National Library of Energy BETA

Sample records for region china sector

  1. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  2. Voluntary agreements in the industrial sector in China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan

    2003-03-31

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  3. China-NAMA Programme for the Construction Sector in Asia | Open...

    Open Energy Info (EERE)

    NAMA Programme for the Construction Sector in Asia Jump to: navigation, search Name China-NAMA Programme for the Construction Sector in Asia AgencyCompany Organization United...

  4. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  5. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience ...

  6. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77

  7. Review of Sector and Regional Trends in U.S. Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Review of Sector and Regional Trends in U.S. Electricity Markets: Focus on Natural Gas Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 1 of 3...

  8. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resilience Solutions | Department of Energy Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions This interactive map is not viewable in your browser. Please view it in a modern browser. This report examines the current and potential future impacts of climate change and extreme weather on the U.S. energy sector at the regional level. It provides illustrative examples

  9. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of Chinas total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  10. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  11. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Broader source: Energy.gov (indexed) [DOE]

    it in a modern browser. This report examines the current and potential future impacts of climate change and extreme weather on the U.S. energy sector at the regional level. It...

  12. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Broader source: Energy.gov (indexed) [DOE]

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions October 2015 U.S. Department of Energy Office of Energy Policy and Systems Analysis ...

  13. Costa Rica-Regional Programme for LAC: Preparation of Sectoral...

    Open Energy Info (EERE)

    of regional and global partners." Program Focus The program will focus on reducing poverty and inequality, strengthening democratic governance, increasing disaster preparedness...

  14. China Tong Liao Baolong New Energy Ltd CTB | Open Energy Information

    Open Energy Info (EERE)

    Tong Liao Baolong New Energy Ltd CTB Jump to: navigation, search Name: China Tong Liao Baolong New Energy Ltd (CTB) Place: Tongliao, Inner Mongolia Autonomous Region, China Sector:...

  15. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions October 2015 U.S. Department of Energy Office of Energy Policy and Systems Analysis Acknowledgements This report was produced by the U.S. Department of Energy's Office of Energy Policy and Systems Analysis (DOE-EPSA) under the direction of Craig Zamuda. Matt Antes, C.W. Gillespie, Anna Mosby, and Beth Zotter of Energetics Incorporated provided analysis, drafting support, and technical editing.

  16. Regional Climate Effects of Aerosols Over China: Modeling and Observation

    SciTech Connect (OSTI)

    Qian, Yun; Leung, Lai R.; Ghan, Steven J.; Giorgi, Filippo

    2003-09-01

    We present regional simulations of aerosol properties, direct radiative forcing and aerosol climatic effects over China, and compare the simulations with observed aerosol characteristics and climatic data over the region. The climate simulations are performed with a regional climate model, which is shown to capture the spatial distribution and seasonal pattern of temperature and precipitation. Aerosol concentrations are obtained from a global tracer-transport model and are provided to the regional model for the calculation of radiative forcing. Different aerosols are included: sulfate, organic carbon, black carbon, mineral dust, and sea salt and MSA particles. Generally, the aerosol optical depth is well simulated in both magnitude and spatial distribution. The direct radiative forcing of the aerosol is in the range of –1 to –14 W m-2 in autumn and summer and -1 to –9 W m-2 in spring and winter, with substantial spatial variability at the regional scale. A strong maximum in aerosol optical depth and negative radiative forcing is found over the Sichuan Basin. The negative radiative forcing of aerosol induces a surface cooling in the range of –0.6 to –1.2oC in autumn and winter, –0.3 to –0.6oC in spring and 0.0 to –0.9oC in summer throughout East China. The aerosol-induced cooling is mainly due to a decrease in day-time maximum temperature. The cooling is maximum and is statistically significant over the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of the temperature trends observed in the second half of the twentieth century, including different trends for daily maximum and minimum temperature, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. This result supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the

  17. Consumption trend analysis in the industrial sector: Regional historical trends. Draft report (Final)

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Data on the use of natural gas, electricity, distillate and residual fuel oil, coal, and purchased coke were collected from the United States Bureau of the Census and aggregated nationally and by Census Region. Trend profiles for each fuel and industry were developed and economic, regulatory, and regional factors contributing to these trends were examined. The recession that followed the OPEC embargo in 1973 affected the industrial sector and the heavily industrialized regions of the country most severely. Both industrial production and fuel consumption fell significantly in 1975. As production recovered, spiraling fuel prices promoted conservation efforts, and overall fuel consumption remained at pre-recession levels. From 1975 to 1977 natural gas consumption decreased in almost all the industries examined with curtailments of gas supplies contributing to this trend.

  18. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; et al

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore » from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of

  19. Evaluation of the Contribution of the Building Sector to PM2.5 Emissions in China

    SciTech Connect (OSTI)

    Khanna, Nina; Zhou, Nan; Ke, Jing; Fridley, David

    2014-11-01

    In this study, we quantify the current and potential contribution of China’s building sector to direct primary and indirect PM2.5 emissions and co-benefits of key pollution reduction strategies of energy efficiency, fuel switching and pollution control technologies on PM2.5 emissions reduction. We use a bottom-up end-use accounting model to model residential and commercial buildings’ coal demand for heating and electricity demand in China’s Northern and Transition climate zones from 2010 to 2030. The model is then used to characterize the current coal-based heating (e.g., district heating, combined heat and power generation, small-scale coal-fired boilers) and power generation technologies to estimate direct and indirect PM2.5 emissions. Model scenarios are developed to evaluate and compare the potential co-benefits of efficiency improvements, fuel switching and pollution control technologies in reducing building-related direct and indirect PM2.5 emissions. An alternative pathway of development in which district heating is introduced to China’s Transition zone to meet growing demand for heat is also modeled to evaluate and quantify the potential impact on PM2.5 emissions.

  20. Review of Sector and Regional Trends in U.S. Electricity Markets. Focus on Natural Gas. Natural Gas and the Evolving U.S. Power Sector Monograph Series. Number 1 of 3

    SciTech Connect (OSTI)

    Logan, Jeffrey; Medlock, III, Kenneth B.; Boyd, William C.

    2015-10-15

    This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entire eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.

  1. China Power Inc | Open Energy Information

    Open Energy Info (EERE)

    China Power Inc Place: Beijing Municipality, China Zip: 100020 Sector: Renewable Energy Product: China Power Inc., a subsidiary of China Holdings Inc., is a project developer for...

