k_pruess@lbl.gov; 510-486-6732) Sally M. Benson (smbenson@lbl.gov; 510-486-5875) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, MS 90-1116 Berkeley, CA 94720 Susan D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Paul R. Knox (paul.knox@beg.utexas.edu; 512-471-7313) Bureau of Economic Geology P.O. Box X, The University of Texas Austin, TX 78713 Christopher T. Green (ctgreen@ucdavis.edu; 530-752-1372) University of California, Hydrologic Sciences 1 Shields Ave. Davis, CA 95616 Abstract The capacity of fluvial brine-bearing formations to sequester CO 2 is investigated using numerical simulations of CO

158

Experimental Determination of Ca-Silicate Dissolution Rates: A Source of Calcium for Geologic CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Determination of Ca-Silicate Dissolution Rates: Experimental Determination of Ca-Silicate Dissolution Rates: A Source of Calcium for Geologic CO 2 Sequestration Susan A. Carroll (carroll6@llnl.gov; 925-423-5694) Energy and Environment Directorate Lawrence Livermore National Laboratory L-219 Livermore, CA 94550 Kevin G. Knauss (knauss@llnl.gov; 925-422-1372) Energy and Environment Directorate Lawrence Livermore National Laboratory L-219 Livermore, CA 94550 2 Introduction The international scientific community recognizes that greenhouse gases have the potential to influence climate, and that potential changes in sea level and weather patterns would be largely deleterious. Because CO 2 is emitted in such large quantities and its atmospheric concentration has been consistently rising throughout the recent past, it is only prudent to focus attention on reducing

159

NETL: Regional Partnerships in Terrestrial Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Partnerships in Terrestrial Carbon Sequestration Regional Partnerships in Terrestrial Carbon Sequestration A "Hands-On" Workshop for the Appalachian Coal & Electric Utilities Industries Table of Contents Disclaimer General Conference Information Papers and Presentations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

160

Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag  

SciTech Connect (OSTI)

The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

Von L. Richards; Kent Peaslee; Jeffrey Smith

2008-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of CO2 Sequestration and ECBM Potential of U.S. Coalbeds  

SciTech Connect (OSTI)

In October, 2000, the U.S. Department of Energy, through contractor Advanced Resources International, launched a multi-year government-industry R&D collaboration called the Coal-Seq project. The Coal-Seq project is investigating the feasibility of CO{sub 2} sequestration in deep, unmineable coalseams, by performing detailed reservoir studies of two enhanced coalbed methane recovery (ECBM) field projects in the San Juan basin. The two sites are the Allison Unit, operated by Burlington Resources, and into which CO{sub 2} is being injected, and the Tiffany Unit, operating by BP America, into which N{sub 2} is being injected (the interest in understanding the N{sub 2}-ECBM process has important implications for CO{sub 2} sequestration via flue-gas injection). The purposes of the field studies are to understand the reservoir mechanisms of CO{sub 2} and N{sub 2} injection into coalseams, demonstrate the practical effectiveness of the ECBM and sequestration processes, an engineering capability to simulate them, and to evaluate sequestration economics. In support of these efforts, laboratory and theoretical studies are also being performed to understand and model multi-component isotherm behavior, and coal permeability changes due to swelling with CO{sub 2} injection. This report describes the results of an important component of the overall project, applying the findings from the San Juan Basin to a national scale to develop a preliminary assessment of the CO{sub 2} sequestration and ECBM recovery potential of U.S. coalbeds. Importantly, this assessment improves upon previous investigations by (1) including a more comprehensive list of U.S. coal basins, (2) adopting technical rationale for setting upper-bound limits on the results, and (3) incorporating new information on CO{sub 2}/CH{sub 4} replacement ratios as a function of coal rank. Based on the results of the assessment, the following conclusions have been drawn: (1) The CO{sub 2} sequestration capacity of U.S. coalbeds is estimated to be about 90 Gt. Of this, about 38 Gt is in Alaska (even after accounting for high costs associated with this province), 14 Gt is in the Powder River basin, 10 Gt is in the San Juan basin, and 8 Gt is in the Greater Green River basin. By comparison, total CO{sub 2} emissions from power generation plants is currently about 2.2 Gt/year. (2) The ECBM recovery potential associated with this sequestration is estimated to be over 150 Tcf. Of this, 47 Tcf is in Alaska (even after accounting for high costs associated with this province), 20 Tcf is in the Powder River basin, 19 Tcf is in the Greater Green River basin, and 16 Tcf is in the San Juan basin. By comparison, total CBM recoverable resources are currently estimated to be about 170 Tcf. (3) Between 25 and 30 Gt of CO{sub 2} can be sequestered at a profit, and 80-85 Gt can be sequestered at costs of less than $5/ton. These estimates do not include any costs associated with CO{sub 2} capture and transportation, and only represent geologic sequestration. (4) Several Rocky Mountain basins, including the San Juan, Raton, Powder River and Uinta appear to hold the most favorable conditions for sequestration economics. The Gulf Coast and the Central Appalachian basin also appear to hold promise as economic sequestration targets, depending upon gas prices. (5) In general, the 'non-commercial' areas (those areas outside the main play area that are not expected to produce primary CBM commercially) appear more favorable for sequestration economics than the 'commercial' areas. This is because there is more in-place methane to recover in these settings (the 'commercial' areas having already been largely depleted of methane).

Scott R. Reeves

2003-03-31T23:59:59.000Z

162

The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration  

SciTech Connect (OSTI)

In a natural analog study of risks associated with carbon sequestration, impacts of CO{sub 2} on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO{sub 2}, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of saline waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO{sub 2} influx. Analysis oftrends in dissolved trace elements, chloride, and CO2 reveal no evidence of in-situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO{sub 2}-rich saline water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO{sub 2} leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO{sub 2}carrier fluids, such as saline waters, pose in monitoring impacts ofgeologic sequestration.

Keating, Elizabeth [Los Alamos National Laboratory; Fessenden, Julianna [Los Alamos National Laboratory; Kanjorski, Nancy [NON LANL; Koning, Dan [NM BUREAU OF GEOLOGY AND MINERAL RESOURCES; Pawar, Rajesh [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

163

CO2 Sequestration in Coalbed Methane Reservoirs: Experimental Studies and Computer Simulations  

SciTech Connect (OSTI)

One of the approaches suggested for sequestering CO{sub 2} is by injecting it in coalbed methane (CBM) reservoirs. Despite its potential importance for CO{sub 2} sequestration, to our knowledge, CO{sub 2} injection in CBM reservoirs for the purpose of sequestration has not been widely studied. Furthermore, a key element missing in most of the existing studies is the comprehensive characterization of the CBM reservoir structure. CBM reservoirs are complex porous media, since in addition to their primary pore structure, generated during coal formation, they also contain a variety of fractures, which may potentially play a key role in CO{sub 2} sequestration, as they generally provide high permeability flow paths for both CO{sub 2} and CH{sub 4}. In this report we present an overview of our ongoing experimental and modeling efforts, which aim to investigate the injection, adsorption and sequestration of CO{sub 2} in CBM reservoirs, the enhanced CH{sub 4} production that results, as well as the main factors that affect the overall operation. We describe the various experimental techniques that we utilize, and discuss their range of application and the value of the data generated. We conclude with a brief overview of our modeling efforts aiming to close the knowledge gap and fill the need in this area.

Muhammad Sahimi; Theodore T. Tsotsis

2002-12-15T23:59:59.000Z

164

CO2 Sequestration in Chrysotile Mining ResiduesImplication of Watering and Passivation under Environmental Conditions  

E-Print Network [OSTI]

carbonation reactors for the capture of CO2 produced at its source.5-8 In most available direct carbonation was found to develop very rapidly in comparison to silica gel polymerization. INTRODUCTION The fixation

165

Simulation study of CO2 sequestration potential of the Mary Lee coal zone, Black Warrior basin  

Science Journals Connector (OSTI)

As stated by Ross et al. (2009), CBM reservoirs produce more water in ECBM compared to primary CBM production because the injected CO2 gas displaces a significant portion of the water within the cleats that is le...

Ashkan Bahrami; Mohammad Jamialahmadi; Jamshid Moghadasi

2013-11-01T23:59:59.000Z

166

Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach  

SciTech Connect (OSTI)

The reactivity of sandstones was studied under conditions relevant to the injection of supercritical carbon dioxide in the context of carbon geosequestration. The emphasis of the study was on the reactivity of iron-bearing minerals when exposed to supercritical CO2 (scCO2) and scCO2 with commingled aqueous solutions containing H2S and/or SO2. Flow through and batch experiments were conducted. Results indicate that sandstones, irrespective of their mineralogy, are not reactive when exposed to pure scCO2 or scCO2 with commingled aqueous solutions containing H2S and/or SO2 under conditions simulating the environment near the injection point (flow through experiments). However, sandstones are reactive under conditions simulating the edge of the injected CO2 plume or ahead of the plume (batch experiments). Sandstones containing hematite (red sandstone) are particularly reactive. The composition of the reaction products is strongly dependent on the composition of the aqueous phase. The presence of dissolved sulfide leads to the conversion of hematite into pyrite and siderite. The relative amount of the pyrite and siderite is influenced by the ionic strength of the solution. Little reactivity is observed when sulfite is present in the aqueous phase. Sandstones without hematite (grey sandstones) show little reactivity regardless of the solution composition.

Schoonen, Martin A. [Stony Brook University] (ORCID:0000000271331160)

2014-12-22T23:59:59.000Z

167

Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration  

SciTech Connect (OSTI)

Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly considered methods compared to the traditional, more expensive, seismic technique. The Schrader Bluff model was chosen as a numerical test bed for quantitative comparison of the spatial resolution of various geophysical techniques being considered for CO{sub 2} sequestration monitoring. We began with a three dimensional flow simulation model provided by BP Alaska of the reservoir and developed a detailed rock-properties model from log data that provides the link between the reservoir parameters (porosity, pressure, saturations, etc.) and the geophysical parameters (velocity, density, electrical resistivity). The rock properties model was used to produce geophysical models from the flow simulations.

Hoversten, G. Michael; Gasperikova, Erika

2003-10-31T23:59:59.000Z

168

Carbon Sequestration  

Science Journals Connector (OSTI)

Carbon sequestration refers to a portfolio of activities for ... capture, separation and storage or reuse of carbon or CO2. Carbon sequestration technologies encompass both the prevention of CO2 emissions into ...

Robert L. Kane MS; Daniel E. Klein MBA

2005-01-01T23:59:59.000Z

169

Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field  

E-Print Network [OSTI]

Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon...

Gaviria Garcia, Ricardo

2006-04-12T23:59:59.000Z

170

Southwest Regional Partnership for Carbon Sequestration--Validation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Socorro, NM 87801-4796 575-835-5403 reid@prrc.nmt.edu Southwest Regional Partnership for Carbon Sequestration-Validation Phase Background The U.S. Department of Energy Regional...

171

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

172

Formation of Hydrates from Single-Phase Aqueous Solutions and Implications for Oceanic Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation of Hydrates from Single-Phase Aqueous Solutions Formation of Hydrates from Single-Phase Aqueous Solutions and Implications for Oceanic Sequestration of CO 2 . G. Holder (holder@engrng.pitt.edu) 412-624-9809 L. Mokka (lakshmi.mokka@netl.doe.gov) 412-386-6019 Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh, PA 15261 R. Warzinski* (robert.warzinski@netl.doe.gov) 412-386-5863 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 Introduction a Gas hydrates are crystalline solids formed from mixtures of water and low molecular weight compounds, referred to as hydrate formers, that typically are gases at ambient conditions (1). Generally, hydrates are formed in the laboratory from two-phase systems by contacting a hydrate former or formers in the gas or liquid phase with liquid water and increasing the pressure until

173

Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Brine-Bearing Sands of the Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO 2 S. D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. Doughty (CADoughty@lbl.gov; 510-486-6453 ) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116, Berkeley, CA 94720 P. R. Knox (paul.knox@beg.utexas.edu; 512-471-7313), Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. T. Green (ctgreen@ucdavis.edu; 510-495-2461) University of California, Hydrologic Sciences, One Shields Ave., Davis, CA 95616 K. Pruess(K_Pruess@lbl.gov; 510-486-6732) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116,

174

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2  

E-Print Network [OSTI]

Observations and simulations of synoptic, regional, and local variations in atmospheric CO2 Jih] Synoptic events may play an important role in determining the CO2 spatial distribution and temporal 2001, which had the most significant CO2 concentration variation in our case pool. The CO2

Collett Jr., Jeffrey L.

175

RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE  

SciTech Connect (OSTI)

Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

Takashi Nakamura

2004-11-01T23:59:59.000Z

176

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

SciTech Connect (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

177

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

Gary L. Cairns

2002-10-01T23:59:59.000Z

178

Building new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and  

E-Print Network [OSTI]

including technologies for carbon sequestration. Norway's primary energy production is dominated by oilBuilding new power plants in a CO2 constrained world: A Case Study from Norway on Gas-Fired Power director. Most of the material used in this work are either courtesy of the persons I talked to in Norway

179

Estimating Carbon Sequestration Rates on a Regional Scale  

Science Journals Connector (OSTI)

Two regional case studies on carbon (C) sequestration rate for the forested land of Sweden...?1 year?1. With just two dominant tree species, a comparison was made. In humus layers, Scots pine stands sequestered C...

