Powered by Deep Web Technologies
Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Refraction Survey At Northern Basin & Range Region (Heimgartner...  

Open Energy Info (EERE)

Northern Basin & Range Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin &...

2

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal...

3

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

4

Field Mapping At Northern Basin & Range Region (Blewitt Et Al...  

Open Energy Info (EERE)

Blewitt Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Blewitt Et Al, 2005)...

5

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

6

Geographic Information System At Northern Basin & Range Region (Coolbaugh,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa-

7

Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Magnetotellurics At Northern Basin & Range Region Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

8

Compound and Elemental Analysis At Northern Basin & Range Region  

Open Energy Info (EERE)

(Coolbaugh, Et Al., 2010) (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

9

Northern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

and Range Geothermal Region and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Basin and Range Geothermal Region Details Areas (34) Power Plants (3) Projects (7) Techniques (33) Map: {{{Name}}} Examination of seismicity and late Quaternary faults in Montana and Idaho north of the Snake River Plain shows a geographic correspondence between high seismicity and 24 faults that have experienced surface rupture during the late Quaternary. The Lewis and Clark Zone delineates the northern boundary of this tectonically active extensional region. Earthquakes greater than magnitude 5.5 and all identified late Quaternary faults are confined to the Montana-Idaho portion of the Basin and Range Province south of the Lewis and Clark Zone. Furthermore, all 12 Holocene faults are

10

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=40142

11

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett (2004) Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Pritchett,_2004)&oldid=401423"

12

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

13

Teleseismic-Seismic Monitoring At Northern Basin & Range Region...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

14

Geodetic Survey At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

15

Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Northern Basin & Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Blackwell,_Et_Al.,_2003)&oldid=401422

16

Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) |  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Blewitt Et Al, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewitt, William C. Hammond, Corne Kreemer (2005) Relating Geothermal Resources To Great Basin Tectonics Using Gps Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Northern_Basin_%26_Range_Region_(Blewitt_Et_Al,_2005)&oldid=401408" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

17

Isotopic Analysis At Northern Basin & Range Region (Kennedy & Van Soest,  

Open Energy Info (EERE)

Northern Basin & Range Region (Kennedy & Van Soest, Northern Basin & Range Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Northern Basin & Range Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

18

Geodetic Survey At Northern Basin & Range Region (Blewitt, Et Al., 2003) |  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Northern_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=401407"

19

Geothermometry At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Northern Basin & Range Region (Laney, 2005) Geothermometry At Northern Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

20

Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermometry At Northern Basin & Range Region (Cole, 1983) | Open Energy  

Open Energy Info (EERE)

Northern Basin & Range Region Northern Basin & Range Region (Cole, 1983) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison, Arrowhead, Red Hill, Monroe, Joseph, Castilla, Saratoga, Thermo, Crater, Wasatch, Beck, Deseret, Big Spring, Blue Warm, Crystal Madsen, Udy, Cutler, Garland, Utah, Ogden, Hooper, Newcastle Area References David R. Cole (1983) Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Northern_Basin_%26_Range_Region_(Cole,_1983)&oldid=4014

22

Field Mapping At Northern Basin & Range Region (Shevenell, Et Al., 2008) |  

Open Energy Info (EERE)

Northern Basin & Range Region (Shevenell, Et Al., 2008) Northern Basin & Range Region (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Shevenell, Et Al., 2008) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes On a more local scale, Faulds et al. (2003, 2005a, 2005b, 2006) have conducted structural analysis and detailed geologic mapping at a number of sites throughout Nevada and have found that productive geothermal systems typically occur in one of several structural settings, including step-overs in normal fault zones, near the ends of major normal faults where the

23

Trace Element Analysis At Northern Basin & Range Region (Coolbaugh, Et Al.,  

Open Energy Info (EERE)

At Northern Basin & Range Region (Coolbaugh, Et Al., At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

24

Field Mapping At Northern Basin & Range Region (Blewitt, Et Al., 2003) |  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Northern_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510749"

25

Self Potential At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Self Potential At Northern Basin & Range Region Self Potential At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

26

Direct-Current Resistivity Survey At Northern Basin & Range Region  

Open Energy Info (EERE)

Region Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

27

Data Acquisition-Manipulation At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Northern Basin & Data Acquisition-Manipulation At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

28

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

29

Compound and Elemental Analysis At Northern Basin & Range Region (Cole,  

Open Energy Info (EERE)

Cole, Cole, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Cole, 1983) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison, Arrowhead, Red Hill, Monroe, Joseph, Castilla, Saratoga, Thermo, Crater, Wasatch, Beck, Deseret, Big Spring, Blue Warm, Crystal Madsen, Udy, Cutler, Garland, Utah, Ogden, Hooper, Newcastle Area References David R. Cole (1983) Chemical And Isotopic Investigation Of Warm

30

Isotopic Analysis At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Northern Basin & Range Isotopic Analysis- Fluid At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

31

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

32

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

33

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

34

Geographic Information System At Northern Basin & Range Region (Blewitt, Et  

Open Energy Info (EERE)

Blewitt, Et Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

35

Field Mapping At Northern Basin and Range Geothermal Region (1993) | Open  

Open Energy Info (EERE)

Geothermal Region (1993) Geothermal Region (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin and Range Geothermal Region (1993) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

36

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of...

37

Isotopic Analysis At Northern Basin & Range Region (Kennedy ...  

Open Energy Info (EERE)

useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced...

38

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial statistical analysis, and regional assessments and...

39

Compound and Elemental Analysis At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

40

Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model  

SciTech Connect

Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

Pohlmann Karl,Ye Ming

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Market Statistics Northern Colorado Region  

E-Print Network (OSTI)

Market Statistics RE Northern Colorado Region #12;©2013 Everitt Real Estate Center, All Rights. The EREC Market Statistics for the Northern Colorado region details historical closing and inventory trends. The EREC Market Statistics report is available for download at http

42

Regional aquifers and petroleum in Williston Basin region of US  

SciTech Connect

At least five major aquifers underlie the northern Great Plains of the US, which includes parts of the Williston basin in Montana and North Dakota. These aquifers form a hydrologic system that extends more than 960 km from recharge areas in the Rocky Mountains to discharge areas in eastern North Dakota and the Canadian Provinces of Manitoba and Saskatchewan. The regional flow system in the aquifers has had a major effect on the chemical composition of ground water within the Williston basin. Hydrodynamic forces may contribute to the accumulation of petroleum within the basin.

Downey, J.S.; Busby, J.F.; Dinwiddie, G.A.

1985-05-01T23:59:59.000Z

43

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

44

Contemporary Strain Rates in the Northern Basin and Range Province from GPS  

Open Energy Info (EERE)

Contemporary Strain Rates in the Northern Basin and Range Province from GPS Contemporary Strain Rates in the Northern Basin and Range Province from GPS Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Strain Rates in the Northern Basin and Range Province from GPS Data Abstract [1] We investigate the distribution of active deformation in the northern Basin and Range province using data from continuous GPS (CGPS) networks, supplemented by additional campaign data from the Death Valley, northern Basin and Range, and Sierra Nevada-Great Valley regions. To understand the contemporary strain rate field in the context of the greater Pacific (P)-North America (NA) plate boundary zone, we use GPS velocities to estimate the average relative motions of the Colorado Plateau (CP), the Sierra Nevada-Great Valley (SNGV) microplate, and a narrow north-south

45

Heat flow in the northern Basin and Range province | Open Energy  

Open Energy Info (EERE)

in the northern Basin and Range province in the northern Basin and Range province Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat flow in the northern Basin and Range province Abstract The heat flow in the Basin and Range province of northern Nevada is extremely complex. It is a product of superposition of the regional effects of extension and volcanism /intrusion modified by the local conductive effects of thermal refraction (complicated structural settings),variations in radioactive heat production, erosion and sedimentation. In addition to these conductive effects,groundwater flow, both on a local and a regional basis,affects heat-flow measurements. Typical heat -flow values for the Basin and Range province average 85 +/- 10 mWm-2. The higher estimates are

46

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

47

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

48

Northern Rockies Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northern Rockies Geothermal Region Northern Rockies Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Rockies Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} Province is situated in northern Idaho and western Montana and includes folded mountains, fault-bounded uplifts, and volcanics formed during middle Cretaceous to late Eocene mountain period. The region is structtually cojmplex with faulting and folding asociated with eastward thrust faulting. Western Montana and northwestern Wyoming contain large areas of Tertiary volcanic rocks, including smaller localized Quaternary silicic volcanic rocks. Replace Citation[1] References ↑ "Replace Citation" Geothermal Region Data State(s) Idaho, Montana Area 97,538 km²97,538,000,000 m²

49

Regional stratigraphy and general petroleum geology, Williston Basin  

SciTech Connect

Paleozoic sedimentary rocks in the Northern Great Plains and northern Rocky Mountain region include a sequence of dominantly shallow-water marine carbonate, clastic, and evaporite deposits of Middle Cambrian through Early Permian age. The lower part of the Paleozoic section is a sequence of marine sandstone, shale, and minor limestone, rangeing in age from Middle Cambrian through Middle Ordovician. Some porous sandstone beds occur in this section, mainly in the eastern and southern bordering areas of the Williston basin and Central Montana trough. Upper Ordovician through middle Upper Mississippian rocks are primarily carbonate beds, which contain numerous widespread cyclic interbeds of evaporite and fine-grained clastic deposits. Carbonate mounds or banks were deposited through most of this time in the shallow-water areas of the Williston basin and northern Rocky Mountains. Porous units, mainly dolomite or dolomitic limestone, are common but discontinuous in most of this sequence, and are more widespread in the eastern and southern margins of the Williston basin. Cumulative petroleum production (January 1982) in the United States part of the Williston basin was about 1.1 billion bbl of oil and 1.6 tcf gas. Estimated remaining recoverable reserves are about 400 million bbl of oil and 0.8 tcf gas. U.S. Geological Survey 1980 estimates of undiscovered recoverable oil and gas resources are about 900 million bbl of oil and 3.5 tcf gas.

Peterson, J.A.; Maccary, L.M.

1985-05-01T23:59:59.000Z

50

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

51

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

U.S. Energy Information Administration (EIA) Indexed Site

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

52

Refraction Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Nw Basin & Range Region (Laney, 2005) Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and

53

Northern New Mexico regional airport market feasibility  

SciTech Connect

This report is about the market for airline travel in northern New Mexico. Interest in developing a northern New Mexico regional airport has periodically surfaced for a number of years. The New Mexico State Legislature passed a memorial during the 1998 Second Session calling for the conduct of a study to determine the feasibility of building a new regional airport in NNM. This report is a study of the passenger market feasibility of such an airport. In addition to commercial passenger market feasibility, there are other feasibility issues dealing with siting, environmental impact, noise, economic impact, intermodal transportation integration, region-wide transportation services, airport engineering requirements, and others. These other feasibility issues are not analyzed in any depth in this report although none were discovered to be show-stoppers as a by-product of the authors doing research on the passenger market itself. Preceding the need for a detailed study of these other issues is the determination of the basic market need for an airport with regular commercial airline service in the first place. This report is restricted to an in-depth look at the market for commercial passenger air service in NNM. 20 figs., 8 tabs.

Drake, R.H.; Williams, D.S.

1998-06-01T23:59:59.000Z

54

Regional Slip Tendency Analysis of the Great Basin Region  

DOE Data Explorer (OSTI)

- The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

Faulds, James E.

55

Regional Slip Tendency Analysis of the Great Basin Region  

SciTech Connect

Slip and dilation tendency on the Great Basin fault surfaces (from the USGS Quaternary Fault Database) were calculated using 3DStress (software produced by Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by the measured ambient stress field. - Values range from a maximum of 1 (a fault plane ideally oriented to slip or dilate under ambient stress conditions) to zero (a fault plane with no potential to slip or dilate). - Slip and dilation tendency values were calculated for each fault in the Great Basin. As dip is unknown for many faults in the USGS Quaternary Fault Database, we made these calculations using the dip for each fault that would yield the maximum slip or dilation tendency. As such, these results should be viewed as maximum slip and dilation tendency. - The resulting along?fault and fault?to?fault variation in slip or dilation potential is a proxy for along fault and fault?to?fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson?Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin <070, 070140). Slip and dilation tendency were calculated using 3DStress for the faults within each region using the mean Shmin for the region. Shmin variation throughout Great Basin are shown on Figure 3. For faults within the Great Basin proper, we applied a normal faulting stress regime, where the vertical stress (sv) is larger than the maximum horizontal stress (shmax), which is larger than the minimum horizontal stress (sv>shmax>shmin). Based on visual inspection of the limited stress magnitude data in the Great Basin, we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46. These values are consistent with stress magnitude data at both Dixie Valley (Hickman et al., 2000) and Yucca Mountain (Stock et al., 1985). For faults within the Walker Lane/Eastern California Shear Zone, we applied a strike?slip faulting stress, where shmax > sv > shmin. Upon visual inspection of limited stress magnitude data from the Walker Lane and Eastern California Shear zone, we chose values such that SHmin/SHmax = .46 and Shmin/Sv= .527 representative of the region. Results: The results of our slip and dilation tendency analysis are shown in Figures 4 (dilation tendency), 5 (slip tendency) and 6 (slip tendency + dilation tendency). Shmin varies from northwest to east?west trending throughout much of the Great Basin. As such, north? to northeast?striking faults have the highest tendency to slip and to dilate, depending on the local trend of shmin. These results provide a first order filter on faults and fault systems in the Great Basin, affording focusing of local?scale exploration efforts for blind or hidden geothermal resources.

James E. Faulds

2013-09-30T23:59:59.000Z

56

Incipient diagenesis of sediments from the Pigmy Basin, northern Gulf of Mexico  

E-Print Network (OSTI)

INCIPIENT DIAGENESIS OF SEDIMENTS FROM THE PIGMY BASIN, NORTHERN GULF OF MEXICO A Thesis by STEVEN VINCENT STEARNS Submitted t. o the Graduate College of Texas ASM Unrversity in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 19B5 Major Subject: Geology INCIPIENT DIAGENESIS OF SEDIMENTS FROM THE PIGMY BASIN, NORTHERN GULF OF MEXICO A Thesis by STEVEN VINCENT STEARNS Approved as to style and content by: Thomas T. Tieh (Co-Chair of Committee...

Stearns, Steven Vincent

2012-06-07T23:59:59.000Z

57

2012 Illinois Junior Academy of Science Northern Region V Science Fair Regional Semi-Finals  

E-Print Network (OSTI)

2012 Illinois Junior Academy of Science ­ Northern Region V Science Fair Regional Semi V IJAS Science Fair on Saturday, March 17, 2012, at Northern Illinois University, Holmes Student Center. Number of years judging science fair:_____ Educational Background

Kostic, Milivoje M.

58

2013 Illinois Junior Academy of Science Northern Region V Science Fair Regional Semi-Finals  

E-Print Network (OSTI)

2013 Illinois Junior Academy of Science Northern Region V Science Fair Regional Semi IJAS Science Fair on Saturday, March 23, 2013, at Northern Illinois University, Holmes Student Center. Number of years judging science fair:_____ Educational Background

Kostic, Milivoje M.

59

Southern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Basin and Range Geothermal Region Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Basin and Range Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} North-south-striking and west-dipping Basin and Range province normal faults form the western edge of the Sierra Madre Occidental plateau in northeastern Sonora. These faults and associated half-grabens extend over a distance of more than 300 km between the San Bernardino basin in the north and the Sahuaripa basin in the south. Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake [1] References ↑ "Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake"

60

Fracture history of the Northern Piceance Creek Basin, Northwestern Colorado  

SciTech Connect

The fracture pattern of the Northern Piceance Creek Basin, in Rio Blanco and Garfield Counties of Northwestern Colorado, evolved during at least four periods of brittle failure in Eocene rocks of the Green River and overlying Uinta Formations. Fractures in these rocks of are interest to hydrologists because matrix permeabilities in both formations are low, due either to poor sorting and interstitial calcite cement (Uinta sandstones) or to low pore volume and growth of authigenic minerals (Green River oil shales). Ground water at shallow to intermediate depths thus circulates mostly through secondary openings such as fractures and through voids created by the dissolution of nahcolite and halite. Fracture-induced permeabilities probably dominate most at shallow depths, where fractures are most abundant, apertures of fracture walls are greates, and solution openings are least common. Shallow, fracture-dominated aquifers are strongly anisotropic. At deeper levels, in leached zones of the ''saline facies'' of the lower part of the Green River Formation, solution openings contribute greatly to fluid flow and permeabilities probably are less direction dependent.

Verbeek, E.R.; Grout, M.A.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geothermal Literature Review At Nw Basin & Range Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

62

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

63

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

64

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northwest Basin and Range Geothermal Region Northwest Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (48) Power Plants (8) Projects (15) Techniques (33) The Basin and Range Province in northwestern Nevada and northeastern California is characterized by late Cretaceous - early Cenozoic regional erosion, Oligocene - Miocene volcanism, and subsequent late Miocene extension. Extensional faulting in northwestern Nevada began everywhere at 12 Ma and has continued up to the present. Faulting in the Warner Range in northeastern California can only be constrained to have begun between 14 and 3 Ma, but may represent westward migration of Basin and Range extension during the Pliocene. Compared to the many parts of the Basin and Range in

65

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

Province, Northern Dixie Valley, Nevada Abstract NA Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number...

66

Origin Basin Destination State STB EIA STB EIA Northern Appalachian...  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Central Appalachian Basin Alabama 26.18 26.10 -0.3% 118.06 22.1% 930 37.4% 100.0% Central Appalachian Basin Delaware 23.73 15.12 -36.3% 88.59 17.1%...

67

Ash Quality of a Beneficiated Lignite from Ptolemais Basin, Northern Greece  

Science Journals Connector (OSTI)

Ash Quality of a Beneficiated Lignite from Ptolemais Basin, Northern Greece ... Knowing that oil and gas reserves are diminishing very fast, the beneficiation of coals is of most importance, since this energy source is widely distributed around the world. ... The present research was carried in collaboration with Public Power Corporation of Greece, which simultaneously conducted pilot plant tests for beneficiating Greek lignites, using the TRI-FLO technique. ...

D. Vamvuka; E. Mistakidou; S. Drakonaki; A. Foscolos; K. Kavouridis

2001-08-10T23:59:59.000Z

68

ELUSIVE ETHYLENE DETECTED IN SATURN'S NORTHERN STORM REGION  

SciTech Connect

The massive eruption at 40 Degree-Sign N (planetographic latitude) on Saturn in 2010 December has produced significant and lasting effects in the northern hemisphere on temperature and species abundances. The northern storm region was observed on many occasions in 2011 by Cassini's Composite Infrared Spectrometer (CIRS). In 2011 May, temperatures in the stratosphere greater than 200 K were derived from CIRS spectra in the regions referred to as 'beacons' (warm regions in the stratosphere). Ethylene has been detected in the beacon region in Saturn's northern storm region using CIRS. Ground-based observations using the high-resolution spectrometer Celeste on the McMath-Pierce Telescope on 2011 May 15 were used to confirm the detection and improve the altitude resolution in the retrieved profile. The derived ethylene profile from the CIRS data gives a C{sub 2}H{sub 4} mole fraction of 5.9 {+-} 4.5 Multiplication-Sign 10{sup -7} at 0.5 mbar, and from Celeste data it gives 2.7 {+-} 0.45 Multiplication-Sign 10{sup -6} at 0.1 mbar. This is two orders of magnitude higher than the amount measured in the ultraviolet at other latitudes prior to the storm. It is also much higher than predicted by photochemical models, indicating that perhaps another production mechanism is required or a loss mechanism is being inhibited.

Hesman, B. E.; Achterberg, R. K.; Nixon, C. A. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Bjoraker, G. L.; Romani, P. N. [NASA/GSFC Code 693, Greenbelt, MD 20771 (United States); Sada, P. V. [Departamento de Fisica y Matematicas, Universidad de Monterrey, Garza Garcia, NL 66238 (Mexico); Jennings, D. E. [NASA/GSFC Code 693 and Code 500, Greenbelt, MD 20771 (United States); Lunsford, A. W. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Fletcher, L. N.; Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Boyle, R. J. [Department of Physics and Astronomy, Dickinson College, Carlisle, PA 17013 (United States); Simon-Miller, A. A., E-mail: brigette.e.hesman@nasa.gov [NASA/GSFC Code 690, Greenbelt, MD 20771 (United States)

2012-11-20T23:59:59.000Z

69

Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available  

SciTech Connect

The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

70

Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

71

Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

72

Compound and Elemental Analysis At Northern Basin & Range Region...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown Notes Wstern Utah hot springs: Antelope, Fish (Deadman), Fish (Wilson), Twin Peak, Cudahy, Laverkin, Grantsville, Crystal Prison,...

73

Compilation of data on strippable Fort Union coals in the northern Rocky Mountains and Great Plains region: A CD-ROM presentation  

SciTech Connect

The Fort Union Formation and equivalent formations of Paleocene age in the northern Rocky Mountains and Great Plains region contain 14 strippable coals that yielded more than 30 percent of the 1.03 billion short tons produced in the United States in 1996. These thick, low contaminant, compliant coals, which are utilized by electric power plants in 28 States, are being assessed by the US Geological Survey. The minable coals occur in the Powder River Basin in Wyoming and Montana, Hanna, Carbon and Greater Green River Basins in Wyoming, and Williston Basin in North Dakota. Production during the past 25 years of thick, high quality Fort Union and equivalent coal beds and zones in the region increased from 40 to more than 340 million short tons. The Powder River Basin is projected to produce 416 million short tons of coal in 2015. Major production in the Powder River Basin is from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal deposits. Producing Fort Union coals in the Williston Basin include the Beulah-Zap, Hagel, and Harmon coal deposits. Producing Fort Union coals in the Greater Green River Basin are in five beds of the Deadman coal zone. Coal production in the Hanna Basin is from eight beds in the Ferris and Hanna Formations. Coals in the Powder River Basin and Williston Basin contain much less sulfur and ash than coals produced in other regions in the conterminous US. When sulfur values are compared as pounds of SO{sub 2} per million Btu (as received basis), Powder River Basin and Williston Basin coals have the lowest amounts of any coals in the conterminous US.

Flores, R.M.; Bader, L.R.; Cavaroc, V.V. [Geological Survey, Denver, CO (United States)] [and others

1998-04-01T23:59:59.000Z

74

On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury's northern plains  

E-Print Network (OSTI)

in Mercury's northern plains Andrew M. Freed,1 David M. Blair,1 Thomas R. Watters,2 Christian Klimczak,3 Paul volcanic plains taken by the MESSENGER spacecraft reveal a large number of buried impact craters and basins pooled lavas were thickest, and no graben are predicted within generally thinner plains outside of major

Zuber, Maria

75

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

76

A two-dimensional regional basin model of Williston basin hydrocarbon systems  

SciTech Connect

Institut Francais du Petrole`s two-dimensional model, TEMISPACK, is used to discuss the functioning of petroleum systems in the Williston basin along a 330-km-long section, focusing on four regional source intervals: Ordovician Yeoman formation, Lower Devonian Winnipegosis Formation, Upper Devonian-Lower Mississippian Bakken Formation, and Mississippian Lodgepole formation. Thermal history calibration against present temperature and source rock maturity profiles suggests that the Williston basin can be divided into a region of constant heat flow of about 55 mW/m{sup 2} away from the Nesson anticline, and a region of higher heat flow and enhanced thermal maturity in the vicinity of the Nesson anticline. Original kinetic parameters used in the calibration were derived for each of the four source rocks from Rock-Eval yield curves. Bakken overpressures are entirely due to oil generation, not compaction disequilibrium. Very low Bakken vertical permeabilities range from 0.01 to 0.001 and are matched against observed overpressures, whereas Bakken porosities based on the model and confirmed by measurements are inferred to be also unusually low, around 3%.