  2. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  3. Chengdu China Photoelectric Apollo | Open Energy Information

    Open Energy Info (EERE)

    Chengdu China Photoelectric Apollo Jump to: navigation, search Name: Chengdu China Photoelectric Apollo Place: Chengdu, Sichuan Province, China Sector: Solar Product: China-based...

  4. China City Investment Group | Open Energy Information

    Open Energy Info (EERE)

    China City Investment Group Jump to: navigation, search Name: China City Investment Group Place: Nanjing, Jiangsu Province, China Sector: Renewable Energy Product: China-based...

  5. Taggart China | Open Energy Information

    Open Energy Info (EERE)

    Taggart China Jump to: navigation, search Name: Taggart China Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Solar, Wind energy Product: US based Taggart Global...

  6. "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System" Study Now Available

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) has released a study entitled "Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)”. Funded by OE, this study documents a development effort that created a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors in the NREL Regional Energy Deployment System model.

  7. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    SciTech Connect (OSTI)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

    2014-04-09

    , distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

  8. Regional variations in US residential sector fuel prices: implications for development of building energy performance standards

    SciTech Connect (OSTI)

    Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

    1981-03-01

    The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

  9. Source sector and region contributions to BC and PM2.5 in Central Asia

    SciTech Connect (OSTI)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located

  10. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  11. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  12. Fujian China Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Fujian China Power Place: Fujian Province, China Sector: Hydro Product: A hydro power project developer. References: Fujian China Power1...

  13. China Renewable Energy College | Open Energy Information

    Open Energy Info (EERE)

    Name: China Renewable Energy College Place: Beijing Municipality, China Zip: 102206 Sector: Renewable Energy Product: China's first academic renewable energy College. References:...

  14. China

    National Nuclear Security Administration (NNSA)

    9%2A en NNSA Transfers Responsibility for Radiation Detection System to China Customs http:nnsa.energy.govmediaroompressreleasesnnsa%E2%80%99s-second-line-defense

  15. Vestas Wind Technology China Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vestas Wind Technology China Co Ltd Jump to: navigation, search Name: Vestas Wind Technology (China) Co Ltd Place: Tianjin Municipality, China Zip: 300462 Sector: Wind energy...

  16. Solar Power China Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Corporation Ltd Jump to: navigation, search Name: Solar Power China Corporation Ltd Place: China Sector: Solar Product: China-focused PV project developer, acting as a joint...

  17. China Lucky Film Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Lucky Film Co Ltd Jump to: navigation, search Name: China Lucky Film Co Ltd Place: Baoding, Hebei Province, China Zip: 71054 Sector: Solar Product: China's photosensitive materials...

  18. China Shaanxi Yulin Huayang New Energy | Open Energy Information

    Open Energy Info (EERE)

    Shaanxi Yulin Huayang New Energy Jump to: navigation, search Name: China Shaanxi Yulin Huayang New Energy Place: Yulin, Shaanxi Province, China Sector: Solar Product: China-based...

  19. China Ordnance Equipment Group Corporation COEGC | Open Energy...

    Open Energy Info (EERE)

    China Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name: China Ordnance Equipment Group Corporation (COEGC) Place: Beijing Municipality, China Sector:...

  20. China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Co Ltd Jump to: navigation, search Name: China Guangdong Nuclear Solar Energy Co Ltd Place: China Sector: Solar Product: China Guangdong Nuclear's division on solar...

  1. Promotion of Rural Renewable Energy in Western China | Open Energy...

    Open Energy Info (EERE)

    Energy in Western China Place: Beijing Municipality, China Zip: 100026 Sector: Bioenergy Product: A programme launched by China Association of Rural Energy Industry (CAREI)...

  2. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  3. China Building Design Consultants | Open Energy Information

    Open Energy Info (EERE)

    Building Design Consultants Jump to: navigation, search Name: China Building Design Consultants Place: Beijing Municipality, China Sector: Solar Product: Beijing-based architecture...

  4. China Technology Development Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Jump to: navigation, search Name: China Technology Development Corporation Place: Tortola, China Zip: 310012 Sector: Renewable Energy, Solar Product: Chinese company...

  5. China Export Partners | Open Energy Information

    Open Energy Info (EERE)

    Export Partners Jump to: navigation, search Name: China Export Partners Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Solar Product: A Beijing-based sourcing and...

  6. China-NETL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    NETL Cooperation Jump to: navigation, search Name NETL-China Cooperation AgencyCompany Organization National Energy Technology Laboratory Partner China Sector Energy Topics...

  7. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: China Hydroelectric Corp Place: Beijing, Beijing Municipality, China Zip: 100010 Sector: Hydro Product: Engaged in the acquisition of small...

  8. China Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Association Jump to: navigation, search Name: China Wind Energy Association Place: Beijing, Beijing Municipality, China Zip: 100013 Sector: Wind energy Product: A...

  9. China`s macro economic trends and power industry structure

    SciTech Connect (OSTI)

    Binsheng Li; Johnson, C.J.; Hagen, R.

    1994-09-01

    Since China adopted an open door policy in 1978, its economy has grown rapidly. Between 1980 and 1993, China`s real GNP growth averaged 9.4 percent per year. Economists at the Chinese Academy of Social Sciences forecast that GNP will increase by 11.5 percent in 1994. During the rest of the decade, the Chinese government plans to reduce its annual GNP growth rate to 8-9 percent. During the 2001-2010 period, the economic growth rate is projected to decline to 6.5 percent per year. Table 1 compares China`s economic growth to other Asia-Pacific Economies, and includes projections to 2010. During the 1980s, China`s GDP growth rate was only second to that of South Korea. In the 1990`s, China is projected to have the highest economic growth in the Asia-Pacific region. China`s rapid economic growth is due to dramatic increases in the effective labor supply and effective capital stock. For the remainder of the 1990s, the effective labor supply should continue to increase rapidly because: (1) Chinese state enterprises are over-staffed and labor system reforms will move millions of these workers into more productive activities; (2) reforms in the wage system will provide increased incentives to work harder; (3) relaxation of migration controls from rural to urban areas will cause nominal labor in the industrial sector to accelerate; (4) differentials in personal income will increase and develop peer pressure on workers to work harder and earn more money; and (5) at China`s low personal income level, Chinese people are willing to trade leisure for more income as wages increase.

  10. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect (OSTI)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  11. Climate mitigation’s impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sector’s use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sector’s water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  12. Gansu China Power Jiuquan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Power Jiuquan Wind Power Co Ltd Jump to: navigation, search Name: Gansu China Power Jiuquan Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product:...