Bjrn Berg; Charles McClaugherty

2014-01-01T23:59:59.000Z

180

Carbon Sequestration - Public Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Southeast Regional Carbon Sequestration Partnership U.S Regional Carbon Sequestration Partnerships: Sharing Knowledge from Two Field Tests  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partnership Presented to: Carbon Storage Program Infrastructure Annual Review Meeting November 15, 2011 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners.  CO 2 Capture Unit funded separately by Southern Company and partners. 2 Presentation Outline  Overview  Characterization Studies  Early Test - Cranfield, MS  Anthropogenic Test - Citronelle, AL - Capture Unit Status - Pipeline Status - Injection Well Status 3 SECARB Characterization: CO 2 Sources & Saline Reservoirs

182

Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration  

SciTech Connect (OSTI)

The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

2007-03-31T23:59:59.000Z

183

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect (OSTI)

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01T23:59:59.000Z

184

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

SciTech Connect (OSTI)

Leakage of CO{sub 2} and brine along faults at geologic carbon sequestration (GCS) sites is a primary concern for storage integrity. The focus of this study is on the estimation of the probability of leakage along faults or fractures. This leakage probability is controlled by the probability of a connected network of conduits existing at a given site, the probability of this network encountering the CO{sub 2} plume, and the probability of this network intersecting environmental resources that may be impacted by leakage. This work is designed to fit into a risk assessment and certification framework that uses compartments to represent vulnerable resources such as potable groundwater, health and safety, and the near-surface environment. The method we propose includes using percolation theory to estimate the connectivity of the faults, and generating fuzzy rules from discrete fracture network simulations to estimate leakage probability. By this approach, the probability of CO{sub 2} escaping into a compartment for a given system can be inferred from the fuzzy rules. The proposed method provides a quick way of estimating the probability of CO{sub 2} or brine leaking into a compartment. In addition, it provides the uncertainty range of the estimated probability.

Zhang, Yingqi; Oldenburg, Curt; Finsterle, Stefan; Jordan, Preston; Zhang, Keni

2008-11-01T23:59:59.000Z

185

CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12-100 °C and 1-600 bar.  

Office of Scientific and Technical Information (OSTI)

CO CO 2 -H 2 O Mixtures in the Geological Sequestration of CO 2 . II. Partitioning in Chloride Brines at 12-100°C and up to 600 bar. Nicolas Spycher and Karsten Pruess Lawrence Berkeley National Laboratory, MS 90-1116, 1 Cyclotron Road, Berkeley, California, USA September 2004 ABSTRACT Correlations presented by Spycher et al. (2003) to compute the mutual solubilities of CO 2 and H 2 O are extended to include the effect of chloride salts in the aqueous phase. This is accomplished by including, in the original formulation, activity coefficients for aqueous CO 2 derived from several literature sources, primarily for NaCl solutions. Best results are obtained when combining the solubility correlations of Spycher et al. (2003) with the activity coefficient formulation of Rumpf et al. (1994) and Duan and Sun (2003), which

186

8,993,963 Metric Tons of CO2 Injected as of December 17, 2014...  

Energy Savers [EERE]

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

187

9,030,305 Metric Tons of CO2 Injected as of January 6, 2015 ...  

Office of Environmental Management (EM)

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

188

Investigating Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO2 Monitoring Project)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Potential of Carbonate Rocks during Tertiary Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO 2 Monitoring and Storage Project) G. Burrowes (Geoffrey_Burrowes@pancanadian.ca; 403-290-2796) PanCanadian Resources 150 - 9 th Avenue S.W., P.O. Box 2850 Calgary, Alberta, Canada T2P 2S5 C. Gilboy (cgilboy@sem.gov.sk.ca; 306-787-2573) Petroleum Geology Branch, Saskatchewan Energy and Mines 201 Dewdney Avenue East Regina, Saskatchewan, Canada S4N 4G3 Introduction In Western Canada the application of CO 2 injection for enhanced, 'tertiary' oil recovery is a relatively recent addition to the arsenal available to reservoir engineers. The first successful application of CO 2 as a miscible fluid in Western Canada began in 1984 at Joffre Field, a

189

The CO2 Content of Consumption Across US Regions: A Multi-Regional Input-Output (MRIO) Approach  

E-Print Network [OSTI]

We improve on existing estimates of the carbon dioxide (CO2) content of consumption across regions of the United States. Using a multi-regional input-output (MRIO) framework, we estimate the direct and indirect CO2 emissions ...

Caron, J.

190

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

SciTech Connect (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

191

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2003-01-01T23:59:59.000Z

192

AZ CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

193

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

194

Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration  

Science Journals Connector (OSTI)

Abstract Understanding the kinetics of carbon dioxide (CO2) hydrate formation in pure water, seawater and porous media aids in developing technologies for CO2 gas storage, carbon capture and sequestration (CCS) and potentially for methane production from methane hydrates. The present work is focused on understanding the kinetics of CO2 hydrate formation in pure water and seawater at an initial formation pressure of 6MPa (providing a driving force of about 4.0MPa) and a formation temperature of 276.15K with 75% water saturation in three silica sand particle sizes (0.16mm, 0.46mm and 0.92mm). The seawater (3.3wt% salinity) used in the present study is obtained from sea coast of Chennai (India). It is observed that the gas consumption of CO2 in hydrate is more for smaller silica sand particle and decreases as the size of the sand increases. The total gas consumed at the end of the seawater experiment is found to be less than the gas consumed at the end of the pure water experiment. This is due to the fact that salts in seawater act as a thermodynamic inhibitor resulting in lower gas consumption of CO2 in hydrate. The average rate of hydrate formation observed is optimum in 0.46mm particles and is observed to be higher as compared to 0.16 and 0.92mm particles over 10h experimental time. This indicates that 0.46mm silica sand provides an optimum environment for efficient hydrate formation. The study can be useful to understand the suitability of potential sandstone reservoir for CO2 sequestration in the form of hydrate in the presence of saline formation water.

Prathyusha Mekala; Marc Busch; Deepjyoti Mech; Rachit S. Patel; Jitendra S. Sangwai

2014-01-01T23:59:59.000Z

195

W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473)  

Broader source: Energy.gov (indexed) [DOE]

W.A. W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project Final Environmental Impact Statement Summary February 2013 DOE/EIS-0473 Office of Fossil Energy National Energy Technology Laboratory INTENTIONALLY LEFT BLANK COVER SHEET Responsible Federal Agency: U.S. Department of Energy (DOE) Title: W.A. Parish Post-Combustion CO 2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473) Location: Southeastern Texas, including Fort Bend, Wharton, and Jackson counties Contacts: For further information about this Environmental Impact Statement, contact: For general information on the DOE process for implementing the National Environmental Policy Act, contact: Mark W. Lusk U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 (304) 285-4145 or Mark.Lusk@netl.doe.gov

196

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration … Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* NREL/TP-510-32575 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 January 2004 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann Prepared under Task No. BB04.4010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393

197

Modeling Density Effects in CO2 Injection in Oil Reservoirs and A Case Study of CO2 Sequestration in a Qatari Saline Aquifer  

E-Print Network [OSTI]

(and density) of a reference component (usually methane) and other factors that are independent of mixture density. Therefore, modifying the shift parameter of CO2 does not affect the viscosity of the mixture. Table 2.1 Fluid composition...

Ahmed, Tausif

2012-10-19T23:59:59.000Z

198

State and Regional Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-?three statesthe Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiativehave cap-?and-?trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

Reitze, Arnold; Durrant, Marie

2011-03-31T23:59:59.000Z

199

Microsoft Word - SECARB Phase III CO2 sequestration Final EA MNM 3-2 as sent.doc  

Broader source: Energy.gov (indexed) [DOE]

25 25 FINAL ENVIRONMENTAL ASSESSMENT Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Early Test March 2009 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy SECARB Phase III Early Test National Energy Technology Laboratory Final Environmental Assessment ______________________________________________________________________________ Table of Contents i March 2009 TABLE OF CONTENTS TABLE OF CONTENTS i LIST OF TABLES iv LIST OF FIGURES iv ACRONYMS AND ABBREVIATIONS v USE OF SCIENTIFIC NOTATION ix 1.0 INTRODUCTION 1 1.1 Summary 1 1.2 Purpose and Need 5 1.3 Legal Framework 8 2.0 PROPOSED ACTION AND ALTERNATIVES 15 2.1 Proposed Action 15 2.1.1 Project Location 15

200

Time-lapse seismic modeling and production data assimilation for enhanced oil recovery and CO2 sequestration  

E-Print Network [OSTI]

Production from a hydrocarbon reservoir is typically supported by water or carbon dioxide (CO2) injection. CO2 injection into hydrocarbon reservoirs is also a promising solution for reducing environmental hazards from the release of green house...

Kumar, Ajitabh

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk  

SciTech Connect (OSTI)

We introduce a hybrid two-stage energy-recovery approach to sequester CO{sub 2} and produce geothermal energy at low environmental risk and low cost by integrating geothermal production with CO{sub 2} capture and sequestration (CCS) in saline, sedimentary formations. Our approach combines the benefits of the approach proposed by Buscheck et al. (2011b), which uses brine as the working fluid, with those of the approach first suggested by Brown (2000) and analyzed by Pruess (2006), using CO{sub 2} as the working fluid, and then extended to saline-formation CCS by Randolph and Saar (2011a). During stage one of our hybrid approach, formation brine, which is extracted to provide pressure relief for CO{sub 2} injection, is the working fluid for energy recovery. Produced brine is applied to a consumptive beneficial use: feedstock for fresh water production through desalination, saline cooling water, or make-up water to be injected into a neighboring reservoir operation, such as in Enhanced Geothermal Systems (EGS), where there is often a shortage of a working fluid. For stage one, it is important to find economically feasible disposition options to reduce the volume of brine requiring reinjection in the integrated geothermal-CCS reservoir (Buscheck et al. 2012a). During stage two, which begins as CO{sub 2} reaches the production wells; coproduced brine and CO{sub 2} are the working fluids. We present preliminary reservoir engineering analyses of this approach, using a simple conceptual model of a homogeneous, permeable CO{sub 2} storage formation/geothermal reservoir, bounded by relatively impermeable sealing units. We assess both the CO{sub 2} sequestration capacity and geothermal energy production potential as a function of well spacing between CO{sub 2} injectors and brine/CO{sub 2} producers for various well patterns and for a range of subsurface conditions.

Buscheck, T A; Chen, M; Sun, Y; Hao, Y; Elliot, T R

2012-02-02T23:59:59.000Z

202

Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks  

E-Print Network [OSTI]

evaluation of a thermodynamic dataset for phases of interestKeywords: Thermodynamic dataset CO2water basaltABSTRACT A thermodynamic dataset describing 36 mineral

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

203

Development of experimental methods for intermediate scale testing of deep geologic CO2 sequestration trapping processes at ambient laboratory conditions.  

E-Print Network [OSTI]

??Carbon Capture and Storage (CCS) is a potential strategy to reduce CO2 emissions into the atmosphere. Deep geological formations provide a viable storage site for (more)

Vargas-Johnson, Javier

2014-01-01T23:59:59.000Z

204

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration  

Science Journals Connector (OSTI)

Analysis of Membrane and Adsorbent Processes for Warm Syngas Cleanup in Integrated Gasification Combined-Cycle Power with CO2 Capture and Sequestration ... The clean syngas is diluted with N2 from the ASU and enters the gas turbine burner. ... The amount of N2 diluent to be added is determined by the requirement of maintaining the appropriate lower heating value of the syngas feeding into the gas turbine burner to achieve sufficiently low NOx emissions (1535 ppmv at 15% O2)(36) and to keep the temperature of the gas low enough to avoid blade failure. ...

David J. Couling; Kshitij Prakash; William H. Green

2011-08-11T23:59:59.000Z

205

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

206

Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration  

Science Journals Connector (OSTI)

The first set of results presented were the inventory of air emissions (CO, CO2, CH4, SOx, NOx, NH3, Pb, Hg, etc.), wastewater-containing acids and sulfides, and solid wastes released because of both fossil fuel production and energy usage from the power plant. ... Gases of SO2 and NOx are reported to pollute the air because of conventional oil production activities,16 but these contributions, as displayed by cases I and II, are less compared to the accumulated impacts coming from the CO2 sequestration chain. ... (1)?McKee, B. Solutions for the 21st Century:? Zero Emissions Technology for Fossil Fuels; Technology Status Report, International Energy Agency, Committee for Energy Research Technology, OECD/IEA:? France, 2002. ...

Hsien H. Khoo; Reginald B. H. Tan

2006-07-26T23:59:59.000Z

207

Regional evaluation of brine management for geologic carbon sequestration  

E-Print Network [OSTI]

of the build decision for carbon capture and sequestrationTenth Annual Conference on Carbon Capture and Sequestration.be managed early on. Carbon capture technology is water-,

Breunig, H.M.

2014-01-01T23:59:59.000Z

208

Southeast Regional Carbon Sequestration Partnership (SECARB)  

SciTech Connect (OSTI)

Work during the first six months of the project mainly concentrated on contracts execution and collection of data to characterize the region and input of that data into the geographical information system (GIS) system. Data was collected for source characterization, transportation options and terrestrial options. In addition, discussions were held to determine the extent of the geologic information that would be needed for the project. In addition, activities associated with the regulatory, permitting and safety issues were completed. Outreach activities are in the formative stages.