Burrus, J.; Wolf, S.; Doligez, B. [Institut Francais due Petrole, Rueil-Malmaison (France)] [and others

1996-02-01T23:59:59.000Z

77

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,  

Open Energy Info (EERE)

Biasi, Et Al., Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Nw_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=401461" Categories: Exploration Activities DOE Funded

78

Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geodetic Survey At Nw Basin & Range Region (Laney, Geodetic Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

79

Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

Nw Basin & Range Region (Coolbaugh, Et Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Nw_Basin_%26_Range_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401452

80

A numerical soil-water-balance (SWB) model was used to estimate groundwater recharge in the Williston and Powder River structural basins in the Northern Great Plains.  

E-Print Network (OSTI)

in the Williston and Powder River structural basins in the Northern Great Plains. The SWB model consisted of 1 km2 to 2011. Average calculated recharge in the Williston basin was 0.190 in/yr (1,281 ft3 /sec) and ranged.1 percent of precipitation in the Williston basin. Average recharge in the Powder River basin was 0.136 in

Torgersen, Christian

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Petroleum geochemistry of Atrau region, Pre-Caspian Basin, Kazakhstan  

SciTech Connect

Pre-Caspian Basin covers an area of approx. 500,000 sq. km. and is characterized mainly by thick (0-5000 m) Kungurian salts. Atrau region occupies 100,000 sq.km. and is located at the southern part of the basin. Oils of this basin are found in the sub-salt (Carboniferous reefs) and supra-salts (Triassic red beds and Jurassic-Cretaceous clastics) reservoirs. Seventeen crude oil samples analyzed from different wells appear to be paraffinic and paraffinic-naphthenic type. Some of the oils hardly contained any n-alkanes, probably owing to biodegradation. Biomarker signatures of saturate and aromatic fractions and stable carbon isotopes of whole oils revealed two genetically different oil families; family I and family II. Family I was generated from clastic supra-salt sediments having immature (%Rc=0.55) terrestrial organic matter. Family II was generated from carbonate rich sub-salt sediments, containing mature (%Rc=0.65-0.80) marine organic matter. Majority of Triassic, Kungurian and Upper Cretaceous successions contained enough organic matter with considerably low total petroleum potential (S1+S2). Upper Carboniferous sediments, on the other hand, contain enough and oil prone organic matter that reached peak oil generation stage (233.1 Ma) and hydrocarbon saturation level for expulsion as a result of high sedimentation rates in the Lower to Middle Triassic succession in Kobyekovskaya-2 well. Maximum paleotemperature reached in the area was not enough for H{sub 2}S formation and cracking of already generated hydrocarbons to natural gas.

Guerge, K. [TPAO dis Projeler Grup Baskanligi, Ankara (Turkey)

1995-08-01T23:59:59.000Z

82

Geodetic Survey At Nw Basin & Range Region (Blewitt Et Al, 2005...  

Open Energy Info (EERE)

Blewitt Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin & Range Region (Blewitt Et Al, 2005) Exploration...

83

Field Mapping At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Nw Basin & Range Region (Blewitt, Et Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510752" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

84

Geothermal regimes of the Clearlake region, northern California  

SciTech Connect

The first commercial production of power from geothermal energy, at The Geysers steamfield in northern California in June 1960, was a triumph for the geothermal exploration industry. Before and since, there has been a search for further sources of commercial geothermal power in The Geysers--Clear Lake geothermal area surrounding The Geysers. As with all exploration programs, these were driven by models. The models in this case were of geothermal regimes, that is, the geometric distribution of temperature and permeability at depth, and estimates of the physical conditions in subsurface fluids. Studies in microseismicity and heat flow, did yield geophysical information relevant to active geothermal systems. Studies in stable-element geochemistry found hiatuses or divides at the Stoney Creek Fault and at the Collayomi Fault. In the region between the two faults, early speculation as to the presence of steamfields was disproved from the geochemical data, and the potential existence of hot-water systems was predicted. Studies in isotope geochemistry found the region was characterized by an isotope mixing trend. The combined geochemical data have negative implications for the existence of extensive hydrothermal systems and imply that fluids of deep origin are confined to small, localized systems adjacent to faults that act as conduits. There are also shallow hot-water aquifers. Outside fault-localized systems and hot-water aquifers, the area is an expanse of impermeable rock. The extraction of energy from the impermeable rock will require the development and application of new methods of reservoir creation and heat extraction such as hot dry rock technology.

Amador, M. [ed.; Burns, K.L.; Potter, R.M.

1998-06-01T23:59:59.000Z

85

Geodetic Survey At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Blewitt, Et Al., 2003) Blewitt, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Geodetic_Survey_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=401448

86

Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest, 2007) |  

Open Energy Info (EERE)

Nw Basin & Range Region (Kennedy & Van Soest, 2007) Nw Basin & Range Region (Kennedy & Van Soest, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Nw Basin & Range Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high 3He/4He anomalies indicating hidden magmatic activity and/or deep

87

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

88

Geographic Information System At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

89

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two

90

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

91

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

92

Comparative risk analysis of development of the lignite basins in Serbian part of the Danube region  

Science Journals Connector (OSTI)

The paper gives an overview of the global business risks and risks in the mining development in the Kolubara and Kostolac lignite basins in the area of the Danube river in Serbia. An identification of main risks is undertaken by application of a comprehensive ... Keywords: danube region, lignite basin, mining and energetics, strategic business risks, sustainable development

Slavka Zekovi?; Tamara Mari?i?

2011-02-01T23:59:59.000Z

93

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

94

Modelling rockwater interactions in flooded underground coal mines, Northern Appalachian Basin  

Science Journals Connector (OSTI)

...Office of Surface Mining 3 Parkway Center...flooded underground coal mines in northern Appalachia, USA. In early...the Effects of Coal Mining, Greene County...Seam of Northern Appalachia. In: Proceedings Eastern Coal Mine Geomechanics...

Eric F. Perry

95

Regional And Local Trends In Helium Isotopes, Basin And Range...  

Open Energy Info (EERE)

Pathways Abstract Fluids from the western margin of the Basin and Range have helium isotope ratios as high as 6-7 Ra, indicating a strong mantle melt influence and consistent...

96

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

97

Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent  

Open Energy Info (EERE)

Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Details Activities (1) Areas (1) Regions (0) Abstract: From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged from a high of about -120 mgal over the outcrop areas to a

98

Regional Service Plan For Coordinated Transportation In the Permian Basin  

E-Print Network (OSTI)

services. Out of necessity, public transportation service providers and health & human service agencies in the Permian Basin have historically worked closely with each other to ultimately benefit the end users of such services. Thus, this document... services. Out of necessity, public transportation service providers and health & human service agencies in the Permian Basin have historically worked closely with each other to ultimately benefit the end users of such services. Thus, this document...

Permian Basin Regional Planning Commission

2010-10-27T23:59:59.000Z

99

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

100

Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010)  

Open Energy Info (EERE)

Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Trace Element Analysis At Nw Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Trace Element Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

102

Regional And Local Trends In Helium Isotopes, Basin And Range Province,  

Open Energy Info (EERE)

And Local Trends In Helium Isotopes, Basin And Range Province, And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Regional And Local Trends In Helium Isotopes, Basin And Range Province, Western North America- Evidence For Deep Permeable Pathways Details Activities (1) Areas (1) Regions (0) Abstract: Fluids from the western margin of the Basin and Range have helium isotope ratios as high as ~6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to 'background' values of around 0.6 Ra, and then gradually decrease toward the east to low values of ~0.1 Ra at the eastern margin of the Basin and

103

Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of Quaternary fault orientations; (2) the direction of extensional strain; and (3) the magnitudoef fault-normal extensional strain. Item (1) is purely a structural analysis based on documented Quatemary faulting. Item (2) is purely an empirical strain-rate analysis, based on GPS station velocity

104

Quality ranking of twelve columnar basalt occurrences in the northern portion of the Paran BasinBrazil  

Science Journals Connector (OSTI)

This paper presents results obtained from a study of basal degrading conducted on samples of basaltic rocks found in the northern part of the Paran Basin in the State of So Paulo, Brazil. To meet the objectives of the study, natural and accelerated alteration tests were carried out followed by a comparison of the quantitative analysis of the two alteration processes. The combined analysis of the information proved to be very useful tool for rock qualification and the quantification of alterability, thus providing a basis for comparative analysis of massive and columnar jointed basalt relative to their use as aggregate for civil construction purposes.

R.L. Gomes; J.E. Rodrigues

2007-01-01T23:59:59.000Z

105

E-Print Network 3.0 - amazon basin northern Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Michael E. McClain Department of Environmental Summary: WATER RESOURCES MANAGEMENT IN THE AMAZON BASIN ISSUES, CHALLENGES, AND OPPORTUNITIES...

106

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

107

Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Nw Basin & Range Region Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

108

Self Potential At Nw Basin & Range Region (Pritchett, 2004) | Open Energy  

Open Energy Info (EERE)

Self Potential At Nw Basin & Range Region (Pritchett, Self Potential At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

109

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to

110

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

111

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

112

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

113

Geographic Information System At Nw Basin & Range Region (Blewitt...  

Open Energy Info (EERE)

reconnaissance DOE-funding Unknown Notes On the regional scale, we investigated the spatial relationship of known geothermal activity with: (1) the regional tendency of...

114

Geothermometry At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Nw Basin & Range Region (Laney, Geothermometry At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

115

Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The

116

Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Nw Basin & Range Region (Laney, Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

117

Field Mapping At Nw Basin & Range Region (Shevenell, Et Al., 2008) | Open  

Open Energy Info (EERE)

Field Mapping At Nw Basin & Range Region (Shevenell, Field Mapping At Nw Basin & Range Region (Shevenell, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes On a more local scale, Faulds et al. (2003, 2005a, 2005b, 2006) have conducted structural analysis and detailed geologic mapping at a number of sites throughout Nevada and have found that productive geothermal systems typically occur in one of several structural settings, including step-overs in normal fault zones, near the ends of major normal faults where the faults break into multiple splays, in belts of overlapping faults, at fault intersections, and in small pull aparts along strike-slip faults.

118

Compound and Elemental Analysis At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

10) 10) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At NW Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for geothermal exploration, the analysis of lithium and other elements in tufa

119

Isotopic Analysis At Nw Basin & Range Region (Kennedy & Van Soest...  

Open Energy Info (EERE)

useful regional reconnaissance DOE-funding Unknown Notes The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced...

120

Compound and Elemental Analysis At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Nw Basin & Range Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

122

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network (OSTI)

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

123

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

124

Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin  

SciTech Connect

For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

2007-03-31T23:59:59.000Z

125

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

126

Elevated thermal maturation in Pennsylvanian rocks, Cherokee basin, southeastern Kansas: Importance of regional fluid flow  

SciTech Connect

Thermal history of sedimentary basins is commonly assumed to be dominated by burial heating. Marked contrast between reconstructed burial temperatures and other temperature determinations would suggest alternative processes. In the Cherokee basin of southeastern Kansas, reconstruction of burial and thermal history indicates that basal Pennsylvanian strata were not buried more than 1.8 km, and should have reached only about 90C. However, the study of Pennsylvanian rocks of the Cherokee basin indicates that higher temperatures were reached and that the pattern of thermal maturation is inconsistent with simple burial heating. Regional pattern of vitrinite reflectance reveals several warm spots' where thermal maturation is elevated above the regional background. Primary fluid inclusions in late Ca-Mg-Fe carbonate cements yield homogenization-temperature modes or petrographically consistent populations ranging from 100 to 150C. These data suggest that the samples experienced at least those temperatures, hence fluid inclusions closely agree with vitrinite and Rock-Eval. Elevated temperatures, warm spots, confined thermal spikes, a low R{sub m} gradient argue against simple burial heating. These observations are consistent with regional invasion of warm fluids, probably from the Ouachita-Arkoma system, and their subsequent upward migration into Pennsylvanian strata through faults and fractures. Petroleum exploration should consider the possibility of regionally elevated thermal maturation levels with even more elevated local maxima. Consequences may include local generation of hydrocarbons or local changes in diagenetic patterns.

Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. (Univ. of Kansas, Lawrence (United States)); Barker, C.E. (Geological Survey, Denver, CO (United States))

1991-03-01T23:59:59.000Z

127

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard

128

Regional-scale flow of formation waters in the Williston basin  

SciTech Connect

The Williston basin is a structurally simple intracratonic sedimentary basin that straddles the United States-Canada border east of the Rocky Mountains and that contains an almost continuous stratigraphic record since the Middle Cambrian. Based on the wealth of data generated by the oil industry, the regional-scale characteristics of the flow of formation waters were analyzed for the Canadian side of the basin, and integrated with previous studies performed on the American side. Several aquifers and aquifer systems identified in the basin were separated by intervening aquitards and aquicludes. The Basal, Devonian, and Mannville (Dakota) aquifers are open systems, being exposed at the land surface in both recharge and discharge areas. Recharge takes place in the west-southwest at relatively high altitude in the Bighorn and Big Snowy mountains and at the Black Hills and Central Montana uplifts, whereas discharge takes place in the east and northeast at outcrop along the Canadian Precambrian shield in Manitoba and the Dakotas. The Mississippian and Pennsylvanian aquifer systems are semi-open, cropping out only in the west-southwest where they recharge, but discharging in the northeast into adjacent aquifers through confining aquitards. On regional and geological scales, the entire system seems to be at steady-state, although locally transient flow is present in places due to water use and hydrocarbon exploitation, and to some erosional rebound in the uppermost confining shales. On the western flank of the basin, the interplay between the northeastward structural downdip direction and the northeastward flow of formation waters creates conditions favorable for hydrodynamic oil entrapment.

Bachu, S. [Alberta Department of Energy, Edmonton (Canada); Hitchon, B. [Hitchion Geochemical Services Ltd., Alberta (Canada)

1996-02-01T23:59:59.000Z

129

Regional summary and recommended study areas for the Texas Panhandle portion of the Permian Basin  

SciTech Connect

This report summarizes the regional geologic and environmental characterizations that have been completed for the Permian region of study, and describes the procedure used to identify study areas for the next phase of investigation. The factors evaluated in the Permian region fall into three broad areas: health and safety, environmental and socioeconomic, and engineering and economic considerations. Health and safety considerations included salt depth and thickness, faults, seismic activity, groundwater, salt dissolution, energy and mineral resources, presence of boreholes, and interactive land uses. Salt depth and thickness was the key health and safety factor, and when mapped, provded to be a discriminator. The evaluation of environmental and socioeconomic conditions focused primarily on the presence of urban areas and on designated land uses such as parks, wildlife areas, and historic sites. Engineering and economic considerations centered primarily on salt depth, which was already evaluated in the health and safety area. The Palo Duro and Dalhart basins are recommended for future studies on the basis of geology. In these two basins, salt depth and thickness appear promising, and there is less likelihood of past or future oil and gas exploratory holes. Environmental and socioeconomic factors did not preclude any of the basins from further study. 66 references, 16 figures, 2 tables.

Not Available

1983-12-01T23:59:59.000Z

130

Controls of oil family distribution and composition in nonmarine petroleum systems: A case study from Inner Mongolia Erlian basin, Northern China  

Science Journals Connector (OSTI)

Abstract The Erlian basin is a continental rift basin located in Inner Mongolia, Northern China. It is a typical representative of Cretaceous Northeast Asian Rift System, which includes many small petroliferous basins in Mongolia Republic and Northern China. Although Lower Cretaceous source rocks are understood to be most important in the Erlian petroleum systems, the precise identification of these source rock intervals and their determination on oil families distribution and composition are poorly understood in this tectonically complicated, nonmarine basin. New bulk data have been gathered from source rock intervals, oil sands and crude oil samples in eight main oil-producing subbasins. Geochemical analyses indicate that Lower Cretaceous Aershan formation (K1ba) and Tengger 1 formation (K1bt1) are two main source intervals in the Erlian basin and their source rock facies vary from profundal lacustrine to marginal lacustrine according to biomarker and trace elements calibration, the profundal lacustrine facies is characterised by brackish water and anoxic environment, which is similar to their correlative oils (Family 1 oils). The marginal lacustrine facies is characterised by freshwater and suboxic environment, which sourced the most common Family 2 oils. Meanwhile, different maturation processes exercise the second control on oil groups and their compositions, the profundal lacustrine source rocks characterised by their sulphur-rich kerogens lead to two oil groups (group 1 and group 2 oils), whose maturity range from low to normal; while, the marginal lacustrine source rock only lead to normal-maturity oils. At last, biodegradation affected the composition of a certain oils and formed group 4 heavy oils. In addition, short migration distance in small subbasins made the contamination or fractionation less notable in the Erlian basin.

Zhelong Chen; Guangdi Liu; Zhilong Huang; Xuejun Lu; Qiang Luo; Xiujian Ding

2014-01-01T23:59:59.000Z

131

Large methane emission upon spring thaw from natural wetlands in the northern permafrost region  

SciTech Connect

The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

2012-01-01T23:59:59.000Z

132

Structure and morphology of the top of Precambrian crystalline rocks in the Illinois Basin region  

SciTech Connect

New basement tests and seismic-reflection profiles in the Rough Creek Graben, Wabash Valley Fault System, and other parts of the Illinois Basin have significantly advanced the authors understanding of basement morphology and tectonics. Few details of the paleotopographic component of basement morphology are known, but 100 m or more of local paleotopographic relief is documented in a few places and more than 300 m of relief is known in the western part of the basin. Based on fewer than 50 wells in the Illinois Basin that penetrate Precambrian crystalline basement, it is composed principally of granite and rhyolite porphyry with small amounts of basalt/diabase or andesite. Most of the regional morphology must be projected from structure maps of key Paleozoic horizons, including the top of Middle Ordovician Trenton (Galena), the top of Middle Devonian carbonate (base of New Albany Shale), and other horizons where data are available. The shallowest Precambrian crystalline basement within the Illinois Basin occurs in north-central Illinois where it is [minus]1,000 m MSL. Paleozoic sedimentary fill thickens southward to over 7,000 m in deeper parts of the Rough Creek Graben where crystalline basement has been depressed tectonically and by sediment loading to below [minus]7,000 m MSL. Although trends in Paleozoic strata show continued thickening in the area of the Mississippi Embayment, maximum sediment fill is preserved in the Rough Creek Graben. The general shape of the basin at the level of Precambrian crystalline basement is largely inferred from structure mapped on Paleozoic strata. Half-grabens and other block-faulted features in basement rocks are manifest in small-scale structures near the surface or have no expression in younger strata.

Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States)); Rupp, J.A. (Indiana Geological Survey, Bloomington, IN (United States)); Noger, M.C. (Kentucky Geological Survey, Lexington, KY (United States))

1992-01-01T23:59:59.000Z

133

A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,  

E-Print Network (OSTI)

Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

134

Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico  

SciTech Connect

Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

Advanced Resources International

2010-01-31T23:59:59.000Z

135

The sequence stratigraphy of the latest Cretaceous sediments of northern Wyoming: The interplay of tectonic and eustatic controls on foreland basin sedimentation  

SciTech Connect

A west-east chronostratigraphic correlation has been made of the latest Cretaceous sediments of northern Wyoming. Five sections from Jackson Hole to Red Bird have been dated magnetostratigraphically (C34N-C26R) and radiometrically (81-68 Ma), and integrated with the ammonite biostratigraphy of the Niobrara and Pierre Shale. Four major sequence surfaces have been identified in section and the time missing within the unconformities has been measured and traced laterally. These bounding unconformities define six alloformations. The lowest straddles the C34N/C33R chronic boundary and contains the Cody, Telegraph Creek and Eagle Fms. The second ranges from the mid- to upper part of C33N of C32R and contains the Claggett and Judith River/Mesaverde Fms. The third (C32R ) is the Teapot Sandstone Member of the Mesaverde Fm. The fourth extends from the lower to upper part of C32N or to mid-C31R and includes the Bearpaw Shale and Meeteetse Fm. The fifth extends from C31N to C30N or C29N and includes the Harebell and Lance Fms. The base of the uppermost alloformation has been identified within C26R in the uppermost alloformation has been identified within C26R in the lowermost Fort Union. The unconformable surfaces are angular adjacent to the Sevier Thrust Belt but form paraconformities or hiatuses in the marine units to the east. The unconformities are eustatically controlled throughout the Campanian, but become tectonically driven in the Maastrichtian with the onset of rapid foredeep subsidence in Jackson Hole, and forebulge uplift in the Bighorn and Wind River Basin region which correlates exactly to the rapid regression of the Bearpaw Sea from the area in the range of Baculites clinolobatus.

Hicks, J.F. (Yale Univ., New Haven, CT (United States). Dept. of Geology); Tauxe, L. (Scripps Institution of Oceanography, LaJolla, CA (United States))

1992-01-01T23:59:59.000Z

136

INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-06-30T23:59:59.000Z

137

Death of a carbonate basin: The Niagara-Salina transition in the Michigan basin  

SciTech Connect

The A-O Carbonate in the Michigan basin comprises a sequence of laminated calcite/anhydrite layers intercalated with bedded halite at the transition between normal marine Niagaran carbonates and lower Salina Group evaporites. The carbonate/anhydrite interbeds represent freshing events during initial evaporative concentration of the Michigan basin. Recent drilling in the Michigan basin delineates two distinct regions of A-O Carbonate development: a 5 to 10 m thick sequence of six 'laminites' found throughout most of the western and northern basin and a 10 to 25 m thick sequence in the southeastern basin containing both thicker 'laminates' and thicker salt interbeds. Additionally, potash deposits of the overlying A-1 evaporite unit are restricted to the northern and western basin regions. The distribution of evaporite facies in these two regions is adequately explained by a source of basin recharge in the southeast-perhaps the 'Clinton Inlet' of earlier workers. This situation suggest either that: (1) the source of basin recharge is alternately supplying preconcentrated brine and more normal marine water, or (2) that the basin received at least two distinct sources of water during A-O deposition.

Leibold, A.W.; Howell, P.D. (Univ. of Michigan, Ann Arbor (United States))

1991-03-01T23:59:59.000Z

138

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

In the structure task, we completed reducing the data we had collected from a N-S transect on the east of Seneca Lake. We have calculated the fracture frequency for all the fracture sets at each site, and constructed modified rose diagrams that summarize the fracture attributes at each site. These data indicate a N-striking fault near the southeastern shore of Seneca Lake, and also indicate NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the ENE-striking FIDs and faults are thought to be guided by faults in the Precambrian basement; these basement faults apparently were sufficiently reactivated to cause faulting in the Paleozoic section. Other faults are thrust ramps above the Silurian salt section that were controlled by a far-field Alleghanian stress field. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally is insufficient to definitively identify faults. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Outcrop stratigraphy along the east side of Seneca Lake indicates that faults and gentle folds can be inferred from the some exposures along Seneca Lake, but the lensing nature of the individual sandstones can preclude long-distance definitive correlations and structure identification. Soil gas data collected during the 2000 field season was reduced and displayed in the previous semiannual report. The seismic data that Quest licensed has been reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report we display an interpreted seismic line that crosses the Glodes Corners and Muck Farm fields. The final report from the subcontractor concerning the completed aeromagnetic survey is included. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located. The trend and location of these faults based on aeromagnetics agrees with the location based on FIDs. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-01-30T23:59:59.000Z

139

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

140

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.  

SciTech Connect

This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C. Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U. S. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA.