  13. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  14. A Multi-Model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-Term CO2 Emissions

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Klein, David; McCollum, David; Tavoni, Massimo; van der Zwaan, Bob; Van Vuuren, Detlef

    2013-11-01

    We study the near term and the longer term the contribution of bioenergy in different LIMITS scenarios as modeled by the participating models in the LIMITS project. With These scenarios have proven useful for exploring a range of outcomes for bioenergy use in response to both regionally diverse near term policies and the transition to a longer-term global mitigation policy and target. The use of several models has provided a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how the world may respond to policies. The results have also highlighted the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models, despite their differences.

  15. China Lao Gaixian Wind L P | Open Energy Information

    Open Energy Info (EERE)

    Lao Gaixian Wind L P Jump to: navigation, search Name: China Lao Gaixian Wind L.P. Place: China Sector: Wind energy Product: China-based wind farm developer. References: China Lao...

  16. PetroSun Biofuels China | Open Energy Information

    Open Energy Info (EERE)

    PetroSun Biofuels China Jump to: navigation, search Name: PetroSun Biofuels China Place: China Sector: Biofuels Product: PetroSun Biofuels China is a wholly owned subsidiary of...

  17. Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Martinez, A.; Eurek, K.; Mai, T.; Perry, A.

    2013-02-01

    The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact of variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.

  18. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable

  19. China Energy Primer

    SciTech Connect (OSTI)

    Ni, Chun Chun

    2009-11-16

    Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

  20. China Longyuan Power Group Corporation Limited | Open Energy...

    Open Energy Info (EERE)

    Power Group Corporation Limited Jump to: navigation, search Name: China Longyuan Power Group Corporation Limited Place: Beijing, Beijing Municipality, China Zip: 100034 Sector:...

  1. China Longyuan Wind Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Co Ltd Jump to: navigation, search Name: China Longyuan Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind farm development subsidiary of Longyuan...

  2. China Institute of Geo Environment Monitoring | Open Energy Informatio...

    Open Energy Info (EERE)

    Institute of Geo Environment Monitoring Jump to: navigation, search Name: China Institute of Geo-Environment Monitoring Place: China Sector: Geothermal energy Product: Chinese...

  3. China Energy Conservation Solar Energy Technologies CECS | Open...

    Open Energy Info (EERE)

    Conservation Solar Energy Technologies CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product:...

  4. China Titans Energy Technology Group Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Titans Energy Technology Group Co Ltd Jump to: navigation, search Name: China Titans Energy Technology Group Co Ltd Place: Zhuhai, Guangdong Province, China Sector: Solar,...

  5. China Power International Shanghai Green CLP JV | Open Energy...

    Open Energy Info (EERE)

    Shanghai Green CLP JV Jump to: navigation, search Name: China Power International, Shanghai Green & CLP JV Place: Shanghai, Shanghai Municipality, China Sector: Wind energy...

  6. China Technology Solar Power Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Holdings Ltd Jump to: navigation, search Name: China Technology Solar Power Holdings Ltd Place: Hong Kong Sector: Solar Product: China-based solar project developer,...

  7. China Datang Corporation Renewable Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Corporation Renewable Power Co Ltd Jump to: navigation, search Name: China Datang Corporation Renewable Power Co Ltd Place: Beijing Municipality, China Sector: Renewable Energy...

  8. China Huadian New Energy Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Co Ltd Jump to: navigation, search Name: China Huadian New Energy Development Co Ltd Place: Beijing Municipality, China Zip: 100044 Sector: Renewable Energy...

  9. China-GTZ Energy Programs | Open Energy Information

    Open Energy Info (EERE)

    Energy Programs Jump to: navigation, search Logo: China-GTZ Energy Programs Name China-GTZ Energy Programs AgencyCompany Organization GTZ Sector Energy Focus Area Energy...

  10. China SC Exact Equipment Co LTD | Open Energy Information

    Open Energy Info (EERE)

    SC Exact Equipment Co LTD Jump to: navigation, search Name: China SC Exact Equipment Co., LTD Place: Shenzhen, Guangdong Province, China Zip: 518125 Sector: Solar Product:...

  11. China Three Gorges Project Corporation CTGPC | Open Energy Information

    Open Energy Info (EERE)

    Three Gorges Project Corporation CTGPC Jump to: navigation, search Name: China Three Gorges Project Corporation (CTGPC) Place: Yichang, Hubei Province, China Zip: 443002 Sector:...

  12. China Wind Systems formerly Green Power Malex | Open Energy Informatio...

    Open Energy Info (EERE)

    formerly Green Power Malex Jump to: navigation, search Name: China Wind Systems (formerly Green PowerMalex) Place: Wuxi, Jiangsu Province, China Sector: Wind energy Product:...

  13. China Power International New Energy Holding Ltd | Open Energy...

    Open Energy Info (EERE)

    New Energy Holding Ltd Jump to: navigation, search Name: China Power International New Energy Holding Ltd Place: Shanghai Municipality, China Zip: 200052 Sector: Biomass, Hydro,...

  14. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center Jump to: navigation, search Name China-Climate Change Research Center AgencyCompany Organization ClimateWorks, Energy Foundation Sector...

  15. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Ltd Jump to: navigation, search Name: REpower North (China) Ltd Place: Baotou, Inner Mongolia Autonomous Region, China Zip: 14033 Product: Joint venture to manufacture 2MW...

  16. Industrial sector energy conservation programs in the People`s Republic of China during the seventh five-year plan (1986--1990)

    SciTech Connect (OSTI)

    Liu Zhiping; Sinton, J.E.; Yang Fuqiang; Levine, M.D.; Ting, M.K.

    1994-09-01

    The impetus at the national level to invest in energy conservation is quite strong and has long been reflected not only in official pronouncements, but also in the investments and organizational activities of the Chinese government. In the early 1980s the central government began a program of direct investments in industrial energy conservation that continues to the present. In addition, concurrently established governmental and quasi-governmental agencies have pursued conservation through administrative and educational measures. In Section 2 of this paper the authors outline the policies and institutions that supported China`s program of energy conservation investments in the Sixth and Seventh Five-Year Plans (FYPs) (1981--1985 and 1986--1990). In Section 3 they describe examples of the types of conservation projects pursued in four industrial subsectors: ferrous metals manufacturing; non-ferrous metals mining and manufacturing; chemicals manufacturing; and building materials manufacturing. Section 4 presents a simple methodology for comparing the costs of energy conservation to those of energy supply. Further discussion points out the applicability and limitations of this methodology to State Planning Commission published statistical material on the overall results of energy conservation investments. Though problematic, such analysis indicates that energy conservation investments were probably substantially cheaper than investments in equivalent energy supply would have been. They end with a discussion of some of the difficulties encountered in carrying out the conservation investment programs.