Kathryn A. Baskin

2004-03-31T23:59:59.000Z

209

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

210

Fracture characterization and fluid flow simulation with geomechanical constraints for a CO2EOR and sequestration project Teapot Dome Oil Field, Wyoming, USA  

Science Journals Connector (OSTI)

Mature oil and gas reservoirs are attractive targets for geological sequestration of CO2 because of their potential storage capacities and the possible cost offsets from enhanced oil recovery (EOR). In this work, we analyze the fracture system of the Tensleep Formation to develop a geomechanically-constrained 3D reservoir fluid flow simulation at Teapot Dome Oil Field, WY, USA. Teapot Dome is the site of a proposed CO2-EOR and sequestration pilot project. The objective of this work is to model the migration of the injected CO2 in the fracture reservoir, as well as to obtain limits on the rates and volumes of CO2 that can be injected, without compromising seal integrity. Furthermore we want to establish the framework to design injection experiments that will provide insight into the fracture network of the reservoir, in particular of fracture permeability and connectivity. Teapot Dome is an elongated asymmetrical, basement-cored anticline with a north-northeast axis. The Tensleep Fm. in this area is highly fractured, and consists of an intercalation of eolian-dune sandstones and inter-dune deposits. The dune sandstones are permeable and porous intervals with different levels of cementation that affects their porosity, permeability, and fracture intensity. The inter-dune deposits consist of thin sabkha carbonates, minor evaporates, and thin but widespread extensive beds of very low-permeability dolomicrites. The average permeability is 30mD, ranging from 10100mD. The average reservoir thickness is 50 ft. The caprock for the Tensleep Fm. consists of the Opeche Shale member, and the anhydrite of the Minnekhata member. The reservoir has strong aquifer drive. In the area under study, the Tensleep Fm. has its structural crest at 1675m. It presents a 2-way closure trap against a NE-SW fault to the north and possibly the main thrust to the west. The CO2-EOR and sequestration project will consist of the injection of 1 million cubic feet of supercritical CO2 for six weeks. A previous geomechanical analysis suggested that the trapping faults do not appear to be at risk of reactivation and it was estimated that caprock integrity is not a risk by the buoyancy pressure of the maximum CO2 column height that the formation can hold. However, in the present study we established the presence of critically stressed minor faults and fractures in the reservoir and caprock, which if reactivated, could not only enhance the permeability of the reservoir, but potentially compromise the top seal capacity. The results of the preliminary fluid flow simulations indicate that the injected CO2 will rapidly rise to the top layers, above the main producing interval, and will accumulate in the fractures, where almost none will get into the matrix.

Laura Chiaramonte; Mark Zoback; Julio Friedmann; Vicki Stamp; Chris Zahm

2011-01-01T23:59:59.000Z

211

CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

Helen Kerr; Linda M. Curran

2005-04-15T23:59:59.000Z

212

CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

Helen Kerr

2004-04-01T23:59:59.000Z

213

Midwest Regional Carbon Sequestration Partnership Update (DOE Project No. DE-FC26-05NT42589)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neeraj Gupta, Technical Director Neeraj Gupta, Technical Director Darrell Paul, Program Manager Battelle, Columbus, OH Midwest Regional Carbon Sequestration Partnership Update (DOE Project No. DE-FC26-05NT42589) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline Quick Overview of MRSCP MRCSP Benefit to the DOE Program MRCSP Project Overview: Goals and Objectives Technical Status Accomplishments to Date Summary Appendix Organization Chart Bibliography 3 About the Midwest Regional Carbon Sequestration Partnership * Formed in 2003 as a public/private consortium * Consists of nearly 40 members, led by Battelle

214

Scottish Universities Physics Alliance The role & evolution of CO2 in star forming regions  

E-Print Network [OSTI]

Scottish Universities Physics Alliance The role & evolution of CO2 in star forming regions Jennifer 2011, arXiv:1104.0031 #12;Scottish Universities Physics Alliance Star forming regions Williams, D;Scottish Universities Physics Alliance Observational evidence d'Hendecourt et de Muizon 1989, A&A 223, L5

Greenaway, Alan

215

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration  

SciTech Connect (OSTI)

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

2010-03-31T23:59:59.000Z

216

Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration  

Science Journals Connector (OSTI)

Abstract The evolution of mineral reactive surface area is an important control on the progress of carbon mineralization reactions that sequester anthropogenic CO2. Dry conditions in unsaturated porous media and the passivation of reactive surface area by secondary phase precipitation complicate predictions of reactive surface during carbon mineralization reactions. Unsaturated brucite [Mg(OH)2] bearing column experiments were used to evaluate the effects of water saturation and hydrous Mg-carbonate precipitation on reaction of brucite with 10% CO2 gas streams at ambient conditions. We demonstrate that a lack of available water severely limits reaction progress largely due to the requirement of water as a reactant to form hydrated Mg-carbonates. The precipitation of a poorly crystalline carbonate phase in the early stages of the reaction does not significantly hinder brucite dissolution, as the carbonate coating remains sufficiently permeable. It is postulated that the conversion of this phase to substantially less porous, crystalline nesquehonite [MgCO33H2O] results in passivation of the brucite surface. Although a mechanistic model describing the passivating effect of nesquehonite remains elusive, reactive transport modeling using MIN3P-DUSTY confirms that conventional geometric surface area update models do not adequately reproduce observed reaction progress during brucite carbonation, while an empirically based model accounting for surface passivation is able to capture the transient evolution of CO2 uptake. Both water limits and surface passivation effects may limit the efficiency of CO2 sequestration efforts that rely on the conversion of mafic and ultramafic rock to carbonate minerals.

Anna L. Harrison; Gregory M. Dipple; Ian M. Power; K. Ulrich Mayer

2015-01-01T23:59:59.000Z

217

CO2 Capture from Coal-Fired Utility Generation Plant Exhausts and Sequestration by a Biomimetic Route Based on Enzymatic Catalysts-Current Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Coal-Fired Utility Generation Plant Exhausts, and from Coal-Fired Utility Generation Plant Exhausts, and Sequestration by a Biomimetic Route Based on Enzymatic Catalysis - Current Status Gillian M. Bond (gbond@nmt.edu; 505-835-5653) Margaret-Gail Medina (magail@nmt.edu; 505-835-5229) New Mexico Tech 801 Leroy Socorro, NM 87801 John Stringer (jstringe@epri.com; 650-855-2472) Electric Power Research Institute 3412 Hillview Avenue Palo Alto, CA 94304 F. Arzum Simsek-Ege (fatma.a.simsek-egel@intel.com; 505-893-8694) Intel Corporation Albuquerque, New Mexico Introduction A range of carbon management strategies will have to be implemented if meaningful reductions in CO 2 emissions are to be achieved in response to concerns about global climate change. It is becoming increasingly clear that some form or forms of carbon

218

The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report  

SciTech Connect (OSTI)

Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim away from an advancing front of carbon dioxide-rich sea water (Thistle et al. 2007). This result demonstrates a second way that deep-sea meiofauna react negatively to carbon dioxide-rich sea water. In summary, we used in situ experiments to show that carbon dioxide-rich sea water triggers an escape response in some harpacticoid species. It kills most individuals of most harpacticoid species that do not flee, but a few species seem to be unaffected. Proposals to reduce global warming by sequestering industrial carbon dioxide in the deep ocean should take note of these environmental consequences when pros and cons are weighed.

Thistle, D

2008-09-30T23:59:59.000Z

219

Underground reconnaissance and environmental monitoring related to geologic CO2 sequestration studies at the DUSEL Facility, Homestake Mine, South Dakota  

SciTech Connect (OSTI)

Underground field reconnaissance was carried out in the Deep Underground Science and Engineering Laboratory (DUSEL) to identify potential locations for the planned geologic carbon sequestration experimental facility known as DUSEL CO{sub 2}. In addition, instrumentation for continuous environmental monitoring of temperature, pressure, and relative humidity was installed at various locations within the Homestake mine. The motivation for this work is the need to locate and design the DUSEL CO{sub 2} facility currently being planned to host CO{sub 2} and water flow and reaction experiments in long column pressure vessels over large vertical length scales. Review of existing geologic data and reconnaissance underground revealed numerous potential locations for vertical experimental flow columns, with limitations of existing vertical boreholes arising from limited vertical extent, poor continuity between drifts, and small diameter. Results from environmental monitoring over 46 days reveal spatial and temporal variations related to ventilation, weather, and ongoing dewatering of the mine.

Dobson, Patrick F.; Salve, Rohit

2009-11-20T23:59:59.000Z

220

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect (OSTI)

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

SciTech Connect (OSTI)

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30T23:59:59.000Z

222

Midwest Geological Sequestration Consortium--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

223

Quantifying Regional Economic Impacts of CO2 Intensity Targets in China  

E-Print Network [OSTI]

To address rising energy use and CO2 emissions, Chinas leadership has enacted energy and CO2 intensity

Zhang, Da

2012-09-01T23:59:59.000Z

224

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

225

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-04-01T23:59:59.000Z

226

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

227

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

228

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

229

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

230

Big Sky Regional Carbon Sequestration Partnership--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Leslie L. Schmidt Business Contact Montana State University-Bozeman 309 Montana Hall Bozeman, MT 59717-2470 406-994-2381 lschmidt@montana.edu Lee Spangler Technical Contact Montana State University-Bozeman P.O. Box 172460 Bozeman, MT 59717-2470 406-994-4399 spangler@montana.edu PARTNERS Battelle Pacific Northwest Division Center for Advanced Energy Studies Cimarex Energy Columbia University, Lamont-Doherty Earth Observatory Crow Tribe Big Sky Regional Carbon Sequestration

231

CO2 interaction with geomaterials.  

SciTech Connect (OSTI)

This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

2010-09-01T23:59:59.000Z

232

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

233

Regional evaluation of brine management for geologic carbon sequestration  

E-Print Network [OSTI]

Coal Bed Methane. US DOE, NETL. Ventyx, 2012. Velocity SuiteCarbon Sequestration. NETL. Earles, M.J. , Halog, A. , 2011.

Breunig, H.M.

2014-01-01T23:59:59.000Z

234

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

235

NETL: NATCARB - CO2 Storage Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

236

Carbon Sequestration 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon  Renewables  Nuclear  Fuel Switching  Demand Side  Supply Side  Capture & Store  Enhance Natural Sinks Reduce Carbon Intensity All options needed to:  Affordably meet energy demand  Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

237

DOE Announces More than $8.4 Million for Regional Sequestration Technology  

Broader source: Energy.gov (indexed) [DOE]

Announces More than $8.4 Million for Regional Sequestration Announces More than $8.4 Million for Regional Sequestration Technology Training Projects DOE Announces More than $8.4 Million for Regional Sequestration Technology Training Projects August 27, 2009 - 1:00pm Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced more than $8.4 million in funding to develop regional sequestration technology training projects. The seven projects will facilitate the transfer of knowledge and technologies required for site development, operations, and monitoring of commercial carbon capture and storage projects. Today's funding, which includes $6.9 million from DOE as part of the Recovery Act, will advance the United States in its position as the leader in technology for addressing climate change and for developing

238

Big Sky Carbon Sequestration Partnership--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Big Sky Carbon Sequestration Big Sky Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

239

CO2 Injection Begins in Illinois | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

240

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Innovations for Existing Plants CO2 Emissions Control RD&D Roadmap Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program Accomplishments DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap 2013 NETL CO2 Capture Technology Meeting Presentations DOE/NETL's Monthly Carbon Sequestration Newsletter Program Goals and Targets Pre-Combustion CO2 Control Post-Combustion CO2 Control Advanced Combustion CO2 Compression Other Systems Analysis Regulatory Drivers Reference Shelf Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. There are commercially available 1st-Generation CO2

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: CO2 Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

242

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network [OSTI]

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit...