Porter, Russell [Pacific States Marine Fisheries Commission].

2009-09-10T23:59:59.000Z

142

The Regional Climate Impact of a Realistic Future Deforestation Scenario in the Congo Basin  

Science Journals Connector (OSTI)

The demand for agricultural land in the Congo basin is expected to yield substantial deforestation over the coming decades. Although several studies exist on the climatological impact of deforestation in the Congo basin, deforestation scenarios ...

Tom Akkermans; Wim Thiery; Nicole P. M. Van Lipzig

2014-04-01T23:59:59.000Z

143

A comparison of groundwater recharge estimation methods in the Williston and Powder River structural basins in the Northern Great Plains  

E-Print Network (OSTI)

A comparison of groundwater recharge estimation methods in the Williston and Powder River-water-balance (SWB) model to estimate groundwater recharge in the Williston and Powder River structural basins

Torgersen, Christian

144

Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard  

SciTech Connect

Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

Stueber, A.M. (Illinois Univ., Edwardsville, IL (United States)); Walter, L.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1992-01-01T23:59:59.000Z

145

Bisbee basin and its bearing on Late Mesozoic Paleogeographic and paleotectonic relations between Cordilleran and Caribbean regions  

SciTech Connect

The Bisbee Group and its correlatives in southern Arizona, the New Mexico panhandle, and adjacent parts of Mexico are composed dominantly of Lower Cretaceous nonmarine, marginal marine, and shallow marine deposits, but apparently also include upper Upper Jurassic and lower Upper Cretaceous strata. Farther west, in southwestern Arizona and southeastern California, lithologically similar nonmarine strata of the McCoy Mountains Formation and its correlatives occupy the same general stratigraphic position as the Bisbee Group, but are poorly dated and may be older. The rifted Bisbee basin was a northwestern extension of the Chihuahua Trough, a late Mesozoic arm of the Gulf of Mexico depression. Basal zones of the Bisbee Group were deposited as alluvial fans marginal to active fault blocks during the rift phase of basin development, and are intercalated locally with lavas and ignimbrites. Subsequent thermotectonic subsidence of thinned crust beneath the Bisbee basin allowed intertonguing fluvial, lacustrine, deltaic, strandline, and marine shelf facies to invade the basin and bury the foundered fault-block topography. The upper Lower Cretaceous (Aptian-Albian) Mural Limestone was deposited during the phase of maximum transgression. Differing sandstone petrofacies of quartzose, arkosic, and volcaniclastic character reflect derivation of clastic detritus from varied sources bordering the Bisbee basin. The Bisbee basin and Chihuahua Trough developed in relation to Jurassic opening of the Gulf of Mexico, and were associated with changing plate configurations and motions throughout the Mesoamerican region.

Dickinson, W.R.; Klute, M.; Swift, P.N.

1986-04-01T23:59:59.000Z

146

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network (OSTI)

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

147

Systematic Analysis of Priority Water Resources Problems to Develop a Comprehensive Research Program for the Southern Plains River Basins Region  

E-Print Network (OSTI)

TR- 61 1975 Systematic Analysis of Priority Water Resources Problems to Develop a Comprehensive Research Program for the Southern Plains River Basins Region R.E. Babcock J.W. Clark E.J. Dantin M.T. Edmison N.A. Evans...

Babcock, R. E.; Clark, J. W.; Dantin, E. J.; Edmison, M. T.; Evans, N. A.; Power, W. L.; Runkles, J. L.

148

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

149

Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783  

E-Print Network (OSTI)

of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power Scott St. George a,b,c,, David M. Meko b , Michael N. Evans b,c a GSC Northern Canada, Geological Survey tenets of dendroclimatology, and states that tree-ring samples should be collected from sites

Evans, Michael N.

150

A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA  

Science Journals Connector (OSTI)

Abstract Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (?2H, ?18O, 3H, 14C, 3He, 4He, 20Ne, 40Ar, 84Kr, and 129Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, ?2H and ?18O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3H, terrigenic helium (4Heterr), and 3H/3He ages shows that modern groundwater (temperatures (NGTs) are generally 111C in Snake and southern Spring Valleys and >11C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of \\{NGTs\\} and 4Heterr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than continuing northeastward to discharge at either Fish Springs or the Great Salt Lake Playa. The refined understanding of groundwater recharge and flow paths acquired from this multi-tracer investigation has broad implications for interbasin subsurface flow estimates and future groundwater development.

Philip M. Gardner; Victor M. Heilweil

2014-01-01T23:59:59.000Z

151

Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations  

SciTech Connect

The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

Peterson, J.A. [Univ. of Montana, Missoula, MT (United States)

1996-06-01T23:59:59.000Z

152

Geologic controls on transgressive-regressive cycles in the upper Pictured Cliffs sandstone and coal geometry in the lower Fruitland Formation, Northern San Juan Basin, New Mexico and Colorado  

SciTech Connect

Three upper Pictured Cliffs Sandstone tongues in the northern part of the San Juan Basin record high-frequency transgressive episodes during the Late Cretaceous and are inferred to have been caused by eustatic sea level rise coincident with differential subsidence. Outcrop and subsurface studies show that each tongue is an amalgamated barrier strand-plain unit up to 100 ft (30 m) thick. Upper Pictured Cliffs barrier strand-plain sandstones underlie and bound thickest Fruitland coal seams on the seaward side. Controls on Fruitland coal-seam thickness and continuity are a function of local facies distribution in a coastal-plain setting, shoreline positions related to transgressive-regressive cycles, and basin subsidence. During periods of relative sea level rise, the Pictured Cliffs shoreline was temporarily stabilized, allowing thick, coastal-plain peats to accumulate. Although some coal seams in the lower Fruitland tongue override abandoned Pictured Cliffs shoreline deposits, many pinch out against them. Differences in the degree of continuity of these coal seams relative to coeval shoreline sandstones are attributed to either differential subsidence in the northern part of the basin, multiple episodes of sea level rise, local variations in accommodation and progradation, stabilization of the shoreline by aggrading peat deposits, or a combination of these factors. Fruitland coalbed methane resources and productivity are partly controlled by coal-seam thickness; other important factors include thermal maturity, fracturing, and overpressuring. The dominant production trend occurs in the northern part of the basin and is oriented northwestward, coinciding with the greatest Fruitland net coal thickness.

Ambrose, W.A.; Ayers, W.B. [University of Texas, Austin, TX (United States)

2007-08-15T23:59:59.000Z

153

File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information  

Open Energy Info (EERE)

Black.Warrior.Basin usgs.map.pdf Black.Warrior.Basin usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size of this preview: 742 × 600 pixels. Full resolution ‎(1,860 × 1,504 pixels, file size: 148 KB, MIME type: application/pdf) Description Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Sources USGS Related Technologies Oil, Gas Creation Date 2007 Extent Black Warrior Basin Province Countries United States UN Region Northern America States Alabama, Mississippi Location of the Black Warrior Basin Province in northwestern Alabama and northeastern Mississippi, published in the USGS report entitled, Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin

154

Land conversion in Amazonia and Northern South America : influences on regional hydrology and ecosystem response  

E-Print Network (OSTI)

A numerical model of the terrestrial biosphere (Ecosystem Demography Model) is compbined with an atmospheric model (Brazilian Regional Atmospheric Modeling System) to investigate how land conversion in the Amazon and ...

Knox, Ryan Gary

2013-01-01T23:59:59.000Z

155

Regional variability of convection over northern India during the pre-monsoon season  

Science Journals Connector (OSTI)

In general, the overall differences in activity and timing of convection are a result of the influence of large-scale regional and synoptic flow patterns on the local mesoscale environment. The linkage between...

Soma Sen Roy; Shouraseni Sen Roy

2011-01-01T23:59:59.000Z

156

REGIONAL PARADOX FORMATION STRUCTURE AND ISOCHORE MAPS, BLANDING SUB-BASIN, UTAH  

SciTech Connect

Over 400 million barrels (64 million m{sup 3}) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m{sup 3}) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field (figure 1). However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m{sup 3}) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado.

Kevin McClure; Craig D. Morgan; Thomas C. Chidsey Jr.; David E. Eby

2003-12-01T23:59:59.000Z

157

Southwest region solar pond study for three sites: Tularosa Basin, Malaga Bend, and Canadian River  

SciTech Connect

In the study, the Bureau of Reclamation investigated the technical and economic feasibility of using solar salt-gradient ponds to generate power and to produce freshwater in Bureau projects at three sites--the Canadian River at Logan, New Mexico; Malaga Bend on the Pecos River near Carlsbad, New Mexico; and the Tularosa Basin in the vicinity of Alamogordo, New Mexico. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Results of the economic analysis, which concentrated primarily on the Tularosa Basin site, showed that solar-pond-generated intermediate load power would cost between 62 and 90 mills/kWh and between 52 and 83 mills/kWh for baseload power. This results in benefit-cost ratios of approximately 2.0 and 1.3 for intermediate and baseload, respectively, when compared to similar facilities powered by fossil fuels. The cost savings are even more pronounced when comparing the two (solar versus fossil fuel) as a source of power for conventional distillation and membrane-type desalination systems.

Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

1984-08-01T23:59:59.000Z

158

Neotectonics of the Panama region. II. Deformation of the southern Colobian Basin  

SciTech Connect

The southern Colombian Basin is currently undergoing deformation as a result of convergence between Panama and the Caribbean plate. The structural expression of this convergence north of Panama is the Panama Deformed Belt (PDB), a marginal wedge of highly deformed sediments. The authors interpretation of UTIG multichannel data suggest that deformation of the PDB initiated during the Miocene and that the deformation front is migrating northward with respect to the Caribbean plate. Earthquake activity along the PDB is concentrated toward the east where the Mono Rise is underthrusting the PDB. The hypo-central distribution of these events indicate the presence of a seismic zone which has shallow dip to the southwest. Multichannel data also indicate that the style of deformation within the PDB changes from east to west. The authors propose that the observed variations in seismicity and deformation of the PDB are dependent on two factors: 1. The difference in Panama-Caribbean plate convergence along the PDB and 2. The fluctuation in oceanic crustal thickness of the Colombian Basin.

Adamek, S.H.

1985-01-01T23:59:59.000Z

159

Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA  

E-Print Network (OSTI)

, monsoon precipitation can affect changes to the land surface, vege- tation communities and ecosystem throughout the 20th century and continues to affect the biotic and abiotic components of southwestern US ecology locally and regionally (Snyder and Tartowski, 2006). In many water-driven ecosystems, vegetation

160

Phanerozoic tectono-stratigraphic evolution of the Trans-Pecos and Permian basin regions (Mexico, Texas, New Mexico) using Landsat imagery, subsurface and outcrop data  

SciTech Connect

Integrating regional Landsat imagery, outcrop field studies, and subsurface data has resulted in a more comprehensive understanding and delineation of the tectono-stratigraphic evolution of the Trans-Pecos region. Landsat imagery were acquired and registered to the existing 1:25000 scale maps and mosaiced to create a regional view of the Trans-Pecos and Permian basin region. The imagery were used to extrapolate and map key stratigraphic and tectonic elements after calibration from documented outcrop and subsurface data. The interpretations aided in the extrapolation of scattered control information and were critical in the complete reconstruction of the geologic history of the area. The Trans-Pecos Phanerozoic history comprises five tectono-depositional phases, and these have controlled the shape of the modem landscape: (1) Late Proterozoic rifting (Gondwana from Laurentia), and development of the Early-Middle Paleozoic Tobosa basin; (2) Pennsylvanian collision (South and North Americas), and differentiation of the Tobosa basin into the Midland, Delaware, Orogrande, and Pedregosa basins separated by basement blocks: Central Basin Platform, Diablo Platform, Burro-Florida Platform; (3) Middle Mesozoic transtensional rifting (Mexico from North America), and Late Jurassic failed rifting of the Mexican Chihuahua and Coahuila Troughs west and south of the Diablo Platform; (4) Late Mesozoic Laramide collision (Mexico and Texas), and development of the Chihuahua fold/thrust belt limited by the western margin of the Diablo Platform; (5) Late Cenozoic North American basin and Range rifting, and development of Rio Grande grabens, block-faulted mountains, and volcanics. The Tobosa basin was a passive-margin interior sag; its continental margin was south of the Marathons.

Markello, J.R.; Sarg, J.F. [Mobil Technology Corporation, Dallas, TX (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ANALYSIS OF THE EFFECT OF PRINCIPAL STRESSES IN THE CHARLEVOIX, LOWER ST. LAWRENCE, NORTHERN APPALACHIAN, LAURENTIAN SLOPE AND GRAND BANKS REGIONS ON FAULTS IN NOVA  

E-Print Network (OSTI)

Brunswick. Point Lepreau is home to a nuclear power plant and seismic risk information in the Northern. Lawrence, offshore Nova Scotia and the Grand Banks. Earthquake and focal mechanism data were obtained from. In the Grand Banks region, stress orientations seem random and the cause of earthquakes is unknown. Offshore

Beaumont, Christopher

162

A systematic regional trend in helium isotopes across the northern basin and range province, Western North America  

E-Print Network (OSTI)

high potential for geothermal energy development. Over thespring; CF: Cove Fort geothermal energy plant. Additionalspring; CF: Cove Fort geothermal energy plant. Additional

Kennedy, B. Mack; van Soest, Matthijs C.

2006-01-01T23:59:59.000Z

163

Seasonal Tropical Cyclone Predictions Using Optimized Combinations of ENSO Regions: Application to the Coral Sea Basin  

Science Journals Connector (OSTI)

This study examines combining ENSO sea surface temperature (SST) regions for seasonal prediction of Coral Sea tropical cyclone (TC) frequency. The Coral Sea averages ~4 TCs per season, but is characterized by strong interannual variability, with 1...

Hamish A. Ramsay; Michael B. Richman; Lance M. Leslie

2014-11-01T23:59:59.000Z

164

LGOM region as a perspective power energy basin and implementation of innovative lignite development methods  

Science Journals Connector (OSTI)

Total reserves resources of the Legnica deposit complex are...1; Tables1 and 2), with those in the ScinawaGlogow region reaching almost 10.0 billion tonnes. Fig. 1 ...

Janusz Nowak; Jan Kudelko

2013-03-01T23:59:59.000Z

165

Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.  

SciTech Connect

This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale.

Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

2004-01-01T23:59:59.000Z

166

Regional hydrocarbon generation, migration, and accumulation pattern of Cretaceous strata, Powder River Basin  

SciTech Connect

A cell of abnormally high fluid pressure in the deep part of the Powder River basin is centered in an area where oil-generation-prone source rocks in the Skull Creek (oldest), Mowry, and Niobrara (youngest) formations are presently at their maximum hydrocarbon-volume generation rate. The overpressures are believed to be caused by the high conversion rate of solid kerogen in the source rocks to an increased volume of potentially expellable fluid hydrocarbons. In this area, hydrocarbons appear to be the principal mobile fluid species present in reservoirs within or proximal to the actively generating source rocks. Maximum generation pressures within the source rocks have caused vertical expulsion through a pressure-induced microfracture system and have charged the first available underlying and/or overlying sandstone carrier-reservoir bed. Hydrocarbons generated in the Skull Creek have been expelled downward into the Dakota Sandstone and upward into the Muddy Sandstone. Hydrocarbons generated in the Mowry have been expelled downward into the Muddy or upward into lower Frontier sandstones. Hydrocarbons generated in the Niobrara have been expelled downward into upper Frontier sandstones or upward into the first available overlying sandstone in the Upper Cretaceous. The first chargeable sandstone overlying the Niobrara, in ascending order, may be the (1) Shannon, (2) Sussex, (3) Parkman, (4) Teapot, or (5) Tekla, depending on the east limit of each sandstone with respect to vertical fracture migration through the Cody Shale from the underlying area of mature overpressured Niobrara source rocks.

Meissner, F.F.

1985-05-01T23:59:59.000Z

167

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

168

Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.  

SciTech Connect

This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trapnets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report under Section I, Implementation. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Section II of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed under Section II.

Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

2003-03-01T23:59:59.000Z

169

Convective-Resolving Regional Climate Simulations for the Amazon Basin: Comparison with TRMM Rainfall Data  

E-Print Network (OSTI)

) explored the use of an RCM as a component of an earth system model that simulated hydrology patterns in mountainous terrain. RCMs have also been used to study the impact of small-scale land-atmosphere interactions on regional climate. Schar et al. (1999...) explored the use of an RCM as a component of an earth system model that simulated hydrology patterns in mountainous terrain. RCMs have also been used to study the impact of small-scale land-atmosphere interactions on regional climate. Schar et al. (1999...

Kinney, Nichole 1987-

2012-08-21T23:59:59.000Z

170

Dr Stephen Dry, Canada Research Chair in Northern Hydrometeorology, discusses research projects on the Quesnel River Basin in British Columbia and wider concerns for freshwater supply in the area  

E-Print Network (OSTI)

focuses on the impacts of climate change on Canada's northern and alpine regions.The anthropogenic. In particular, I am attempting to determine what effect climate change will have on the environment in Canada in the oil and gas sectors with subsurface extraction (through fracking) requiring abundant freshwater

Dery, Stephen

171

Evolution and hydrocarbon prospectivity of the Douala Basin, Cameroon  

SciTech Connect

The Douala Basin is a stable Atlantic-type, predominantly offshore basin and forms the northern terminal of a series of divergent passive margin basins located on the Southwest coast of Africa that resulted from the rifting of Africa from South America. An integration of new studies including detailed well, biostratigraphic, sedimentological, geochemical and seismic data has confirmed that the tectonostratigraphic evolution in the basin can be broadly divided into three developmental phases: the Syn-rift, Transitional and Drift phases. This basis has been explored intermittently for hydrocarbon for the past 40 years with two important gas fields discovered and no commercial oil found as yet. This early gas discovery and a corresponding lack of any significant oil discovery, led early operators to term this basin as essentially a gas province. However, recent geochemical analyses of various oil-seeps and oil samples from various localities in the basin, using state-of-the-art techniques have demonstrated that this basin is a potential oil prone basin. The results show that two models of oil sourcing are possible: a Lower Cretaceous lacustrine saline source, similar to the presalt basins of Gabon or a marine Upper Cretaceous to lower Tertiary source, similar to the neighbouring Rio del Rey/Niger Delta Complex. Additionally, seismic reflection data also demonstrate a variety of reservoir horizons, including submarine fans, channel-like features and buried paleohighs, all interbedded within regionally extensive, uniformity bounded mudstone units. Hence, it is now quite evident that within this basin, there exist a vast potential for a wide variety of stratigraphic, structural and combined traps. These features, which are considered to have significantly enhanced the prospectivity of this basin, will be discussed in this paper.

Batupe, M.; Tampu, S.; Aboma, R.S. [National Hydrocarbons Corporation, Yaounde (Cameroon)

1995-08-01T23:59:59.000Z

172

The Palaeomagnetism of the Antrim Plateau Volcanics of Northern Australia  

Science Journals Connector (OSTI)

......just south of the Australian Bight from the Upper Carboniferous...1969. North Australian Plateau Volcanics...the Bonaparte Gulf Basin, Bur. Miner. Resour...palaeomagnetism of the Great Dyke of Southern...part of the Wiso Basin, Northern Territory......

M. W. McElbinny; G. R. Luck

1970-08-01T23:59:59.000Z

173

The Thermal Regime Of The San Juan Basin Since Late Cretaceous Times And  

Open Energy Info (EERE)

Regime Of The San Juan Basin Since Late Cretaceous Times And Regime Of The San Juan Basin Since Late Cretaceous Times And Its Relationship To San Juan Mountains Thermal Sources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Thermal Regime Of The San Juan Basin Since Late Cretaceous Times And Its Relationship To San Juan Mountains Thermal Sources Details Activities (1) Areas (1) Regions (0) Abstract: Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has been influenced by magmatic and volcanic activity in the San Juan Mountains-San Juan volcanic field located to the north of the Basin. Time-dependent isothermal step models indicate that the observed heat flow may be modelled by a (near) steadystate isothermal step extending from 30-98 km depth whose edge underlies the northern San Juan

174

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

Not Available

1981-07-01T23:59:59.000Z

175

Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region  

SciTech Connect

Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

1994-12-31T23:59:59.000Z

176

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

177

Regional geologic characterization of the Second Bone Spring Sandstone, Delaware basin, Lea and Eddy Counties, New Mexico  

E-Print Network (OSTI)

The Bone Spring Formation is a series of interbedded siliciclastics and carbonates that were deposited in the Delaware basin during the Leonardian (Early Permian). It consists of the First, Second and Third Carbonate and the First, Second and Third...

Downing, Amanda Beth

2012-06-07T23:59:59.000Z

178

Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern  

E-Print Network (OSTI)

and Northern European Mountain Ranges Jonathan Lenoir1 *, Jean-Claude Ge´gout2,3 , Antoine Guisan4 , Pascal ability may increase plot a-diversity and compensate for low total c-diversity. Citation: Lenoir J, Ge´gout

Zimmermann, Niklaus E.

179

Regional correlations and reservoir characterization studies of the Pennsylvanian system in the Anadarko Basin area of Western Oklahoma and the Panhandle of Texas  

SciTech Connect

Correlations problems have long existed between the Pennsylvanian marine clastics of the northeastern half of the Anadarko Basin and Shelf and the Pennsylvanian terrigenous washes of the extreme southwestern portion of the Anadarko Basin. These correlation problems have created nomenclature problems resulting in thousands of feet of washes often referred to on completion reports and production records as {open_quotes}granite wash{close_quotes} or {open_quotes}Atoka Wash{close_quotes} when much greater accuracy and specificity is both needed and possible. Few detailed cross-sections are available. Regional and field scale cross-sections were constructed which have been correlated well by well and field by field using nearly every deep well drilled in the basin. This process has provided for a high degree of consistency. These cross-sections have greatly diminished the correlation and nomenclature problems within the Anadarko Basin. Certain markers proved to be regionally persistent from the marine clastics into the terrigenous washes making the subdivision of thousands of feet of washes possible. Those of greatest importance were the top of the Marmaton, the Cherokee Marker, the Pink {open_quotes}Limestone{close_quotes} Interval, the top of the Atoka and the top of the Morrow. Once these and other subdivisions were made, production was allocated on a much more definitive basis. Additionally, detailed reservoir characterization of the reservoirs was conducted to include geologic and engineering data. Finally, a {open_quotes}field-specific{close_quotes} reservoir type log was chosen. A series of regional cross-sections will be presented along with the results of reservoir characterization studies conducted on reservoirs within the fields located along the cross-sections. A type log for each reservoir will also be illustrated.

Hendrickson, W.J.; Smith, P.W.; Williams, C.M. [Dwights Energydata Inc., Oklahoma City, OK (United States)

1995-09-01T23:59:59.000Z

180

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico  

SciTech Connect

The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.

Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States)

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Assessment of a Food for Work Program and the Drought Survival Needs of Ethiopian Communities in the Northern Tigray Region  

E-Print Network (OSTI)

of Northern Ethiopia? Methods - Article 1 Data Collection Content analysis of historical documents - or ?material culture? as Patton (2002, p. 293) described - will be used to evaluate the impact of the FFW program in Ethiopia. Notter stated (as cited... and continue to influence the present and future. (p.356) Using content analysis of historical documents provides the researcher with ?information about many things that cannot be observed? (Patton, 2002, p. 293). Glass (1989) reasoned that historical...