  17. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  18. Modeling regional/urban ozone and particulate matter in Beijing, China.

    SciTech Connect (OSTI)

    Fu, J.S.; Streets, D.G.; Jang, C.J.; Hao, J.; He, K.; Wang, L.; Zhang, Q.

    2009-01-15

    This paper examines Beijing air quality in the winter and summer of 2001 using an integrated air quality modeling system (Fifth Generation Mesoscale Meteorological Model (MM5)/Community Multiscale Air Quality (CMAQ)) in nested mode. The National Aeronautics and Space Administration (NASA) Transport and Chemical Evolution over the Pacific (TRACE-P) emission inventory is used in the 36- (East Asia), 12- (East China), and 4-km (greater Beijing area) domains. Furthermore, we develop a local Beijing emission inventory that is used in the 4-km domain. We also construct a corroborated mapping of chemical species between the TRACE-P inventory and the Carbon Bond IV (CB-IV) chemical mechanism before the integrated modeling system is applied to study ozone (O{sub 3}) and particulate matter (PM) in Beijing. Meteorological data for the integrated modeling runs are extracted from MM5. Model results show O{sub 3} hourly concentrations in the range of 80-159 parts per billion (ppb) during summer in the urban areas and up to 189 ppb downwind of the city. High fine PM (PM2.5) concentrations (monthly average of 75 {mu}g.m{sup -3} in summer and 150 {mu}g.m{sup -3} in winter) are simulated over the metropolitan and down-wind areas with significant secondary constituents. Major sources of particulates were biomass burning, coal combustion and industry. A comparison against available O{sub 3} and PM measurement data in Beijing is described. We recommend refinements to the developed local Beijing emission inventory to improve the simulation of Beijing's air quality. The 4-km modeling configuration is also recommended for the development of air pollution control strategies. 31 refs., 5 figs., 3 tabs.

  19. Modeling the Integrated Expansion of the Canadian and U.S. Power Sectors with the Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Zinaman, Owen; Ibanez, Eduardo; Heimiller, Donna; Eurek, Kelly; Mai, Trieu

    2015-07-02

    This document describes the development effort for creating a robust representation of the combined capacity expansion of the U.S. and Canadian electric sectors within the NREL ReEDS model. Thereafter, it demonstrates the newly established capability through an illustrative sensitivity analysis. In conducting the sensitivity analysis, we describe the value of an integrated modeling approach.

  20. HydroChina Corporation | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100011 Sector: Hydro, Wind energy Product: Beijing-based firm focused on hydro and wind power development. References: HydroChina Corporation1 This article is a...

  1. China Technology Development Group Corporation | Open Energy...

    Open Energy Info (EERE)

    Development Group Corporation Jump to: navigation, search Name: China Technology Development Group Corporation Place: Hong Kong, Hong Kong Sector: Solar Product: Chinese...

  2. China Innovation Investment Limited | Open Energy Information

    Open Energy Info (EERE)

    Innovation Investment Limited Jump to: navigation, search Name: China Innovation Investment Limited Place: Hong Kong Sector: Solar Product: Hong Kong-listed alternative energy...

  3. HydroChina ZhongNan Engineering Corp | Open Energy Information

    Open Energy Info (EERE)

    ZhongNan Engineering Corp Jump to: navigation, search Name: HydroChina ZhongNan Engineering Corp Place: Hunan Province, China Sector: Hydro, Wind energy Product: Hunan...

  4. China Xining New Energy Development | Open Energy Information

    Open Energy Info (EERE)

    New Energy Development Jump to: navigation, search Name: China Xining New Energy Development Place: Ningxia Autonomous Region, China Product: China-based company that manufactures...

  5. China WindPower Jilin Power Share JV | Open Energy Information

    Open Energy Info (EERE)

    WindPower Jilin Power Share JV Jump to: navigation, search Name: China WindPower & Jilin Power Share JV Place: Jilin Province, China Sector: Wind energy Product: China-based...

  6. Program Program Organization Country Region Topic Sector Sector

    Open Energy Info (EERE)

    European Union EU United Nations Development Programme UNDP Nature Conservation and Nuclear Safety BMU Australian Agency for International Development AusAID Argentina South...

  7. China-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    DLR Resource Assessments Jump to: navigation, search Name China-DLR Resource Assessments AgencyCompany Organization German Aerospace Center (DLR) Sector Energy Focus Area...

  8. China-Energy Intensity Reduction Strategy | Open Energy Information

    Open Energy Info (EERE)

    Intensity Reduction Strategy Jump to: navigation, search Name China-ESMAP Low Carbon Growth Country Studies Program AgencyCompany Organization Energy Sector Management Assistance...

  9. China Solar Energy Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    Holdings Ltd Jump to: navigation, search Name: China Solar Energy Holdings Ltd Place: Wan Chai, Hong Kong Sector: Solar Product: Supplies turnkey manufacturing lines for the...

  10. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  11. Energy Audit Practices in China: National and Local Experiences and Issues

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn; Lu, Hongyou

    2010-12-21

    China has set an ambitious goal of reducing its energy use per unit of GDP by 20% between 2006 and 2010. Since the industrial sector consumes about two-thirds of China's primary energy, many of the country's efforts are focused on improving the energy efficiency of this sector. Industrial energy audits have become an important part of China's efforts to improve its energy intensity. In China, industrial energy audits have been employed to help enterprises indentify energy-efficiency improvement opportunities for achieving the energy-saving targets. These audits also serve as a mean to collect critical energy-consuming information necessary for governments at different levels to supervise enterprises energy use and evaluate their energy performance. To better understand how energy audits are carried out in China as well as their impacts on achieving China's energy-saving target, researchers at the Lawrence Berkeley National Laboratory (LBNL) conducted an in-depth study that combines a review of China's national policies and guidelines on energy auditing and a series of discussions with a variety of Chinese institutions involved in energy audits. This report consists of four parts. First, it provides a historical overview of energy auditing in China over the past decades, describing how and why energy audits have been conducted during various periods. Next, the report reviews current energy auditing practices at both the national and regional levels. It then discusses some of the key issues related to energy audits conducted in China, which underscore the need for improvement. The report concludes with policy recommendations for China that draw upon international best practices and aim to remove barriers to maximizing the potential of energy audits.

  12. Hazardous waste and environmental trade: China`s issues

    SciTech Connect (OSTI)

    Ma Jiang

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  13. 2014 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector-Specific Plan Energy Sector-Specific Plan 2015 ii Page intentionally left blank Energy Sector-Specific Plan 2015 iii TABLE OF CONTENTS PREFACE ......