Hernandez Arciniegas, Gonzalo

2006-10-30T23:59:59.000Z

243

DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon  

Broader source: Energy.gov (indexed) [DOE]

Partnership Completes Successful CO2 Injection Test in the Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone October 21, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership (MRCSP), one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest. Preliminary results indicate that the formation has good CO2 storage potential and could possibly serve as a repository for CO2 emissions captured from stationary sources in the region. Carbon capture and storage

244

Modeling of CO2 storage in aquifers  

E-Print Network [OSTI]

Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an...

santos,,,

245

Estimates of Global, Regional, and National Annual CO2 Emissions from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 (1995) 0 (1995) (click above to download the data!) Estimates of Global, Regional, and Naitonal Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950-1992 NDP-030/R6 Cover T. A. Boden G. Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee R. J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska Environmental Sciences Division Publication No. 4473 Date Published: December 1995 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research Budget Activity Number KP 05 02 00 0 Prepared by the Carbon Dioxide Information Analysis Center World Data Center-A for Atmospheric Trace Gases OAK RIDGE NATIONAL LABORATORY

246

081001 CA CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

247

NETL: NATCARB - CO2 Stationary Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary Sources Stationary Sources NATCARB CO2 Stationary Sources CO2 Stationary Source Emission Estimation Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) employed carbon dioxide (CO2) emissions estimate methodologies that are based on the most readily available representative data for that particular industry type within the respective partnership area. Carbon dioxide emissions data provided by databases (for example, eGRID, IEA GHG, or NATCARB) were the first choice for all of the RCSPs, both for identifying major CO2 stationary sources and for providing reliable emission estimations. Databases are considered to contain reliable and accurate data obtained

248

Sequestration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL's NETL's Carbon Capture and Sequestration Program Advances of Multi-pollutant and CO 2 Control Technologies Chicago, IL April 30, 2007 Timothy Fout Project Manager National Energy Technology Laboratory T. Fout, Apr. 2007 Outline for Presentation * NETL Overview * The Issue * The Solutions * What is Carbon Capture and Storage (CCS) * DOE's Sequestration Program Structure * CO 2 Capture Research Projects T. Fout, Apr. 2007 National Energy Technology Laboratory * Only DOE national lab dedicated to fossil energy - Fossil fuels provide 85% of U.S. energy supply * One lab, five locations, one management structure * 1,100 Federal and support-contractor employees * Research spans fundamental science to technology demonstrations West Virginia

249

Legal Implications of CO2 Ocean Storage  

E-Print Network [OSTI]

, ocean currents may prevent stagnation or accumulatioLegal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy #12;Introduction Ocean sequestration of CO2, a potentially significant technique to be used

250

Intro to Carbon Sequestration  

ScienceCinema (OSTI)

NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

None

2010-01-08T23:59:59.000Z

251

Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the re-fracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs  

Science Journals Connector (OSTI)

Abstract It is proposed that very low permeability formations are possible candidates for CO2 sequestration. Further, experimental studies have shown that shale formations have huge affinity to adsorb CO2, the order of 5 to 1 compared to the methane. Therefore, potential sequestration of CO2 in shale formations leading to enhanced gas recovery (EGR) will be a promising while challenging target for the oil and gas industry. On the other side, hydraulic re-fracturing treatment of shale gas wells is currently gaining more attention due to the poor performance of shale gas reservoirs after a couple years of production. Hence, investigating and comparing the performance of CO2-EGR with the re-fracturing treatment is essential for the future economic viability of depleted shale gas reservoirs. This paper presents a systematic comparison of the effect of these two processes on improving gas production performance of unconventional reservoirs, which is not well understood and has not been studied thoroughly in the literature. In this paper, a shale gas field data has been evaluated and incorporated in our simulations for both CO2-EGR and re-fracturing treatment purposes. Numerical simulations are performed using local grid refinement (LGR) in order to accurately model the non-linear pressure drop. Also, a dual-porosity/dual-permeability model is incorporated in the reservoir simulation model. Further, the uncertainties associated with inter-related set of geologic and engineering parameters are evaluated and quantified for re-fracturing treatment through several simulation runs. This comprehensive sensitivity study helps in understanding the key reservoir and fracture properties that affect the production performance and enhanced gas recovery in shale gas reservoirs. The results showed that re-fracturing treatment outperforms CO2-EGR due to the pronounced effect on cumulative methane gas production. Moreover, the sensitivity analysis showed that the characteristics of reservoir matrix including permeability and porosity are the most influential parameters for re-fracturing treatment. The findings of this study recommend hydraulic re-fracturing of shale reservoirs at first for enhancing gas production followed by CO2 injection at a later time. This work provides field operators with more insight into maximizing gas recovery from unconventional shale gas reservoirs using re-fracturing stimulation, CO2 injection, or a combination of both methods.

Mohammad O. Eshkalak; Emad W. Al-Shalabi; Alireza Sanaei; Umut Aybar; Kamy Sepehrnoori

2014-01-01T23:59:59.000Z

252

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect (OSTI)

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

253

Carbon Sequestration Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science July 2001 Focus Area Overview Presentation Mission and Scope Program Relationships Scientific Challenges Research Plans Facility Plans Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area New Projects Contribute to Sequestration Science Systems Integration Virtual Simulation of CO 2 Capture Technologies Cleanup Stream Gas Gasification Gasification MEA CO 2 Capture Facility Oxygen Membrane 3 km 2 inch tube 800m - 20 °C, 20 atm Liquid CO 2 , 100 tons ~1 kg CO 2 / s = 5 MW ^ CO 2 Coal Other Fuels Coal Other Fuels CO 2 Sequestration Aquifer H 2 O Flue gas H 2 O CH 4 CH 4 CO 2 Oil field Oil well Power plant CH 4 Coal - bed Aquiclude H 2 O CO 2 /N 2 CO 2 N 2 CO 2 CO 2 CO 2 CO 2 CO 2 Water Rock , 2 Coal Other Fuels Coal Other Fuels Combustor Oxygen Membrane Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area

254

Development of Novel CO2 Adsorbents for Capture of CO2 from Flue...  

Office of Scientific and Technical Information (OSTI)

Bloomfield Avenue, University of Hartford, West Hartford, Connecticut 06117-1599 ABSTRACT Carbon Sequestration, the capturing and storing of carbon dioxide (CO 2 ) emissions...

255

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Broader source: Energy.gov (indexed) [DOE]

Completes Large-Scale Carbon Sequestration Project Awards Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

256

DOE Completes Large-Scale Carbon Sequestration Project Awards | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the Department's seventh large-scale carbon sequestration project. Led by Montana State University-Bozeman, the Partnership will conduct a large-volume test in the Nugget Sandstone formation to demonstrate the ability of a geologic formation to safely, permanently and economically

257

Northern California CO2 Reduction Project  

SciTech Connect (OSTI)

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

258

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture  

SciTech Connect (OSTI)

The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project teams approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

Vahdat, Nader

2013-09-30T23:59:59.000Z

259

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect (OSTI)

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

260

Simulations of long column flow experiments related to geologic carbon sequestration: Effects of outer wall boundary condition on upward flow and formation of liquid CO2  

E-Print Network [OSTI]

did not occur. Rock-fluid heat transfer is minimized by thePruess K. On CO 2 fluid flow and heat transfer behavior inthe fluid could cool into the single digits if heat transfer

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

262

Novel CO2 - Philic Absorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Co Novel Co 2 - PhiliC AbsorbeNts Summary The ability to separate a high pressure mixture of CO 2 and H 2 such that a high pressure stream of CO 2 for sequestration and a high pressure stream of H 2 for energy are produced remains an elusive goal. This research has identified a class of compounds that melt in the presence of high pressure CO 2 , forming a liquid phase composed of roughly 50wt% CO 2 and 50wt% of the compound. Unlike conventional solvents that require substantial depressurization during regeneration to release a low pressure CO 2 stream, these novel compounds completely release the CO 2 at many hundreds of psia as the compound solidifies. This work will reveal whether one of more of these compounds can selectively remove CO 2 from a mixture

263

HigHligHts NETL News Release, "Carbon Sequestration Partner Initiates CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partner Initiates CO Carbon Sequestration Partner Initiates CO 2 Injection into Michigan Basin." The Midwest Regional Carbon Sequestration Partnership (MRCSP), one of the US Department of Energy's (DOE) Regional Carbon Sequestration Partnerships (RCSP), has commenced a two-month field test that will inject up to 10,000 metric tons of carbon dioxide (CO 2 ) into a saline formation some 3,200 to 3,500 feet below the Earth's surface. The Core Energy-owned, Antrim gas field location advantageously provides the project with a DTE Energy-owned gas processing plant that supplies the CO 2 ; an eight-mile CO 2 pipeline previously used for enhanced oil

264

Carbon Sequestration Atlas IV Video  

SciTech Connect (OSTI)

The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

Rodosta, Traci

2013-04-19T23:59:59.000Z

265

The Climate Impact of Past Changes in Halocarbons and CO2 in the Tropical UTLS Region  

Science Journals Connector (OSTI)

A chemistryclimate model coupled to an ocean model is used to compare the climate impact of past (19602010) changes in concentrations of halocarbons with those of CO2 in the tropical upper troposphere and lower stratosphere (UTLS). The ...

Charles McLandress; Theodore G. Shepherd; M. Catherine Reader; David A. Plummer; Keith P. Shine

2014-12-01T23:59:59.000Z

266

System-level modeling for geological storage of CO2  

SciTech Connect (OSTI)

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

267

Plains CO2 Reduction Partnership--Development Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development Phase Development Phase Background As part of a comprehensive effort to assess options for sustainable energy systems, the U.S. Department of Energy has selected seven regional partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The partnerships are

268

ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW  

SciTech Connect (OSTI)

The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

Carl R. Bozzuto; Nsakala ya Nsakala

2000-01-31T23:59:59.000Z

269

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm Peak Laboratory (SPL), near Steamboat Springs, Colorado  

E-Print Network [OSTI]

A Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) Panel 2. Storm in the Rocky Mountains to improve our understanding of regional carbon fluxes and to fill key gaps in the North Sep. 16, 2005. Large increases and a relatively flat profile at night indicate pooling of CO2 respired

Stephens, Britton B.

270

NETL: News Release - Critical Carbon Sequestration Assessment Begins:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 12, 2006 September 12, 2006 Critical Carbon Sequestration Assessment Begins: Midwest Partnership Looks at Appalachian Basin for Safe Storage Sites Seismic Surveys to Determine Viability of Rock Formations for CO2 Storage WASHINGTON, DC - Tapping into rock formations at sites thousands of feet deep, a government-industry team is using seismic testing to help determine whether those sites can serve as reservoirs to safely store carbon dioxide (CO2), a major greenhouse gas. MORE INFO WATCH: NETL Project Manager Charlie Byrer discuss this important project Learn more about DOE's Carbon Sequestration Regional Partnerships Midwest Regional Carbon Sequestration Partnership web site The U.S. Department of Energy's National Energy Technology Laboratory is sponsoring the tests in a program to develop carbon sequestration

271

W.A. Parish Post-Combustion CO2 Capture and Sequestration Project, Final Environmental Impact Statement (DOE/EIS-0473)  

Broader source: Energy.gov (indexed) [DOE]

NRG W.A. PARISH PCCS PROJECT NRG W.A. PARISH PCCS PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT APPENDIX H. BEG MODELING REPORT APPENDIX H BEG MODELING REPORT DOE/EIS-0473 NRG W.A. PARISH PCCS PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT APPENDIX H. BEG MODELING REPORT INTENTIONALLY LEFT BLANK 1 Reservoir modeling and simulation for estimating migration extents of injectate-CO 2 in support of West Ranch oilfield NEPA/EIS Gulf Coast Carbon Center, Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin May 4, 2012 Summary It is anticipated that anthropogenic carbon dioxide (CO2-A) will be injected into the deep (5,000-6,000 ft below sea level) subsurface for enhanced oil recovery (EOR) at the West Ranch oilfield beginning in early 2015. The purpose of this report is to present reservoir modeling and simulation

272

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

273

Small-Scale Carbon Sequestration Field Test Yields Significant Lessons  

Broader source: Energy.gov (indexed) [DOE]

Small-Scale Carbon Sequestration Field Test Yields Significant Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm Addthis Washington, DC - The Midwest Regional Carbon Sequestration Partnership, one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon capture and storage technologies, has completed a preliminary geologic characterization and sequestration field test at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio. The project provided significant geologic understanding and "lessons learned" from a region of the Appalachian Basin with few existing deep well penetrations for geologic characterization. The initial targets for the geologic storage of carbon dioxide (CO2) at the

274

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Analysis of Building Energy Costs and CO 2 Emissions WeiAnalysis of Building Energy Costs and CO 2 Emissions Weiwhich minimizes building energy cost or CO 2 emissions, or a

Feng, Wei

2013-01-01T23:59:59.000Z

275

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions November 16, 2011 - 12:00pm Addthis Washington, DC - Geologic capacity exists to permanently store hundreds of years of regional carbon dioxide (CO2) emissions in nine states stretching from Indiana to New Jersey, according to injection field tests conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP). MRCSP's just-released Phase II final report indicates the region has likely total storage of 245.5 billion metric tons of CO2, mostly in deep saline rock formations, a large capacity compared to present day emissions. While distributed sources such as agriculture, transportation, and home heating account for a significant amount of CO2 emissions in the MRCSP

276

Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration  

SciTech Connect (OSTI)

A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Youngs modulus, and Poissons ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. The injection pressure and ground surface displacement are often monitored for injection well safety, and are believed can partially reflect the risk of fault reactivation and seismicity. Based on the reduced order model and response surface, the input parameters can be screened for control the risk of induced seismicity. The uncertainty of the subsurface structure properties cause the numerical simulation based on a single or a few samples does not accurately estimate the geomechanical response in the actual injection site. Probability of risk can be used to evaluate and predict the risk of injection when there are great uncertainty in the subsurface properties and operation conditions.

Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

2013-08-12T23:59:59.000Z

277

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Broader source: Energy.gov (indexed) [DOE]

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

278

CO2ReMoVe - Progress Report  

E-Print Network [OSTI]

Seismic characterization of thin beds containing patchy carbon dioxide-brine .... different fluids involved in the CO2 sequestration procedure at variable formation

Danilo R. Velis

279

Demonstration of a Novel, Integrated, Multi-Scale Procedure for High-Resolution 3D Reservoir Characterization and Improved CO2-EOR/Sequestration Management, SACROC Unit  

SciTech Connect (OSTI)

The primary goal of this project was to demonstrate a new and novel approach for high resolution, 3D reservoir characterization that can enable better management of CO{sub 2} enhanced oil recovery (EOR) projects and, looking to the future, carbon sequestration projects. The approach adopted has been the subject of previous research by the DOE and others, and relies primarily upon data-mining and advanced pattern recognition approaches. This approach honors all reservoir characterization data collected, but accepts that our understanding of how these measurements relate to the information of most interest, such as how porosity and permeability vary over a reservoir volume, is imperfect. Ideally the data needed for such an approach includes surface seismic to provide the greatest amount of data over the entire reservoir volume of interest, crosswell seismic to fill the resolution gap between surface seismic and wellbore-scale measurements, geophysical well logs to provide the vertical resolution sought, and core data to provide the tie to the information of most interest. These data are combined via a series of one or more relational models to enable, in its most successful application, the prediction of porosity and permeability on a vertical resolution similar to logs at each surface seismic trace location. In this project, the procedure was applied to the giant (and highly complex) SACROC unit of the Permian basin in West Texas, one of the world's largest CO{sub 2}-EOR projects and a potentially world-class geologic sequestration site. Due to operational scheduling considerations on the part of the operator of the field, the crosswell data was not obtained during the period of project performance (it is currently being collected however as part of another DOE project). This compromised the utility of the surface seismic data for the project due to the resolution gap between it and the geophysical well logs. An alternative approach was adopted that utilized a relational model to predict porosity and permeability profiles from well logs at each well location, and a 3D geostatistical variogram to generate the reservoir characterization over the reservoir volume of interest. A reservoir simulation model was built based upon this characterization and history-matched without making significant changes to it, thus validating the procedure. While not the same procedure as originally planned, the procedure ultimately employed proved successful and demonstrated that the general concepts proposed (i.e., data mining and advanced pattern recognition methods) have the flexibility to achieve the reservoir characterization objectives sought even with imperfect or incomplete data.

Scott R. Reeves

2007-09-30T23:59:59.000Z

280

Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis  

Science Journals Connector (OSTI)

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic airsea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is ...

Tilla Roy; Laurent Bopp; Marion Gehlen; Birgit Schneider; Patricia Cadule; Thomas L. Frlicher; Joachim Segschneider; Jerry Tjiputra; Christoph Heinze; Fortunat Joos

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Plains CO2 Reduction Partnership--Validation Phase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation Phase Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

282

CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

283

Regional-Scale Estimation of Electric Power and Power Plant CO2 Emissions Using Defense Meteorological Satellite Program Operational Linescan System Nighttime Satellite Data  

Science Journals Connector (OSTI)

For estimation, the relationship between Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) annual nighttime stable light product (NSL) for 2006 and statistical data on power generation, power consumption, and power plant CO2 emissions in 10 electric power supply regions of Japan was investigated. ... There are similar linear correlations of electricity consumption for lighting and total electricity consumption at the regional (e.g., state and province) level, but possibly not for CO2 emissions because of regional concentrations of electricity from renewable energy and nuclear power plants, which produce low CO2 emissions. ...

Husi Letu; Takashi Y. Nakajima; Fumihiko Nishio

2014-04-24T23:59:59.000Z

284

Regional Partnerships | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regional Regional Partnerships Regional Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent of industrial CO2 emissions; 96 percent of the total land mass; and essentially all the geologic sequestration sites in the U.S. potentially available for carbon storage. We launched this initiative in 2003. It's being completed in phases (I, II, and III) and forms the centerpiece of national efforts to develop the

285

Alabama Project Testing Potential for Combining CO2 Storage with Enhanced  

Broader source: Energy.gov (indexed) [DOE]

Alabama Project Testing Potential for Combining CO2 Storage with Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast Regional Carbon Sequestration Partnership (SECARB) are injecting CO2 into a coalbed methane well in Tuscaloosa County to assess the capability of mature coalbed methane reservoirs to receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the

286

Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO2 sequestration in Kansas  

Science Journals Connector (OSTI)

...and our associated quality of life (lighting, transportation, communications, heat...Energy , 2005). Recent concern with greenhouse gas emissions and their potential effect...Information Agency, 2003, Emissions of greenhouse gases in the United States 2002: Report...

Timothy R. Carr; Daniel F. Merriam; Jeremy D. Bartley

287

NETL: Gasifipedia - Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

288

Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Mineral Carbonation. Abstract: Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration...

289

geologic-sequestration | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

290

Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification  

E-Print Network [OSTI]

electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gas two-thirds), CO2, water vapor, oxygen, and minor components such as carbon monoxide, nitrogen oxides

291

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network [OSTI]

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

292

New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential |  

Broader source: Energy.gov (indexed) [DOE]

Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential New Carbon Storage Atlas Shows Hundreds of Years of CO2 Storage Potential December 21, 2012 - 9:58am Addthis Atlas IV was created by the National Energy Technology Laboratory (NETL), and includes input from the more than 400 organizations in 43 states and four Canadian provinces that make up the Department’s seven Regional Carbon Sequestration Partnerships (as shown above). See this map here. Atlas IV was created by the National Energy Technology Laboratory (NETL), and includes input from the more than 400 organizations in 43 states and four Canadian provinces that make up the Department's seven Regional Carbon Sequestration Partnerships (as shown above). See this map here.

293

Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment  

SciTech Connect (OSTI)

Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

2006-06-30T23:59:59.000Z

294

INVESTIGATIONS ON THE IMPACTS OF LAND-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES  

E-Print Network [OSTI]

REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE By Zhao Li RECOMMENDED-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE A THESIS Presented to the Faculty of the University of Alaska Fairbanks In Partial

Moelders, Nicole

295

2010 Carbon Sequestration Atlas of the United States and Canada: Third  

Open Energy Info (EERE)

2010 Carbon Sequestration Atlas of the United States and Canada: Third 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasIII/2010atlasII Equivalent URI: cleanenergysolutions.org/content/2010-carbon-sequestration-atlas-unite Language: English Policies: Deployment Programs DeploymentPrograms: Public-Private Partnerships This atlas updates the carbon dioxide (CO2) sequestration potential for the United States and Canada, and it provides updated information on field activities of the regional carbon sequestration partnerships (RCSPs). In

296

CO₂ Sequestration Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Carbon Sequestration Carbon Sequestration 2011-01-31-Sequestration1.jpg Why it Matters: Underground carbon sequestration is a technique in which one of the primary greenhouse gases, carbon dioxide (CO2), is removed from the atmosphere by injecting it into subsurface salt acquifers. This is a key potential global warming mitigation strategy. Key Challenges: A variety of geochemical processes can affect the mechanism of CO2 dissolution and the volume of CO2 that can be stored - the key result determining whether the strategy is effective or not. Simulation is the only way to study the detailed effects of geological flow, gravitational instability, rock heterogeneity, and brine salinity. These multicomponent, multiphase simulations must be carried out at high

297

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the (more)

Pang, Yu

2013-01-01T23:59:59.000Z

298

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Broader source: Energy.gov (indexed) [DOE]

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

299

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

300

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

Analysis of Building Energy Costs and CO 2 Emissions, ACEEEthe commercial building energy cost optimization results andU.S. cities. The average energy cost savings of the optimal

Mendes, Goncalo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microbially induced magnesium carbonation reactions as a strategy for carbon sequestration in ultramafic mine tailings.  

E-Print Network [OSTI]

??The atmospheric carbon dioxide (CO2) concentration has increased due to anthropogenic fossil fuel combustion, causing higher global temperatures and other negative environmental effects. CO2 sequestration (more)

McCutcheon, Jenine

2013-01-01T23:59:59.000Z

302

Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration  

Broader source: Energy.gov (indexed) [DOE]

66.7 Million for Large-Scale Carbon 66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site WASHINGTON, DC - Following closely on the heels of three recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded $66.7 million to the Midwest Geological Sequestration Consortium (MGSC) for the Department's fourth large-scale carbon sequestration project. The Partnership led by the Illinois State Geological Survey will conduct large volume tests in the Illinois Basin to demonstrate the ability of a geologic formation to

303

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

SciTech Connect (OSTI)

The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

2014-04-09T23:59:59.000Z

304

DOE Manual Studies Terrestrial Carbon Sequestration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manual Studies Terrestrial Carbon Sequestration Manual Studies Terrestrial Carbon Sequestration DOE Manual Studies Terrestrial Carbon Sequestration January 18, 2011 - 12:00pm Addthis Washington, DC - There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage (CCS) "best practices" manual issued by the U.S. Department of Energy. Best Practices for Terrestrial Sequestration of Carbon Dioxide details the most suitable operational approaches and techniques for terrestrial sequestration, a carbon dioxide (CO2) mitigation strategy capable of removing CO2 already in the air. Consequently, terrestrial sequestration, which uses photosynthesis - part of the natural carbon cycle - to create

305

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

306

Carbon sequestration effects of shrublands in Three-North Shelterbelt Forest region, China  

Science Journals Connector (OSTI)

Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this regi...

Wenhui Liu; Jiaojun Zhu; Quanquan Jia; Xiao Zheng

2014-08-01T23:59:59.000Z

307

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

308

Long-term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China  

E-Print Network [OSTI]

Predicted CO 2 enhanced coalbed methane recovery and CO 22 sequestration in coalbed methane (CBM) zone are Qinghai,

Zhang, Wei

2009-01-01T23:59:59.000Z

309

Carbon Sequestration and the Restoration of Land Health  

Science Journals Connector (OSTI)

Carbon sequestration, the conversion of greenhouse gas CO2...toorganic matter, offers a powerful tool with which to combat climate change. The enlargement of carbon sinks stored in soil and biota is...2. Carbon sequestration

Andres Arnalds

2004-08-01T23:59:59.000Z

310

Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)  

Science Journals Connector (OSTI)

Abstract In recent decades, the worldwide demand for energy has been increasing, with an associated rise in CO2 emissions being observed. In such conditions, the development of low carbon energy technologies and strategic energy-mix plans is necessary, and an evaluation of the underground energy potential may be a useful step in developing these plans. This evaluation involves the synergic development of such technologies as: coal combustion in combination with CO2 geological storage (CCS), natural gas geological storage (CH4-GS) and geothermal energy (GE), especially in densely populated countries, such as Italy. Currently, 13.7% of Italian energy demand is met by foreign providers. Most of the Italian regions have energy deficits, and the Latium Region (in Central Italy) represents one of those in the worst conditions. This work proposes a methodology to develop energy-mix scenarios, starting in Latium, to identify areas that are potentially suitable for CCS, CH4-GS and GE. Six geothermal systems and one CO2/CH4 storage potential area were identified. Three main scenarios are proposed: (A) a combination of CH4-GS with methane as cushion gas and GE; (B) a combination of CH4-GS with CO2 as cushion gas and GE; (C) a combination of CCS and GE. Scenario A results in a reduction of the regional energy deficit that ranges from 21.8% to 45.6%. In Scenario B, the regional energy deficit reduction ranges from 30.8% to 80.7% and the CO2 emissions reduction ranges from 1.4% to 5.6%, supposing an injection of 20years. Scenario C shows a decrease in the regional energy deficit that ranges from 15.9% to 22.1%, while the CO2 emissions reduction ranges from 7.1% to 31.3%, over the same time period. The proposed scenarios may be useful not only for the scientific community but also for policymakers as they identify the most reliable energetic strategies. Thus, this case study could be extended to the entire Italian territory with the ultimate goal of reaching energy autonomy in each region.

M. Procesi; B. Cantucci; M. Buttinelli; G. Armezzani; F. Quattrocchi; E. Boschi

2013-01-01T23:59:59.000Z

311

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

312

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

Looping Technology Description: Amine scrubbing carboncarbon capture using absorption technologies Calera process CO 2 sequestration in concrete curing technology Carbonate looping

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

313

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Nez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

314

DOE Manual Studies 11 Major CO2 Geologic Storage Formations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manual Studies 11 Major CO2 Geologic Storage Formations Manual Studies 11 Major CO2 Geologic Storage Formations DOE Manual Studies 11 Major CO2 Geologic Storage Formations October 5, 2010 - 1:00pm Addthis Washington, DC - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact onCCS Opportunities in the United States [click on imageto link to the publication]Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) developed the manual to better understand the characteristics of geologic formations

315

Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.  

E-Print Network [OSTI]

, Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

Boyer, Edmond

316

Oxy-coal combustion: stability of coaxial pulverized coal flames in O2/CO2 environments.  

E-Print Network [OSTI]

??Oxy-coal combustion, in which air is replaced by an O2/ CO2 mixture, is one of the few technologies that may allow CO2 capture and sequestration (more)

Zhang, Jingwei

2010-01-01T23:59:59.000Z

317

Constitutional Implications of Regional CO2 Cap-and-Trade Programs: The Northeast Regional Greenhouse Gas Initiative as a Case in Point  

E-Print Network [OSTI]

on the purchase of out-of- RGGI electricity generating CO 2CONSTITUTIONAL IMPLICATIONS OF RGGI "(i) to study state andGas Initiative, About RGGI, http://www.rggi. org/about (last

Funk, William

2009-01-01T23:59:59.000Z

318

The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions  

E-Print Network [OSTI]

may prefer renewable energy policies to reduce CO2 emissionsmay prefer renewable energy policies to reduce CO 2www.dsireusa.org Renewable Energy Policy Network, http://

Accordino, Megan H.; Rajagopal, Deepak

2012-01-01T23:59:59.000Z

319

Long-time evolution of sequestered CO$_2$ in porous media  

E-Print Network [OSTI]

CO$_2$ sequestration in subsurface reservoirs is important for limiting atmospheric CO$_2$ concentrations. However, a complete physical picture able to predict the structure developing within the porous medium is lacking. We investigate theoretically reactive transport in the long-time evolution of carbon in the brine-rock environment. As CO$_2$ is injected into a brine-rock environment, a carbonate-rich region is created amid brine. Within the carbonate-rich region minerals dissolve and migrate from regions of high concentration to low concentration, along with other dissolved carbonate species. This causes mineral precipitation at the interface between the two regions. We argue that precipitation in a small layer reduces diffusivity, and eventually causes mechanical trapping of the CO$_2$. Consequently, only a small fraction of the CO$_2$ is converted to solid mineral; the remainder either dissolves in water or is trapped in its original form. We also study the case of a pure CO$_2$ bubble surrounded by bri...