Collett, Ryan

2012-02-14T23:59:59.000Z

182

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

183

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

184

GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data  

DOE Data Explorer (OSTI)

The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

185

The Palaeomagnetism of the Antrim Plateau Volcanics of Northern Australia  

Science Journals Connector (OSTI)

......unchanged position just south of the Australian Bight from the Upper Carboniferous to the mid-Cretaceous...the southern part of the Bonaparte Gulf Basin, Bur. Miner. Resour. Geol. Geophys...geology of the northern part of the Wiso Basin, Northern Territory, Bull. Bur. Miner......

M. W. McElbinny; G. R. Luck

1970-08-01T23:59:59.000Z

186

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

187

Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

None

1981-07-01T23:59:59.000Z

188

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

189

Origin of cratonic basins  

SciTech Connect

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

190

Late Paleozoic foreland deformation in northern Mexico: paleogeographic and tectonic implications  

SciTech Connect

Deformation in north-central Mexico reflects the existence of an actively evolving foreland basin during the late Paleozoic. The Pedregosa and Orogrande basins formed the northern extensions of this north-northwest-trending foreland basin, which was flanked on the north and west by several large block uplifts. Deformation along the southeastern margin of the basin, in Coahuila, is postulated to represent part of a foreland fold-thrust belt, while structures in Chihuahua and adjacent parts of New Mexico and Texas are related to basement-involved block uplifts. The unconformities, sedimentation patterns and deformation styles of several localities in Chihuahua, southern New Mexico, and west Texas indicate similar, but not necessarily time-equivalent, deformational histories. Uplift began in Late Mississippian and culminated between latest Pennsylvanian (in the north) and Late Permian (in the south). The geographic distribution and sequential timing of deformation are consistent with our knowledge of the Ouachita system in the US. The distributions of the fold-thrust belt and basement-involved uplifts of the Ouachita foreland in northern Mexico is not only similar to other parts of the Ouachita system but also to portions of the Laramide in the northern Rocky Mountains. These similarities and distribution of late Paleozoic calcalkaline igneous rocks in the region suggest that a subduction zone and associated magmatic arc were present in eastern Mexico during the late Paleozoic.

Handschy, J.W.

1985-02-01T23:59:59.000Z

191

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

192

Microbial Biomass and Activity Distribution in an Anoxic, Hypersaline Basin  

Science Journals Connector (OSTI)

...the northern Gulf of Mexico with anoxic conditions...the northern Gulf of Mexico with anoxic conditions...basin in the Gulf of Mexico. The Orca Basin, as...Table 1 is a result of geothermal heat brought into the...sulfate-reducing as well as sulfide-oxidizing...

Paul A. LaRock; Ray D. Lauer; John R. Schwarz; Kathleen K. Watanabe; Denis A. Wiesenburg

1979-03-01T23:59:59.000Z

193

Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten the work season in northern regions. Add  

E-Print Network (OSTI)

and innovative solutions in engineering, construction and operations in cold regions. The partnership between, CRREL was the technical lead for the U.S. Army-Alaska for a white phosphorous analysis and remediation

US Army Corps of Engineers

194

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities[1]

195

Study on consumption efficiency of soil water resources in the Yellow River Basin based on regional ET structure  

Science Journals Connector (OSTI)

Based on the regional water resources character, the concept of soil water resources is first redefined, and then associated...ET)-based consumption structure and consumption efficiency of soil water resources ar...

Hao Wang; GuiYu Yang; YangWen Jia; DaYong Qin

2008-03-01T23:59:59.000Z

196

THE INTRACONTINENTAL BASINS (ICONS) ATLAS APPLICATIONS IN EASTERN AUSTRALIA PESA Eastern Australasian Basins Symposium III Sydney, 1417 September, 2008 275  

E-Print Network (OSTI)

THE INTRACONTINENTAL BASINS (ICONS) ATLAS ­ APPLICATIONS IN EASTERN AUSTRALIA PESA Eastern Australasian Basins Symposium III Sydney, 14­17 September, 2008 275 The IntraCONtinental basinS (ICONS) atlas of intracontinental basins (ICONS atlas), using freely available global and regional datasets. Firstly, we are trying

Müller, Dietmar

197

Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems - Applied examples for a region in Northern Germany  

SciTech Connect

Against the background of increasing concerns about climate change, the reduction of greenhouse gas emissions has become an integral part of processes in both the waste management and the energy industries. This is reflected in the development of new waste treatment concepts, in which domestic and commercial waste is treated with the aim of utilizing its energy content, while at the same time recycling as much of its material content as possible. Life cycle assessment (LCA) represents a method of assessing the environmental relevance of a waste management system, the basis of which is a material flow analysis of the system in question. GHG emissions from different options for thermal treatment and energy recovery from waste as applied to a region in Northern Germany have been analyzed by the LCA approach and an indicative LCA, which only considers those emissions resulting from operating stages of the system. Operating stages have the main share of emissions compared to pre-processing stages. Results show that through specific separation of waste material flows and highly efficient energy recovery, thermal treatment and energy generation from waste can be optimized resulting in reduction of emissions of greenhouse gases. There are also other areas of waste utilization, currently given little attention, such as the solar drying of sewage sludge, which can considerably contribute to the reduction of greenhouse gas emissions.

Wittmaier, M. [Institute for Recycling and Environmental Protection at Bremen University of Applied Sciences GmbH, Neustadtswall 30, 28199 Bremen (Germany)], E-mail: wittmaier@hs-bremen.de; Langer, S.; Sawilla, B. [Institute for Recycling and Environmental Protection at Bremen University of Applied Sciences GmbH, Neustadtswall 30, 28199 Bremen (Germany)

2009-05-15T23:59:59.000Z

198

SALINITY MANAGEMENT IN THE UPPER COLORADO RIVER BASIN: MODELING, MONITORING, AND COST-EQUITY CHALLENGES.  

E-Print Network (OSTI)

?? Salinity issues in the Upper Colorado River Basin have been a serious concern to the western United States and northern Mexico. The Colorado River (more)

Keum, Jongho

2014-01-01T23:59:59.000Z

199

E-Print Network 3.0 - alluvial basin numerical Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Great Britain. Palaeocurrents and provenance of the Mae Rim Formation, Northern Thailand Summary: as alluvial fans along the basin's edge. The main goals for this study...

200

E-Print Network 3.0 - alluvial basins in-depth Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Great Britain. Palaeocurrents and provenance of the Mae Rim Formation, Northern Thailand Summary: as alluvial fans along the basin's edge. The main goals for this study...

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota.  

E-Print Network (OSTI)

??The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North (more)

Spicer, James Frank

2012-01-01T23:59:59.000Z

202

Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership, San Juan Basin Pilot, New Mexico  

E-Print Network (OSTI)

Site Characterization Activities with a focus on NETL MMV efforts: Southwest Regional Partnership faults and fracture zones and help the NETL MMV team interpret post-injection observations. The geophysical logging and VSP data will help other NETL and SWP researchers develop geomechanical and flow

Wilson, Thomas H.

203

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

204

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old  

Open Energy Info (EERE)

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Details Activities (3) Areas (3) Regions (0) Abstract: Utilizing commercial mine blasts and local earthquakes, as well as a dense array of portable seismographs, we have achieved long-range crustal refraction profiles across northern Nevada and the Sierra Nevada Mountains. In our most recent refraction experiment, the Idaho-Nevada-California (INC) transect, we used a dense spacing of 411 portable seismographs and 4.5-Hz geophones. The instruments were able to record events ranging from large mine blasts to small local earthquakes.

205

Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002  

SciTech Connect

Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

Milici, R.C.; Hatch, J.R.

2004-09-15T23:59:59.000Z

206

Coalbed methane production potential in U. S. basins  

SciTech Connect

The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

Byer, C.W.; Mroz, T.H.; Covatch, G.L.

1987-07-01T23:59:59.000Z

207

Groundwater and surface water supplies in the Williston and Powder River structural basins are necessary for future development in these regions. To help determine  

E-Print Network (OSTI)

#12;i Abstract Groundwater and surface water supplies in the Williston and Powder River structural of streams, and quantify reservoir interaction in the Williston and Powder River structural basins the loss to underlying aquifers was 7790 ft3 /s. Both the Powder River and Williston basins contain gaining

Torgersen, Christian

208

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD OF THE SAN JUAN BASIN REGION  

SciTech Connect

This report discusses: (1) being able to resume marginal oil production operations in the Red Mountain Oil Field, located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP); (2) determining if this system can reduce life costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improve the economics. In April 2003, a cooperative 50% cost share agreement between Enerdyne and the DOE was executed to investigate the feasibility of using cable suspended electric submersible pumps to reduce the life costs and increase the ultimate oil recovery of the Red Mountain Oil Field, located on the Chaco Slope of the San Juan Basin, New Mexico. The field was discovered in 1934 and has produced approximately 55,650 cubic meters (m{sup 3}), (350,000 barrels, 42 gallons) of oil. Prior to April 2003, the field was producing only a few cubic meters of oil each month; however, the reservoir characteristics suggest that the field retains ample oil to be economic. This field is unique, in that, the oil accumulations, above fresh water, occur at depths from 88-305 meters, (290 feet to 1000 feet), and serves as a relatively good test area for this experiment.

Don L. Hanosh

2004-11-01T23:59:59.000Z

209

Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range  

SciTech Connect

Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

1996-03-01T23:59:59.000Z

210

Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)  

Science Journals Connector (OSTI)

Abstract We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.12Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 1020m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200400m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.

Denis Thiblemont; Pascal Bouton; Alain Prat; Jean-Christian Goujou; Monique Tegyey; Francis Weber; Michel Ebang Obiang; Jean Louis Joron; Michel Treuil

2014-01-01T23:59:59.000Z

211

Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin  

SciTech Connect

Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

Putnam, P.E.; Moore, S. (Petrel Robertson Ltd., Calgary, Alberta (Canada)); Ward, G. (Ward Hydrodynamics, Calgary, Alberta (Canada))

1990-05-01T23:59:59.000Z

212

Petroleum basin studies  

SciTech Connect

This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

Shannon, P.M. (Univ. College, Dublin (IE)); Naylor, D. (Westland Exploration Ltd., Dublin (IE))

1989-01-01T23:59:59.000Z

213

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network (OSTI)

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

214

A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements  

Science Journals Connector (OSTI)

......from continuous sites and other campaigns...velocity field to test previous hypotheses...Oregon and northern Nevada areas beginning...structure between the Nevada Test Site and Boise, Idaho...zone in southern Nevada linking the Wasatch......

S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

2012-04-01T23:59:59.000Z

215

Summary of the Second College Grant Master Plan Dartmouth College owns and manages 27,000 acres of woodland in the Northern Forest region  

E-Print Network (OSTI)

President for Finance & Administration Larry Kelly, Associate Director of Real Estate Stacy Miller La, such as wilderness recreation, preservation of natural places and waters, and long-term sustainability of the Northern Forest. The management of the Grant shall be multiple-use in nature and provide for a sustainable

Lotko, William

216

The Persian Gulf Basin: Geological history, sedimentary formations, and petroleum potential  

Science Journals Connector (OSTI)

The Persian Gulf Basin is the richest region of the ... Foredeep, which is a member of the Persian Gulf Basin. During the most part of the...

A. I. Konyuhov; B. Maleki

217

Southern Colorado Plateau Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Southern Colorado Plateau Geothermal Region Southern Colorado Plateau Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Colorado Plateau Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} "The Colorado Plateau is a high standing crustal block of relatively undeformed rocks surrounded by the highly deformed Rocky Mountains, and Basin and Range Provinces. The Uinta Mountains of Utah and Rocky Mountains of Colorado define the northern and northeastern boundaries of the Plateau. The Rio Grande Rift Valley in New Mexico defines the eastern boundary. The southern boundary is marked by the Mogollon Rim, an erosional cuesta that separates the Colorado Plateau from the extensively faulted Basin and Rang Province. To the west is a broad transition zone where the geologic

218

Walker-Lane Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Walker-Lane Transition Zone Geothermal Region Walker-Lane Transition Zone Geothermal Region (Redirected from Walker-Lane Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Walker-Lane Transition Zone Geothermal Region Details Areas (37) Power Plants (15) Projects (10) Techniques (30) Map: {{{Name}}} The northern Walker Lane (NWL) is a structurally complex zone of transition between the Sierra Nevada/Great Valley microplate and the Basin and Range Province. It is a major right-lateral shear zone which has been defined on both physiographic and geologic grounds Evidence from seismic and geologic studies together indicate that this 100 km wide zone is actively deforming and accommodates 20% of the relative motion between the Pacific and North American plates. Block modeling of crustal deformation of the northern

219

Table 10. Estimated rail transportation rates for coal, basin to state, STB dat  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, basin to state, STB data" Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real Dollars per Ton",,,,,,,,,,"Annual Percent Change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $16.45"," $14.29"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $21.45"," W"," W"," W"," W"," $28.57"," W"," W"," W",," W"," W"

220

Regional tectonics, differential subsidence, and sediment dispersal patterns: implications for sediment flux to the southern South China Sea and regional filling of sedimentary Basins during Pliocene to the Recent time  

E-Print Network (OSTI)

The Nam Con Son, Malay, and West Natuna basins, located offshore of SE Vietnam and Peninsular Malaysia, initially formed during Eocene(?)-Oligocene rifting, and underwent inversion during Miocene time. Following cessation of tectonic activity...

Murray, Mychal Roland

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ecology: Drought in the Congo Basin  

Science Journals Connector (OSTI)

... significantly expanded the tropical-forest research programme by focusing on chronic drought in Africa's Congo Basin, a region that has been the subject of much less investigation than the ... optical, microwave and gravity remote-sensing data to evaluate long-term drought response in the Congo Basin (Fig. 1). Annual precipitation in this region is bimodal, and the ...

Jeffrey Q. Chambers; Dar A. Roberts

2014-04-23T23:59:59.000Z

222

Regional Purchasing  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Purchasing Regional Purchasing Regional Purchasing Pursuant to Appendix M of Prime Contract No. DE-AC52-06NA25396 between DOE/NNSA and Los Alamos National Security, LLC (LANS), LANS is committed to building a strong supplier base with Northern New Mexico businesses and the local Native American pueblos in the purchases of goods and services. Contact Small Business Office (505) 667-4419 Email We seek out and utilize known Northern New Mexico business as suppliers The Northern New Mexico counties included are Los Alamos Santa Fe Rio Arriba Taos Mora San Miguel Sandoval The eight regional pueblos included are Nambe Ohkay Owingeh (formerly known as San Juan) Picuris Pojoaque San Ildefonso Santa Clara Taos Tesuque When the Laboratory cannot identify regional firms, it will expand its

223

Seismic imaging of the axial region of the Valu Fa Ridge, Lau Basinthe accretionary processes of an intermediate back-arc spreading ridge  

Science Journals Connector (OSTI)

......Lau Basin-the accretionary processes of an intermediate back-arc...rate, crustal accretionary processes at mid-ocean ridges with...Trans Am. geophys. Un. Fall Mtg Suppl., 73(43), 133...centres and mid-ocean ridge processes, J. geophys. Res., 91......

Ian M. Turner; Christine Peirce; Martin C. Sinha

1999-08-01T23:59:59.000Z

224

Sources of Atmospheric Moisture for the La Plata River Basin  

Science Journals Connector (OSTI)

The La Plata River basin (LPRB) is the second largest basin of South America and extends over a highly populated and socioeconomically active region. In this study, the spatiotemporal variability of sources of moisture for the LPRB are quantified ...

J. Alejandro Martinez; Francina Dominguez

2014-09-01T23:59:59.000Z

225

Paleozoic paleotectonics and sedimentation in southern Rocky Mountain region  

SciTech Connect

During the Paleozoic, the southern Rocky Mountain region included most of New Mexico and Arizona and at least the northern parts of adjacent Chihuahua and Sonora. It was particularly stable part of the North American craton during the Cambrian through Middle Devonian. Slow deposition of shelf clastics and dolomitic carbonates was interrupted by several long erosional hiatuses. Major recognizable tectonism first appeared in the Devonian with at least one depositional basin formed west of the Defiance-Zuni uplift. Thin Early Mississippian shelf carbonates and evaporites covered nearly the entire region. The most significant tectonic activities started in the late Chesterian and extended with increasing magnitude until the end of Wolfcampian time. Local basins and uplifts date from this interval and occurred in two belts. One belt was about 80 mi (130 km) wide along the western sides of the Hueco and Pedernal uplifts and along both sides of the Uncompahgre uplift. Another belt extended northwest from the Pedresoga basin into southeastern Arizona. Major tectonic events initiated the Morrowan, Atokan, and Missourian Epochs and occurred twice within the Wolfcampian Epoch. Leonardian, Guadalupian, and Ochoan Epochs were times of tectonic stability. During the Leonardian, sediments from the Uncompahgre uplift gradually covered all the other uplifts. The timing of these paleozoic tectonic events suggests a cause-effect relationship with plate-tectonic histories that brought North American and northern Europe together in the Late Devonian (Acadian orogeny) and Euramerica and northwestern Gondwana together in the Late Mississippian through Early Permian (Appalachian orogeny).

Ross, C.A.; Ross, J.R.P.

1985-05-01T23:59:59.000Z

226

USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION  

SciTech Connect

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

Don L. Hanosh

2004-08-01T23:59:59.000Z

227

Northern Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

a draft environmental assessment (EA) on the proposed interconnection of the Northern Wind Farm (Project) in Roberts County, near the city of Summit, South Dakota. Northern Wind,...

228

Hack's law of debris-flow basins  

Science Journals Connector (OSTI)

Hack's law was originally derived from basin statistics for varied spatial scales and regions. The exponent value of the law has been shown to vary between 0.47 and 0.70, causing uncertainty in its application. This paper focuses on the emergence of Hack's law from debris-flow basins in China. Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study. Basins in the different regions are found to present similar distributions. Hack's law is derived from maximum probability and conditional distributions, suggesting that the law should describe some critical state of basin evolution. Results suggest the exponent value is approximately 0.5. Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage. A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

Yong LI; Z.Q. YUE; C.F. LEE; R.E. BEIGHLEY; Xiao-Qing CHEN; Kai-Heng HU; Peng CUI

2009-01-01T23:59:59.000Z

229

E-Print Network 3.0 - area northern baltic Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Baltic Sea Basin Summary: C in south- ern areas such as Poland and northern Germany. Water surface temperatures in the Baltic Sea could... landscape, and the Baltic Sea...

230

Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea)  

Science Journals Connector (OSTI)

The Adriatic Sea is a semi-enclosed ecosystem that receives in its shallow part, the northern basin, significant freshwater inputs which markedly increase its productivity with respect to the oligotrophic feature...

A. Puddu; R. La Ferla; A. Allegra; C. Bacci

1998-01-01T23:59:59.000Z

231

EXECUTIVE SUMMARY TERTIARY COAL RESOURCES IN THE NORTHERN  

E-Print Network (OSTI)

EXECUTIVE SUMMARY TERTIARY COAL RESOURCES IN THE NORTHERN ROCKY MOUNTAINS AND GREAT PLAINS REGION RockyMountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A Click here in the Northern Rocky Mountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A #12;ES

232

File:EIA-Eastern-GreatBasin-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Great Basin By 2001 Gas Reserve Class Great Basin By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:59, 20 December 2010 Thumbnail for version as of 17:59, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

233

File:EIA-Eastern-GreatBasin-liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

Great Basin By 2001 Liquids Reserve Class Great Basin By 2001 Liquids Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:59, 20 December 2010 Thumbnail for version as of 17:59, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

234

File:EIA-Eastern-GreatBasin-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Eastern Great Basin By 2001 BOE Reserve Class Eastern Great Basin By 2001 BOE Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:58, 20 December 2010 Thumbnail for version as of 17:58, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

235

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

236

Tropical forests: Include Congo basin  

Science Journals Connector (OSTI)

... 478, 378381; 2011). But their meta-analysis of 138 studies overlooks the Congo basin, the second-largest continuous area of rainforest in the world; moreover, only ... the lack of recent and accessible legacy data for this region. The Democratic Republic of Congo (DRC), which contains 98 million hectares of rainforest (60% of the ...

Hans Verbeeck; Pascal Boeckx; Kathy Steppe

2011-11-09T23:59:59.000Z

237

Mercury in the Northern Crayfish, Orconectes virilis (Hagen), in New England, USA  

E-Print Network (OSTI)

Mercury in the Northern Crayfish, Orconectes virilis (Hagen), in New England, USA CHRIS M. PENNUTO of mercury bioavail- ability in aquatic ecosystems. In this study, we assessed the effects of drainage basin, habitat type, size class, and sex on mercury concentrations in the northern crayfish, Orconectes virilis

Pennuto, Chris

238

Reduction of Risk in Exploration and Prospect Generation through a Multidisciplinary Basin-Analysis Program in the South-Central Mid-Continent Region  

SciTech Connect

This report will discuss a series of regional studies that were undertaken within the South-Central Mid-Continent region of the U.S. Coverage is also provided about a series of innovative techniques that were used for this assessment.

Banerjee, S.; Barker, C.; Fite, J.; George, S.; Guo, Genliang; Johnson, W.; Jordan, J., Szpakiewicz, M.; Person, M.; Reeves, T.K.; Safley, E.; Swenson, J.B.; Volk, L.; and Erickson, R.

1999-04-02T23:59:59.000Z

239

Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region  

SciTech Connect

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

Don L. Hanosh

2006-08-15T23:59:59.000Z

240

Northern Aral Sea recovering  

Science Journals Connector (OSTI)

... During the 1960s, the two rivers that fed the Aral the Syr Darya, which empties into the northern Aral, and the ... , which empties into the northern Aral, and the Amu ...

Daemon Fairless

2007-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela  

E-Print Network (OSTI)

to Cariaco Basin, Venezuela Aurora C. Elmore a,*, Robert C. Thunell b , Richard Styles b , David Black c, Venezuela a r t i c l e i n f o Article history: Received 27 February 2008 Accepted 10 November 2008 the northern continental shelf of Venezuela and consists of two 1400 m deep sub-basins separated by an 900 m

Meyers, Steven D.

242

Environmental aspects of coal production in the Applachian Region. Progress report, June 1, 1979-May 31, 1980. [New River Basin, Tennessee  

SciTech Connect

The overall project focus is on damage agent flow resulting from strip mining. Attention has focused on (1) field work related to quantifying sediment yield from control plots that have been reclaimed back to contour including surface runoff water quality; (2) continued measurement of water quality in six primary watersheds, 5 mined and 1 control, to follow the long term behavior of changes in water quality that results from mining activity; (3) continued measurement of biological changes that result from mining activity, the time required for recovery and the nature of recovery, i.e., changes in post mining community structure; and (4) application of simulation models for stream hydrographs, sediment detention basins and hydrologic assessments. Although field study plots had a uniform heavy grass and conformed to current state and federal reclamation standards, suspended sediment concentrations leaving the site consistently exceeded federal and state allowable concentration during all storms. Water quality changes that occur very soon after mining commences in a watershed, that is elevated calcium, magnesium, iron, manganese and sulfate, do not return to premining levels even after 5 years. Mining disturbance produces long term water quality changes in dissolved constituents, even in alkaline systems, which may have an economic impact on downstream water users. The major impact of strip mining on water quality is the continued production of suspended sediment in drainage streams. Significant biological changes occur in watershed streams after surface mining is initiated and are strongly related to suspended sediment. Recovery is observed and seems related to type of mining practiced and condition of tributary stream. A mathematical model for simulating stormwater response and pollutant yield in strip mined watersheds was developed.

Minear, R.A.; Overton, D.E.; Vaughn, G.L.; Tschantz, B.A.