  14. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  15. Power Sector Modeling 101

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erin Boyd Department of Energy - Office of Energy Policy and Systems Analysis erin.boyd@hq.doe.gov DOE's Technical Assistance Website www.energy.gov/ta Power Sector Modeling 101 2 Presentation Description - DOE Power Sector Modeling 101 With increased energy planning needs and new regulations, environmental agencies, state energy offices and others have expressed more of an interest in electric power sector models, both for (a) interpreting the results and potential applications of modeling from

  16. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  17. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Fridley, D.G.; Levine, M.D.

    1996-06-01

    The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

  18. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  19. China Xinjiang Sunoasis Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunoasis Co Ltd Jump to: navigation, search Name: China Xinjiang Sunoasis Co Ltd Place: Urumuqi, Xinjiang Autonomous Region, China Zip: 830011 Product: PV module and other...

  20. Effects of two Asian sand dusts transported from the dust source regions of Inner Mongolia and northeast China on murine lung eosinophilia

    SciTech Connect (OSTI)

    He, Miao; Ichinose, Takamichi; Song, Yuan; Yoshida, Yasuhiro; Arashidani, Keiichi; Yoshida, Seiichi; Liu, Boying; Nishikawa, Masataka; Takano, Hirohisa; and others

    2013-11-01

    The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs contained different amounts of lipopolysaccharides (LPS) and β-glucan (ASD1 < ASD2) and SiO{sub 2} (ASD1 > ASD2). CD-1 mice were instilled intratracheally with ASD1, ASD2 and/or ovalbumin (OVA) four times at 2-week intervals. ASD1 and ASD2 enhanced eosinophil recruitment induced by OVA in the submucosa of the airway, with goblet cell proliferation in the bronchial epithelium. ASD1 and ASD2 synergistically increased OVA-induced eosinophil-relevant cytokines interleukin-5 (IL-5), IL-13 (ASD1 < ASD2) and chemokine eotaxin (ASD1 > ASD2) in bronchoalveolar lavage fluid. ASD2 aggravating effects on lung eosinophilia were greater than ASD1. The role of LPS and β-glucan in ASD2 on the production of pro-inflammatory mediators was assessed using in vitro bone marrow-derived macrophages (BMDMs) from wild type, Toll-like receptor 2-deficient (TLR2 −/−), TLR4 −/−, and MyD88 −/− mice (on Balb/c background). ASD2-stimulated TLR2 −/− BMDMs enhanced IL-6, IL-12, TNF-α, MCP-1 and MIP-1α secretion compared with ASD2-stimulated TLR4 −/− BMDMs. Protein expression from ASD2-stimulated MyD88 −/− BMDM were very low or undetectable. The in vitro results indicate that lung eosinophilia caused by ASD is TLR4 dependent. Therefore, the aggravation of OVA-related lung eosinophilia by ASD may be dependent on toxic substances derived from microbes, such as LPS, rather than SiO{sub 2}. - Highlights: • Asian sand dust (ASD) from the deserts of China causes serious respiratory problems. • The aggravating effects of two ASDs on lung eosinophilia were compared. • The ASDs contained different LPS and β-glucan (ASD1

  1. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is

  2. The Italian energy sector

    SciTech Connect (OSTI)

    1997-01-01

    The energy sector in Italy, as in Europe and in many other areas of the world, is undergoing rapid and profound changes. The 1986 ratification of the European Single Act was intended to create a European internal market, where circulation of people, capital, goods, and services would reach the highest possible liberalization. In 1988, in the document The Energy Internal Market, the European Union (EU) commission stressed the need for creation of an internal energy market--free of obstacles--to increase security of supply, to reduce costs, and to strengthen the competitiveness of the European economic system. In 1990, the Community Council adopted directives to implement the EU energy sector. This article describes Italy`s role as part of the EU energy sector. It covers the following topics: the Italian energy sector; electricity vs gas transportation; project finance; recent developments advance Italian power industry; specifying powerplant components -- Italian stype; buyers` guide to Italian equipment, services.

  3. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    , intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  4. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  5. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  6. China Solar Power CSP aka General Solar Power Yantai Co Ltd ...

    Open Energy Info (EERE)

    Power CSP aka General Solar Power Yantai Co Ltd Jump to: navigation, search Name: China Solar Power (CSP) (aka General Solar Power Yantai Co Ltd) Place: China Sector: Solar...

  7. China-IEA Network of Expertise in Energy Technology | Open Energy...

    Open Energy Info (EERE)

    IEA Network of Expertise in Energy Technology Jump to: navigation, search Name China-IEA Cooperation AgencyCompany Organization International Energy Agency Sector Energy Focus...

  8. Study of Aerosol Indirect Effects in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s ... of regional aerosol impacts in China as part of a joint program with the ...

  9. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B.; Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi

    1992-12-31

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

  10. Building ties with China

    SciTech Connect (OSTI)

    Evans, P.C. )

    1994-03-01

    During the past year, reforms in China have greatly expanded opportunities for foreign investors in the power sector. On January 11, 1993, Chinese Premier Li Peng announced that China would expand its use of foreign capital for power projects and welcomed foreign investment. This announcement comes as part of a rapid liberalization and restructuring of the Chinese economy as well as the growing need for electricity to sustain the country's galloping economic growth. By the year 2000, China plans to expand total capacity from 165,000 MW to 300,000 MW, requiring from 15,000 MW to 17,000 MW of new capacity additions each year. According to Cheng Li of the Department of International Cooperation at the Ministry of Electric Power - formerly the Ministry of Energy - China will only be able to finance about 75 percent of its development needs and is now looking to foreign investors to make up the remaining 25 percent. Some estimates suggest there could be as much as 70,000 MW open to outside firms, making China one of the world's largest emerging markets for private power development. The opportunities developing in China have generated growing interest in the United States. In the past ten months, trade missions to China and other activities have been organized to explore the opportunities and assess the competitiveness of US firms. Not surprisingly, the China market has also attracted considerable attention in Japan. To put recent US initiatives in perspective, it is instructive to compare these initiatives with those of Japan. Differences are apparent at both the level of the firm and the government, differences that may have important implications for whether US or Japanese firms are more successful in the years to come.

  11. Inventory of China's Energy-Related CO2 Emissions in 2008

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Qin, Yining

    2011-03-31

    Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions

  12. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  13. China energy databook

    SciTech Connect (OSTI)

    Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. ); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi )

    1992-01-01

    The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

  14. Lake Region State College | Open Energy Information

    Open Energy Info (EERE)

    College Jump to: navigation, search Name Lake Region State College Facility Lake Region State College Sector Wind energy Facility Type Community Wind Facility Status In Service...