Cohen, Yossi

2014-01-01T23:59:59.000Z

320

NETL Sequestration Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial Set of Working Hypotheses Concerning Some Chemical and Initial Set of Working Hypotheses Concerning Some Chemical and Physical Phenomena That Occur When CO2 Is Injected Into a Coal Bed Curt M. White, National Energy Technology Laboratory The presentation will describe some of the technological impediments to performing sequestration of CO2 in deep unmineable coalbeds with concomitant enhanced coalbed methane recovery on a wide scale. The impediments include: 1) developing techniques to handle millions of gallons of produced water; 2) a lack of knowledge concerning the methane content of deep unmineable coal seams; and 3) a lack of understanding of some of the chemical and physical phenomena that occur when CO2 is injected into a coalbed. This includes a lack of knowledge concerning the flow of CO2 in coal, the uncertain

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Terrestrial Sequestration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TerresTrial sequesTraTion Program TerresTrial sequesTraTion Program Capture and Storage of Carbon in Terrestrial Ecosystems Background Clean, affordable energy is essential for U.S. prosperity and security in the 21st century. More than half of the electricity currently generated in the United States comes from coal-fired boilers, and there is little indication that this percentage will diminish through 2020 and beyond. In addition, the use of coal for electricity generation is projected to more than double in developing nations by 2020. This ever growing demand for fossil-fuel-based power and the consequential rise in atmospheric carbon dioxide (CO 2 ) concentrations requires innovative methods to capture and store CO 2 . Terrestrial ecosystems, which include both soil and vegetation, are widely recognized

322

Gulf of Mexico Miocene CO2 Site Characterization Mega Transect  

SciTech Connect (OSTI)

This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration leads and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format Atlas of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

Meckel, Timothy; Trevino, Ramon

2014-09-30T23:59:59.000Z

323

Reductive Sequestration of Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reductive Sequestration of Carbon Dioxide Reductive Sequestration of Carbon Dioxide T. Mill (ted.mill@sri.com; 650-859-3605) SRI, PS273 333 Ravenswood Menlo Park, CA 94025 D. Ross (dsross3@yahoo.com; 650-327-3842) U.S. Geological Survey, Bldg 15 MS 999 345 Middlefield Rd. Menlo Park, CA 94025 Introduction The United States currently meets 80% of its energy needs by burning fossil fuels to form CO 2 . The combustion-based production of CO 2 has evolved into a major environmental challenge that extends beyond national borders and the issue has become as politically charged as it is technologically demanding. Whereas CO 2 levels in the atmosphere had remained stable over the 10,000 years preceeding the industrial revolution, that event initiated rapid growth in CO 2 levels over the past 150 years (Stevens, 2000). The resulting accelerating accumulation of

324

Weyburn Carbon Dioxide Sequestration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

325

Leakage Risk Assessment of CO2 Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois  

E-Print Network [OSTI]

of CO 2 associated with carbon capture & storage projects:2 transportation for carbon capture and storage: sublimationin Gerard, W.A. , ed. , Carbon Capture and Sequestration

Mazzoldi, A.

2014-01-01T23:59:59.000Z

326

Investigation of thermal effect on the evolution of coal permeability under the influence of CO2 injection.  

E-Print Network [OSTI]

??[Truncated abstract] CO2 is normally injected at low or high temperatures into the targeted coal seams for geological sequestration. Under these injection conditions, coal matrix (more)

Qu, Hongyan

2013-01-01T23:59:59.000Z

327

Microsoft Word - TURBO EXPO CO2 draft  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MAN TURBO MAN TURBO CO2 Compression Challenges presented on May 15, 2007 at the ASME Turbo Expo, Montreal, CO2 Compression Panel By Pierre L. Bovon, MAN TURBO Calgary (pierre.bovon@ca.manturbo.com, tel. +403 233 7151) And Dr. Rolf Habel, MAN TURBO Berlin (rolf.habel@de.manturbo.com, tel. +49 304 301 2224) CO2 has been used for a very long time, for instance in the food industry, and most applications have required it to be compressed. For Sequestration or Enhanced Oil Recovery, the traditional approach to CO2 compression has been to use high-speed reciprocating compressors. The main reasons are: - Flexibility with regards to pressure ratio, and capacity (if equipped with variable speed drive or valve unloaders). - Short delivery times, since many recip. packagers dispose of a selection of frames

328

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Broader source: Energy.gov (indexed) [DOE]

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

329

Carbon Sequestration via Mineral Carbonation: Overview and Assessment  

E-Print Network [OSTI]

1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

330

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford  

E-Print Network [OSTI]

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

Keller, Klaus

331

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems  

E-Print Network [OSTI]

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 ? uptake -- CO2

Roegner, Matthias

332

Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations a novel approach for expanding geothermal energy utilization.  

E-Print Network [OSTI]

??This thesis research presents a new method to harness geothermal energy by combining it with geologic carbon dioxide (CO2) sequestration. CO2 is injected into deep, (more)

Randolph, Jimmy Bryan

2011-01-01T23:59:59.000Z

333

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Broader source: Energy.gov (indexed) [DOE]

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

334

Modeling the resolution of inexpensive, novel non-seismic geophysical monitoring tools to monitor CO2 injection into coal beds  

E-Print Network [OSTI]

of enhanced oil recovery (EOR) projects showed them to bestudy of proposed CO 2 EOR/sequestration of the SchraderAbbreviations CBM CO 2 Ex Ey EM EOR Im ?Gal NIST Re Rx S Tx

Gasperikova, E.

2010-01-01T23:59:59.000Z

335

Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling  

SciTech Connect (OSTI)

Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in predicted weekly average regional latent heat fluxes were smaller than for NEE, but larger than for either ecosystem respiration or assimilation alone. However, spatial and diurnal variations of hundreds of W m{sup -2} in latent heat fluxes were common. We conclude that, in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy fluxes.

Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

2009-08-15T23:59:59.000Z

336

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

337

Experimental Study of Carbon Sequestration Reactions Controlled  

E-Print Network [OSTI]

Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

Demouchy, Sylvie

338

Environmental Enterprise: Carbon Sequestration using Texaco Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Enterprise: Carbon Sequestration using Texaco Carbon Sequestration using Texaco Gasification Process Gasification Process First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration May 16, 2001 May 16, 2001 Jeff Seabright Jeff Seabright Texaco Inc. Texaco Inc. Presentation Highlights Presentation Highlights * * Texaco and climate change Texaco and climate change * * Introduction to gasification Introduction to gasification * * Environmental benefits of gasification Environmental benefits of gasification * * CO CO 2 2 capture & sequestration capture & sequestration * * Challenges going forward Challenges going forward Texaco's Climate Change Policy Texaco's Climate Change Policy * * Know enough to take action now Know enough to take action now

339

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network [OSTI]

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

340

Production of Hydrogen and Electricity from Coal with CO2 Capture  

E-Print Network [OSTI]

fuels · H2 (and CO2) distribution · H2 utilization (e.g. fuel cells, combustion) · Princeton energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft PowerPoint - Sequestration Briefing - October-07.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration R&D Overview Carbon Sequestration R&D Overview Office of Fossil Energy Carbon Sequestration Briefing October 2007 Sean Plasynski, PhD Sequestration Technology Manager Office of Fossil Energy R&D Focus is on Coal & Electricity Oil 43% Oil 43% Coal 36% Coal 36% Natural Gas 21% Electricity 39% Electricity 39% Other 30% Other 30% Transportation 32% Transportation 32% United States CO2 Emissions 36% Emissions From Coal 39% Emissions From Electricity Office of Fossil Energy R&D Focus is on CO 2 Methane 9% Nitrous Oxide 5% HFCs, PFCs, SF 6 2% CO 2 from Energy 81% Other CO 2 3% "EIA Emissions of Greenhouse Gases in the U.S.: 2000" United States Greenhouse Gas Emissions (Equivalent Global Warming Basis) Office of Fossil Energy Annual CO 2 Emissions Extremely Large 6,300,000,000 Carbon Dioxide (CO

342

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Sink Enhancements: Storage and Sink Enhancements: Developing Comparable Economics Richard G. Rhudy (rrhudy@epri.com; 650-855-2421) Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303-0813 Bert R. Bock (brbock@tva.gov; 256-386-3095) David E. Nichols (denichols@tva.gov; 256-386-2489) Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Abstract One of the major difficulties in evaluating CO 2 sequestration technologies and practices, both geologic storage of captured CO 2 and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This paper reports on a project that compares the economics of major technologies and practices under development for CO 2 sequestration, including captured CO 2 storage options, such as active oil reservoirs, depleted oil and gas

343

A field study combined with modeling investigation demonstrates that the organization of transport by mountain terrain strongly affects the regional CO2  

E-Print Network [OSTI]

,b), and Moore et al. (2008) showed that 1) an aggrading Rocky Mountain subalpine forest is a net annual CO2 sink- A MULTISCALE AND MULTIDISCIPLINARY INVESTIGATION OF ECOSYSTEM­ATMOSPHERE CO2 EXCHANGE OVER THE ROCKY MOUNTAINS/sinks associated with plant distributions over heterogeneous surfaces, regardless of whether the surface is flat

344

Biominetic Membrane for Co2 Capture from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

345

Carbon sequestration in soils of cool temperate regions (introductory and editorial)  

Science Journals Connector (OSTI)

The cool temperate climate, dominance of perennial land use, and relatively large proportion of peat and organically rich soils, make the northern European regions to have a large potential of soil organic carbon

Bal Ram Singh

2008-06-01T23:59:59.000Z

346

BNL | CO2 Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Laser CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on fast optical switching from the output of a conventional CO2 laser oscillator, and a chain of high-pressure laser amplifiers. It starts with a wavelength converter wherein a near-IR picosecond solid-state laser with l»1 μm produces a mid-IR 10-μm pulse. This process employs two methods; semiconductor optical switching, and the Kerr effect. First, we combine the outputs from a multi-nanosecond CO2 laser oscillator with a picosecond Nd:YAG laser on a germanium Brewster-plate to produce an ~200 ps, 10μm pulse by semiconductor optical switching. Co-propagating this pulse with a Nd:YAG's 2nd harmonic in a

347

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network [OSTI]

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

348

Dual-phase membrane for High temperature CO2 separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jerry Y.S. Lin Jerry Y.S. Lin Chemical Engineering Arizona State University Tempe, AZ 85287 Jerry.lin@asu.edu Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor 2 Background 3 CO 2 Capture Methods and Efficiency Improvement Coal, Natural gas, Biomass CO 2 separation Power plant CO 2 compression, conditioning for sequestration Gasification Reforming Shift CO 2 Separation Power plant Power plant Air separation N 2 /O 2 CO 2 Post- combustion H 2 /CO H 2 /CO H 2 CO 2 H 2 O/N 2 /O 2 CO 2 H 2 Pre- combustion Air N 2 O 2 or O 2 /CO 2 CO 2 Oxyfuel Combustion Air separation Air Air separation Air Air separation Air Air Air Air Air separation Air Air separation Air N 2 Air separation Air O 2 or O 2 /CO 2 N 2 Air separation Air N 2 Air O 2 or O 2 /CO 2 N 2 Air Air separation N 2 Air 4 Water-Gas-Shift Reaction and Membrane Reactor Reforming

349

Strategy for prevention of sequestered CO2 seepage from CBM formations.  

E-Print Network [OSTI]

??This study introduces a new strategy for the prevention of post-sequestration carbon dioxide (CO2) seepage to the surface from CBM (coalbed methane) formations that is (more)

Tovar Torrealba, Miguel Angel.

2006-01-01T23:59:59.000Z

350

An input-output analysis of regional CO2 emissions from the service sector: an application to Liaoning Province of China  

Science Journals Connector (OSTI)

Based on the input-output tables of Liaoning Province of China for 2007, this paper calculates direct and indirect CO2 emissions from the service sector. Total CO2 emissions of the service sector are decomposed into several effects, of which the spill-over and feedback effects are further decomposed into two parts: Energy Spill-over Effect (ESE) and Remnant Spill-over Effect (RSE); energy feedback effect and remnant feedback effect. The research shows indirect CO2 emissions derived from final demand of the service sector are far more than direct CO2 emissions, the main cause of which is the spill-over effect due to the strong pull effect of the service sector on other sectors. A further decomposition into the ESE reveals that the electricity and heating sector accounts for the largest percentage, with the coal-mining and washing sector second.

Yanqing Xia

2012-01-01T23:59:59.000Z

351

NETL: News Release - DOE Manual Studies 11 Major CO2 Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2010 5, 2010 DOE Manual Studies 11 Major CO2 Geologic Storage Formations Information in Comprehensive Report Important to Carbon Capture and Storage Research Washington, D.C. - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States [click on image to link to the publication] Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's

352

Decarbonization and Sequestration for Mitigating Global Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECARBONIZATION AND SEQUESTRATION FOR DECARBONIZATION AND SEQUESTRATION FOR MITIGATING GLOBAL WARMING M. Steinberg (msteinbe@bnl.gov); 631-344-3036 Brookhaven National Laboratory 12 South Upton Street Upton, NY 11973-5000, USA ABSTRACT Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO

353

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

354

Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage  

E-Print Network [OSTI]

trapping mechanism. In the petroleum industry, compositional reservoir simu- lators use EOS thermodynamic Leonenko a a Department of Chemical and Petroleum Engineering, University of Calgary, Canada b Department of Petroleum Engineering, Kuwait University, Kuwait 1. Introduction The sequestration of anthropogenic CO2

Santos, Juan

355

carbon sequestration via direct injection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEQUESTRATION VIA DIRECT INJECTION SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams INTRODUCTION The build-up of carbon dioxide (CO 2 ) and other greenhouse gases in the Earth's atmosphere has caused concern about possible global climate change. As a result, international negotiations have produced the Framework Convention on Climate Change (FCCC), completed during the 1992 Earth Summit in Rio de Janeiro. The treaty, which the United States has ratified, calls for the "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system." The primary greenhouse gas is CO 2 , which is estimated to contribute to over two-thirds of any climate change. The primary source of CO

356

Impacts of Geochemical Reactions on Geologic Carbon Sequestration  

Science Journals Connector (OSTI)

In the face of increasing energy demands, geologic CO2 sequestration (GCS) is a promising option to mitigate the adverse effects of climate change. To ensure the environmental sustainability of this option, we must understand the rates and mechanisms of ...

Young-Shin Jun; Daniel E. Giammar; Charles J. Werth

2012-11-06T23:59:59.000Z

357

Carbon Sequestration Kinetic and Storage Capacity of Ultramafic Mining Waste  

Science Journals Connector (OSTI)

Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO2 sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-...

Julie Pronost; Georges Beaudoin; Joniel Tremblay; Faal Larachi; Jose Duchesne; Rjean Hbert; Marc Constantin

2011-09-15T23:59:59.000Z

358

Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers  

SciTech Connect (OSTI)

In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

2014-08-01T23:59:59.000Z

359

Soil: Carbon Sequestration in Agricultural Systems  

Science Journals Connector (OSTI)

Abstract Soil carbon sequestration can contribute to greenhouse gas (GHG) mitigation by removing CO2 from the atmosphere and at the same time improving soil health and sustainability. This article outlines the basic principles and controlling mechanisms involved in soil carbon sequestration and reviews how improved agricultural practices impact soil carbon stocks, based on data from long-term field experiments and other sources. It concludes with a section outlining challenges and opportunities for implementation of GHG mitigation strategies involving soil carbon sequestration, summarizing key science and policy-related issues.

K. Paustian

2014-01-01T23:59:59.000Z

360

CO2 maritime transportation  

Science Journals Connector (OSTI)

The objective of this study is to describe the complete transport chain of CO2 between capture and storage including a ship transport. This last one is composed by the following steps: Shore terminal including the liquefaction, temporary storage and CO2 loading. Ship with a capacity of 30,000m3. On or off shore terminal including an unloading system, temporary storage and export towards the final storage. Between all the possible thermodynamic states, the liquid one is most relevant two options are compared in the study (?50C, 7bar) and (?30C, 15bar). The ship has an autonomy of 6 days, is able to cover 1000km with a cargo of 2.5Mt/year. Several scenarios are studied varying the geographical position of the CO2 source, the number of harbours and the way the CO2 is finally stored. Depending on the option, the transport cost varies from 24 to 32/tCO2. This study confirms the conclusion of a previous study supported by ADEME, the cost transport is not negligible regarding the capture one when ships are considered. Transport by ship becomes a more economical option compared with an off shore pipeline when the distance exceeds 350km and with an onshore pipeline when it exceeds 1100km.

Sandrine Decarre; Julien Berthiaud; Nicolas Butin; Jean-Louis Guillaume-Combecave

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon dioxide sequestration in concrete in different curing environments  

E-Print Network [OSTI]

Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

Wisconsin-Milwaukee, University of

362

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition  

E-Print Network [OSTI]

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

Fierer, Noah

363

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams  

E-Print Network [OSTI]

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams and sequestration. Carbon sequestration is often associated with the planting of trees. As they mature, the trees INTRODUCTION The build-up of carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere has

364

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-Print Network [OSTI]

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

365

A Conceptual Model of H2O/CO2 Frost Sublimation and Condensation Caused Albedo Change in Crater Interiors, Martian Seasonal Polar Cap Regions H. Xie1  

E-Print Network [OSTI]

A Conceptual Model of H2O/CO2 Frost Sublimation and Condensation Caused Albedo Change in Crater.Xie@utsa.edu; 2 School of Chemistry, Physics and Earth Sciences, Flinders University, Australia; 3 Research Center are a major element of the current Mars' climate and circulation. Understanding the sublimation

Texas at San Antonio, University of

366

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase  

E-Print Network [OSTI]

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

367

Feasibility of Large-Scale Ocean CO2 Sequestration  

SciTech Connect (OSTI)

Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

Peter Brewer

2008-08-31T23:59:59.000Z

368

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

fracturing (e.g. , in hydraulic fracturing, steam floods,gas storage and some hydraulic fracturing exempted U.S.

Varadharajan, C.

2013-01-01T23:59:59.000Z

369

A Strategy for Monitoring of Geologic Sequestration of CO2  

E-Print Network [OSTI]

such as EOR and enhanced coalbed methane recovery. Finally,disposal sites, and coalbed methane sites, as well as oil

Myer, Larry R.

2000-01-01T23:59:59.000Z

370

Microsoft Word - SECARB Phase III CO2 sequestration Final EA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse gases (GHG) are components of the atmosphere that contribute to the greenhouse effect and climate change. Some greenhouse gases occur naturally in the atmosphere,...

371

Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration  

Science Journals Connector (OSTI)

Atmospheric CO2 is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. ... If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO2 annually, offsetting mine emissions. ... A Greenhouse-Scale Photosynthetic Microbial Bioreactor for Carbon Sequestration in Magnesium Carbonate Minerals ...

Anna L. Harrison; Ian M. Power; Gregory M. Dipple

2012-07-06T23:59:59.000Z

372

The Carbon Sequestration Newsletter: September 2001  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PBS News-Hour with Jim Lehrer On August 6, Spencer Michaels presented a fifteen minute report on carbon sequestration, emphasizing MBARI’s work on ocean sequestration research and the Weyburn geologic sequestration project. For a transcript or video of the report, see CO2: Burial at Sea? PBS News-Hour with Jim Lehrer On August 6, Spencer Michaels presented a fifteen minute report on carbon sequestration, emphasizing MBARI’s work on ocean sequestration research and the Weyburn geologic sequestration project. For a transcript or video of the report, see CO2: Burial at Sea? Washington Post On August 19th Eileen Claussen and Elliot Diringer of the Pew Center on Global Climate Change published an editorial, "The Climate Challenge Begins at Home," which highlights bills currently in congress, including Jefford’s four pollutant bill, the Stevens/Byrd Climate Change Act, and McCain and Lieberman’s Cap-and-Trade proposal. USA Today An August 27th article talks about the United States’ strong reliance on coal and indicated the Bush Administration may look towards coal gasification as a means of reducing GHG emissions.

373

CO2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STORAGE & ENHANCED OIL RECOVERY STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld demonstra- tions. RMOTC completed a scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) CO 2 enhanced oil recovery potential. More recent character- ization studies indicate geologic carbon storage would also be an excellent use of NPR-3 resources beyond their economic life in conventional production. Geologic Storage Fossil fuels will remain the mainstay of energy production well into the 21st century. Availability of these fuels to provide clean, affordable energy is es- sential for the prosperity and security of the United States. However, increased atmospheric concentrations

374

In situ carbonation of peridotite for CO2 storage  

Science Journals Connector (OSTI)

...reaction in 1 region can be pumped into an adjacent area to...dissolved CO 2 in convecting seawateronly ?10 4 tons of CO 2 per km 3...convection, near-surface seawater would descend one hole...dissolved CO 2 from evolving seawater along the flow path...

Peter B. Kelemen; Jrg Matter

2008-01-01T23:59:59.000Z

375

CO2 Separation from Low-Temperature Flue Gases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partners interested in implementing United States Patent Number 7,842,126 entitled "Co 2 Separation from Low-Temperature Flue Gases." Disclosed in this patent are novel methods for processing carbon dioxide (CO 2 ) from combustion gas streams. Researchers at NETL are focused on the development of novel sorbent systems that can effectively remove CO 2 and other gases in an economically feasible manner with limited impact on energy production cost. The current invention will help in reducing greenhouse gas emissions by using an improved, regenerable aqueous amine and soluble potassium carbonate sorbent system. This novel solvent system may be capable of achieving CO 2 capture from larger emission streams at lower overall cost. Overview Sequestration of CO

376

NETL: News Release - DOE Announces Release of Second Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 17, 2008 November 17, 2008 DOE Announces Release of Second Carbon Sequestration Atlas New Version Provides Additional Information on Carbon Dioxide Storage 2008 Carbon Sequestration Atlas II WASHINGTON, D. C.- The U.S. Department of Energy (DOE) today announced the release of its second Carbon Sequestration Atlas of the United States and Canada, which documents more than 3,500 billion metric tons of carbon dioxide (CO2) storage potential in oil and gas reservoirs, coal seams, and saline formations. Preliminary estimates suggest the availability of more than 1,100 years of CO2 storage for the United States and Canada in these geologic formations. "In the year since it was first published, the carbon sequestration atlas has proven to be an invaluable tool to the entire sequestration community," said Acting Assistant Secretary for Fossil Energy James Slutz. "The second edition will bolster our efforts to find environmentally sound, cost-effective methods to sequester carbon dioxide."

377

Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross Sea  

SciTech Connect (OSTI)

A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross Sea ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross Sea supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross Sea is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of the growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, air-sea gas exchange, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas exchange, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.

Kevin Arrigo

2012-03-13T23:59:59.000Z

378

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

379

CO2-H2O mixtures in the geological sequestration of CO2. I ...  

E-Print Network [OSTI]

For this purpose, published experimental P-T-X data in this temperature and pressure range are ... of carbon dioxide from burning fossil fuels is generating an increasing interest in the ..... However, one alternative to adding extra terms in Eqn. 3 is to consider another ..... search Center's GEODISC project. Associate editor:...

380

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO2 Control Post-Combustion CO2 Control Post-combustion CO2 control systems separate CO2 from the flue gas produced by conventional coal combustion in air. The flue gas is at atmospheric pressure and has a CO2 concentration of 10-15 volume percent. Read More! Capturing CO2 under these conditions is challenging because: (1) the low pressure and dilute concentration dictate a high total volume of gas to be treated; (2) trace impurities in the flue gas tend to reduce the effectiveness of the CO2 separation processes; and (3) compressing captured CO2 from atmospheric pressure to pipeline pressure (1,200 - 2,200 pounds per square inch) represents a large parasitic energy load. Plant Picture DOE/NETL's post-combustion CO2 control technology R&D program includes

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: News Release - Regional Partner Launches Drilling Test in DOE's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 30, 2007 August 30, 2007 Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program Project Focuses on Greenhouse Gas Storage in Lignite Seam, Methane Gas Recovery MORGANTOWN, WV - As an integral part of the U.S. Department of Energy's effort to develop carbon sequestration technologies to capture and permanently store greenhouse gases, the Plains CO2 Reduction (PCOR) Partnership has begun drilling operations to determine the suitability of a North Dakota lignite coal seam to simultaneously sequester the greenhouse gas carbon dioxide and produce valuable coalbed methane. The PCOR Partnership-one of seven partnerships in the Department of Energy's Regional Carbon Sequestration Partnership Program, which is managed by the National Energy Technology Laboratory-plans to inject at least 400 tons of CO2 to a depth of approximately 1,200 feet into an unminable lignite seam in Burke County, ND.

382

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

383

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More  

Broader source: Energy.gov (indexed) [DOE]

Successful Sequestration and Enhanced Oil Recovery Project Could Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be

384

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

385

Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration  

Science Journals Connector (OSTI)

CO2 capture and geologic sequestration is one of the most promising options for reducing atmospheric emissions of CO2. Its viability and long-term safety, which depends on the caprocks sealing capacity and integrity, is crucial for implementing CO2 ...

Juan Song; Dongxiao Zhang

2012-09-28T23:59:59.000Z

386

Carbon Capture & Sequestration Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

387

N-nitrosamine and N-nitramine Formation from NOx Reactions with Amines during Amine-Based CO2  

E-Print Network [OSTI]

Capture for Post-combustion Carbon Sequestration Background! Generation of electricity and heat from power- combustion carbon sequestration, the capture and underground storage of CO2 from the exhaust gases of power formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon

Mitch, William A.

388

Economic Analysis of Carbon Dioxide Sequestration in Powder River Basin Coal  

SciTech Connect (OSTI)

Unminable coalbeds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this paper is to study the economic feasibility of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can effectively sequester over 86,000 tons (78,200 tonne) of CO2 per acre while recovering methane to offset costs. The cost to separate CO2 from flue gas was identified as the major cost driver associated with CO2 sequestration in unminable coal seams. Improvements in separations technology alone are unlikely to drive costs low enough for CO2 sequestration in unminable coal seams in the Powder River Basin to become economically viable. Breakthroughs in separations technology could aid the economics, but in the Powder River Basin they cannot achieve the necessary cost reductions for breakeven economics without incentives.

Eric P. Robertson

2009-01-01T23:59:59.000Z

389

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use  

SciTech Connect (OSTI)

To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO2) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO2 management program to develop technologies capable of reducing the CO2 emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO2 mitigation program focusing on beneficial CO2 reuse and supporting the development of technologies that mitigate emissions by converting CO2 to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO2 reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

390

Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture  

Science Journals Connector (OSTI)

Abstract Coal gasification, the technology for high-efficient utilization of coal, has been widely used in China. However, it suffers from high CO2 emissions problem due to the carbon-rich character of coal. To reduce CO2 emissions, different CO2 capture technologies are developed and integrated into the coal gasification based processes. However, involving CO2 capture would result in energetic and economic penalty. This paper analyses three cases of coal gasification processes from environmental, technical, and economical points of view. These processes are (1) a conventional coal gasification process; (2) a coal gasification process with CO2 capture and sequestration, in which CO2 is stored by mineral sequestration; (3) a coal gasification process with CO2 capture and utilization, in which CO2 is reused to produce syngas. The results show that the coal gasification process with CO2 capture and sequestration has advantage only in environmental aspect compared to the conventional process. The process with CO2 capture and utilization has advantages in both technical and environmental aspects while disadvantage in economic aspect. However, if the carbon tax higher than 15USD/t CO2 is introduced, this disadvantage will be negligible.

Yi Man; Siyu Yang; Dong Xiang; Xiuxi Li; Yu Qian

2014-01-01T23:59:59.000Z

391

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

392

ARM - Instrument - co2flx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govInstrumentsco2flx govInstrumentsco2flx Documentation CO2FLX : Handbook CO2FLX : Instrument Mentor Monthly Summary (IMMS) reports CO2FLX : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Dioxide Flux Measurement Systems (CO2FLX) Instrument Categories Atmospheric Carbon General Overview The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind

393

Integrating Steel Production with Mineral Carbon Sequestration  

SciTech Connect (OSTI)

The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

2008-05-01T23:59:59.000Z

394

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

395

Surface Studies of HSLA Steel after Electrochemical Corrosion in Supercritical CO2-H2O Environment  

SciTech Connect (OSTI)

In aqueous phase saturated with CO2, X-65 sample underwent general corrosion with formation of FeCO3. In supercritical CO2 containing water phase, two major regions are present on the sample surface after the EIS experiment. One region covered with corrosion products identified as FeCO3 and the other containing Fe, oxygen, and carbon-rich islands embedded in metal matrix identified as {alpha}-Fe. Precipitation of FeCO3 from Fe2+ and CO3 2- is responsible for formation of passive layer in oxygen-deficient, CO2 rich aqueous environment. Mechanisms of corrosion degradation occurring in supercritical CO2 as a function. Transport of supercritical CO{sub 2} is a critical element for carbon capture from fossil fuel power plants and underground sequestration. Although acceptable levels of water in supercritical CO{sub 2} (up to {approx} 5 x 10{sup -4}g/dm{sup 3}) have been established, their effects on the corrosion resistance of pipeline steels are not fully known. Moreover, the presence of SO{sub 2}, O{sub 2} impurities in addition to the water can make the fluid more corrosive and, therefore, more detrimental to service materials. Also, in this case, limited data are available on materials performance of carbon steels. to advance this knowledge, other service alloys are being investigated in the high pressure high temperature cell containing impure CO{sub 2} fluids using reliable non-destructive in-situ electrochemical methods. The electrochemical results are being augmented by a number of surface analyses of the corroded surfaces.

Ziomek-Moroz, M. Holcomb, G. Tylczak, J Beck, J Fedkin, M. Lvov, S.

2011-10-01T23:59:59.000Z

396

Biomimetric Membrane for CO2 Capture from Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

397

A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium  

E-Print Network [OSTI]

A Computationally Efficient Approach to Applying the SAFT Equation for CO2 + H2O Phase Equilibrium SAFT � CO2 ? H2O � Phase equilibrium � Geologic sequestration � Efficient computation Abbreviations and pressure range [6�20]. In addition to these models, SAFT is a molecular based theory which is designed

Patzek, Tadeusz W.

398

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

399

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

400

NETL: 2009 Conference Proceedings - Pre-combustion CO2 Capture Kick-off  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pre-combustion CO2 Capture Kick-off Meetings Pre-combustion CO2 Capture Kick-off Meetings Pittsburgh, PA November 12-13, 2009 Table of Contents Disclaimer Presentations PRESENTATIONS Welcome/Sequestration Program Overview [PDF-842KB] Sean Plasynski, Sequestration Technology Manager Hydrogen Selective Ex-foliated Zeolite Membranes [PDF-3.4MB] University Of Minnesota Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods [PDF-746KB] Pall Corporation Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor [PDF-1.7MB] Arizona State University CO2 Capture from IGCC Gas Streams Using the AC-ABC Process [PDF-842KB] SRI International A Low-Cost, High-Efficiency Regenerable Sorbent for Pre-Combustion CO2 Capture [PDF-1.2MB]

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Critical Material and Process Issues for CO2 Separation from Coal-Powered Plants  

SciTech Connect (OSTI)

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration schemes. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Technically, CO2 can be separated out of a gas mixture by all the methods discussed in this work, such as distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in determining which approach is the most practical or feasible, and ultimately the most cost-efficient. Important material issues and their impacts on the process viability will be discussed.

Liu, Wei; King, David L.; Liu, Jun; Johnson , Brad R.; Wang, Yong; Yang, Zhenguo

2009-04-30T23:59:59.000Z

402

Coal Bed Sequestration of Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COAL BED SEQUESTRATION OF CARBON DIOXIDE COAL BED SEQUESTRATION OF CARBON DIOXIDE R. Stanton (rstanton@usgs.gov; 703-648-6462) U.S. Geological Survey MS 956 National Center Reston, VA 20192 R. Flores (rflores@usgs.gov; 303-236-7774) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 P.D. Warwick (pwarwick@usgs.gov; 703-648-6469) H. Gluskoter (halg@usgs.gov; 703-648-6429) U.S. Geological Survey MS 956 National Center Reston, VA 20192 G.D. Stricker (303-236-7763) U.S. Geological Survey MS 939, Denver Federal Center Denver, CO 80225 Introduction Geologic sequestration of CO 2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO

403

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review  

Science Journals Connector (OSTI)

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review ... Other geologic formations, such as depleted petroleum reservoirs, deep saline aquifers and others have received considerable attention as sites for sequestering CO2. ...

Curt M. White; Duane H. Smith; Kenneth L. Jones; Angela L. Goodman; Sinisha A. Jikich; Robert B. LaCount; Stephen B. DuBose; Ekrem Ozdemir; Badie I. Morsi; Karl T. Schroeder

2005-03-22T23:59:59.000Z

404

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Broader source: Energy.gov (indexed) [DOE]

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

405

DOE Regional Partnership Begins Core Sampling for Large-Volume  

Broader source: Energy.gov (indexed) [DOE]

Regional Partnership Begins Core Sampling for Large-Volume Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort Nelson natural gas processing plant in British Columbia, Canada. Core sampling, along with a sophisticated well logging program that the partnership is conducting, is an important step in proving the viability of carbon storage in brine-saturated formations. The Fort Nelson project is on track to become one of the first

406

Microsoft PowerPoint - RPS_Comp_Summary_1 CO2 IGTI 2007  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ramgen Proprietary Material Ramgen Proprietary Material 0900-01217 Shock Compression Technology Applied to CCS Applications Ramgen Power Systems, Inc. Bellevue, WA 2 Ramgen Proprietary Material 0900-01217 Typical System Performance Requirements - CCS * IGCC & PC retrofits (geologic carbon sequestration) - PR ~ 100:1 (suction pressure ~ 15 psia) - Two comparably loaded stages - Stage efficiency ~ 85% - Mass flow range ~ 30% Property Summary by Station - 3,000 hp Q . 4 Intercooler CO 2 In Q . Aftercooler Electric Motor LP 1 HP 3 LP BL Control HP BL Control 5 2 CO 2 Out Q . Q . 4 Intercooler CO 2 In Q . Q . Aftercooler Electric Motor LP 1 HP 3 LP BL Control HP BL Control 5 2 CO 2 Out 4 Intercooler CO 2 In Q . Q . Aftercooler Electric Motor LP 1 HP 3 HP BL Control HP BL Control 5 2 CO 2 Out Q . Q . Single Pinion Configuration Dual Pinion Configuration Property Station

407

NETL-Developed Process for Capturing CO2 Emissions Wins National Award for  

Broader source: Energy.gov (indexed) [DOE]

Process for Capturing CO2 Emissions Wins National Process for Capturing CO2 Emissions Wins National Award for Excellence in Technology Transfer NETL-Developed Process for Capturing CO2 Emissions Wins National Award for Excellence in Technology Transfer February 3, 2011 - 12:00pm Addthis Washington, DC - A process developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) that improves the capture of carbon dioxide (CO2) emissions from power plants while reducing the cost has been selected to receive a 2011 Award for Excellence in Technology Transfer. The Basic Immobilized Amine Sorbent (BIAS) Process separates CO2 from the flue or stack gas of power plants, preventing its release into the air. The captured CO2 can then be permanently stored in a carbon sequestration

408

EFRC Carbon Capture and Sequestration Activities at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

409

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao  

E-Print Network [OSTI]

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

Barthelat, Francois

410

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-Print Network [OSTI]

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

411

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

412

South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCUS projects. Existing small-scale field projects have been conducted by the Regional Carbon Sequestration Partnerships (RCSP) during their Validation Phase. These small-scale...

413

Understanding carbon sequestration in north central Montana dryland wheat systems.  

E-Print Network [OSTI]

??Agricultural management practices that reduce tillage and/or increase crop intensity have been shown to promote soil carbon sequestration in many regions of the Great Plains. (more)

Feddema, Ryan Patrick.

2013-01-01T23:59:59.000Z

414

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

415

recovery (EOR). Conducted by the Southeast Regional Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recovery (EOR). Conducted by the Southeast Regional Carbon recovery (EOR). Conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven DOE Regional Carbon Sequestration Partnerships (RCSPs), the "Anthropogenic Test" uses CO 2 from the newly constructed post-combustion CO 2 -capture facility at Alabama Power's 2,657-megawatt (MW) Barry Electric Generating Plant. Located in southwest Alabama, the project will help demonstrate the feasibility of carbon capture, utilization, and storage (CCUS) by diverting a small amount of flue gas from Plant Barry (equivalent to amount produced when generating 25 MW of electricity) and capturing it using Mitsubishi Heavy Industries' advanced amine process to produce a nearly pure stream of CO

416

Distribution of anthropogenic CO2 in the Pacific Ocean  

E-Print Network [OSTI]

Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

417

High Co2 Emissions Through Porous Media- Transport Mechanisms And  

Open Energy Info (EERE)

Co2 Emissions Through Porous Media- Transport Mechanisms And Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Details Activities (1) Areas (1) Regions (0) Abstract: Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was

418

Site Characterization for CO2 Geologic Storage and Vice Versa -The Frio Brine Pilot as a Case Study  

SciTech Connect (OSTI)

Careful site characterization is critical for successfulgeologic sequestration of CO2, especially for sequestration inbrine-bearing formations that have not been previously used for otherpurposes. Traditional site characterization techniques such asgeophysical imaging, well logging, core analyses, interference welltesting, and tracer testing are all valuable. However, the injection andmonitoring of CO2 itself provides a wealth of additional information.Rather than considering a rigid chronology in which CO2 sequestrationoccurs only after site characterization is complete, we recommend thatCO2 injection and monitoring be an integral part of thesite-characterization process. The advantages of this approach arenumerous. The obvious benefit of CO2 injection is to provide informationon multi-phase flow properties, which cannot be obtained from traditionalsitecharacterization techniques that examine single-phase conditions.Additionally, the low density and viscosity of CO2 compared to brinecauses the two components to flow through the subsurface differently,potentially revealing distinct features of the geology. Finally, tounderstand sequestered CO2 behavior in the subsurface, there is nosubstitute for studying the movement of CO2 directly. Making CO2injection part of site characterization has practical benefits as well.The infrastructure for surface handling of CO2 (compression, heating,local storage) can be developed, the CO2 injection process can bedebugged, and monitoring techniques can be field-tested. Prior to actualsequestration, small amounts of CO2 may be trucked in. Later, monitoringaccompanying the actual sequestration operations may be used tocontinually refine and improve understanding of CO2 behavior in thesubsurface.

Doughty, Christine

2006-02-14T23:59:59.000Z

419

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

420

NETL: Carbon Storage - Regional Partnership Validation Phase (Phase II)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation Phase (Phase II) Projects Validation Phase (Phase II) Projects The Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase focuses on validating the most promising regional opportunities to deploy CCS technologies by building upon the accomplishments of the Characterization Phase. Two different CO2 storage approaches are being pursued in this phase: geologic and terrestrial carbon storage. The Validation Phase includes 20 geologic and 11 terrestrial CO2 storage projects. Efforts are being conducted to: Validate and refine current reservoir simulations for CO2 storage projects. Collect physical data to confirm CO2 storage potential and injectivity estimates. Demonstrate the effectiveness of monitoring, verification, and accounting (MVA) technologies. Develop guidelines for well completion, operations, and abandonment.

Note: This page contains sample records for the topic "regional co2 sequestration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.