1980-04-15T23:59:59.000Z

243

Geodetic Constraints on Contemporary Deformation in the Northern Walker  

Open Energy Info (EERE)

Geodetic Constraints on Contemporary Deformation in the Northern Walker Geodetic Constraints on Contemporary Deformation in the Northern Walker Lane: 2. Velocity and Strain Rate Tensor Analysis- In: Late Cenozoic Structure and Evolution of the Great Basin-Sierra Nevada Transition Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Geodetic Constraints on Contemporary Deformation in the Northern Walker Lane: 2. Velocity and Strain Rate Tensor Analysis- In: Late Cenozoic Structure and Evolution of the Great Basin-Sierra Nevada Transition Abstract Abstract unavailable Authors C. Kreemer, Geoffrey Blewitt and William C. Hammond Editors John S. Oldow and Patricia H. Cashman Published Geological Society of America, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geodetic Constraints on Contemporary Deformation

244

COAL RESOURCES, POWDER RIVER BASIN By M.S. Ellis,1  

E-Print Network (OSTI)

Chapter PN COAL RESOURCES, POWDER RIVER BASIN By M.S. Ellis,1 G.L. Gunther,2 A.M. Ochs,2 S, Delaware 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

245

FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,  

E-Print Network (OSTI)

Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

246

2014 REGIONAL ECONOMIC OUTLOOK  

E-Print Network (OSTI)

2014 REGIONAL ECONOMIC OUTLOOK #12;2014 REGIONAL ECONOMIC OUTLOOK 2014 Overview The Cincinnati USA Partnership for Economic Development and the Northern Kentucky Chamber of Commerce are pleased to present the 2014 Regional Economic Outlook. This report was prepared by the Cincinnati USA Partnership's Regional

Boyce, Richard L.

247

Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada  

SciTech Connect

This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

Cole, J.C.; Harris, A.G.; Wahl, R.R.

1997-10-02T23:59:59.000Z

248

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

249

Remote sensing analysis of natural oil and gas seeps on the continental slope of the northern Gulf of Mexico  

E-Print Network (OSTI)

. The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number.... The continental slope of the northern Gulf of Mexico is an economically important hydrocarbon basin. As oil-drilling technologies improve and reservoirs on the continental shelf are depleted, more companies are leasing drilling areas on the slope. The number...

De Beukelaer, Sophie Magdalena

2004-11-15T23:59:59.000Z

250

From pre-salt sources to post-salt traps: A specific petroleum system in Congo coastal basin  

SciTech Connect

The Bas Congo basin extends from Gabon to Angola and is a prolific oil province where both pre-salt and post salt sources and reservoirs have been found. In the northern part of the basin referred to as the Congo coastal basin, the proven petroleum system is more specific: mature source rocks are found only in pre-salt series whereas by contrast 99 % proven hydrocarbon reserves am located in post-salt traps. Such a system is controlled by the following factors: Source rocks are mostly organic rich shales deposited in a restricted environment developed in a rift prior to the Atlantic Ocean opening; Migration from pre-salt sources to post-salt traps is finalized by local discontinuities of the regional salt layer acting otherwise as a tight seal; Post-salt reservoirs are either carbonates or sands desposited in the evolutive shelf margin developped during Upper Cretaceous; Geometric traps are linked to salt tectonics (mostly turtle-shaped structures); Regional shaly seals are related to transgressive shales best developped during high rise sea level time interval. Stratigraphically, the age of hydrocarbon fields trends are younger and younger from West to East: lower Albian in Nkossa, Upper Albian and lower Cenomanian in Likouala, Yanga, Sendji, Upper Cenomanian in Tchibouela, Turonian in Tchendo, Turanian and Senonian in Emeraude.

Vernet, R.

1995-08-01T23:59:59.000Z

251

Clean Cities: Northern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Northern Colorado Clean Cities Coalition Northern Colorado Clean Cities Coalition The Northern Colorado Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Northern Colorado Clean Cities coalition Contact Information Sheble McConnellogue 970-302-0914 northcolo@cleancitiescolorado.org Maria Eisemann 970-988-2996 marianccc@comcast.net Coalition Website Clean Cities Coordinators Coord Sheble McConnellogue Coord Coord Maria Eisemann Coord Photo of Sheble McConnellogue Sheble McConnellogue was a Clean Cities Coordinator for NCCC when the coalition first began in 1996. Sheble has over two decades of experience in the field of community and environmental health education and environmental transportation planning. She earned a Master's degree in Urban and Regional Planning from CU at

252

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL...  

Office of Legacy Management (LM)

to cause harm. Based on the levels of radioactivity observed in the soil, water, air, and biota the department finds no reason to restrict use of this area because of...

253

Area Study prior to Companion Modelling to Integrate Multiple Interests in Upper Watershed Management of Northern Thailand  

E-Print Network (OSTI)

Management of Northern Thailand C. Barnaud*, G. Trébuil**, P. Dumrongrojwatthana***, J. Marie**** * CU of northern Thailand have long been accused of degrading the upper watersheds of the country's major basins communities and state agencies, calling for the need for adapted participatory methodologies to facilitate

Boyer, Edmond

254

Northern New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

3 million for education, economic development, charitable giving in Northern New Mexico September 23, 2014 LOS ALAMOS, N.M., Sept. 23, 2014-The Los Alamos National Security,...

255

Williston basin Seislog study  

SciTech Connect

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

256

Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado  

SciTech Connect

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

1989-07-01T23:59:59.000Z

257

Two-Phase Westward Encroachment of Basin and Range Extension into the  

Open Energy Info (EERE)

Two-Phase Westward Encroachment of Basin and Range Extension into the Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Phase Westward Encroachment of Basin and Range Extension into the Northern Sierra Nevada Abstract [1] Structural, geophysical, and thermochronological data from the transition zone between the Sierra Nevada and the Basin and Range province at latitude ∼39°N suggest ∼100 km westward encroachment of Basin and Range extensional deformation since the middle Miocene. Extension, accommodated primarily by east dipping normal faults that bound west tilted, range-forming fault blocks, varies in magnitude from <2% in the interior of the Sierra Nevada crustal block to >150% in the Wassuk and

258

Water Basins Civil Engineering  

E-Print Network (OSTI)

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

259

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

260

Geothermal Literature Review At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geothermal Literature Review At Walker-Lane Geothermal Literature Review At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

262

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

263

Divergent/passive margin basins  

SciTech Connect

This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

Edwards, J.D. (Shell Oil Company (US)); Santogrossi, P.A. (Shell Offshore Inc. (US))

1989-01-01T23:59:59.000Z

264

Los Alamos National Security, LLC investing in Northern New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

LANS, LLC Investing In Northern New Mexico LANS, LLC Investing In Northern New Mexico Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Los Alamos National Security, LLC investing in Northern New Mexico Eight Northern New Mexico businesses were recently recognized for their high growth and potential to double revenue and staff during the next eight years. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Eight Northern New Mexico businesses were recently recognized in Santa Fe for their high growth and potential to double revenue and staff during the next eight years. LANL Executive Director Richard Marquez was the keynote speaker at the event, which was hosted by the Regional Development

265

ADCP-Referenced Geostrophic Circulation in the Bering Sea Basin  

Science Journals Connector (OSTI)

A month-long circumnavigation of the Bering Sea basin in August 1991 was designed to study the basin-scale circulation. For the first time in this region vessel-mounted acoustic Doppler current profiler (ADCP) measurements provided an absolute ...

E. D. Cokelet; M. L. Schall; D. M. Dougherty

1996-07-01T23:59:59.000Z

266

Congo Basin rainfall climatology: can we believe the climate models?  

Science Journals Connector (OSTI)

...Asare, Simon Lewis and Philippe Mayaux Congo Basin rainfall climatology: can we believe...rainforests: past, present and future . The Congo Basin is one of three key convective regions...rainfall products and climate models. Congo rainfall|climatology|moisture flux...

2013-01-01T23:59:59.000Z

267

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type [open quote]inverted Gaussian function[close quote] that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. (Univ. of Saskatchewan, Saskatoon (Canada))

1996-01-01T23:59:59.000Z

268

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type {open_quote}inverted Gaussian function{close_quote} that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. [Univ. of Saskatchewan, Saskatoon (Canada)

1996-12-31T23:59:59.000Z

269

Folding in regions of extension  

Science Journals Connector (OSTI)

......isostatically compensated and why the Moho remains flat in such regions. Finally, the model accounts...extensional folds from examples in the Rocky Mountain Basin and Range province, U...the Basin and Range-Colorado Plateau-Rocky Mountain transition from coherence analysis......

F. Lvy; C. Jaupart

2011-06-01T23:59:59.000Z

270

Predicting Northern Goshawk Dynamics Using an Individual-based Spatial Model.  

E-Print Network (OSTI)

??The northern goshawk (Accipiter gentilis) is a US Forest Service Region 2 Sensitive Species, requiring the Black Hills National Forest to manage for its viability. (more)

Smith, Melanie A

2007-01-01T23:59:59.000Z

271

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

272

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

273

Feasibility evaluation of fired brick technology as a construction material and income-generating industry in Northern Ghana  

E-Print Network (OSTI)

This work evaluates the potential to develop fired brick production in the Northern Region of Ghana. While several brick factories operate in southern Ghana, no factories are known to exist in northern Ghana, which remains ...

Bates, Caroline Nijole

2014-01-01T23:59:59.000Z

274

U. S. monthly coal production  

Gasoline and Diesel Fuel Update (EIA)

coal commodity regions (i.e., Central Appalachia (CAPP), Northern Appalachia (NAPP), Illinois Basin (ILB), Powder River Basin (PRB), and Uinta Basin (UIB)) in the United States....

275

E-Print Network 3.0 - austral magallanes basin Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: austral magallanes basin Page: << < 1 2 3 4 5 > >> 1 World Shale Gas Resources: An Initial Assessment of 14 Regions Summary: ......

276

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

277

The tectonics of eastern Hispaniola: an investigation into the formation and episodic uplift of the Beata Ridge and the geologic and velocity structure of the Cibao basin  

E-Print Network (OSTI)

. Lateral variations in the elastic thickness of the Caribbean plate may be responsible for some of the topography of the Beata Ridge. The Cibao basin in the northern Dominican Republic is investigated using data obtained from a seismic reconnaissance survey...

Boucher, Paul James

2012-06-07T23:59:59.000Z

278

Detrital thermochronology of the Alpine foreland basin in Central Switzerland: Insights into tectonic and erosion history of the North Central Alps  

E-Print Network (OSTI)

This study systematically integrates zircon U-Pb geochronology and (U-Th)/He low-temperature thermochronology to correlate the Northern Alpine Foreland Basin (NAFB) sediment provenance and the tectonic and thermal evolution of the thrust stack...

Miller, Joseph Christopher

2012-12-31T23:59:59.000Z

279

Accomplishments At The Great Basin Center For Geothermal Energy | Open  

Open Energy Info (EERE)

Accomplishments At The Great Basin Center For Geothermal Energy Accomplishments At The Great Basin Center For Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Accomplishments At The Great Basin Center For Geothermal Energy Details Activities (0) Areas (0) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) has been funded by DOE since March 2002 to conduct geothermal resource exploration and assessment in the Great Basin. In that time, those efforts have led to significant advances in understanding the regional and local conditions necessary for the formation of geothermal systems. Accomplishments include the development of GPS-based crustal strain rate measurements as a geothermal exploration tool, development of new methods of detecting geothermal features with remotely sensed imagery, and the detection of

280

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Late Cretaceous-Cenozoic Basin framework and petroleum potential of Panama and Costa Rica  

SciTech Connect

Despite its location between major petroleum provinces in northwestern South America and northern Central America, there is a widespread negative perception of the petroleum potential of Panama and Costa Rica in southern Central America. Several factors may contribute to this perception: (1) the on and offshore geology of many areas has only be studied in a reconnaissance fashion; (2) sandstone reservoirs and source rocks are likely to be of poor quality because Upper Cretaceous-Cenozoic sandstones are eroded from island arc or oceanic basement rocks and because oil-prone source rocks are likely to be scarce in near-arc basins; and (3) structural traps are likely to be small and fragmented because of complex late Cenozoic thrust and strike-slip tectonics. On the other hand, onshore oil and gas seeps, shows and small production in wildcat wells, and source rocks with TOC values up to 26% suggest the possibility of future discoveries. In this talk, we present the results of a regional study using 3100 km of offshore seismic lines kindly provided by industry. Age and stratigraphic control of offshore lines is constrained by limited well data and detailed field studies of basin outcrops in coastal areas. We describe the major structures, stratigraphy, and tectonic history of the following areas: Gulf of Panama and Gulf of Chiriqui of Panama and the Pacific and Caribbean margins of Costa Rica.

Mann, P. (Univ. of Texas, Austin (United States)); Kolarsky, R. (Texaco USA, New Orleans, LA (United States))

1993-02-01T23:59:59.000Z

282

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

283

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

284

Regional Planning | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Planning Regional Planning Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean Regional Planning Efforts Alias (field_alias) Apply California, Oregon, Washington Regional Ocean Partnership West Coast Governors' Alliance Regional Data Portal In Development U.S. Virgin Islands, Puerto Rico Regional Ocean Partnership U.S. Caribbean Regional Ocean Partnership-currently being formally established Regional Data Portal To be developed Georgia, Florida, North Carolina, South Carolina Regional Ocean Partnership Governors' South Atlantic Alliance Regional Data Portal Currently in development American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), Federated States of Micronesia, Guam, Hawaii, Marshall Islands, Palau

285

Regional geologic framework of Neogene-Quaternary deposits, Louisiana continental shelf  

SciTech Connect

The Louisiana Continental Shelf of the northern Gulf Coast Basin is one of the most prolific hydrocarbon provinces in the Nation. Its structural and stratigraphic characteristics were studied by means of a regional network of dip and strike cross sections based on subsurface data from wells penetrating to depths as great as 19,000 ft (5791 m) below mean sea level. The cross sections illustrate a gulfward-thickening wedge of terrigenous clastic Cenozoic deposits that have a complex structural fabric; structures are largely attributed to extensive depositional loading, which result in gravity failure and widespread diapirism. Major structural elements include systems of coast-parallel, syndepositional faults characterized by down-to-basin displacement, sectional thickening on the downthrown side, and increasing stratigraphic throw with depth. Abundant piercement salt domes, as well as numerous post-depositional fold sand gravity fault systems, are also present. The cross-sectional network illustrates the spatial distribution of about 30 chronostratigraphic units ranging in age from early Miocene to late Pleistocene. Regional variations in stratigraphic thickness reflect both coast-parallel and gulfward migrations of the basinal depocenter. Induction-electrical logs indicate the presence of three magnafacies that are defined on the basis of sand-shale proportions. Downdip facies changes to progressively more argillaceous units indicate a gulfward transition from continental to deep-water marine paleoenvironments.

Shideler, G.L.

1985-01-01T23:59:59.000Z

286

Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine  

SciTech Connect

Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

Bein, A.; Dutton, A.R. (Univ. of Texas, Austin (United States))

1993-06-01T23:59:59.000Z

287

A Review of High-Temperature Geothermal Developments in the Northern...  

Open Energy Info (EERE)

Intensive geothermal exploration i n the northernBasin.and Range province has r e s u l t e d i n thethe discovery of nine high-temperature (>ZOO"C)geothermal r e s e r v o i r...

288

Coalbed methane potential assessed in Forest City basin  

SciTech Connect

This paper reports that the Forest City basin is a shallow cratonic depression located in northeastern Kansas, southeastern Nebraska, southern Iowa and northern Missouri. Historically, the Forest City basin in northeastern Kansas has been a shallow oil and gas province with minor coal production. The Iowa and Missouri portion has had minor oil production and moderate coal mining. In recent years there has been little coal mining in the Forest City in Iowa and Kansas and only minor production in Missouri. Before 1940, gas was produced from coal beds and shales in the Kansas portion of the Forest City basin. The Cherokee group (Altokan and Desmoinesian age) includes section containing the largest number of actively mined coals and has the greatest available data for coalbed methane evaluation.

Tedesco, S.A. (CST Oil and Gas Corp., Denver, CO (US))

1992-02-10T23:59:59.000Z

289

BULL MOUNTAIN BASIN, MONTANA By G.D. Stricker  

E-Print Network (OSTI)

Mountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A Click here or on this symbol Mountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A #12;SM-ii Contents in the Northern RockyMountains and Great Plains region, U.S. Geological Survey Professional Paper 1625-A Click

290

Adjustments Due to a Declining Groundwater Supply: High Plains of Northern Texas and Western Oklahoma  

E-Print Network (OSTI)

The region north of the Canadian River in Texas and including the three western counties of Oklahoma have been rapidly developing the groundwater resource since the mid 1960's. This region, hereafter referred to as the Northern High Plains...

Lacewell, R D.; Jones, L. L.; Osborn, J. E.

291

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

292

Surface deformation and stress interactions during the 20072010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania  

Science Journals Connector (OSTI)

......dyke intrusion and eruption in northern Tanzania Juliet Biggs Michael Chivers Michael...the Lake Natron region of northern Tanzania experienced all of these events within...Nubian and Somalian plates. In northern Tanzania, the spreading rate is 3-4yr1 (Stamps......

Juliet Biggs; Michael Chivers; Michael C. Hutchinson

2013-01-01T23:59:59.000Z

293

Refraction Survey At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Refraction Survey At Walker-Lane Transitional Zone Refraction Survey At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

294

Modeling-Computer Simulations At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Modeling-Computer Simulations At Walker-Lane Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

295

GRC Transactions, Vol. 31, 2007 Geothermal, energy resources, Great Basin, GPS, geodesy,  

E-Print Network (OSTI)

GRC Transactions, Vol. 31, 2007 391 Keywords Geothermal, energy resources, Great Basin, GPS, and will be incorporated in future models. Introduction Geothermal energy resources have long been associated of active crustal deformation and its spatial relationship to active geothermal systems in the northern

296

Integrated paleoenvironmental analysis of the Niobrara Formation: Cretaceous Western Interior Seaway, northern Colorado  

Science Journals Connector (OSTI)

Abstract This study presents a regional chronostratigraphic framework and paleoenvironmental reconstruction of the Niobrara Formation in northern Colorado based upon multidisciplinary biostratigraphic and lithostratigraphic data. A local biostratigraphic zonation is described for the Coniacian to earliest Campanian of this region of the Western Interior Seaway based primarily upon the distribution of calcareous nannofossils. Three key paleoenvironmental packages are also identified and linked to the evolution of regional sedimentary facies. During the Early to Late Coniacian, Tethyan water masses interacted with Boreal surface currents to produce regional upwelling along tectonically-controlled bathymetric highs. A well mixed, relatively well oxygenated water column with warm surface water temperatures and high fertility sustained a rich microflora/fauna and promoted higher carbonate production. Enhanced fluvial input and a weakening of Tethyan influence during the Early Santonian mark the onset of a regional environmental shift. This period of transition extends through the Middle Santonian and is characterized by pulses of transported material and relatively frequent turnover of faunal associations. Increased terrigenous runoff likely produced eutrophic surface waters and intensified water column stratification, leading to a general deterioration of the bottom water environment in a progressively dysoxic setting. Continued strengthening of fluvial input during the Late Santonian to Early Campanian resulted in surface water freshening and sustained primary productivity. This surface water environmentin conjunction with stifled vertical mixingpromoted the development of a stagnant and intensely stratified water column. The basin was therefore severely dysoxic (possibly anoxic) and corrosive with chemically reducing bottom waters and an expanded oxygen minimum zone, thereby limiting biotic development and causing the deposition of finely laminated, mud-rich (carbonate poor) seciments.

Rui O.B.P. Da Gama; Brendan Lutz; Patricio Desjardins; Michelle Thompson; Iain Prince; Irene Espejo

2014-01-01T23:59:59.000Z

297

Northern Pass WLT Filing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 12, 2013 Electronic filing September 12, 2013 Electronic filing Christopher Lawrence Office of Electricity Delivery and Energy Reliability (OE-20), U.S. Department of Energy, 1000 Independence Avenue, SW. Washington, DC 20585 Fax: (202) 586-8008 Christopher.Lawrence@hq.doe.gov Re: Petition by The Weeks Lancaster Trust to intervene in the matter of the Northern Pass Transmission LLC Application for a Presidential Permit (OE Docket No. PP-371) Dear Mr. Lawrence, Following is the petition by The Weeks Lancaster Trust LLC to intervene and comment in the matter of Northern Pass Transmission LLC's Application for a Presidential Permit (PP-371). In accordance with the Notice of Application for this proceeding (75FR 69990), we are also sending a hard copy to the address above. Please contact us by

298

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

299

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

300

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Basin configuration and depositional trends in the Mission Canyon and Ratcliffe beds, U.S. portion of the Williston basin  

SciTech Connect

Construction of Mission Canyon and Ratcliffe depositional trends utilizing shoreline models and anhydrite edge maps shows a significant change in basin configuration associated with regional sea level changes. Sea level highstand, which began during deposition of the Scallion member of the Lodgepole Formation, was punctuated by two lowstand events. The first occurred during deposition of the MC-2 anhydrite (Tilston). During this lowstand event, the width of the carbonate basin decreased significantly. With sea level rise, a broad basin formed with carbonate and evaporate ramp deposition (Lands, Wayne, Glenburn and Mohall members). The top of the Mohall contains evidence of the second lowstand event. This event introduced quartz sand detritus into the basin (Kisbey Sandstone). Because of sea level lowstand, Sherwood and younger Mission Canyon beds were deposited during highstand in a narrower carbonate basin. Funneling of marine currents and tides in this basin created higher energy shoreline and shoal deposits than those commonly found in older Mission Canyon sediments. The top of the Mission Canyon (Rival) was capped by a deepening event or transgression which enlarged the basin and created broad Ratcliffe ramp systems similar to those that existed during Glenburn and Mohall deposition. By utilizing sequence stratigraphy and mapping shoreline trends and basin configuration, reservoir and trap geometries are identified, and exploration success is improved.

Hendricks, M.L. [Hendricks and Associates, Inc., Englewood, CO (United States)

1996-06-01T23:59:59.000Z

302

Geohydrology of bedrock aquifers in the Northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming  

SciTech Connect

Development of energy-related resources in the northern Great Plains of the US will require large quantities of ground water. Because Montana, North Dakota, and Wyoming are semiarid, the primary local sources of nonappropriated water are the deep bedrock aquifers of Paleozoic and Mesozoic age. The US Geological Survey undertook a 4-year interdisciplinary study that has culminated in a digital-simulation model of the regional flow system and incorporates the results of geochemical, hydrologic, and geologic studies. Rocks of Paleozoic and Mesozoic age form at least five artesian aquifers that are recharged in the mountainous areas of Montana, South Dakota, and Wyoming. The aquifers extend for more than 600 mi to discharge areas in the northeastern part of North Dakota and in Manitoba. In general, the direction of flow in each aquifer is east to northeast, but flow is deflected to the north and south around the Williston basin. Flow through the Williston basin is restricted because of brine (200,000-350,000 mg/l), halite beds, geologic structures, and decreased permeability of rocks in the deeper parts of the basin. Fracture systems and lineaments transverse the entire area and act either as conduits or as barriers to ground-water flow, depending on their hydrogeologic and geochemical history. Vertical leakage from the aquifers is restricted by shale with low permeability, by halite beds, and by stratigraphic traps or low-permeability zones associated with petroleum accumulations. However, interaquifer leakage appears to occur through and along some of the major lineaments and fractures. Interaquifer leakage may be a major consideration in determining the quality of water produced from wells.

Downey, J.S.

1986-01-01T23:59:59.000Z

303

PP-60 Northern Electric Cooperative Association (NEC) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Northern Electric Cooperative Association (NEC) PP-60 Northern Electric Cooperative Association (NEC) Presidential Permit authorizing Northern Electric Cooperative Association...

304

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

305

Apacheta, A New Geothermal Prospect In Northern Chile | Open Energy  

Open Energy Info (EERE)

Apacheta, A New Geothermal Prospect In Northern Chile Apacheta, A New Geothermal Prospect In Northern Chile Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Apacheta, A New Geothermal Prospect In Northern Chile Details Activities (0) Areas (0) Regions (0) Abstract: The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a

306

Preliminary geohydrologic conceptual model of the Los Medanos region near the Waste Isolation Pilot Plant for the purpose of performance assessment  

SciTech Connect

This report describes a geohydrologic conceptual model of the northern Delaware Basin to be used in modeling three-dimensional, regional ground-water flow for assessing the performance of the Waste Isolation Pilot Plant (WIPP) in the Los Medanos region near Carlsbad, New Mexico. Geochemical and hydrological evidence indicates that flow is transient in the Rustler Formation and the Capitan aquifer in response to changing geologic, hydrologic, and climatic conditions. Before the Pleistocene, ground-water flow in the Rustler Formation was generally eastward, but uneven tilting of the Delaware Basin lowered the regional base level and formed fractures in the evaporitic sequence of rocks approximately parallel to the basin axis. Dissolution along the fractures, coupled with erosion, formed Nash Draw. Also, the drop in base level resulted in an increase in the carrying power of the Pecos River, which began incising the Capitan/aquifer near Carlsbad, New Mexico. Erosion and downcutting released hydraulic pressure that caused a reversal in Rustler ground-water flow direction near the WIPP. Flow in the Rustler west of the WIPP is toward Nash Draw and eventually toward Malaga Bend; flow south of the WIPP is toward Malaga Bend. 126 refs., 70 figs., 18 tabs.

Brinster, K.F. (Science Applications International Corp., Albuquerque, NM (USA))

1991-01-01T23:59:59.000Z

307

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

308

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

309

Micropaleontology and biostratigraphy of the coastal basins of West Africa  

SciTech Connect

This book is intended to meet the need for a single volume on descriptive micropaleontology of West African microfauna assemblage which is different from that of the Boreal, Mediterranean, Pacific and Atlantic regions. The contents include: Preface. Introduction. Systematics: West African foraminifera species: Systematic classification and description. Glossary for the foraminifera. Selected references for the foraminifera. The ostracoda: Systematic classification and description. Glossary for the ostracoda. Selected references for the ostracoda. Stratigraphic Sequences of the West African Coastal Basins: General review. Angola-Cuanza basin. Congo. Gabon. Cameroun-Douala basin. Nigeria. Togo-Benin basin. Ghana. Ivory Coast. Senegal. Appendix: Brief classification of foraminifera. Paleo-ecology of the foraminifera. Testing of samples. Collection of samples. Preparation of samples. Preparation of thin sections. Storage of microfossils. Methods of examination. Index.

Kogbe, C.A.; Mehes, K.

1986-01-01T23:59:59.000Z

310

Northern Colorado Clean Cities | Open Energy Information  

Open Energy Info (EERE)

Northern Colorado Clean Cities Northern Colorado Clean Cities Jump to: navigation, search Name Northern Colorado Clean Cities Address PO Box 759 Place Johnstown, Colorado Zip 80534 Region Rockies Area Number of employees 1-10 Year founded 1996 Phone number 970-689-4845 Notes Non-profit with members and mission to reduce petroleum use in the transportation sector through use of alternative fuels and other strategies, through collaborative partnerships, now! Coordinates 40.2895951°, -104.9155243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2895951,"lon":-104.9155243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

312

Mississippian Lodgepole Play, Williston Basin: A review  

SciTech Connect

Waulsortian-type carbonate mud mounds in the lower Mississippian Lodgepole formation (Bottineau interval, Madison Group) comprise an important new oil play in the Williston basin with strong regional potential. The play is typified by wells capable of producing 1000-2500 bbl of oil per day and by reserves that have as much as 0.5-3.0 million bbl of oil per well. Currently centered in Stark County, North Dakota, along the southern flank of the basin, the play includes 38 wells, with 21 producers and 6 new fields. Initial discovery was made at a Silurian test in Dickinson field, traditionally productive from Pennsylvanian sands. The largest pool discovered to date is Eland field, which has 15 producers and estimated total reserves of 12-15 million bbl. This report summarizes geologic, well-log, seismic, and production data for this play, which promises to expand considerably in the years to come.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-06-01T23:59:59.000Z

313

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

314

Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration  

SciTech Connect

Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

Weimer, R.J. [Colorado School of Mines, Golden, CO (United States)

1994-09-01T23:59:59.000Z

315

Caribbean basin framework, 3: Southern Central America and Colombian basin  

SciTech Connect

The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas of Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.

Kolarsky, R.A.; Mann, P. (Univ. of Texas, Austin (United States))

1991-03-01T23:59:59.000Z

316

Advanced Chemistry Basins Model  

SciTech Connect

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

317

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

318

Climate-driven variations in geothermal activity in the northern Kenya rift valley  

Science Journals Connector (OSTI)

... In the northern Kenya rift valley, geothermal activity is associated with a series of Quaternary volcanoes (Fig. 1). Hot, ... tables, a consequence of the semi-arid to arid climate of the region.

N. C. Sturchio; P. N. Dunkley; M. Smith

1993-03-18T23:59:59.000Z

319

Pilot study of horizontal roughing filtration in northern Ghana as pretreatment for highly turbid dugout water  

E-Print Network (OSTI)

In Northern Region Ghana (NRG), highly turbid rainwater runoff and intermittent streams are collected in earthen dams called dugouts. These dams serve as many communities' main source of drinking and domestic water despite ...

Losleben, Tamar

2008-01-01T23:59:59.000Z

320

The prevalence of brucellosis among sheep and goats in northern Iraq  

Science Journals Connector (OSTI)

Out of a total of 2,368 sheep and 3,156 goats tested against brucellosis by the Brewer's card test in the 5 Mohafadhas of the northern region of Iraq, 0.93% and 4.4% respectively...

M. A. Karim; E. K. Penjouian; F. I. Dessouky

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Comparison of Wind Speed and Forest Damage Associated with Tornadoes in Northern Arizona  

Science Journals Connector (OSTI)

Damage surveys in the aftermath of tornadoes occurring in the forested regions of the Mogollon Rim in northern Arizona have been assessed using the enhanced Fujita scale (EF scale) damage indicator (DI) and degree of damage (DOD) tables. These ...

David O. Blanchard

2013-04-01T23:59:59.000Z

322

Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options  

SciTech Connect

Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribes CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

2004-07-01T23:59:59.000Z

323

Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau  

Science Journals Connector (OSTI)

......consists mainly of the lake carbonate with some black oil shale (Liu Wang 1999). It disconformably overlies the Fenghuoshan...A, 326, 177-188. Liu Z. , Wang C., 1999. Oil shale in the Tertiary Hoh Xil basin, northern Qinghai-Tibet......

Zhifei Liu; Xixi Zhao; Chengshan Wang; Shun Liu; Haisheng Yi

2003-08-01T23:59:59.000Z

324

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

325

Role of fault rejuvenation in hydrocarbon accumulation and structural evolution of Reconcavo Basin, Northeastern Brazil  

SciTech Connect

From a geometric analysis of the fault pattern in the Reconcavo basin, Brazil, supported by a reinterpretation of the early opening history of the South Atlantic Ocean, it is inferred that the basin formed as a result of Valanginian (Early Cretaceous) motion on a major N40/sup 0/E-striking left-lateral transform fault located offshore between Salvador and Recife. This left-lateral motion was due to the location of the Valanginian pole of South American - African plate rotation within northern Brazil, at 2.5 /sup 0/S, 45.0/sup 0/W, rather than farther north as interpreted previously. 13 figures, 2 tables.

Cohen, C.R.

1985-12-01T23:59:59.000Z

326

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

SciTech Connect

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01T23:59:59.000Z

327

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

328

AUSTRALIAN-ANTARCTIC RIFTING PESA Eastern Australasian Basins Symposium III Sydney, 1417 September, 2008 271  

E-Print Network (OSTI)

AUSTRALIAN-ANTARCTIC RIFTING PESA Eastern Australasian Basins Symposium III Sydney, 14­17 September Bight region to chron 20 farther to the west (Sayers et al. 2001; Colwell et al. 2006). Alternatively

Müller, Dietmar

329

The Thermal Regime Of The San Juan Basin Since Late Cretaceous...  

Open Energy Info (EERE)

Thermal Sources Details Activities (1) Areas (1) Regions (0) Abstract: Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has been...

330

South Atlantic sag basins: new petroleum system components  

SciTech Connect

Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

Henry, S.G. [GeoLearn, Houston, TX (United States)] Mohriak, W.U. [Petroleo Brasileiro, S.A., Exploration and Production, Rio de Janeiro (Brazil); Mello, M.R. [Petroleo Brasieiro, S.A., Research Center, Rio de Janeiro (Brazil)

1996-08-01T23:59:59.000Z

331

Northern New England Middle School Science Bowl | U.S. DOE Office of  

Office of Science (SC) Website

Hampshire Regions » Northern New England Hampshire Regions » Northern New England Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New Hampshire Regions Northern New England Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Jennifer Betournay Email: jennifer.betournay@asdnh.org Regional Event Information Date: Saturday, January 25, 2014

332

Petroleum geology of Pacific margin of Central America and northern South America, from Guatemala to Ecuador  

SciTech Connect

Exploration for hydrocarbons along the Pacific margin of Central America and northern South America has been limited and spasmodic. Less than 100 exploration wells have been drilled, with nearly 50 of these being in the Santa Elena, Progreso, and Guayas basins in Ecuador. Shows have been reported in some wells, and a few oil seeps are known. The only commercial production established to date has been from the Santa Elena Peninsula in Ecuador in the extreme south of the study area. Understanding of the geology in this part of the continental margin is incomplete at best. This paper reviews present-day knowledge in an attempt to define the sedimentary basins better, to characterize their structure and stratigraphy, and to assess their petroleum prospects. The area of continental margin reviewed is to the north, located northwest of the trench system where oceanic crust of the Cocos plate subducts under the Caribbean plate, and to the south, where the northern part of the Nazca plate collides with the South American plate. This plate tectonic setting forms the framework on which local structural and sedimentary events have created a series of relatively small trench-slope and forearc basins in what is now the coastal plain and adjacent offshore area of Central and South America, south or west of a line of mountain ranges with active volcanism. Sedimentary fill is generally of Tertiary age. The basins and subbasins recognized and described include: in Ecuador - Guayas, Santa Elena, Progreso, Valdivia, Bajo Grande, Manta, Muisne-Esmeraldas, and Borbon; in Colombia - Choco-Pacific; in Panama - Gulf of Panama basin complex (Santiago, Tonosi, Sambu), and Burica-Chiriqui; in Costa Rica - Terraba and Coronado/Tempisque; in Nicaragua - San Juan del Sur; and in the Honduras, El Salvador, and Guatemala - the Pacific coastal basin.

Scrutton, M.E.; Escalante, G.F.

1986-07-01T23:59:59.000Z

333

Analysis Of Geothermal Resources In Northern Switzerland | Open Energy  

Open Energy Info (EERE)

In Northern Switzerland In Northern Switzerland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Analysis Of Geothermal Resources In Northern Switzerland Details Activities (0) Areas (0) Regions (0) Abstract: In Europe, geothermal energy becomes an attractive alternative for many conventional fuel based energy scenarios. In a time when actual political discussion favors regenerative energies, geothermal energy is an essential option since it offers the advantage of providing band energy. Recent studies provide evidence for large economical competitiveness of low-enthalpy, direct-use systems for heating and high-enthalpy systems for cogeneration (combined heat and power, CHP) or pure power generation. The study presented herein develops a detailed subsurface model of possible

334

Northern California Solar Energy Association | Open Energy Information  

Open Energy Info (EERE)

Northern California Solar Energy Association Northern California Solar Energy Association Jump to: navigation, search Name Northern California Solar Energy Association Address PO Box 3008 Place Berkeley, California Zip 94703 Region Bay Area Website http://www.gosolarcalifornia.c Coordinates 37.8524741°, -122.2738958° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8524741,"lon":-122.2738958,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

336

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

337

Rural electrification: Waste biomass Russian northern territories. Final report  

SciTech Connect

The primary objective of this pre-feasibility evaluation is to examine the economic and technical feasibility of replacing distillate fuel with local waste biomass in the village of Verkhni-Ozerski, Arkhangelsk Region, Russia. This village is evaluated as a pilot location representing the off-grid villages in the Russian Northern Territories. The U.S. Department of Energy (DOE) has agreed to provide technical assistance to the Ministry of Fuel and Energy (MFE). MFE has identified the Northern Territories as a priority area requiring NREL`s assistance. The program initially affects about 900 off-grid villages. Biomass and wind energy, and to a lesser extent small hydro (depending on resource availability) are expected to play the dominant role in the program, Geothermal energy may also have a role in the Russian Far East. The Arkhangelsk, Kariela, and Krasnoyarsk Regions, all in the Russian Northern Territories, have abundant forest resources and forest products industries, making them strong candidates for implementation of small-scale waste biomass-to-energy projects. The 900 or so villages included in the renewable energy program span nine administrative regions and autonomous republics. The regional authorities in the Northern Territories proposed these villages to MFE for consideration in the renewable energy program according to the following selection criteria: (a) Remote off-grid location, (b) high cost of transporting fuel, old age of existing power generation equipment, and (d) preliminary determination as to availability of alternative energy resources. Inclusion of indigenous minorities in the program was also heavily emphasized. The prefeasibility study demonstrates that the project merits continuation and a full feasibility analysis. The demonstrated rate of return and net positive cash flow, the willingness of Onegales and local/regional authorities to cooperate, and the immense social benefits are all good reasons to continue the project.

Adamian, S. [ECOTRADE, Inc., Glendale, CA (United States)

1998-02-01T23:59:59.000Z

338

A systematic regional trend in helium isotopes across the northernbasin and range province, Western North America  

SciTech Connect

An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g., Coso, Long Valley,Steamboat, and the Cascade volcanic complex). Moving towards the east,the ratios decline systematically to a background value of ~;0.1 Ra. Theregional trend is consistent with extensive mantle melting concentratedalong the western margin and is coincident with an east-to-west increasein the magnitude of northwest strain. The increase in shear strainenhances crustal permeability resulting in high vertical fluid flow ratesthat preserve the high helium isotope ratios at the surface. Superimposedon the regional trend are "helium spikes," local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.

Kennedy, B. Mack; van Soest, Matthijs C.

2006-05-01T23:59:59.000Z

339

Summary of Age-Dating Analysis in the Fenner Basin, Eastern Mojave Desert, California  

SciTech Connect

Stable isotopes of oxygen (oxygen-18) and hydrogen (deuterium) in water were measured to determine recharge sources for Fenner Basin groundwater. The deuterium and oxygen-18 signatures (reported as {delta}D and {delta}{sup 18}O values) ranged from -11.9 to -9.3 per mil. The more negative values originate from high elevation recharge in the New York Mountains and were also observed in the northern and eastern parts of the groundwater basin. less negative values were observed in the Providence Mountains along the western part of the basin. Groundwater collected in the Fenner Gap (i.e. Project Area) had signatures between -10.6 and -10.9 per mil, suggesting a mixture of recharge from both northern, western, and probably local recharge areas in the basin. The annual contribution of groundwater recharge to Fenner Gap from the Clipper, Marble, and Old Woman mountains is still inconclusive due to lack of isotopic data. Isotopic signatures of mean annual precipitation collected by Friendman and others (1992) at Mitchell Caverns, as well as recently recharged groundwater in the Providence and New York mountains, are similar to the isotopic values in Fenner Gap groundwater. This indicates that this groundwater has a Holocene age (less than 10,000 years old), since groundwater recharged during the Pleistocene had isotopic signatures significantly more negative than today due to past global cooling.

Davisson, M.L.

2000-06-01T23:59:59.000Z

340

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Kinematic model for postorogenic Basin and Range extension | Open Energy  

Open Energy Info (EERE)

Kinematic model for postorogenic Basin and Range extension Kinematic model for postorogenic Basin and Range extension Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Kinematic model for postorogenic Basin and Range extension Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek metamorphic core complex. Several studies of ductile deformation have shown that it accommodated crustal stretching in Tertiary time during late orogenic collapse of the thickened Cordilleran crust. Progressive deformation that results from mixed pure and simple shear produces a complex strain pattern along the shear zone. The authors propose a numerical kinematic model that relates strain variations in the shear zone to the different amounts of extension between the brittlely

342

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

343

Mississippian ''Warsaw'' play makes waves in Illinois basin  

SciTech Connect

Recent completions of relatively prolific wells in the mid-Missippian Ullin limestone have generated considerable excitement about this Illinois basin play. Reservoirs found within this limestone, commonly referred to by industry as the Warsaw, are scattered and are prolific oil producers in some areas of the basin. The widespread development of reservoir quality facies at depths ranging from 2,400--4,400 ft and the stratigraphic proximity of thermally mature New Albany shale, the primary Illinois basin source rock are factors that make the Warsaw an excellent exploration target. The paper discusses a depositional model, reservoir development, reservoir facies of the upper and lower Warsaw, factors controlling porosity and permeability, and regional and structural considerations.

Lasemi, Z.; Grube, J.P. (Illinois State Geological Survey, Champaign, IL (United States))

1995-01-09T23:59:59.000Z

344

Salt tectonics, patterns of basin fill, and reservoir distribution  

SciTech Connect

Salt structures, which develop due to sediment loading, gravity creep, and/or buoyance, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structure. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

Yorston, H.J.; Miles, A.E.

1988-01-01T23:59:59.000Z

345

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

346

Coal Supply Basin Destination State  

Annual Energy Outlook 2012 (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

347

Northern Lights Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Northern Lights Ethanol LLC Jump to: navigation, search Name: Northern Lights Ethanol LLC Place: Big Stone City, South Dakota Zip: 57216 Product: 75mmgy (283.9m litresy) ethanol...

348

Market Statistics Northern Colorado Region About the Research  

E-Print Network (OSTI)

details historical closing and inventory trends for both attached and detached residential product types, the Center also produces the EREC house price indices (HPI), an in-depth study of residential property values

349

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

350

Using High-Resolution Satellite Rainfall Products to Simulate a Major Flash Flood Event in Northern Italy  

Science Journals Connector (OSTI)

Effective flash flood warning procedures are usually hampered by observational limitations of precipitation over mountainous basins where flash floods occur. Satellite rainfall estimates are available over complex terrain regions, offering a ...

Efthymios I. Nikolopoulos; Emmanouil N. Anagnostou; Marco Borga

2013-02-01T23:59:59.000Z

351

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

352

Why Basin And Range Systems Are Hard To Find Ii- Structural Model Of The  

Open Energy Info (EERE)

Why Basin And Range Systems Are Hard To Find Ii- Structural Model Of The Why Basin And Range Systems Are Hard To Find Ii- Structural Model Of The Producing Geothermal System In Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Why Basin And Range Systems Are Hard To Find Ii- Structural Model Of The Producing Geothermal System In Dixie Valley, Nevada Details Activities (4) Areas (1) Regions (0) Abstract: Dixie Valley is the hottest (> 285°C at 3 km) and one of the largest geothermal systems (63 MW power plant operated for over 20 years) in the Basin and Range province. The heat source is deep circulation in a high heat flow, highly fractured upper crust without a significant magmatic thermal input. Many hot springs in the Basin and Range Province share the characteristics of the Dixie Valley system. Major geothermal resource

353

Active Geothermal Systems And Associated Gold Deposits In The Great Basin |  

Open Energy Info (EERE)

Geothermal Systems And Associated Gold Deposits In The Great Basin Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Geothermal Systems And Associated Gold Deposits In The Great Basin Details Activities (0) Areas (0) Regions (0) Abstract: In western North America, a number of geothermal systems derive their heat from magmas or cooling intrusions. The interior of the Great Basin however, is characterized by widespread amagmatic geothermal activity that owes its existence to high crustal heat flow and active extensional tectonics. Both the magmatically heated and extensional fluid types in the Great Basin have recently, or are currently, depositing gold. Quaternary to Pliocene-aged gold deposits with adjacent high-temperature (≤ 150°C)

354

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of  

Open Energy Info (EERE)

Of Geothermal Potential For The Great Basin, Usa- Recognition Of Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Details Activities (8) Areas (4) Regions (0) Abstract: A 1:1,000,000 scale geothermal favorability map of the Great Basin is currently being published through the Nevada Bureau of Mines and Geology (NBMG) and is now available at the web site (http://www.unr.edu/geothermal/geothermal_gis2. htm) of the Great Basin Center for Geothermal Energy (GBCGE). This map allows for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from

355

Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin  

Science Journals Connector (OSTI)

Abstract Commercial exploration and production of coalbed methane (CBM) in the Weibei field, Ordos Basin, China has rapidly increased since 2010. The Weibei field has become one of the most productive CBM areas in China. However, relatively few studies have investigated the migration of gas and water in the coal reservoir and their controls on the gas accumulation. This study conducts stable isotope analyses and quality tests for groundwater samples, discusses the relationships between the fluid flow pathways and tectonics, and concludes by discussing the geological and hydrological controls on potential gas accumulation in the Weibei field. The coalbed groundwaters contain primarily sodium and bicarbonate and are effectively devoid of sulfate, calcium and magnesium. The groundwaters are typically freshwater, with total dissolved solids (TDS) values ranging from 814 to 2657mg/L. Differences in hydrogeology and structural geology divide the study area into four gas domains. In the northern Hancheng area, the predominant northwest flow of groundwater has resulted in higher gas content in the west (>12m3/t) than in the east (812m3/t), even though the coals in the east have high thermal maturity (2.1%2.3% Ro). The area with the highest gas content (>16m3/t) is in the region near the downthrown side of the XuefengNan Thrust Fault in the northern Hancheng area, and the fault forms a barrier to the northwestward flow of groundwater. The area with the lowest gas content (gas has been flushed out of the coals due to a reduction of hydrostatic pressure and active groundwater flow from the east. Structural and hydrodynamic mechanisms, especially the intensity of the hydrodynamic activity and the groundwater flow pathways, are important for gas accumulation in the Weibei field.

Yanbin Yao; Dameng Liu; Taotao Yan

2014-01-01T23:59:59.000Z

356

OligoceneMiocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific Ocean: Evidence from  

E-Print Network (OSTI)

investigated parts of the southwest Pacific Ocean. It is a region of remnant volcanic arcs, plateaus and basins of the study area in the SW Pacific Ocean, showing geographic names and dredge locations from ChurkinOligocene­Miocene tectonic evolution of the South Fiji Basin and Northland Plateau, SW Pacific

Demouchy, Sylvie

357

K Basins Sludge Treatment Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download K Basins Sludge Treatment Process Summary - K...

358

K Basins Sludge Treatment Project Phase 1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Full Document and Summary Versions are available for download K Basins Sludge Treatment Project...