  15. Office of China Renewable Energy Development Project REDP | Open...

    Open Energy Info (EERE)

    China Zip: 100044 Sector: Wind energy Product: The project aims to use state-of-the-art and cost-effective wind and PV technologies to supply electricity in an...

  16. Cape Cod Regional Transit Authority | Open Energy Information

    Open Energy Info (EERE)

    Cod Regional Transit Authority Jump to: navigation, search Name Cape Cod Regional Transit Authority Facility Cape Cod Regional Transit Authority Sector Wind energy Facility Type...

  17. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  18. Searching for Dark Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for Dark Sector Physics with MiniBooNE Georgia Karagiorgi, Columbia University On behalf of the MiniBooNE Collaboration 3 rd International Conference on New Frontiers in Physics August 6, 2014 MiniBooNE: Past & current highlights MiniBooNE, an accelerator-based neutrino experiment at Fermilab, has run for 10 years with neutrino and antineutrino beams, collecting data for ~2x10 21 POT, amounting to 100k's of neutrino interactions. It has been able to address the two-neutrino

  19. Projected Changes in Mean and Interannual Variability of Surface Water over Continental China

    SciTech Connect (OSTI)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi; Hong, Yang; Leung, Lai-Yung R.

    2015-05-01

    Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China, which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti

  20. Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential

    SciTech Connect (OSTI)

    Wan, Y.; Renne, O.D.; Junfeng, Li

    1996-12-31

    China, which has pursued aggressive policies to encourage economic development, could experience the world`s fastest growth in energy consumption over the next two decades. China has become the third largest energy user in the world since 1990 when primary energy consumption reached 960 million tons of coal equivalent (tce). Energy use is increasing at an annual rate of 6-7% despite severe infrastructure and capital constraints on energy sector development. Energy consumption in China is heavily dominated by coal, and fossil fuels provide up to 95% of all commercial energy use. Coal currently accounts for 77% of total primary energy use; oil, 16%; hydropower, 5%; and natural gas, 2%. Coal is expected to continue providing close to three-quarters of all energy consumed, and the amount of coal used is expected to triple by year 2020. Currently, renewable energy resources (except for hydropower) account for only a fraction of total energy consumption. However, the estimated growth in greenhouse gas emissions, as well as serious local and regional environmental pollution problems caused by combustion of fossil fuels, provides strong arguments for the development of renewable energy resources. Renewable energy potential in China is significantly greater than that indicated by the current level of use. With a clear policy goal and consistent efforts from the Government of China, renewables can play a far larger role in its future energy supply.

  1. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  2. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  3. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  4. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  5. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  6. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  7. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  8. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  9. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  10. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect (OSTI)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  11. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  12. Solar Atlas (PACA Region - France) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (PACA Region - France) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Atlas (PACA Region - France) AgencyCompany Organization: MINES ParisTech Sector:...

  13. Regional Analysis Briefs

    Reports and Publications (EIA)

    2028-01-01

    Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

  14. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  15. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert ...

  16. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  17. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  18. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  19. From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector

    SciTech Connect (OSTI)

    Wu, Kang; Pezeshki, S.; McMahon, J.

    1995-08-01

    In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.

  20. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  1. FE-Funded Study Released on Key Factors Affecting China Shale...

    Office of Environmental Management (EM)

    The Chinese government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government ...

  2. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  3. Hythane project by Hydrogen China Ltd and China Railway Construction...

    Open Energy Info (EERE)

    project by Hydrogen China Ltd and China Railway Construction Corporation Jump to: navigation, search Name: Hythane project by Hydrogen China Ltd and China Railway Construction...

  4. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  5. ECOtality China | Open Energy Information

    Open Energy Info (EERE)

    ECOtality China Jump to: navigation, search Name: ECOtality China Place: China Product: China-based manufacturer of electric vehicle charging systems. References: ECOtality...

  6. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  7. Development of natural gas vehicles in China

    SciTech Connect (OSTI)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  8. Regional Power Sector Integration: Lessons from Global Case Studies...

    Open Energy Info (EERE)

    Market analysis, Policiesdeployment programs, Background analysis Resource Type: Lessons learnedbest practices Website: www.esmap.orgesmapsitesesmap.orgfiles...

  9. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  10. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  11. Working with the Real Estate Sector

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Workforce Peer Exchange Call: Working with the Real Estate Sector, Call Slides and Discussion Summary, March 1, 2012. This call discussed effective strategies for working with the real estate sector.

  12. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  13. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  14. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  15. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  16. Behavioral Assumptions Underlying California Residential Sector Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Programs (2009 CIEE Report) | Department of Energy Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) This paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ambitious greenhouse gas

  17. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to ...

  18. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  19. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  20. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10karsner.pdf More Documents & Publications The ...

  1. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments ... AMF Poster, Mandarin Version News Campaign Images AMF Deployment, Shouxian, China In its ...

  2. Energias Renovables de la Region de Murcia SA ERRM | Open Energy...

    Open Energy Info (EERE)

    la Region de Murcia SA ERRM Jump to: navigation, search Name: Energias Renovables de la Region de Murcia SA (ERRM) Place: Spain Sector: Renewable Energy Product: The Murcia...

  3. Alignment limit of the NMSSM Higgs sector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2016-02-17

    The Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with a Higgs boson of mass 125 GeV can be compatible with stop masses of order of the electroweak scale, thereby reducing the degree of fine-tuning necessary to achieve electroweak symmetry breaking. Moreover, in an attractive region of the NMSSM parameter space, corresponding to the \\alignment limit" in which one of the neutral Higgs fields lies approximately in the same direction in field space as the doublet Higgs vacuum expectation value, the observed Higgs boson is predicted to have Standard- Model-like properties. We derive analytical expressions for the alignment conditions andmore » show that they point toward a more natural region of parameter space for electroweak symmetry breaking, while allowing for perturbativity of the theory up to the Planck scale. Additionally, the alignment limit in the NMSSM leads to a well defined spectrum in the Higgs and Higgsino sectors, and yields a rich and interesting Higgs boson phenomenology that can be tested at the LHC. Here, we discuss the most promising channels for discovery and present several benchmark points for further study.« less

  4. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: REMI AgencyCompany Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Resource Type: Softwaremodeling tools User Interface:...

  5. Regional Greenhouse Gas Initiative Inc RGGI | Open Energy Information

    Open Energy Info (EERE)

    Greenhouse Gas Initiative Inc RGGI Jump to: navigation, search Name: Regional Greenhouse Gas Initiative, Inc (RGGI) Place: New York Zip: NY 10007 Sector: Services Product: New...

  6. Acceval Incubateur Regional de Haute Normandie | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Acceval (Incubateur Regional de Haute Normandie) Place: France Sector: Services Product: General Financial & Legal Services ( Government Public...

  7. Incubateur Regional Poitou Charentes IRPC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Incubateur Regional Poitou Charentes (IRPC) Place: France Sector: Services Product: General Financial & Legal Services ( Academic Research...

  8. North County Regional Resource Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503, -80.2767327 Show...

  9. The emerging multi-polar world and China's grand game (Journal...

    Office of Scientific and Technical Information (OSTI)

    In particular I focus on Asia which has two large countries, China and India, competing ... a discussion of what China and India can do to help the region develop and stabilize. ...

  10. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  11. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    SciTech Connect (OSTI)

    G. Fridley, David; Zheng, Nina; T. Aden, Nathaniel

    2010-07-01

    After rapid growth in economic development and energy demand over the last three decades, China has undertaken energy efficiency improvement efforts to reduce its energy intensity under the 11th Five Year Plan (FYP). Since becoming the world's largest annual CO{sub 2} emitter in 2007, China has set reduction targets for energy and carbon intensities and committed to meeting 15% of its total 2020 energy demand with non-fossil fuel. Despite having achieved important savings in 11th FYP efficiency programs, rising per capita income and the continued economic importance of trade will drive demand for transport activity and fuel use. At the same time, an increasingly 'electrified' economy will drive rapid power demand growth. Greater analysis is therefore needed to understand the underlying drivers, possible trajectories and mitigation potential in the growing industrial, transport and power sectors. This study uses scenario analysis to understand the likely trajectory of China's energy and carbon emissions to 2030 in light of the current and planned portfolio of programs, policies and technology development and ongoing urbanization and demographic trends. It evaluates the potential impacts of alternative transportation and power sector development using two key scenarios, Continued Improvement Scenario (CIS) and Accelerated Improvement Scenario (AIS). CIS represents the most likely path of growth based on continuation of current policies and meeting announced targets and goals, including meeting planned appliance efficiency standard revisions, fuel economy standards, and industrial targets and moderate phase-out of subcritical coal-fired generation with additional non-fossil generation. AIS represents a more aggressive trajectory of accelerated improvement in energy intensity and decarbonized power and transport sectors. A range of sensitivity analysis and power technology scenarios are tested to evaluate the impact of additional actions such as carbon capture and

  12. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect (OSTI)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  13. Energy and water sector policy strategies for drought mitigation.

    SciTech Connect (OSTI)

    Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

    2009-03-01

    Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

  14. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  15. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  16. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  17. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  18. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  19. ESCO Industry in China

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the development, achievements, and functions of the China Energy Conservation project and ESCO.

  20. China`s Clean Coal Technology Program (translation abstract)

    SciTech Connect (OSTI)

    1994-06-01

    China is the largest producer and consumer of coal in the world. This paper describes China`s program for the development and use of clean coal.

  1. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  2. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  3. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  4. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China

    SciTech Connect (OSTI)

    Chang Lang; Shu Tao; Wenxin Liu; Yanxu Zhang; Staci Simonich

    2008-07-15

    A potential receptor influence function (PRIF) model, based on air mass forward trajectory calculations, was applied to simulate the atmospheric transport and outflow of polycyclic aromatic hydrocarbons (PAHs) emitted from China. With a 10 day atmospheric transport time, most neighboring countries and regions, as well as remote regions, were influenced by PAH emissions from China. Of the total annual PAH emission of 114 Gg, 92.7% remained within the boundary of mainland China. The geographic distribution of PRIFs within China was similar to the geographic distribution of the source regions, with high values in the North China Plain, Sichuan Basin, Shanxi, and Guizhou province. The Tarim basin and Sichuan basin had unfavorable meteorological conditions for PAH outflow. Of the PAH outflow from China (8092 tons or 7.1% of the total annual PAH emission), approximately 69.9% (5655 tons) reached no further than the offshore environment of mainland China and the South China Sea. Approximate 227, 71, 746, and 131 tons PAHs reached North Korea, South Korea, Russia-Mongolia region, and Japan, respectively, 2-4 days after the emission. Only 1.4 tons PAHs reached North America after more than 9 days. Interannual variation in the eastward PAH outflow was positively correlated to cold episodes of El Nino/Southern Oscillation. However, trans-Pacific atmospheric transport of PAHs from China was correlated to Pacific North America index (PNA) which is associated with the strength and position of westerly winds. 38 refs., 4 figs.

  5. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  6. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  7. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Environmental Management (EM)

    the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas ...

  8. US Energy Sector Vulnerabilities to Climate Change

    Broader source: Energy.gov (indexed) [DOE]

    Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND ... and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). ...

  9. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  10. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  11. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  12. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  13. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In February 2014, the National Institute of Standards and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the ...

  14. Behavioral Assumptions Underlying California Residential Sector...

    Broader source: Energy.gov (indexed) [DOE]

    paper examines the behavioral assumptions that underlie California's residential sector energy efficiency programs and recommends improvements that will help to advance the state's ...

  15. Solar Photovoltaic Financing: Residential Sector Deployment ...

    Broader source: Energy.gov (indexed) [DOE]

    Date March 2009 Topic Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory Solar Photovoltaic Financing: Residential Sector ...

  16. Palcan China | Open Energy Information

    Open Energy Info (EERE)

    Palcan China Place: Shanghai, Shanghai Municipality, China Zip: 200000 Product: Joint venture to produce PEMFC stacks in China at low cost. Coordinates: 31.247709, 121.472618...

  17. China Energy and Emissions Paths to 2030

    SciTech Connect (OSTI)

    Fridley, David; Zheng, Nina; Zhou, Nan; Ke, Jing; Hasanbeigi, Ali; Morrow, Bill; Price, Lynn

    2011-01-14

    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech

  18. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect (OSTI)

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  19. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector Cybersecurity Framework Implementation Guidance │ Table of Contents TABLE OF CONTENTS 1. Introduction .............................................................................................................................................. 1 2. Preparing for Framework Implementation

  20. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  1. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt071_vss_cesiel_2011_o.pdf (760.6 KB) More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  2. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.; Calvin, Katherine V.; Kyle, G. Page

    2014-11-01

    Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that would be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.