359

3, 383408, 2006 The northern Red  

E-Print Network (OSTI)

BGD 3, 383­408, 2006 The northern Red Sea ­ A system in balance? C. H¨ase et al. Title Page in balance? ­ Implications of deep vertical mixing for the nitrogen budget in the northern Red Sea, including The northern Red Sea ­ A system in balance? C. H¨ase et al. Title Page Abstract Introduction Conclusions

Paris-Sud XI, Université de

360

MENA-GTZ EERE Regional Center | Open Energy Information  

Open Energy Info (EERE)

MENA-GTZ EERE Regional Center MENA-GTZ EERE Regional Center Jump to: navigation, search Name MENA-GTZ EERE Regional Center Agency/Company /Organization GTZ Partner Ministry of electricity and energy of Egypt, New and Renewable Energy Authority (NREA) Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http://www.gtz.de/en/praxis/95 Program Start 2008 Program End 2013 Country Algeria, Bahrain, Cyprus, Djibouti, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunisia, Turkey, United Arab Emirates, Yemen Northern Africa, Western Asia, Western Asia, Eastern Africa, Northern Africa, Southern Asia, Western Asia, Western Asia, Western Asia, Western Asia, Western Asia, Northern Africa, Northern Africa, Western Asia, Western Asia, Western Asia, Western Asia, Northern Africa, Western Asia, Western Asia, Western Asia

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Organic matter in the Paleogene west European rift: Bresse and Valence salt basins (France)  

SciTech Connect

The Bresse and Valence basins are two adjacent segments of the West European rift. They contain thick Paleogene halite sequences including intercalated and interfingering siliciclastic material and carbonate and sulfate deposits. Source rock samples in this study were mainly taken from the depocenters because of maximum sampling coverage. Organic matter (OM) is generally immature and occurs primarily within intercalated nonhalitic beds. The Bresse basin seems to contain more OM in (1) the Intermediate Salt Formation (Priabonian), composed of alternating laminated carbonate and halite beds; (2) the upper part of the Upper Salt Formation (clayey carbonate beds; Rupelian), affected by synsedimentary halite solution; and (3) the solution breccia which immediate overlies the salt sequence. In the Valence basin, the organic-rich layers are concentrated in the Subsalt Formation (carbonate beds; Priabonian), and the upper part of the Lower Salt Formation (laminates; Rupelian). In both basins, type III organic matter is associated with terrigenous facies. Type I is abundant in the Valence basin (laminites), and type II seems to be more abundant in the Bresse basin. The amount of OM varies considerably, and we suppose it is higher toward the basin margins. From studies made in evaporite basins in other region, which are also known to have significant amounts of organic matter, we find a similar range of organic composition. Such studies are of interest because of their petroleum potential and for understanding precise depositional environments and waste disposal problems (gas generation with local heat source).

Curial, A.; Dumas, D.; Moretto, R.

1988-08-01T23:59:59.000Z

362

The Impact of Declining Groundwater Supply in the Northern High Plains of Texas and Oklahoma on Expenditures for Community Services  

E-Print Network (OSTI)

Reduced availability of groundwater in the Northern High Plains of Texas and Oklahoma is expected to have repercussions throughout the regional economy due to the reduction in agricultural income. The decline in the economic base is expected to lead...

Williford, G. H.; Beattie, B. R.; Lacewell, R. D.

363

Seismic reflection evidence for two phase development of Tertiary basins from east-central Nevada  

SciTech Connect

Two east-west seismic reflection profiles crossing Antelope Valley, Smokey Valley, Railroad Valley and Big Sand Springs Valley demonstrate the evolution of Tertiary extension from broad sags to narrow, fault-bounded basins. Seismic reflection data was acquired for the Anschutz Corporation by the Digicon Corporation during the winter of 1988/1989. Reprocessing of a 480 channel, 60 fold, dynamite source experiment enabled good imaging of the basin stratigraphy. These data suggest two distinct phases of basin development occurred, separated by a regional unconformity. The early phase is characterized by development of a broad basin riddled with many small offset normal faults. The later phase shows a narrowing of the basin and subsidence along one dominant structure, an apparent planar normal fault. The unconformity separating the two phases of extension marks a transition from broad subsidence to local asymmetric tilting that took place over a short period of time relative to sedimentation rates. Antelope Valley and Railroad Valley clearly show strong evidence for two phase development, whereas Smokey Valley represents mostly the early phase and Big Sand Springs Valley represents only the later phase of extension. The absence of dating within the basins precludes the authors from determining if the abrupt tectonic transition within the basins resulted from differences in local strain rates or amounts, or was due to changes in regional stress fields.

Liberty, L.M.; Heller, P.L.; Smithson, S.B. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics)

1993-04-01T23:59:59.000Z

364

Estimation of Regional Actual Evapotranspiration in the Panama Canal Watershed  

Science Journals Connector (OSTI)

The upper Ro Chagres basin is a part of the Panama Canal Watershed. The least known water balance...SEBAL...). We use an image from March 27, 2000, for estimation of the distribution of the regional actual evapo...

Jan M.H. Hendrickx; Wim G.M. Bastiaanssen; Edwin J.M. Noordman

2005-01-01T23:59:59.000Z

365

Northern Illinois Gas Co IL  

Gasoline and Diesel Fuel Update (EIA)

Northern Northern Illinois Gas Co ............................ IL 254,574,988 4.60 Southern California Gas Co ...................... CA 233,632,354 6.89 Columbia Gas Dist Co............................... OH,KY,PA,MD 196,322,935 6.64 Pacific Gas and Elec Co............................ CA 190,864,262 5.83 Consumers Pwr Co ................................... MI 188,587,672 4.81 Michigan Consol Gas Co........................... MI 160,809,168 5.16 East Ohio Gas Co ..................................... OH 146,802,045 5.44 Pub Svc Elec and Gas Co......................... NJ 140,712,209 6.62 Peoples Gas Lt and Coke Co.................... IL 126,356,925 6.40 Brooklyn Union Gas Co............................. NY 106,349,594 9.43 Atlanta Gas Lt Co ...................................... GA 106,075,815 6.66 Lone Star Gas Co......................................

366

Northern Ireland | OpenEI  

Open Energy Info (EERE)

Northern Ireland Northern Ireland Dataset Summary Description The windspeed database provides estimates of mean annual wind speed throughout the UK, averaged over a 1-kilometer square area, at each of the following three heights above ground level (agl): 10 meters, 25 meters, and 45 meters. The windspeed database is available through the UK Department of Energy and Climate Change (DECC) website, and is provided for archive purposes only. The database is comprised of historic information, including results derived from mathematical models, so it should not be considered to be measured data, or up to date or accurate. Source UK Department of Energy and Climate Change (DECC) Date Released December 31st, 2000 (14 years ago) Date Updated Unknown Keywords archive Great Britain

367

Hazardous waste research and development in the Pacific Basin  

SciTech Connect

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

368

Watershed-Scale Response to Climate Change through the Twenty-First Century for Selected Basins across the United States  

Science Journals Connector (OSTI)

The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a ...

Lauren E. Hay; Steven L. Markstrom; Christian Ward-Garrison

2011-06-01T23:59:59.000Z

369

Cedar Creek: a significant paleotectonic feature of Williston basin  

SciTech Connect

Cedar Creek is the major anticlinal structure demarcating the southwest flank of the Williston basin. This pronounced fold developed through a geologic history of recurrent tectonic movements along a northwest-southeast striking fault zone. The four major periods of tectonism documentable in the Cedar Creek area from early Paleozoic through mid-Tertiary affected the local and regional distribution, erosion, and/or preservation, and, though moderately, the depositional facies of sedimentary strata since Ordovician time.

Clement, J.H.

1983-08-01T23:59:59.000Z

370

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Preparation of Northern Mid-Contient Petroleum Atlas.  

SciTech Connect

As proposed, the second year program will continue and expand upon the Kansas elements of the original program, and provide improved on-line access to the prototype atlas. The second year of the program will result in a prototype digital atlas sufficient to demonstrate the approach and provide a permanent improvement in data access to Kansas operators. The ultimate goal of providing an interactive history-matching interface with a regional data base remains for future development as the program covers more geographic territory and the data base expands. The long-term goal is to expand beyond the prototype atlas to include significant reservoirs representing the major plays in Kansas, Nebraska, South Dakota, North Dakota, the Williston basin portion of Montana, the Denver-Julesberg basin of eastern Colorado and southeastern Colorado.

Gerhard, L.C.; Carr, T.R.; Watney, W.L.

1997-08-28T23:59:59.000Z

372

Denver Basin Map | Open Energy Information  

Open Energy Info (EERE)

Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

373

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

SciTech Connect

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

374

Appendix B Sierra Nevada Region Customer Groups and Economic Regions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A- Not available electronically. A- Not available electronically. Appendix B Sierra Nevada Region Customer Groups and Economic Regions The list included in this appendix shows the Sierra Nevada Region customers with contracts expiring in the year 2004. The list indicates which customer group each customer is considered a part of for purposes of analysis. The list also shows which economic region each customer is located in. Some customers are not included in a subregion of the central and northern California region. Further discussion of the economic regions is included in Section 4.9.4 and in Appendix L. Appendix C Renewable Technology Cost Information Matrix The development of the renewable technology matrix (RTM) was undertaken to determine the primary cost and performance characteristics of renewable technologies in

375

Hydrogeochemical Indicators for Great Basin Geothemal Resources  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

376

Atlas of the Columbia River Basin  

E-Print Network (OSTI)

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

377

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network (OSTI)

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

378

Northern Westchester Energy Action Consortium (NY) | Open Energy  

Open Energy Info (EERE)

Energy Action Consortium (NY) Energy Action Consortium (NY) Jump to: navigation, search Logo: Northern Westchester Energy Action Consortium (NY) Name Northern Westchester Energy Action Consortium (NY) Address PO Box 681 Place Somers, New York Zip 10589 Region Northeast - NY NJ CT PA Area Year founded 2009 Website http://www.nweac.org Coordinates 41.3278772°, -73.6948234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3278772,"lon":-73.6948234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Salt tectonics, patterns of basin fill, and reservoir distribution  

SciTech Connect

Salt structures, which develop due to sediment loading, gravity creep, and/or buoyancy, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structures. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. Turtle structures, developed by the inversion of peripheral synclines, can move sands into favorable structural position and/or serve as platforms for carbonate reservoir development. Salt growth varies with type structure, stage of development, and rate of sedimentation. Sedimentation at a specific location depends on basin position, sediment transport system, sea level stand, and rate of salt withdrawal. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

Yorston, H.J.; Miles, A.E.

1988-02-01T23:59:59.000Z

380

Northern Power Systems | Open Energy Information  

Open Energy Info (EERE)

Northern Power Systems Northern Power Systems Place Barre, VT Website http://www.northernpowersystem References Northern Power Systems[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type CRADA Partnering Center within NREL National Wind Technology Center Partnership Year 2000 Link to project description http://www.nrel.gov/news/press/2000/34three.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Northern Power Systems is a company located in Barre, VT. References ↑ "Northern Power Systems" Retrieved from "http://en.openei.org/w/index.php?title=Northern_Power_Systems&oldid=379254" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The U.S. Geological Survey coal assessment of the Gulf Coastal region, a progress report  

SciTech Connect

The US Geological Survey (USGS) is conducting a comprehensive assessment of the major coal regions of the country. This program, known as the National Coal Resource Assessment (NCRA), is focused on five major coal-bearing regions in the country: the Appalachian basin, Illinois basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the Gulf Coast region. In this program, the authors are characterizing the quantity and quality of coals that are expected to be mined during the next 30 years. As part of this effort, they are conducting an evaluation of the stratigraphic setting, resource potential, and the quality of the lignites in five coal-producing areas within the Gulf Coast region. The results of these efforts will be a series of digital Geographic Information System (GIS) maps, text, and tables that will be published in a CD-ROM format. These products, along with a national summary CD-ROM, are expected to be completed by 1999. The assessment of the Gulf Coast region is focused primarily on four areas that are currently producing coal as shown in a figure. These areas are the: (1) Sabine area, which includes parts of northwest Louisiana and northeast Texas; (2) northeast Texas; (3) central Texas; and (4) south Texas. In addition, a fifth area in Mississippi has been evaluated because a new surface mine has been proposed for that area. The Gulf Coast coal region produces about 57 million short tons of coal annually from the states of Louisiana and Texas from Wilcox Group coals. The primary intervals of study for this project are the Wilcox Group (Paleocene-Eocene) and selected coal-producing intervals (such as the Eocene Jackson and Claiborne Groups, and Cretaceous Olmos Formation in south Texas) that are producing or have potential for producing coal in the near future. The objectives of this project are to provide high-quality, organized information and interpretations on the location, quality, and quantity of the coal to be mined in the Gulf Coast area during the next several decades in order to meet the needs of the region for reliable, low cost, environmentally-acceptable energy.

Warwick, P.D.; Aubourg, C.E.; Crowley, S.S. [Geological Survey, Reston, VA (United States)] [and others

1998-12-31T23:59:59.000Z

382

Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano, Northern  

Open Energy Info (EERE)

Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano, Northern Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano, Northern Mariana Islands Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geological Aspects Of The 2003-2004 Eruption Of Anatahan Volcano, Northern Mariana Islands Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan Volcano, Northern Mariana Islands, began erupting in May-June 2003. A series of subplinian explosive eruptions of andesite magma began at the Eastern Crater in the eastern part of the summit caldera on the evening of 10 May. Brown tephra was sent mainly westward by strong winds. Small-scale pyroclastic surges were discharged eastward outside the caldera in late May. An andesite lava dome that had once filled the inner crater was fragmented by phreatomagmatic explosions in the middle of June.

383

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region  

E-Print Network (OSTI)

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone margin. Crimea (Ukraine), a peninsula in the northern Black Sea, represents the northernmost region

Utrecht, Universiteit

384

NILE BASIN INITIATIVE Claire Stodola  

E-Print Network (OSTI)

· Climate Change #12;Upstream states · Low water needs Downstream states · High water needs #12;Historical #12;Research Question How has the Nile Basin Initiative influenced the riparian states' management states 1959 ­ Still only BILATERAL 1960s to 1990s - Increasing frustration by upstream states #12;What

New Hampshire, University of

385

GOLF COURSES FRASER RIVER BASIN  

E-Print Network (OSTI)

practices (BMP's) for golf courses, entitled Greening your BC Golf Course. A Guide to Environmental. It also summarizes conditions and practices in the Fraser Basin, reviews best management practices.C. Prepared by: UMA ENVIRONMENTAL A Division of UMA Engineering Ltd. Burnaby, B.C. March 1996 #12;THIRD PARTY

386

Montage Builders Northern Forest, Ryerson University Selected...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Selected as Grand Winners of First Student Design Competition for Zero Energy Ready Homes Montage Builders Northern Forest, Ryerson University Selected as Grand Winners of...

387

Fort Union coals of the northern Rockies and Great Plains: A linchpin toward a new approach to national coal resource assessment  

SciTech Connect

The U.S. Geological Survey recently initiated a 5-year program to assess the Nation`s coal resources, which emphasizes a new approach relating coal quantity and quality. One assessment region includes the northern Rocky Mountains and Great Plains of Wyoming, Montana, and North Dakota, which contains a vast expanse of Paleocene Fort Union coal-bearing rocks that yielded about 30% (>299 million short tons) of the total coal produced (1.03 billion short tons) in the U.S. for 1994. Production is from 14 coal beds/zones (Wyodak-Anderson, Anderson-Dietz, Rosebud, Beulah-Zap, Hagel, Harmon, Ferris Nos. 23, 24, 25, 31, 38, 39, Hanna No. 80, and Deadman seams) mined in the Hanna, Green River, Powder River, and Williston Basins. About 254 million short tons produced from 25 mines are from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal beds/zones in the Powder River Basin (PRB). These coals are considered as clean and low contaminant compliance coals containing less sulfur and ash (arithmetic mean for sulfur is 0.58% and ash is 7%, as-received basis) than coals produced from other regions in the conterminous U.S. Preliminary elemental analysis of coal samples from the PRB for those hazardous air pollutants (HAPs) named in the Amendments to the 1990 Clean Air Act (including Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, and U), indicates that PRB coals are lower in HAPs contents than other coals from within the region and also other regions in the U.S. Arithmetic means of HAPs contents of these coals are: Sb=0.35, As=3.4, Be=0.6, Cd=0.08, Cr=6.1, Co=1.6, Pb=3.6, Mn=23.5, Hg=0.09, Ni=4.6, Se=0.9, and U=1.1 (in ppm, as-received, and on a whole-coal basis). These coal-quality parameters will be used to delineate coal quantity of the 14 Fort Union coal beds/zones defined in the resource assessment for expanded utilization of coals into the next several decades as controlled by present and future environmental constraints.

Flores, R.M.; Stricker, G.D. [Geological Survey, Denver, CO (United States)

1996-06-01T23:59:59.000Z

388

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France  

Open Energy Info (EERE)

Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Details Activities (0) Areas (0) Regions (0) Abstract: Geothermal energy has been supplying heat to district networks in the Paris Basin for more than 40 years. The most serious difficulties have been corrosion and scaling related problems that occurred in many geothermal loops in the mid-1980s. The main target of all exploration and exploitation projects has been the Dogger aquifer. Most of the operating facilities use the "doublet" technology which consists of a closed loop with one production well and one injection well. Injection of the cooled

389

A Case Study For Geothermal Exploration In The Ne German Basin- Integrated  

Open Energy Info (EERE)

Geothermal Exploration In The Ne German Basin- Integrated Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And Thermal Structure Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): K. Bauer, I. Moeck, B. Norden, A. Schulze, M. H. Weber Published: Publisher Unknown, 2009 Document Number: Unavailable DOI: Unavailable Retrieved from "http://en.openei.org/w/index.php?title=A_Case_Study_For_Geothermal_Exploration_In_The_Ne_German_Basin-_Integrated_Interpretation_Of_Seismic_Tomography,_Litho-Stratigraphy,_Salt_Tectonics,_And_Thermal_Structure&oldid=390106"

390

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

391

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley  

E-Print Network (OSTI)

DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 Does your water come) 828-1120. #12; DRINKING WATER TESTING CLINICS Northern Shenandoah Valley JUNE 2013 County FollowUp Meeting Tuesday, August 6th , 78:30 p.m. Room 101 Page: VCEPage County, 215 West Main

Liskiewicz, Maciej

392

HEALTH IN FRAGILE STATES COUNTRY CASE STUDY: NORTHERN UGANDA  

E-Print Network (OSTI)

HEALTH IN FRAGILE STATES COUNTRY CASE STUDY: NORTHERN UGANDA JUNE 2006 This publication COUNTRY CASE STUDY: NORTHERN UGANDA The authors' views expressed in this publication do not necessarily States, Country Case Study: Northern Uganda. Arlington, Virginia, USA: Basic Support

Scharfstein, Daniel

393

Univariate time-series forecasting of monthly peak demand of electricity in northern India  

Science Journals Connector (OSTI)

This study forecasts the monthly peak demand of electricity in the northern region of India using univariate time-series techniques namely Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) and Holt-Winters Multiplicative Exponential Smoothing (ES) for seasonally unadjusted monthly data spanning from April 2000 to February 2007. In-sample forecasting reveals that the MSARIMA model outperforms the ES model in terms of lower root mean square error, mean absolute error and mean absolute percent error criteria. It has been found that ARIMA (2, 0, 0) (0, 1, 1)12 is the best fitted model to explain the monthly peak demand of electricity, which has been used to forecast the monthly peak demand of electricity in northern India, 15 months ahead from February 2007. This will help Northern Regional Load Dispatch Centre to make necessary arrangements a priori to meet the future peak demand.

Sajal Ghosh

2008-01-01T23:59:59.000Z

394

COCORP profiles from the Montana plains: The Archean cratonic crust and a lower crustal anomaly beneath the Williston basin  

SciTech Connect

New COCORP deep seismic reflection profiles from the Montana plains between the Rocky Mountains and the Williston basin image the crystalline continental basement of the Archean Wyoming cratonic province on a regional scale. The crust is, in general, reflective throughout its entire thickness. West of the Williston basin, the crust-mantle boundary is at the base of the reflective zone and is not marked by the presence of any distinctive reflections. The lowermost crust beneath the Williston basin is, in contrast, characterized by a prominent, laterally extensive zone of relatively high-amplitude reflections. If, as the spatial correlation suggest, the anomalously reflective lower crustal zone is causally related to the subsidence of the basin, then the data place constraints in addition to those of the sedimentary record on physical models for the evolution of the Williston basin.

Latham, T.S. (Cornell Univ., Ithaca, NY (USA)); Best, J.; Chaimov, T.; Oliver, J.; Brown, L.; Kaufman, S. (Cornell Univ. Ithaca, NY (USA))

1988-12-01T23:59:59.000Z

395

Geology of interior cratonic sag basins  

SciTech Connect

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

396

Development of a Systemwide Predator Control Program, Section I : Northern Squawfish Management Program Implementation, 1994 annual report.  

SciTech Connect

The authors report the results from the forth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated it is not necessary to eradicate northern squawfish to substantially reduce predation-caused mortality of juvenile salmonids. Instead, if northern squawfish were exploited at a 10--20% rate, reductions in numbers of larger, older fish resulting in restructuring of their population could reduce their predation on juvenile salmonids by 50% or more. Consequently, the authors designed and tested a sport-reward angling fishery and a commercial longline fishery in the John Day pool in 1990. They also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, they implemented three test fisheries on a multi-pool, or systemwide, scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery.

Willis, Charles F. (S.P. Cramer and Associates, Inc., Gresham, OR); Young, Franklin R. (Columbia Basin Fish and Wildlife Authority, Portland, OR)

1995-09-01T23:59:59.000Z

397

Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains  

SciTech Connect

Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

Hartman, J.H.; Roth, B.; Kihm, A.J.

1997-08-11T23:59:59.000Z

398

EIS-0499: Great Northern Transmission Line Project, Minnesota...  

Energy Savers (EERE)

EIS-0499: Great Northern Transmission Line Project, Minnesota EIS-0499: Great Northern Transmission Line Project, Minnesota SUMMARY This EIS will evaluate the potential...

399

Amended Notice of Intent for the Northern Pass Transmission Line...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amended Notice of Intent for the Northern Pass Transmission Line Project Published in the Federal Register Amended Notice of Intent for the Northern Pass Transmission Line Project...

400

Trapping capacity of shear zones in the Eocene Wilcox formation, northern Gulf of Mexico basin, Texas  

E-Print Network (OSTI)

. Mercury-air capillary-pressure data were used to determine the displacement pressure and possible height of oil columns for both sheared and normal sections using Thomeer's (1960, 1963) correlation of displacement pressure, permeability, and porosity..., 1983) synthetic family of type curves with their appropriate geometric factor (Fg) as a plot of mercury-air capillary-pressure as a function of mercury saturation as a percent of pore volume. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 A...

Haveman, Alana Lynn

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect

In the structure task, the goals for this reporting period were to: (1) complete field work on the NNW-SSE transect along the west side of Cayuga Lake; (2) collect data at additional field sites in order to (a) trace structural trends between the two N-S transects and (b) fill in data gaps on the NS transect along the eastern shore of Seneca Lake; (3) enter the data gathered from the summer field work; (4) enter data from the previous field season that still had to be analyzed after a personnel change. We have completed data reduction for all the goals listed above, including the NNW-SSE transect on the west side of Cayuga Lake. In the soil gas task, the goals for this reporting period were to: (1) trace Trenton/Black River fault trends between the two N-S transects; and (2) enter the data gathered from the summer field work. We have completed data reduction for all the goals listed above, and have begun constructing maps that portray the data. These data continue to demonstrate that integration of aeromagnetic and Landsat lineaments, surface structure, soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2003-03-14T23:59:59.000Z

402

Burial history and thermal evolution of the northern and eastern Saharan basins  

Science Journals Connector (OSTI)

...geologic and geographic features in Africa. Figure 2 Map of geothermic degrees gamma (in meters per degree Celsius), Saharan platform...georef;2003074942 2003-074942 Economic geology, geology of energy sources American Association of Petroleum Geologists Tulsa...

M. Makhous; Yu. I. Galushkin

403

California Basin Study (CaBS): DOE West Coast Basin Program  

SciTech Connect

The overall objective of our research, within the structure of the DOE CaBS program, is to understand the transport pathways and mass balances of some metabolically-active and inactive chemical species in the basin region of the Southern California Bight, with particular reference to the role of macrozooplankton. We have concentrated on C and N pathways and fluxes to date, and will continue to investigate these further (seasonal aspects, and temperature and food-type effects on zooplankton-mediated flux, for example); however, we want also to begin to measure directly the effects of zooplankton on pathways and fluxes of selected trace metals and transuranic compounds. During this report period we have concentrated on analyzing data and writing manuscripts for publication, based on the eight cruises in which we have participated to date.

Small, L.F.

1989-01-01T23:59:59.000Z

404

Northern Colorado Retail Study: A shift-share analysis 2000 to 2010  

E-Print Network (OSTI)

Northern Colorado Retail Study: A shift-share analysis 2000 to 2010 Everitt Real Estate Center) April 2010 #12;Why this study? · Step back and look at the regional retail picture ­ City government. ­ Over 10.5 million square feet of retail has been developed in Boulder, Larimer, and Weld counties since

405

www.agbioresearch.anr.msu.edu Northern Michigan FruitNet 2013  

E-Print Network (OSTI)

1 www.agbioresearch.anr.msu.edu Northern Michigan FruitNet 2013 Northwest Michigan Horticultural the newest carbohydrate model for NW Michigan. As you can see, the model is predicting a surplus of energy is now for most apples throughout the region. #12;2 www.agbioresearch.anr.msu.edu NWHRS Solar Rad Min Max

406

XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System  

E-Print Network (OSTI)

Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

Hasson, Shabeh ul; Lucarini, Valerio

2012-01-01T23:59:59.000Z

407

Modelling ocean currents in the northern Adriatic Sea  

Science Journals Connector (OSTI)

Abstract Ocean circulation in the northern Adriatic Sea is characterised by the interactions of tidal currents, bathymetric constraints, wind forcing and density gradients induced by river input and heat exchange. The MIKE 3/21 modelling system, together with measurements of wind, waves, currents and water levels at one location, has been used to investigate the currents dynamics of the northern Adriatic basin and to assess model sensitivity to the parameterisation of different processes and implementation strategies. An assessment has been carried out against available in-situ observations (waves, currents, surface elevation, and water temperature), and also in comparison with a high-resolution modelling system (COAWST) implemented in the same area during the corresponding period. The MIKE 3/21 system was implemented for a 1-year simulation period and validation of surface elevation, wind, and waves with data indicated a good model performance, statistically very similar to the COAWST implementation. Depth-averaged, surface and bottom currents were more difficult to reproduce by both models, with the observed high variability not being fully captured by the model systems. Some of the differences between the models results may be due to model configuration, spatial resolution and the way they treat atmosphereocean momentum and heat transfers, turbulence, and are therefore discussed in the paper. From the thorough analysis of MIKE 3/21 system, wind is found to be the main forcing factor inducing currents in the northern Adriatic; tides and baroclinic motions were of second order, although some specific events seems to be forced by these processes. Waves were found to be highly correlated with local wind, and a rather weak wavecurrent interaction was observed. Even if the inclusion of wave effects trough radiation stress did not seem to lead to significant improvements in the modelled currents with MIKE 3/21, the full waveocean coupling in COAWST was significant in explaining small scale features, especially in the Gulf of Venice. Spectral and SVD analysis showed energy around diurnal and semidiurnal frequencies and that about 50% of variance in the current profile was explained by the first mode, which was well captured by both modelling systems.

Rodolfo Bolaos; Jacob V. Tornfeldt Srensen; Alvise Benetazzo; Sandro Carniel; Mauro Sclavo

2014-01-01T23:59:59.000Z

408

CD-1: Intracratonic Basin | Open Energy Information  

Open Energy Info (EERE)

thermal conductivity of salt rock, and might provide suitable geothermal reservoirs for district heating.4 Formations encountered in deeper parts of an intracratonic basin...

409

NMOSE Basin Guidelines | Open Energy Information  

Open Energy Info (EERE)

OtherOther: NMOSE Basin GuidelinesLegal Abstract The New Mexico Office of the State Engineer (NMOSE) provides links to final rules and administrative guidelines for particular...

410

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

411

Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles  

E-Print Network (OSTI)

ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid of the Williston and Alberta basins. Under such con- ditions fluid fluxes in aquifers can be expected

Bense, Victor

412

Sequence stratigraphic and sedimentologic analysis of the Permian San Andres Formation (upper Leonardian-lower Guadalupian), Northwest Shelf, Permian Basin  

E-Print Network (OSTI)

, 1958). The Tobosa Basin was the site of dominantly shallow water deposition until the late Paleozoic (Hills, 1972; Hills, 1984). Collision between Gondwana and the southern margin of North America caused reactivation of older zones of weakness during...) was deposited on carbonate platforms around Permian Basin region and is an extensive hydrocarbon reservoir in this area. The San Andres Formation on the Northwest Shelf is well exposed in southeastern New Mexico and West Texas. This study establishes sequence...

Beserra, Troy Brett

2012-06-07T23:59:59.000Z

413

Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary  

SciTech Connect

The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

Not Available

1993-12-07T23:59:59.000Z

414

Quantifying sources of methane using light alkanes in the Los Angeles basin, California  

E-Print Network (OSTI)

Air Resources Board (CARB) was tasked with compiling and verifying an inventory of GHG emissions of CH4 emissions in the region coming from fugitive losses from natural gas in pipelines and urban recent works have estimated CH4 emissions to the South Coast Air Basin (SoCAB; Figure 1a), which

Cohen, Ronald C.

415

Big Brothers needed in Northern New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Brothers Needed in Northern New Mexico Big Brothers Needed in Northern New Mexico Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Big Brothers needed in Northern New Mexico If you can spare one lunch hour per week for a year, you can make a real difference in the life of a child through the "Lunch Buddies" program. January 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Research reveals that having a "Big" can have a positive, long-term influence on the children ages five through 18 who participate. If you can spare one lunch hour per week for a year, you can make a real difference in the life of a child through the "Lunch Buddies" program

416

ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN C-REACTOR DISASSEMBLY BASIN  

SciTech Connect

C-reactor disassembly basin is being prepared for deactivation and decommissioning (D and D). D and D activities will consist primarily of immobilizing contaminated scrap components and structures in a grout-like formulation. The disassembly basin will be the first area of the C-reactor building that will be immobilized. The scrap components contain aluminum alloy materials. Any aluminum will corrode very rapidly when it comes in contact with the very alkaline grout (pH > 13), and as a result would produce hydrogen gas. To address this potential deflagration/explosion hazard, Savannah River National Laboratory (SRNL) reviewed and evaluated existing experimental and analytical studies of this issue to determine if any process constraints are necessary. The risk of accumulation of a flammable mixture of hydrogen above the surface of the water during the injection of grout into the C-reactor disassembly area is low if the assessment of the aluminum surface area is reliable. Conservative calculations estimate that there is insufficient aluminum present in the basin areas to result in significant hydrogen accumulation in this local region. The minimum safety margin (or factor) on a 60% LFL criterion for a local region of the basin (i.e., Horizontal Tube Storage) was greater than 3. Calculations also demonstrated that a flammable situation in the vapor space above the basin is unlikely. Although these calculations are conservative, there are some measures that may be taken to further minimize the risk of developing a flammable condition during grouting operations.

Wiersma, B.

2011-07-12T23:59:59.000Z

417

Northern Colorado Clean Energy Cluster | Open Energy Information  

Open Energy Info (EERE)

Energy Cluster Energy Cluster Jump to: navigation, search Name Northern Colorado Clean Energy Cluster Place Denver, Colorado Zip 80202 Region Rockies Area Notes Business-led, project-oriented group of regional partners seeking to have a global impact Website http://www.nccleanenergy.com/ Coordinates 39.7541032°, -105.0002242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7541032,"lon":-105.0002242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

419

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

420

CRAD, Management - Office of River Protection K Basin Sludge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

422

Calcite dissolution: an in situ study in the Panama Basin  

SciTech Connect

The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

Thunell, R.C. (Univ. of South Carolina, Columbia); Keir, R.S.; Honjo, S.

1981-05-08T23:59:59.000Z

423

Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment  

SciTech Connect

Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.

Zhou, Q.; Birkholzer, J.T.; Mehnert, E.; Lin, Y.-F.; Zhang, K.

2009-08-15T23:59:59.000Z

424

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

425

6, 839877, 2006 Mexico City basin  

E-Print Network (OSTI)

emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

Boyer, Edmond

426

Proceedings of the North Aleutian Basin information status and research planning meeting.  

SciTech Connect

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

2007-10-26T23:59:59.000Z

427

Disposal of produced waters: Undergrown injection option in the Black Warrior Basin  

SciTech Connect

The disposal of large volumes of water produced simultaneously with coal-bed methane is a costly, environmentally sensitive problem. Underground injection into deeper, naturally fractured, low-porosity formations is feasible provided that the total dissolved solids level of these formation waters comply with Environmental Protection Agency guidelines. Greater fracture density in proximity to structures formed by Appalachian and Ouachita tectonism, along with a higher total dissolved solids level in both the production and injection formation waters, occurs in the eastern, southern, and northern margins of the coal-bed methane (CBM) area of the Black Warrior basin in Alabama. Injection permeability is developed where fractures intersect formations with suitable lithologies and thickness. Initial results indicate that the lower Pottsville sands, which thicken to the south, have the highest initial injection potential, although these sands appear dirty and tight on the logs. Normal faulting and matrix porosity, in addition to fracturing, may increase permeability in this formation. In the shallower, northern edge of the CBM area, thin-bedded Mississippian sands with high porosity, such as the Hartzelle, may be present. Injection potential also occurs in the fractured Devonian chert and silecous carbonate lithologies in the Upper Silurian where they thicken to the southwest, and in sandy carbonate lithologies in the undifferentiated Silurian and Ordovician at the eastern margin of the overthrust. The Cambrian-Ordovician Knox Formation has injection potential in a 6-mi wide zone at the eastern margin of the basin, where the upper Knox is dolomitized below the unconformity.

Ortiz, I.; Weller, T.F.; Anthony, R.V. (United Energy Development Consultants, Pittsburgh, PA (United States)); Dziewulski, D. (BioIndustrial Technologies, Pittsburgh, PA (United States)); Lorenzen, J. (ResTech, Pittsburgh, PA (United States)); Frantz, J.H. Jr. (S.A. Holditch Associates, Inc., Pittsburgh, PA (United States))

1993-08-01T23:59:59.000Z

428

Development of coalbed methane in Mississippi Warrior Basin  

SciTech Connect

Since 1980, over 3,863 coalbed methane wells have been drilled in the Warrior basin of Alabama at a drilling cost of $1.138 billion. Production of 119 bcf of gas has been sold. The important findings of this study were probable coalbeds across Monroe County at depths and thicknesses being produced profitably in Alabama as well as in the Northern Appalachian and Central Appalachian basins. The logs showed the coal to often be close to conventional gas reservoirs in sandstone, indicating a probable equilibrium gas content of the adjacent coals. The most prevalent depth of the coal seams was 1,600-1,800 ft across northeast Monroe County from near the Alabama state line in the Splunge Field to the Four Mile Creek Field near the Tombigbee River. Individual seam thickness ranged up to 11 ft. Cumulative thickness of all coal in a single well was a maximum of 30 ft in the 1,000 ft to 2,000 ft interval usually logged. These estimates were based on density, compensated neutron, caliper, and gamma ray logs. A core hole would be necessary to verify exact thicknesses, presence of a seam, gas content, and permeability of the coal seams. It is stressed that conventional well logs have limitations, but they are a valid first estimate of the potential of an area. The subject study also verified the discovery of coal in Clay County reported by the Mississippi Bureau of Geology in 1989. Also, deep-lying coals were observed on logs of single wells in Noxubee, Oktibbeha, and Lowndes Counties, where one deep well had a cumulative 72 ft of coal indicated. Although beyond the reach of industry now, technology of the coalbed methane process is progressing toward eventually managing coal at those depths.

Rogers, R.E.

1991-01-01T23:59:59.000Z

429

Little Knife field - US Williston basin  

SciTech Connect

Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

Wittstrom, M.D.; Lindsay, R.F. (Chevron USA, Inc., Midland, TX (United States))

1991-03-01T23:59:59.000Z

430

Climate-change scenario for the Columbia River basin. Forest Service research paper  

SciTech Connect

This work describes the method used to generate a climate-change scenario for the Columbia River basin. The scenario considers climate patterns that may change if the atmospheric concentration of carbon dioxide (CO2), or its greenhouse gas equivalent, were to double over pre-Industrial Revolution values. A composite approach was taken to generate a climate scenario that considers knowledge of current regional climate controls, available output from general circulation and regional climate models, and observed changes in climate.

Ferguson, S.A.

1997-04-01T23:59:59.000Z

431

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains  

Open Energy Info (EERE)

2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits Details Activities (0) Areas (0) Regions (0) Abstract: Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ± 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical

432

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

433

WWF Region(s) GENUS SPECIES COMMON NAME Reference 109 Cottus bairdi Mottled sculpin Niemela et al. 1999  

E-Print Network (OSTI)

WWF Region(s) GENUS SPECIES COMMON NAME Reference 109 Cottus bairdi Mottled sculpin Niemela et al. 1999 109 Hypentelium nigricans Northern hog sucker Niemela et al. 1999 109 Moxostoma anisurum Silver redhorse Niemela et al. 1999 109 Moxostoma erythrurum Golden redhorse Niemela et al. 1999 109 Moxostoma

Sprott, Julien Clinton

434

Long-term fire history in northern Quebec: implications for the northern limit of commercial  

E-Print Network (OSTI)

Long-term fire history in northern Quebec: implications for the northern limit of commercial in Sustainable Forest Management, 445 boul. de l'Universite, Rouyn-Noranda, Quebec J9X 5E4, Canada; 2 Centre d'Etude de la For^et, Universite du Quebec a Montreal, Montreal, Quebec H3C 3P8, Canada; 3 Centre de Bio

Asselin, Hugo

435

Laramide deformation of the Rocky Mountain Foreland, southeastern corner of the Bighorn Basin, Wyoming  

E-Print Network (OSTI)

nearly the enure length of South America. Jordan et al. (1983) describe two regions where the character of deformation changes significantly along strike of the Andean chain. The northern area is between 2'S to 15'S, the other, more southern region... is the simplest method, and assumes 1. ) strata are parallel to a planar, but not necessarily horizontal, upper basement surface and 2. ) strata do not change line length throughout deformation history. Sections should also be balanced by cross sectional area...

Derr, Douglas Neanion

2012-06-07T23:59:59.000Z

436

A Coupled Modeling System to Simulate Water Resources in the Rio Grande Basin  

SciTech Connect

Limited availability of fresh water in arid and semi-arid regions of the world requires prudent management strategies from accurate, science-based assessments. These assessments demand a thorough understanding of the hydrologic cycle over long time periods within the individual water-sheds that comprise large river basins. Measurement and simulation of the hydrologic cycle is a tremendous challenge, involving a coupling between global to regional-scale atmospheric precipitation processes with regional to local-scale land surface and subsurface water transport. Los Alamos National Laboratory is developing a detailed modeling system of the hydrologic cycle and applying this tool at high resolution to assess the water balance within the upper Rio Grande river basin. The Rio Grande is a prime example of a river system in a semiarid environment, with a high demand from agricultural, industrial, recreational, and municipal interests for its water supply. Within this river basin, groundwater supplies often augment surface water. With increasing growth projected throughout the river basin, however, these multiple water users have the potential to significantly deplete groundwater resources, thereby increasing the dependence on surface water resources.

Bossert, J.E.; Breshears, D.D.; Campbell, K.; Costigan, K.R.; Greene, R.K.; Keating, E.H.; Kleifgen, L.M.; Langley, D.L.; Martens, S.N.; Sanderson, J.G.; Springer, E.P.; Stalker, J.R.; Tartakovsky, D.M.; Winter, C.L.; Zyvoloski, G.A.

1999-01-11T23:59:59.000Z

437

ASSESSING REGIONAL CLIMATE AND LOCAL LANDCOVER IMPACTS ON VEGETATION WITH REMOTE SENSING  

E-Print Network (OSTI)

Landcover change alters not only the surface landscape but also regional carbon and water cycling. The objective of this study was to assess the potential impacts of landcover change across the Kansas River Basin (KRB) by ...

Lin, Pei-Ling

2013-12-31T23:59:59.000Z

438

Synopsis of Mackenzie GEWEX Studies on the Atmospheric-Hydrologic System of a Cold Region  

Science Journals Connector (OSTI)

The atmospheric-hydrologic system of the Mackenzie River Basin (MRB) shares many traits special to the world cold regions. MAGS investigators used a variety of research methods (field investigations, remote se...

Ming-ko Woo

2008-01-01T23:59:59.000Z

439

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-09-30T23:59:59.000Z

440

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "region northern basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Delaware Basin Monitoring Annual Report  

SciTech Connect

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2005-09-30T23:59:59.000Z

442

Initiation and reactivation of Proterozoic aulacogen, northern Mexico  

SciTech Connect

Geochemical and petrologic affinities of late Proterozoic (approx. 1Ga) bimodal igneous rocks of the Franklin Mountains, west Texas, suggest a rift origin. Scattered occurrences of similar rocks southward into the state of Chihuahua, Mexico, indicate a southerly trend for the feature. The feature is bounded by stable blocks: the stable craton of west Texas to the east and northeast, and the Sierra del Nido block to the west and southwest. Separation of the Sierra del Nido block from the craton occurred about 1 Ga. Gravity gradients mark the boundaries of the blocks, and a northwest-trending Bouger gravity high may mark the axis of the aulacogen. The aulacogen and the Sierra del Nido block are truncated to the south by the Mesozoic Mojave-Sonora discontinuity. The aulacogen was reactivated, at least in part, in the late Paleozoic as the Pedregosa basin and in the Mesozoic as the Chihuahua trough. These reactivations were apparently not full-fledged rifting events, but did result in basin development. The Sierra del Nido block was a paleographic high throughout the Paleozoic, and the Aldama platform developed on this block during the Cretaceous. The most recent reactivation of the aulacogen is as the southern extension of the Rio Grande rift, as evidenced by trends of high heat flow, recent mafic magmatism, and regional extensional faulting.

Goodell, P.C.; Dyer, R.; Keller, G.R.

1985-02-01T23:59:59.000Z

443

Geologic Analysis of Priority Basins for Exploration and Drilling  

SciTech Connect

There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

Carroll, H.B.; Reeves, T.K.

1999-04-27T23:59:59.000Z

444

Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators  

Open Energy Info (EERE)

Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Details Activities (8) Areas (4) Regions (0) Abstract: Body and surface wave tomography are two of the primary methods for estimation of regional scale seismic velocity variations. Seismic velocity is affected by temperature and rock composition in complex ways, but when combined with geologic and structural maps, relative temperature can in some cases be estimated. We present preliminary tomographic models for compressional and shear-wave velocity using local and regional earthquakes recorded by Earthscope Transportable Array stations, network

445

Geohydrological feasibility study of the Black Warrior Basin for the potential applicability of Jack W. McIntyre`s patented process  

SciTech Connect

Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. Mclntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Black Warrior Basin of Mississippi and Alabama through literature surveys. Methane gas from coalbeds in the Black Warrior Basin is confined to the coal fields of northern Alabama. Produced water from degasification of coalbeds is currently disposed by surface discharge. Treatment prior to discharge consists of short-term storage and in-stream dilution. Mr. Mclntyre`s process appears to be applicable to the Black Warrior Basin and could provide an environmentally sound alternative for produced water production.

Reed, P.D.

1994-03-01T23:59:59.000Z

446

K Basins isolation barriers summary report  

SciTech Connect

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

447

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

448

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical  

Open Energy Info (EERE)

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Details Activities (21) Areas (4) Regions (0) Abstract: For many years, there has been speculation about "hidden" or "blind" geothermal systems- reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose

449

FY2005 AND FY2006 CORROSION SURVEILLANCE RESULTS FOR L BASIN  

SciTech Connect

This report documents the results of the L-Basin Corrosion Surveillance Program for the fiscal years 2005 and 2006. The water quality and basin conditions for the coupon immersion period are compared to the corrosion evaluation results from detailed metallurgical analysis of the coupons. Test coupons were removed from the basin on two occasions, March 29, 2005 and May 23, 2006, examined and photographed. Selected coupons were metallurgically characterized to evaluate the extent of general corrosion and pitting. Crystallographic and energy dispersive spectroscopy analysis were performed on a typical specimen, as-removed from the basin, to characterize the surface debris. Marked changes were noted in both the 2005 and 2006 specimens compared to previous years corrosion results. A new pitting incidence has occurred on the faces of the aluminum coupons compared to localized pitting at crevice regions only on specimens withdrawn in 2003 and 2004. The pitting incidence is attributed to sand filter fines that entered the basin on July 27, 2004 from an inadvertent backflush of the new sand filter. Pitting rate results show a trend of slowing down over time which is consistent with aluminum pit kinetics. Average pit growth rates were equal to or lower in all 2006 aluminum coupons than those removed in 2005. A trend line shows that pitting corrosion rates on Al1100, 6061, and 6063 coupons are slowing down since pit depth measurements were initiated in 2003. No impact to stored spent fuel is expected from the debris. The storage configuration of the majority of L-Basin spent fuel, in bundles, should provide a measure of isolation from debris settling in the basin.

Vormelker, P; Cynthia Foreman, C

2008-01-30T23:59:59.000Z

450

Impact of El Nino on the foraging behavior of female northern elephant seals  

E-Print Network (OSTI)

diving behavior of northern elephant seals. J Exp Biol 201:behavior of female northern elephant seals Daniel E. Crockerbehavior of northern elephant seals Mirounga angustirostris

Crocker, D E; Costa, Daniel P; Le Boeuf, B J; Webb, P M; Houser, D S

2006-01-01T23:59:59.000Z

451

E-Print Network 3.0 - alborz mountains northern Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hardwood Forests Northern ConiferousNorthern Coniferous (Boreal) Forest(Boreal) Forest Southern MixedSouthern Mixed... HardwoodsNorthern Hardwoods ForestForest ......

452

Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1  

E-Print Network (OSTI)

: Mount Simon, Illinois Basin, CO2, earthquakes, pressure, brine transport69 #12;Page | 3 1. IntroductionPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4 sharp-interface models of CO2 injection were constructed for the Illinois49 Basin in which porosity

Gable, Carl W.

453

Northern California CO2 Reduction Project  

SciTech Connect

C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

Hymes, Edward

2010-06-16T23:59:59.000Z

454

Northern Virginia Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Northern Virginia Elec Coop Northern Virginia Elec Coop Place Manassas, Virginia Utility Id 13640 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Northern Virginia Electric Cooperative Smart Grid Project was awarded $5,000,000 Recovery Act Funding with a total project value of $10,000,000. Utility Rate Schedules Grid-background.png Interruptible Service Rider - Rider IS-1 Schedule DPS, Delivery Point Service (Unbundled Rate) Commercial Schedule HV-1 Large Power Dedicated Distribution Service Commercial