  3. Natcore China | Open Energy Information

    Open Energy Info (EERE)

    Natcore China Place: China Product: China-based JV formed to develop and manufacture PV cell coating equipment and materials. References: Natcore China1 This article is a stub....

  4. NOAA 2015 Regional Coast Resilience Grant Program

    Broader source: Energy.gov [DOE]

    The National Oceanic and Atmospheric Administration (NOOA) is accepting applications for the Regional Coastal Resilience Grant program to support regional approaches to undertake activities that build resilience of coastal regions, communities, and economic sectors to the negative impacts from extreme weather events, climate hazards, and changing ocean conditions.

  5. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  6. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  7. Coulee Region Bio Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Region Bio Fuels LLC Jump to: navigation, search Name: Coulee Region Bio-Fuels LLC Place: Ettrick, Wisconsin Zip: 54627 Sector: Biofuels Product: LLC created by PrairieFire...

  8. Taiwan: An energy sector study

    SciTech Connect (OSTI)

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  9. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  10. Power sector liberalization in developing countries

    SciTech Connect (OSTI)

    Seabright, J.

    1998-07-01

    Based on extensive experience of the US Agency for International Development (USAID) with power sector liberalization in developing countries over the past decade, it has become clear that liberalization is a powerful tool for helping achieve sustainable and environmentally sound social and economic development. The basic driving forces for liberalization are: The need for additional energy to support sustainable economic and social development; the lack of public sector financial resources for system improvement; the inefficiency of existing power generation, transmission, distribution and end use; and the poor environmental performance of public sector power utilities. Power sector liberalization has brought the benefits of greater efficiency in the power sector, increased investment, more economic pricing, greater independence from political interference, increased competition and dampening of tariff increase, and better environmental protection. Care needs to be taken, however, to insure that progress in the areas of energy efficiency, renewable energy, and rural electrification are not compromised in the drive to liberalize. USAID firmly believes that power sector liberalization offers a fundamental opportunity to all countries to improve the sustainable supply and use of energy for productive purposes for this and future generations. All nations should seriously consider energy sector liberalization and one or more of the various approaches.

  11. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1990 and Preceding Years.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-06-01

    This report officially releases the compilation of regional 1990 retail customer sector sales data by the Bonneville Power Administration. The report is intended to enable detailed examination of annual regional electricity consumption. It also provides observations based on statistics covering the 1983--1990 time period, and gives statistics covering the time period 1970--1990. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell annually to four sectors. Data is provided on each retail customer sector and also on the customers Bonneville serves directly: residential, commercial, industrial, direct-service industrial, and irrigation. 21 figs., 40 tabs.

  12. Model simulation of climate changes in China

    SciTech Connect (OSTI)

    Chen Ming; Fu Congbin

    1997-12-31

    At present there are a large amount of work about influence of human activities and industrization on global climate changes. But due to the non-homogeneous boundary layer between earth and atmosphere there exist distinct difference of climate changes between different regions. China locates in the cast edge of Eurasian continent and border on the Pacific Ocean, it is the most famous monsoon region in the world. Climate of this region is very complex not only because of monsoon but also because its complicated topography. Researches about climate change in this region arc far from adequate. For this reason we use the Australia CSIRO 9-level truncated spectral model to nest with our regional climate model to simulate climate changes of China under conditions of double co2. Models arc running continuously for three years in both conditions of present co2 level and double co2 ppm.

  13. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect (OSTI)

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  14. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  15. China Photoelectricity Group | Open Energy Information

    Open Energy Info (EERE)

    Photoelectricity Group Jump to: navigation, search Name: China Photoelectricity Group Place: China Product: A PV cell maker in China. References: China Photoelectricity Group1...

  16. China National CDM Board | Open Energy Information

    Open Energy Info (EERE)

    Board Jump to: navigation, search Name: China National CDM Board Place: Beijing Municipality, China Product: Regulator for CDM development in China. References: China National CDM...

  17. Environmental and economic challenges to coal`s future in China

    SciTech Connect (OSTI)

    Johnson, C.J.; Li, B.

    1994-11-01

    Coal accounts for approximately 75% of China`s total primary energy consumption, and is by far the largest contributor to air pollution. The highest growth sector for coal consumption is the power sector, accounting for about 36 percent of total coal consumption in 1993. Over the 1994--2010 period most new, large power plants are expected to be coal-fired. Therefore, the availability and price of coal, as well as environmental constraints will be critical to foreign investors evaluating coal and power projects in China. The purpose of this paper is to provide useful technical, economic and environmental information and analysis on coal and the power sectors of China. The target audiences are potential investors and government energy and environmental policy people. This paper suggests a number of important energy and environmental policy issues that need to be addressed in a timely fashion in order to promote adequate levels of investment in coal and power developments in China. Although this paper highlights problems faced by foreign investors in coal and power, it is important to balance these problems against the large investment opportunities developing in these sectors.

  18. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. ...

  19. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  20. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  1. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  2. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  3. 2015 Energy Sector-Specific Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  4. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  5. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Energy Savers [EERE]

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  6. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  7. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  8. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  9. Clean Energy Investment Center and Private Sector Talk Innovation...

    Energy Savers [EERE]

    Clean Energy Investment Center and Private Sector Talk Innovation and Investment in Smart ... Clean Energy Investment Center and Private Sector Talk Innovation and Investment in Smart ...

  10. Energy Department Announces New Private Sector Partnership to...

    Broader source: Energy.gov (indexed) [DOE]

    projects, and the Department will invite private sector participation to accelerate the ... underwriting process and leverage private sector expertise and capital for the ...

  11. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 7, ...

  12. DOE Technology Commercialization Fund Kicks Off New Private Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach DOE Technology Commercialization Fund Kicks Off New Private Sector Outreach May 24, 2016 - 4:08pm ...

  13. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  14. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 ...

  15. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  16. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  17. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  18. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  19. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  20. OECD-Private Sector Engagement in Adaptation to Climate Change...

    Open Energy Info (EERE)

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  1. Energy Critical Infrastructure and Key Resources Sector-Specific

    Broader source: Energy.gov (indexed) [DOE]

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  2. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  3. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  4. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference ...

  5. New Report Highlights Growth of America's Clean Energy Job Sector...

    Broader source: Energy.gov (indexed) [DOE]

    New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean ...

  6. Workforce Training for the Electric Power Sector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector Workforce Training for the Electric Power Sector PDF icon 04-08-2010SGWorkforceSelections.pdf More Documents & Publications ...

  7. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  8. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Environmental Management (EM)

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  9. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  10. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent ...