Powered by Deep Web Technologies
Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bay area regional water recycling program  

SciTech Connect (OSTI)

The Bay Area Regional Water Recycling Project is a partnership of 19 water and wastewater agencies working to maximize San Francisco Bay Area water recycling. Benefits of the partnership are described, and the methodologies and analysis tools to implement the regional approach are identified.

Ritchie, S.; Bailey, M.; Raines, R.

1998-07-01T23:59:59.000Z

2

California South/West Bay Area Regional Middle School Science Bowl  

Office of Science (SC) Website

California South/West California South/West Bay Area Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov California Regions California South/West Bay Area Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Ray Ng Email: RayNg97@gmail.com Regional Event Information Date: Saturday, March 8, 2014

3

Bay Area | Open Energy Information  

Open Energy Info (EERE)

Bay Area Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development Institutions in the Bay Area 1.3 Networking Organizations in the Bay Area 1.4 Investors and Financial Organizations in the Bay Area 1.5 Policy Organizations in the Bay Area Clean Energy Clusters in the Bay Area Products and Services in the Bay Area Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

4

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

5

Mercury Concentrations in Fish from the San Francisco Bay Area  

E-Print Network [OSTI]

Mercury Concentrations in Fish from the San Francisco Bay Area San Francisco Bay Regional Water on composite samples · Some mercury analysis on individual largemouth bass · Size targets #12;Tomales Bay Study chemical analyses (Hg and organics) conducted on composite samples · Some mercury analysis on individual

6

Tampa Bay Area Ethanol Consortium | Open Energy Information  

Open Energy Info (EERE)

Tampa Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol...

7

Aerial survey of Bay Area continues through Saturday | National Nuclear  

National Nuclear Security Administration (NNSA)

of Bay Area continues through Saturday | National Nuclear of Bay Area continues through Saturday | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey of Bay Area continues through Saturday Aerial survey of Bay Area continues through Saturday Posted By Office of Public Affairs NNSA Blog This week, a NNSA helicopter has been flying at a low-level altitude over

8

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay.  

E-Print Network [OSTI]

??Swan Lake is a sub-bay of the Galveston Bay system. The area received runoff from a tin smelter via the Wah Chang Ditch which ran (more)

Park, Junesoo

2012-01-01T23:59:59.000Z

9

Sediment Toxicity Identification Evaluations San Francisco Bay Regional Monitoring  

E-Print Network [OSTI]

Sediment Toxicity Identification Evaluations San Francisco Bay Regional Monitoring Program chemicals of concern that may impact the estuary's ecosystem. Toxicity Identification Evaluation (TIE identified weak associations between mortality and bulk-phase chlordane and silver concentrations at Redwood

10

Energy Secretary Steven Chu to Travel to Bay Area to Highlight...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union...

11

Bailey Bay Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bailey Bay Hot Springs Geothermal Area Bailey Bay Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bailey Bay Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.982,"lon":-131.6622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Near Fish Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Near Fish Bay Geothermal Area Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.3509833,"lon":-135.4106696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Cold Bay Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cold Bay Hot Spring Geothermal Area Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.2217,"lon":-162.412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Hot Springs Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Bay Geothermal Area Hot Springs Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.166666,"lon":-165.82,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Vicksburg, Frio successes lift Galveston Bay area prospects  

SciTech Connect (OSTI)

Tertiary plays are yielding gas and condensate reserves in Galveston and Trinity bays and adjacent Galveston and Chambers counties along the Upper Texas Gulf Coast. The area south and southeast of Houston has long been productive of gas mainly from Upper Frio sands. Operators armed with modern geophysical techniques are now targeting reserves in deeper Frio and Vicksburg horizons. Interpretation of 3D seismic data is being used on some projects, and 2D data and AVO analysis have also been helpful. TransTexas Gas Corp., Houston, believes it has encountered large potential reserves of high pressure gas in Vicksburg in Galveston Bay just north of Texas City. Several operators are drilling exploratory wells within 5--10 miles west of TransTexas` indicated discovery. Enserch Exploration Inc., Dallas, and Vintage Petroleum Corp., Tulsa, are successfully exploring Trinity Bay and northeastern Galveston Bay in Chambers County southwest of Anahuac. Elsewhere in Chambers County, Columbus Energy Corp., Denver, completed a Frio F-16 deeper pool gas/condensate discovery beneath giant Anahuac oil field. Several operators are reporting success at gas/condensate tests across the county. Exploration activities are discussed in these deposits.

Petzet, G.A.

1997-08-11T23:59:59.000Z

16

Market Channels and Value Added to Fish Landed at Monterey Bay Area Ports  

E-Print Network [OSTI]

Sample Input-Output Data to Port Level Summaries with PacFINMonterey Bay area (MBA) ports: Moss Landing, Monterey andlanded at Monterey Bay ports (i.e. , Moss Landing, Monterey

Pomeroy, Caroline; Dalton, Michael

2005-01-01T23:59:59.000Z

17

The pumps deliver this water to users in the Bay Area, the southern Central Valley, and Southern California. This system  

E-Print Network [OSTI]

The pumps deliver this water to users in the Bay Area, the southern Central Valley, and Southern Delta is part of the largest estu- ary on the West Coast, providing a home to a diverse array of fish in the Central Valley. This important region is now in a serious, long-term crisis. Many of the Delta's native

Pasternack, Gregory B.

18

Inventory and analysis of bay management structure for the Corpus Christi Bay National Estuary Program study area  

SciTech Connect (OSTI)

This report characterizes the existing resource management framework for the Corpus Christi Bay National Estuary Program (CCBNEP) study area. Historical and current regulatory and non-regulatory approaches to resource management were examined, and an identification made of the significant gaps or overlaps in organizational roles and authorities. Efforts were taken to coordinate the Base Program Analysis with that for the Galveston Bay NEP, the Texas Coastal Management Program, and other similar projects, to both build upon and ensure that efforts are not duplicated.

Richard, B.; Bacon, E.; Dietz, R.; DeMoors, K.; Needham, K.

1996-02-01T23:59:59.000Z

19

Modern technology in an old area - Bay Marchand field revisited  

SciTech Connect (OSTI)

Bay Marchand Field, a giant Gulf of Mexico oil field discovered in 1949, is undergoing renewed drilling activity as the result of a three-dimensional (3-D) seismic survey. The field, situated over a large salt diapir, is characterized by complex fault systems and typical Gulf Coast regressive sedimentation. As of 1989, over 700 wells had produced 518 MMBO and 379 bcfg of gas from the field. The 3-D survey covers over 60 mi{sup 2} and was shot for the following objectives; (1) to delineate new pools, (2) to review mature areas for additional development opportunities, and (3) to assist in reservoir management. Geophysically, the survey was designed to cover all common-depth-point bins and to provide for maximum horizontal and vertical resolution. The difficulty of obtaining such full coverage was heightened by numerous surface facilities dotting the field. But the data were successfully acquired through state-of-the-art techniques. To date, structural interpretation of the survey has led to a better definition of the salt/sediment interface and good correlation of fault patterns and the resulting reservoir geometries. Stratigraphically, better understanding of paleoenvironments, log correlations, and sand distribution has resulted. The benefits of these improvements are manifested in several new successful wells in both mature and undeveloped portions of the field as well as the recognition that other wells are now no longer necessary. Also, secondary recovery programs, specifically waterfloods, are being improved. The result will be an increase in total reserves as well as daily production.

Abriel, W.L.; Neale, P.S.; Tissue, J.S.; Wright, R.M. (Chevron U.S.A., New Orleans, LA (USA))

1990-05-01T23:59:59.000Z

20

Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area  

E-Print Network [OSTI]

i Water Management Strategies for the San Joaquin Valley and San Francisco Bay Area: an Engineering in Water Resource Management ............. 3 CALVIN Model Overview ...................................................... 26 Changes in Delivery and Scarcity Costs .................................. 35 Environmental Water

Lund, Jay R.

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energetics of Barotropic and Baroclinic Tides in the Monterey Bay Area  

Science Journals Connector (OSTI)

A detailed energy analysis of the barotropic and baroclinic M2 tides in the Monterey Bay area is performed. The authors first derive a theoretical framework for analyzing internal tide energetics based on the complete form of the barotropic and ...

Dujuan Kang; Oliver Fringer

2012-02-01T23:59:59.000Z

22

Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area  

E-Print Network [OSTI]

The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical...

Yanagihara, R.; Okagaki, A.

2006-01-01T23:59:59.000Z

23

Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the  

Broader source: Energy.gov (indexed) [DOE]

Bay Area to Highlight Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy resources and innovation, tomorrow, Wednesday, February 1, U.S. Energy Secretary Steven Chu will headline a groundbreaking ceremony for Lawrence Berkeley National Laboratory's new Computational Research and Theory Facility, a cutting-edge supercomputing facility. Secretary Chu will also host a State of the Union Town Hall and take questions from students and faculty

24

AIRBORNE MEASUREMENTS OF OZONE AND REACTIVE NITROGEN COMPOUNDS IN TAMPA, FLORIDA DURING THE BAY REGIONAL  

E-Print Network [OSTI]

. The overall objective of the aircraft measurements in BRACE was to study the emission, transport areas, over the centers of Tampa and St. Petersburg, and over Tampa Bay and the Gulf of Mexico the advection path) and, in other cases, over the Gulf of Mexico, where additional chemical inputs were

25

Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants  

SciTech Connect (OSTI)

Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

2013-07-15T23:59:59.000Z

26

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

U.S. Energy Information Administration (EIA) Indexed Site

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

27

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

SciTech Connect (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

28

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area  

Science Journals Connector (OSTI)

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area ... Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. ...

Ling Tao; David Fairley; Michael J. Kleeman; Robert A. Harley

2013-08-14T23:59:59.000Z

29

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

30

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

Eudy, L.; Post, M.

2014-05-01T23:59:59.000Z

31

Western Area Power Administration, Desert Southwest Region  

Broader source: Energy.gov (indexed) [DOE]

Western Area Power Administration, Desert Southwest Region Liberty-Parker #2 230-kV Transmission Line Optical Power Ground Wire Repairs - Continuation Sheet Project Description The scope of work includes digging a trenching and burying a 1.25-inch OPGW conduit. The conduit trench will be about 4 feet deep and 10 inches wide, with warning tape placed above the conduit in the trench. Once the conduit has been placed, the trench will be backfilled with the original surface material. About 5.3 linear miles of trenching will be required, mostly within the existing dirt access road associated with the LIB-PAD #2 transmission line. Four pullboxes will be installed along the route. The pullboxes measure 2 feet by 3 feet by 2 feet and will be installed at least 24 inches below grade. An

32

Western Area Power Administration, Desert Southwest Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Western Area Power Administration, Desert Southwest Region Liberty-Parker #2 230-kV Transmission Line Optical Power Ground Wire Repairs - Continuation Sheet Project Description The scope of work includes digging a trenching and burying a 1.25-inch OPGW conduit. The conduit trench will be about 4 feet deep and 10 inches wide, with warning tape placed above the conduit in the trench. Once the conduit has been placed, the trench will be backfilled with the original surface material. About 5.3 linear miles of trenching will be required, mostly within the existing dirt access road associated with the LIB-PAD #2 transmission line. Four pullboxes will be installed along the route. The pullboxes measure 2 feet by 3 feet by 2 feet and will be installed at least 24 inches below grade. An

33

Evaluation of dredged material proposed for ocean disposal from Red Hook/Bay Ridge project areas, New York  

SciTech Connect (OSTI)

The objective of the Red HookIBay Ridge project was to evaluate proposed dredged material from these two areas to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Sediment samples were collected from the Red Hook/Bay Ridge project areas. Tests and analyses were conducted. The evaluation of proposed dredged material from the Red Hook/Bay Ridge project areas consisted of bulk sediment chemical analyses, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests. Twenty-four individual sediment core samples were collected from these two areas and analyzed for grain size, moisture content, and total organic carbon (TOC). Three composite sediment samples, representing Red Hook Channel and the two Bay Ridge Reaches to be dredged, were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Dredging site water and elutriate water, which is prepared from the suspended-particulate phase (SPP) of the three Red Hook Bay Ridge sediment composites, were analyzed for metals, pesticides, and PCBS. Benthic acute toxicity tests were performed. Water-column or SPP toxicity tests were performed. Bioaccumulation tests were also conducted.

Pinza, M.R.; Barrows, E.S.; Borde, A.B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1996-09-01T23:59:59.000Z

34

Wide Area Security Region Final Report  

SciTech Connect (OSTI)

This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.

Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

2010-03-31T23:59:59.000Z

35

Information summary, Area of Concern: Saginaw River and Saginaw Bay. Final report, Aug-Dec 88  

SciTech Connect (OSTI)

A 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediments (ARCS) was authorized, with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Research was conducted on the various aspects of contaminant mobility in the aquatic environment. A list of information was developed to evaluate the potential for contaminant mobility. This report summarizes the information obtained for the Saginaw River and Saginaw Bay AOC in Michigan. Data tables include information on discharge, volume and migration of contaminants, sediment transport, oil spills, hazardous materials, superfund sites, bioassay data and biological data (i.e. fish, wildlife habitats, plankton, fish and endangered species).

Brandon, D.L.; Lee, C.R.; Simmers, J.W.; Tatem, H.E.; Skogerboe, J.G.

1991-03-01T23:59:59.000Z

36

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

37

Deployment of the National Transparent Optical Network around the San Francisco Bay Area  

SciTech Connect (OSTI)

We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km of Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.

McCammon, K.; Haigh, R.; Armstrong, G. [and others

1996-06-01T23:59:59.000Z

38

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

39

Alamo Area Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

such as gaps in coverage were identified by providers in San Antonio and in rural areas. Providers do not have enough vehicles or service flexibility to leave their respective service area to provide much needed medical transportation trips. ? Medical... destination, and 3) TxDOT-MTP will not adhere to a schedule and will not attempt to group trips, requiring one vehicle for one individual. ? Coordination issues ? Duplication of service issues were noted through the survey responses (both overlap...

Alamo Area Council of Governments

2006-11-30T23:59:59.000Z

40

Property:Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search This is a property of type Page. Pages using the property "Region" Showing 25 pages using this property. (previous 25) (next 25) 1 1st Light Energy, Inc. + Southern CA Area + 2 21-Century Silicon, Inc. + Texas Area + 3 3Degrees + Bay Area + 3TIER + Pacific Northwest Area + 4 4th Day Energy + Southern CA Area + 5 5 boro biofuel + Northeast - NY NJ CT PA Area + @ @Ventures (California) + Bay Area + @Ventures (Massachusetts) + Greater Boston Area + A A1 Sun, Inc. + Bay Area + A10 Power + Bay Area + A123 Systems + Greater Boston Area + A2BE Carbon Capture LLC + Rockies Area + ABC Solar, Inc. + Southern CA Area + ABS Alaskan Inc + United States + AC Solar Inc + Rockies Area + AEE Solar + Bay Area + AER NY Kinetics LLC + United States +

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Potential Inundation Due to Rising Sea Levels in the San Francisco Bay Region  

E-Print Network [OSTI]

impact of accelerated sea level rise on San Francisco Bay.change scenarios and sea level rise estimates for thedistribution of sea level rise over the 19502000 period.

Knowles, Noah

2010-01-01T23:59:59.000Z

42

Numerical simulation of internal tides and the resulting energetics within Monterey Bay and the surrounding area  

E-Print Network [OSTI]

tides are generated at critical topography and observe that most of the energy propagates into the Mon. These results are used to compute internal tide energy flux and energy flux divergence to analyze internal tideNumerical simulation of internal tides and the resulting energetics within Monterey Bay

Fringer, Oliver B.

43

Seismic facies analysis of entrenched valley fill: a case study in Galveston Bay area, Texas  

SciTech Connect (OSTI)

The entrenched Trinity River valley beneath Galveston Bay was studied using high-resolution seismic data. The shape of the incised valley was determined on mini-sparker lines, which were obtained from the US Geological Survey in Corpus Christi, Texas. Uniboom lines, shot in 1987 aboard the Rice University research vessel R/V Matagorda, provided detailed records of the sediments filling the valley.

Smyth, W.C.; Anderson, J.B.; Thomas, M.A.

1988-09-01T23:59:59.000Z

44

A study of the distribution and condition of brown shrimp in the primary nursery areas of the Galveston Bay System, Texas  

E-Print Network [OSTI]

A STUDY OF THE DISTRIBUTION AND CONDITION OF BROWN SHRIMP IN THE PRIMARY NURSERY AREAS OF THE GALVESTON BAY SYSTEM, TEXAS A Thesis by Jack Clark Parker Submitted to the Graduate College of the Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1966 Major Subject: Biological Oceanography A STUDY OF THE DISTRIBUTION AND CONDITION OF BROHN SHRIMP IN THE PRIMARY NURSERY AREAS OF THE GALVESTON BAY SYSTEM, TEXAS A Thesis Jack Clark Parker...

Parker, Jack C

2012-06-07T23:59:59.000Z

45

A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area  

SciTech Connect (OSTI)

The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposal at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.

Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.; Pinza, M.R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1993-12-01T23:59:59.000Z

46

Trace metal contamination of waters, sediments, and organisms of the Swan Lake area of Galveston Bay  

E-Print Network [OSTI]

facility (Gulf Coast Waste Disposal Authority) is located north of the Wah Chang Ditch. Consequently there have been concerns about possible metal contamination in this area. I determined trace metal concentrations in water, sediments, and organisms (oyster...

Park, Junesoo

1995-01-01T23:59:59.000Z

47

BaySTDetect: detecting unusual temporal patterns in small area data via Bayesian model choice  

Science Journals Connector (OSTI)

......priors on b, the standard deviation of the...Barnsley) were in mining areas (out of a...Taylor N. Coal mining and chronic obstructive...pulmonary disease: a review of the evidence...Hamlets strategic plan 2009-2010 to 2012-2013...YC, Lawson AB. Review of methods for space-time......

Guangquan Li; Nicky Best; Anna L. Hansell; Ismal Ahmed; Sylvia Richardson

2012-09-01T23:59:59.000Z

48

Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan  

E-Print Network [OSTI]

both agricultural and oil refinery sources of Se (SFBRWQCBSe hydrodynamics oil refinery effluent North Bay 1) internal inputs of oil refinery wastewaters from pro-

Presser, Theresa S.; Luoma, Samuel N.

2013-01-01T23:59:59.000Z

49

Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan  

E-Print Network [OSTI]

Canal Sacramento Valley ? Yolo Bypass (drains, west-sideSe effluents* North Bay streams Inflow (import) YoloBypass Yolo Bypass Sacramento/San Joaquin River Delta Los

Presser, Theresa S.; Luoma, Samuel N.

2013-01-01T23:59:59.000Z

50

Categorical Exclusion Determinations: Western Area Power Administration-Rocky Mountain Region  

Broader source: Energy.gov [DOE]

Categorical Exclusion Determinations issued by Western Area Power Administration-Rocky Mountain Region.

51

Control of hardwood regeneration in restored carolina bay depression wetlands.  

SciTech Connect (OSTI)

Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

2012-06-01T23:59:59.000Z

52

A Space for Living: Region and Nature in the Bay Area, 1939-1969  

E-Print Network [OSTI]

framework. Environmental design, architecture, landscapeplanning, environmental planning, landscape architecture,Environmental Design, which brought planning, architecture

Allen, Peter Albert

2009-01-01T23:59:59.000Z

53

Sonar imaging of bay bottom sediments and anthropogenic impacts in Galveston Bay, Texas  

E-Print Network [OSTI]

Knowledge of surface sediment distribution in Galveston Bay is important because it allows us to better understand how the bay works and how human activities impact the bay and its ecosystems. In this project, six areas of bay bottom were surveyed...

Maddox, Donald Shea

2007-04-25T23:59:59.000Z

54

The effects of power plant effluents on the growth of phytoplankton in adjacent areas of Trinity Bay  

E-Print Network [OSTI]

GG 'G:J Q H 0 iJ 0 (1972) describes Trinity Bay as a shallow, low salinity estuary which is dominated by the Trinity River. They also state that the bottom of this bay is primari)y mud with water depths not exceeding 3 m, but sub- j ect to wind... tft Ift tft 0 O Ift Ift Ift Ift O O O tn ut 0 tft r ca r 4 I 4 r tft tft OI m w m 4 CO 0 OI lft CO O O tfl Ift tfl ul IA Ifl ul Ift ut tft O O Ifl Ifl rft Ift CD '0 0 I 4 N H H cu '4 ot co cu cu OI Q o trl Dl Ct 4 m Ift O O O Q Ift Ift 0 O tfl...

Mullins, Henry Lloyd

2012-06-07T23:59:59.000Z

55

Power Marketing - Sierra Nevada Region - Western Area Power Administra...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pool Resource Adequacy Capacity Plan Rates You are here: SN Home page > Power Marketing Power Marketing Depicts SNR's service area, which extends from northern and central...

56

Ark-Tex Area Regional Public Transportation Coordination Plan  

E-Print Network [OSTI]

, and Morris Counties. These counties have the greatest need outside their counties. ? The smaller towns of Atlanta, Clarksville, and New Boston can sustain a one-vehicle dial-a-ride service. Travel Patterns Work trip patterns were derived from... Report Transportation Coordination Plan 13 ? The Ark-Tex Region has four counties ranked in the lower half of the 254 Texas counties in terms of average household income. ? Related to the point above, vehicle ownership in the Ark-Tex Region...

Ark-Tex Council of Governments

2006-11-30T23:59:59.000Z

57

Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,  

Open Energy Info (EERE)

Of Ten Thousand Smokes Region Area (Keith, Et Al., Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Keith,_Et_Al.,_1992)&oldid=386869" Categories: Exploration Activities DOE Funded Activities

58

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area  

Open Energy Info (EERE)

Ten Thousand Smokes Region Area Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes Statistical analyses of geochemical data. References Lawrence G. Kodosky, Terry E. C. Keith (1993) Factors Controlling The Geochemical Evolution Of Fumarolic Encrustations, Valley Of Ten Thousand Smokes, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Kodosky_%26_Keith,_1993)&oldid=389784"

59

Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network  

Open Energy Info (EERE)

Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Details Activities (4) Areas (4) Regions (0) Abstract: The Earthscope Transportable Array (TA) seismic network is a significant new development for regional seismic velocity modeling and potential geothermal resource development. While very sparse compared to exploration scale applications, this network nevertheless affords regional modelers with unprecedented resolution and uniformity of coverage. The network is funded by the National Science Foundation through a major earth sciences initiative called Earthscope (www.earthscope.org). The network is

60

Region-to-area screening methodology for the Crystalline Repository Project  

SciTech Connect (OSTI)

The purpose of this document is to describe the Crystalline Repository Project's (CRP) process for region-to-area screening of exposed and near-surface crystalline rock bodies in the three regions of the conterminous United States where crystalline rock is being evaluated as a potential host for the second nuclear waste repository (i.e., in the North Central, Northeastern, and Southeastern Regions). This document indicates how the US Department of Energy's (DOE) General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960) were used to select and apply factors and variables for the region-to-area screening, explains how these factors and variable are to be applied in the region-to-area screening, and indicates how this methodology relates to the decision process leading to the selection of candidate areas. A brief general discussion of the screening process from the national survey through area screening and site recommendation is presented. This discussion sets the scene for detailed discussions which follow concerning the region-to-area screening process, the guidance provided by the DOE Siting Guidelines for establishing disqualifying factors and variables for screening, and application of the disqualifying factors and variables in the screening process. This document is complementary to the regional geologic and environmental characterization reports to be issued in the summer of 1985 as final documents. These reports will contain the geologic and environmental data base that will be used in conjunction with the methodology to conduct region-to-area screening.

none,

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky &  

Open Energy Info (EERE)

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The purpose of this paper is to examine whether statistical analysis of encrustation chemistries, when supplemented with petrologic data, can identify the individual processes that generate and degrade fumarolic encrustations. Knowledge of these specific processes broadens the applications of fumarolic alteration studies. Geochemical data for a

62

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

63

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

64

Figure 1. Nicaragua at night. The circled area is the Bluefields region.  

E-Print Network [OSTI]

. Instead, they advocate a focus on rural electrification for this region3 . blueEnergy blueEnergy%3 . The electrification rate in rural areas of Nicaragua, where 45% of the population lives, is a meager 25% 2 (Figure 1 are connected to an electric grid, rural areas outside of these cities are not. Due to geographic barriers

Kammen, Daniel M.

65

Ecology of the Atlantic bottlenosed dolphin (Tursiops truncatus) in the Pass Cavallo area of Matagorda Bay, Texas  

E-Print Network [OSTI]

, cryogenically marked, and later resighted 25 dolphins in the Indian and Banana Rivers on the east coast of Florida. Leatherwood and Platter (1975), Barham et 1. )1980) and Ildeil a d R yn Ids )1980) felly s y d ~Tlo in several regions of the Gulf of Mexico... of Mexico and east coast of Florida. These values range f 0. 23 Thirst s k i nis issippi ate to 0. 73 ~T i s/k along the Texas coast, Odell and Reynolds (1980) estimated 0. 06 T~io s/k and 0. 12 ~fu sio /k ' i' 0 1f at ff th flo id peninsula...

Gruber, Jody Ann

2012-06-07T23:59:59.000Z

66

Finding of No Significant Impact for the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site (DOE/EA-1528) (06/01/05)  

Broader source: Energy.gov (indexed) [DOE]

the the Storage of Tritium-Producing Burnable Absorber Rods in K-Area Transfer Bay at the Savannah River Site Agency: U.S. Department of Energy (DOE) Action: Finding of No Significant Impact Summary: The DOE Savannah River Operations Office (SR) and the National Nuclear Security Administration (NNSA) Savannah River Site Office (SRSO) have prepared an environmental assessment (EA), DOE/EA-1528, to evaluate the potential environmental impacts of the temporary dry storage of a cask containing Tritium- Producing Burnable Absorber Rods (TPBARs) in the Transfer Bay in K Area at the Savannah River Site (SRS). Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the

67

DOE/EA-1528: Environmental Assessment for the Storage of Tritium-Producing Burnable Absorber RODs in K-Area Transfer Bay at the Savannah River Site (6/2/05)  

Broader source: Energy.gov (indexed) [DOE]

28 28 JUNE 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE DOE/EA-1528 ENVIRONMENTAL ASSESSMENT FOR THE STORAGE OF TRITIUM-PRODUCING BURNABLE ABSORBER RODS IN K-AREA TRANSFER BAY AT THE SAVANNAH RIVER SITE June 2005 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page is intentionally left blank ii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 2 2.0 PROPOSED ACTION AND ALTERNATIVES 2 2.1 Proposed Action 2 2.2 Alternatives to the Proposed Action 3

68

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

Waters Along The Konocti Bay Fault Zone, Lake County, California- A Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Details Activities (3) Areas (1) Regions (0) Abstract: The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200°C, the spring temperatures and fluid

69

Engaging Regions in Globalization: The Rise of the Economic Relationship between the San Francisco Bay Area and China  

E-Print Network [OSTI]

total. 78 In fact, this clean technology boom combines manylargest markets for clean technology. Both Chinese and Bayto make Shanghai a clean technology industry cluster, with

Volberding, Peter

2011-01-01T23:59:59.000Z

70

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect (OSTI)

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

71

Regional summary and recommended study areas for the Texas Panhandle portion of the Permian Basin  

SciTech Connect (OSTI)

This report summarizes the regional geologic and environmental characterizations that have been completed for the Permian region of study, and describes the procedure used to identify study areas for the next phase of investigation. The factors evaluated in the Permian region fall into three broad areas: health and safety, environmental and socioeconomic, and engineering and economic considerations. Health and safety considerations included salt depth and thickness, faults, seismic activity, groundwater, salt dissolution, energy and mineral resources, presence of boreholes, and interactive land uses. Salt depth and thickness was the key health and safety factor, and when mapped, provded to be a discriminator. The evaluation of environmental and socioeconomic conditions focused primarily on the presence of urban areas and on designated land uses such as parks, wildlife areas, and historic sites. Engineering and economic considerations centered primarily on salt depth, which was already evaluated in the health and safety area. The Palo Duro and Dalhart basins are recommended for future studies on the basis of geology. In these two basins, salt depth and thickness appear promising, and there is less likelihood of past or future oil and gas exploratory holes. Environmental and socioeconomic factors did not preclude any of the basins from further study. 66 references, 16 figures, 2 tables.

Not Available

1983-12-01T23:59:59.000Z

72

The San Francisco/Oakland Bay Bridge Will be Partially Closed Presidents' Day Weekend 2012  

E-Print Network [OSTI]

/or alternate bridges: Golden Gate, Richmond-San Rafael, San Mateo-Hayward, Dumbarton BART (BAY AREA RAPIDThe San Francisco/Oakland Bay Bridge Will be Partially Closed Presidents' Day Weekend 2012 In order to complete an essential step in the construction of the new Bay Bridge, the WESTBOUND DECK of the Bay Bridge

Hellerstein, Joseph M.

73

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

74

Sedimentary parameters of upper Barataria Bay, Louisiana  

E-Print Network [OSTI]

upon oonditions of sedimentation is exerted by currents set in motion 'by oceanic tides. Tidal activity causes sediment to be introduced into the upper bay and controls its distribution. A modifying influence i. s exerted by the influx of fresh... Classification and Distribution of Sediment Types Anomalous Areas CONDITIONS OF SEDIMENTATION Bathymetry Signifioance of Parameter Distribution Patterns Marginal areas Central bay Marginal embayments . ~ Environments of Deposition . CONCLUSIONS...

Siegert, Rudolf B

2012-06-07T23:59:59.000Z

75

digital circuit patch bay  

Science Journals Connector (OSTI)

A patch bay in which low-level digital data circuits may be patched, monitored, and tested. Note: The digital circuit patch bay may be either (a) a...See also circuit ...

2001-01-01T23:59:59.000Z

76

Multi-Index Rain Detection: A New Approach for Regional Rain Area Detection from Remotely Sensed Data  

Science Journals Connector (OSTI)

In this article, a new approach called Multi-Index Rain Detection (MIRD) is suggested for regional rain area detection and was tested for India using Kalpana-1 satellite data. The approach was developed based on the following hypothesis: better ...

Shruti Upadhyaya; R. Ramsankaran

2014-12-01T23:59:59.000Z

77

Mechanisms of shoreline erosion in a back-bay environment, Cape Carancahua, Texas  

E-Print Network [OSTI]

history of the area is summarized Appendix A Irom Ward and Armstrong (1980). The recent decades have shown a slowly increasing resurgence in development with ports, factories, and agricultural and recreational lands in the region, as well as large... caused by hurricanes have also been documented by the Bureau of Economic Geology. Ward, Jr. , and Armstrong (1980) performed a study which compiled the hydrographic and the ecologic data about Matagorda Bay from a variety of sources. The interplay...

Ansari, Ramin

1995-01-01T23:59:59.000Z

78

Rapid Assessment Survey for exotic organisms in southern California bays and harbors, and abundance in port and non-port areas  

E-Print Network [OSTI]

in port and non-port areas A.N. Cohen1, *, L.H. Harris2 , B.L. Bingham3 , J.T. Carlton4 , J.W. Chapman5 port and non-port areas, a Rapid Assessment Survey of selected habitat types in sheltered waters were sampled to include the three major commercial port areas in southern California, non-port

79

Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC  

SciTech Connect (OSTI)

A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

Flach, G.P.

2000-02-11T23:59:59.000Z

80

Tidal Computations for Morecambe Bay  

Science Journals Connector (OSTI)

......Numerical model for storm surges in Galveston Bay, Proc. Am. S. Civil Eng...computation of two hurricane surges in Galveston Bay, Texas. Sielecki & Wurtele (1970...Numerical model for storm surges in Galveston Bay, Proc. Am. S. Civil Eng......

R. A. Flather; N. S. Heaps

1975-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Atmospheric deposition of organochlorine contaminants to Galveston Bay, Texas  

Science Journals Connector (OSTI)

Atmospheric monitoring of \\{PCBs\\} and chlorinated pesticides (e.g., HCHs, chlordanes, and DDTs) in Galveston Bay was conducted at Seabrook, Texas. Air and wet deposition samples were collected from 2 February 1995 and continued through 6 August 1996. Vapor total PCB (tPCB) concentrations in air ranged from 0.21 to 4.78ngm?3 with a dominance of tri-chlorinated PCBs. Dissolved tPCBs in rain ranged from 0.08 to 3.34ngl?1, with tetra-chlorinated \\{PCBs\\} predominating. The predominant isomers found in air and rain were ?- and ?-HCH, ?- and ?-chlordanes, 4,4?-DDT, and dieldrin. The concentrations of \\{PCBs\\} and pesticides in the air and rain revealed no clear seasonal trend. Elevated levels of \\{PCBs\\} in the air occurred when temperatures were high and wind came from urban and industrialized areas (S, SW, NW, and W of the site). Concentrations of \\{HCHs\\} were elevated in April, May, and October, perhaps due to local and/or regional applications of ?-HCH (lindane). Other pesticides showed no notable temporal variation. When winds originated from the Gulf of Mexico (southeasterly), lower concentrations of organochlorines were detected in the air. The direct deposition rate (wet+dry) of \\{PCBs\\} to Galveston Bay (6.40?gm?2yr?1) was significantly higher than that of pesticides by a factor of 510. The net flux from gas exchange estimated for \\{PCBs\\} was from Galveston Bay water to the atmosphere (78?gm?2yr?1). Gas exchange of \\{PCBs\\} from bay water to the atmosphere was the dominant flux.

June-Soo Park; Terry L Wade; Stephen Sweet

2001-01-01T23:59:59.000Z

82

AREA  

Broader source: Energy.gov (indexed) [DOE]

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

83

Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas  

Science Journals Connector (OSTI)

In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and lightdark benthic chambers, resulting in average fluxes of ?1200780, ?1712, ?1.60.6 and ?2.40.79 ?mol m?2 day?1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 19941996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 538% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations. In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 1220 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.

Kent W Warnken; Gary A Gill; Lawrence L Griffin; Peter H Santschi

2001-01-01T23:59:59.000Z

84

Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives  

SciTech Connect (OSTI)

This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

Allison, T.; Griffes, P.; Edwards, B.K.

1995-03-01T23:59:59.000Z

85

Sediment water exchange of trace metals and nutrients in Galveston Bay, Texas.  

E-Print Network [OSTI]

??The benthic fluxes of several trace metals and nutrients were determined for three stations along the salinity gradient in the Trinity Bay region of Galveston (more)

Warnken, Kent Wayne

2012-01-01T23:59:59.000Z

86

EnergyWater Nexus Analysis of Enhanced Water Supply Scenarios: A Regional Comparison of Tampa Bay, Florida, and San Diego, California  

Science Journals Connector (OSTI)

SD was found to have higher embodied energy and energy cost but lower GHG emission than TB in most of its water infrastructure systems because of the differences between the electricity grid mixes and water resources of the two regions. ... The electricity grids in both regions rely heavily on fossil fuels, but SD has a higher and more diverse nonfossil composition than TB. ... Introduction of IO-based hybrid analysis; details of sample water infrastructures in TB and SD; calculation of electricity primary energy factors and electricity carbon emission factors in TB and SD; and life-cycle inventory for structural path analysis in IO-based hybrid analysis. ...

Weiwei Mo; Ranran Wang; Julie B. Zimmerman

2014-04-14T23:59:59.000Z

87

Segmentation development for Galveston Bay. Final report  

SciTech Connect (OSTI)

The purpose of the study is to develop a segmentation scheme for the Galveston Bay System that will facilitate the other efforts planned by the Galveston Bay National Estuary Program (GBNEP). The study is organized around four tasks: (1) the evaluation of existing segmentation schemes, (2) evaluation of natural features and anthropogenic inputs, (3) determination of segmentation criteria, (4) and the drafting of the boundaries. To facilitate the management and presentation of the large amounts of geobased data accumulated, a geographic information system (GIS) was developed for the study area.

Not Available

1992-05-01T23:59:59.000Z

88

digital primary patch bay  

Science Journals Connector (OSTI)

A patch bay that provides (a) the first ... in a technical control facility and (b) patching, monitoring, and testing capabilities for both...Common abbreviation DPPB. Note: The digital ci...

2001-01-01T23:59:59.000Z

89

K-patch bay  

Science Journals Connector (OSTI)

A patching facility designed for patching and monitoring balanced digital data circuits, i...?1) (Mbps, Mb/s, Mb/sec) Synonym K-type patch bay. See also balance ...

2001-01-01T23:59:59.000Z

90

Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley  

SciTech Connect (OSTI)

Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs.

Not Available

1984-12-01T23:59:59.000Z

91

Chesapeake Bay Preservation Programs (Multiple States) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) Chesapeake Bay Preservation Programs (Multiple States) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Chesapeake Bay Program The Chesapeake Bay Program is a unique regional partnership that has led

92

Module bay with directed flow  

DOE Patents [OSTI]

A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

Torczynski, John R. (Albuquerque, NM)

2001-02-27T23:59:59.000Z

93

Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow  

DOE Patents [OSTI]

An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

Orosa, John

2014-03-11T23:59:59.000Z

94

Chesapeake Bay Program Water Quality Database | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chesapeake Bay Program Water Quality Database Chesapeake Bay Program Water Quality Database Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov » Communities » Ocean » Data Chesapeake Bay Program Water Quality Database Dataset Summary Description The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

95

ON CONSISTENCY OF BAYES PROCEDURES  

Science Journals Connector (OSTI)

ON CONSISTENCY OF BAYES PROCEDURES Loraine Schwartz DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA...COLUMBIA. | Journal Article ON CONSISTENCY OF BAYES PROCEDURES BY LORAINE SCHWARTZ DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA...

Loraine Schwartz

1964-01-01T23:59:59.000Z

96

Lost lake - restoration of a Carolina bay  

SciTech Connect (OSTI)

Carolina bays are shallow wetland depressions found only on the Atlantic Coastal Plain. Although these isolated interstream wetlands support many types of communities, they share the common features of having a sandy margin, a fluctuating water level, an elliptical shape, and a northwest to southeast orientation. Lost Lake, an 11.3 hectare Carolina bay, was ditched and drained for agricultural production before establishment of the Savannah River Site in 1950. Later it received overflow from a seepage basin containing a variety of chemicals, primarily solvents and some heavy metals. In 1990 a plan was developed for the restoration of Lost Lake, and restoration activities were complete by mid-1991. Lost Lake is the first known project designed for the restoration and recovery of a Carolina bay. The bay was divided into eight soil treatment zones, allowing four treatments in duplicate. Each of the eight zones was planted with eight species of native wetland plants. Recolonization of the bay by amphibians and reptiles is being evaluated by using drift fences with pitfall traps and coverboard arrays in each of the treatment zones. Additional drift fences in five upland habitats were also established. Hoop turtle traps, funnel minnow traps, and dip nets were utilized for aquatic sampling. The presence of 43 species common to the region has been documented at Lost Lake. More than one-third of these species show evidence of breeding populations being established. Three species found prior to the restoration activity and a number of species common to undisturbed Carolina bays were not encountered. Colonization by additional species is anticipated as the wetland undergoes further succession.

Hanlin, H.G.; McLendon, J.P. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; Wike, L.D. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Dietsch, B.M. [Univ. of South Carolina, Aiken, SC (United States). Dept. of Biology and Geology; [Univ. of Georgia, Aiken, SC (United States)

1994-09-01T23:59:59.000Z

97

Impact of glider data assimilation on the Monterey Bay model Igor Shulman a,, Clark Rowley a  

E-Print Network [OSTI]

in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003 the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during August­September 2003

Fratantoni, David

98

Characterization of Contaminant Levels in the P-Area Wetland...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18.2 ha in one of the smaller wetlands within DB known as Bay 96. Note: On the SRS GIS wetlands layer, Bay 96 includes additional area that did not receive CCW. For the...

99

Gas, liquids flow rates hefty at Galveston Bay discovery  

SciTech Connect (OSTI)

Extended flow tests indicate a large Vicksburg (Oligocene) gas, condensate, and oil field is about to be developed in western Galveston Bay. Internal estimates indicates that ultimate recovery from the fault block in which the discovery well was drilled could exceed 1 tcf of gas equivalent of proved, possible, and probable reserves. The paper discusses the test program for this field and other prospects in the Galveston Bay area.

Petzet, G.A.

1998-01-19T23:59:59.000Z

100

Commencement Bay Nearshore/Tideflats Remedial Investigation. summary report  

SciTech Connect (OSTI)

The report summarizes work complete under the U.S. EPA/WDOE Cooperative Agreement for the Commencement Bay Nearshore/Tideflats Remedial Investigation of the Waterways/Shoreline area. The Commencement Bay Superfund Investigation includes various integrated program management and technical components. These include assessments of chemical contamination, biological effects, toxicity, and public health concerns; identification of sources; and identification of potential remedial actions and technologies.

Not Available

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Cost of the Technological Sublime: Daring Ingenuity and the new San Francisco-Oakland Bay Bridge  

E-Print Network [OSTI]

regional entity, the Golden Gate Bridge. Highway andinternationally known Golden Gate Bridge, which is in closeof the world-renowned Golden Gate Bridge and the Bay Bridges

Frick, Karen Trapenberg

2008-01-01T23:59:59.000Z

102

Subsurface geology of Corpus Christi Bay, Neuces County, Texas  

SciTech Connect (OSTI)

Prolific production in Corpus Christi Bay has occurred mainly in the regressive Frio Barrier Bar System and the associated shore face-shelf environment. All production in Corpus Christi Bay area is below the Anahuac transgressive wedge with the greatest accumulation in the 1st Marg. sand, which has produced a minimum of 680 BCF of gas in the Red Fish Bay-Mustang Island Common 10 reservoir, the largest single reservoir in South Texas. The 1st Marg. sands have produced in excess of 990 BCFG from four fields in Corpus Christi Bay. Shallow hydrocarbons in Corpus Christi Bay are associated with the South Texas Frio Barrier Bar System and are structurally trapped on large fault bound anticlines or up-to-the-coast relief faults. Deeper production from the Frio Sands is mainly on the Barrier Bar shoreface and associated with fault bounded anticlinal closures. Structural complexity increases with depth especially along the large strike aligned growth faults, some up to 4000 ft displacement, and the associated rollover anticlines. subsidiary faults, and shale plugs. These deeper reservoirs are usually pressure-depletion drives. The oil industry can point with pride to the co-existence with the fragile bay environment while extracting huge reserves. Most of the wells are on State of Texas marine leases and are controlled by State rules and City of Corpus Christi Bay drilling ordinances.

Collins, J.W.

1996-09-01T23:59:59.000Z

103

Crop specific green area index retrieval from MODIS data at regional scale by controlling pixel-target adequacy  

Science Journals Connector (OSTI)

Information on vegetation status can be retrieved from satellite observations by modelling and inverting canopy radiative transfer. Agricultural monitoring and yield forecasting could greatly benefit from such techniques by coupling crop growth models with crop specific information through data assimilation. An indicator which would be particularly interesting to obtain from remote sensing is the total surface of photosynthetically active plant tissue, or green area index (GAI). Currently, the major limitation is that the imagery that can be used operationally and economically over large areas with high temporal frequency has a coarse spatial resolution. This paper demonstrates how it is possible to characterise the regional crop specific GAI range along with its temporal dynamic using MODIS imagery by controlling the degree at which the observation footprints of the coarse pixels fall within the crop-specific mask delineating the target. This control is done by modelling the instrument's point spread function and by filtering out less reliable GAI estimations in both the spatial and temporal dimensions using thresholds on 3 variables: pixel purity, observation coverage and view zenith angle. The difference in performance between MODIS and fine spatial resolution to estimate the median GAI of a given crop over a 40נ40km study region can be reduced to a RMSE of 0.053m2/m2. The consistency between fine and coarse spatial resolution GAI estimations suggests a possible instrument synergy whereby the high temporal resolution of MODIS provides the general GAI trajectory and while high spatial resolution can be used to estimate the local GAI spatial heterogeneity.

Grgory Duveiller; Frdric Baret; Pierre Defourny

2011-01-01T23:59:59.000Z

104

A study of activity characteristics and patterns of sailing from Galveston Bay marinas  

E-Print Network [OSTI]

A STUDY OF ACTIVITY CHARACTERISTICS AND PATTERNS OF SAILING FROM GALVESTON BAY MARINAS A Thesis by RICHARD NATHAN JARMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requi. rement for the degree..., this study focused on sailing which originated from marinas located in the Galveston Bay area. Marinas that provide access to Galveston Bay and adjacent coastal waters contain a major concentration of the sailboats berthed in Texas coastal marinas...

Jarman, Richard Nathan

2012-06-07T23:59:59.000Z

105

Sacramento Area Technology Alliance | Open Energy Information  

Open Energy Info (EERE)

Sacramento Area Technology Alliance Sacramento Area Technology Alliance Jump to: navigation, search Logo: Sacramento Area Technology Alliance Name Sacramento Area Technology Alliance Address 5022 Bailey Loop Place McClellan, California Zip 95652 Region Bay Area Coordinates 38.657365°, -121.390278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.657365,"lon":-121.390278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ADCIRC model  

Science Journals Connector (OSTI)

Abstract The SWAN+ADCIRC shallow-water circulation model, validated for Hurricane Ike (2008), was used to develop five synthetic storm surge scenarios for the upper Texas coast in which wind speed was increased and landfall location was shifted 40km westward. The Hurricane Ike simulation and the synthetic storms were used to study the maximum water elevations in Galveston Bay, as well as the timing and behavior of surge relative to the hurricane track. Sixteen locations indicative of surge behavior in and around Galveston Bay were chosen to for analysis in this paper. Results show that water surface elevations present in Galveston Bay are dominated by the counterclockwise hurricane winds and that increasing wind speeds by 15% results in approximately 23% (+/?3%) higher surge. Furthermore, shifting the storm westward causes higher levels of surge in the more populated areas due to more intense, higher shore-normal winds. This research helps to highlight the vulnerability of the upper Texas Gulf Coast to hurricane storm surge and lends insight to storm surge and flood mitigation studies in the HoustonGalveston region.

Antonia Sebastian; Jennifer Proft; J. Casey Dietrich; Wei Du; Philip B. Bedient; Clint N. Dawson

2014-01-01T23:59:59.000Z

107

Acoustic characteristics of bay bottom sediments in Lavaca Bay, TX  

E-Print Network [OSTI]

METHODS An Edgetech X-Star chirp sonar was used to gather subbottom acoustic profile data from Lavaca Bay. The sonar fish was towed on a short line next to the side of the boat, about 0.5 m below the water surface. The data were recorded onto 4 mm... middle Lavaca Bay (just above Chocolate Bay) and Keller bay, which have lines running southwest to northeast (Fig. 1). The subbottom data were plotted and examined on a computer using SonarWeb, a seismic processing program from Chesapeake...

Patch, Mary Catherine

2005-08-29T23:59:59.000Z

108

Derivation of Delaware Bay tidal parameters from space shuttle photography  

SciTech Connect (OSTI)

The tide-related parameters of the Delaware Bay are derived from space shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, the authors calculate the tidal influx of the Delaware Bay, which is 2.76 x 1O[sup 9] m[sup 3]. Furthermore, the velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.

Zheng, Quanan; Yan, Xiaohai; Klemas, V. (Univ. of Delaware, Newark (United States))

1993-06-01T23:59:59.000Z

109

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect (OSTI)

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01T23:59:59.000Z

110

Nekton of New Seagrass Habitats Colonizing a Subsided Salt Marsh in Galveston Bay, Texas  

E-Print Network [OSTI]

Nekton of New Seagrass Habitats Colonizing a Subsided Salt Marsh in Galveston Bay, Texas SETH P at Galveston Island State Park, Texas, created new areas of subtidal habitat that were colonized by seagrasses loss of fisheries production (Zimmerman et al. 1991). Galveston Bay is the second largest coastal

111

Heat fluxes in Tampa Bay, Florida.  

E-Print Network [OSTI]

??The Meyers et al. (2007) Tampa Bay Model produces water level and three-dimensional current and salinity fields for Tampa Bay. It is capable of computing (more)

Sopkin, Kristin L

2008-01-01T23:59:59.000Z

112

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

113

Mission Bay UCSF Campus Boundary  

E-Print Network [OSTI]

Design: reineckandreineck.com, San Francisco UCSF DMM Revised 8/10 6th Street Owens Street Owens Street Haile T. Debas South Gateway UCSF Police Of ce Third Street Garage Plaza Retail/ATM South North Helen Lane Hearst Tower West UCSF Mission Bay/ Gene Friend Way Muni Light Rail Station Mission Bay Housing

Lim, Wendell

114

Error Control for the Polar Area Formula Suppose that we wish to derive a formula for finding the area of the region  

E-Print Network [OSTI]

() M, f( i )2 - LM + 1 4 L2 2 f( i ) ± 1 2 L 2 f( i )2 + LM + 1 4 L2 2 Hence 1 2 f( i )2 - 1 2 LM2 + 1 8 L2 3 area of sector #i 1 2 f( i )2 + 1 2 LM2 + 1 8 L2 3 and the total area A obeys n i=1 1 2 f( i )2 - 1 2 LM2 + 1 8 L2 3 A n i=1 1 2 f( i )2 + 1 2 LM2 + 1 8 L2 3 1 2 n i=1 f( i )2 - 1 2 nLM

Feldman, Joel

115

The health of Florida Bay, which lies be-  

E-Print Network [OSTI]

r/fi .V u. r V \\ The health of Florida Bay, which lies be- tween the mainland and the Florida Keys, is dependent on the health of the rest of the Everglades. the aftcniooii (il June 2, with ;i tlid\\ nt a pen onto increasingly dangerous arterial roads. Even the head of the East Central Florida Regional Planning

Handy, Susan L.

116

Quantifying the current and future impacts of the MBTA Corporate Pass Program ; Quantifying the current and future impacts of the Massachusetts Bay Transportation Authority Corporate Pass Program .  

E-Print Network [OSTI]

??Many city and regional transportation authorities, including the Massachusetts Bay Transportation Authority (MBTA) in Boston, offer a monthly pass to local employers which they can (more)

Kamfonik, Dianne E

2013-01-01T23:59:59.000Z

117

Ground penetrating radar characterization of wood piles and the water table in Back Bay, Boston  

E-Print Network [OSTI]

Ground penetrating radar (GPR) surveys are performed to determine the depth to the water table and the tops of wood piles beneath a residential structure at 122 Beacon Street in Back Bay, Boston. The area of Boston known ...

LeFranois, Suzanne O'Neil, 1980-

2003-01-01T23:59:59.000Z

118

A comparison of early juvenile red drum densities among various habitat types in Galveston Bay, Texas  

Science Journals Connector (OSTI)

Seagrass meadows are often cited as important nursery areas for newly settled red drum even though many estuaries, such as Galveston Bay, Texas, support large numbers of red drum and ... settled red drum at six s...

Gregory W. Stunz; Thomas J. Minello; Phillip S. Levin

2002-02-01T23:59:59.000Z

119

Data from studies of previous radioactive waste disposal in Massachusetts Bay  

SciTech Connect (OSTI)

This report presents the results of studies conducted in Massachusetts Bay during 1981 and 1982. Included are data from: (1) a side scan sonar survey of disposal areas in the Bay that was carried out by the National Oceanic and Atmospheric Administration (NOAA) for EPA; (2) Collections of sediment and biota by NOAA for radiochemical analysis by EPA; (3) collections of marketplace seafood samples by the Food and Drug Administration (FDA) for radioanalysis by both FDA and EPA; and (4) a radiological monitoring survey of LLW disposal areas by EPA to determine whether there should be any concern for public health resulting from previous LLW disposals in the Bay.

Curtis, W.R.; Mardis, H.M.

1984-12-01T23:59:59.000Z

120

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

McClellan Technology Incubator Clean Start McClellan Technology McClellan Technology Incubator Clean Start McClellan Technology Incubator Bailey Loop McClellan California http www sarta org go cs Bay Area Corvalence Corvalence Jackson St San Francisco California Bay Area Energy BioSciences Institute Energy BioSciences Institute Berkeley California http www energybiosciencesinstitute org Bay Area Environmental Business Cluster Environmental Business Cluster North First Street Third Floor San Jose California http www environmentalcluster org Bay Area Global Climate and Energy Project Global Climate and Energy Project Via Ortega Suite Stanford California http gcep stanford edu Bay Area Google org Google org Amphitheatre Parkway Mountain View California http www google org Bay Area Lawrence Berkeley National Laboratory LBNL Lawrence Berkeley National

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vermilion Bay | Open Energy Information  

Open Energy Info (EERE)

Vermilion Bay Vermilion Bay Jump to: navigation, search Name Vermilion Bay Facility Vermilion Bay Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico LA Coordinates 29.741°, -92.057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.741,"lon":-92.057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Tidal Computations for Morecambe Bay  

Science Journals Connector (OSTI)

......Feasibility study of water conservation in Morecambe Bay, Report...very small amounts of water left behind as the tide recedes and since these pools are in no way connected...Feasibility study of water conservation in driven ocean circulations......

R. A. Flather; N. S. Heaps

1975-08-01T23:59:59.000Z

123

Chedabucto Bay 1992 shoreline oil conditions survey: Long-term fate of bunker C oil from the arrow spill in Chedabucto Bay, Nova Scotia  

SciTech Connect (OSTI)

The report presents a description of the activities related to and a summary of the information generated by a field survey carried out in Chedabucto Bay, Nova Scotia, for Environment Canada from June to September 1992. The objective of the survey was to locate and document any residual oil on the shores of Chedabucto Bay. The grounding of the tanker Arrow in February 1970 resulted in the release of more than 11 million liters of Bunker C fuel oil. This oil was stranded over an estimated 305 km of shoreline in the Chedabucto Bay area.

Owens, E.H.; McGuire, B.E.; Humphrey, B.

1994-03-01T23:59:59.000Z

124

Historical contamination of Mississippi River Delta, Tampa Bay, and Galveston Bay sediments. National status and trends program for marine environmental quality: Technical memo (Final)  

SciTech Connect (OSTI)

In order to obtain sediment which has accumulated over the past 100 years or so, 50--80 cm long sediment cores were collected from the submarine Mississippi River Delta, Galveston Bay, Texas and Tampa Bay, Florida. The cores were extruded and sliced into 1 cm thick sections which were then radiometrically age dated and analyzed for those organic compounds and trace metals suspected of being contaminants in the sampling areas.

Presley, B.J.; Wade, T.L.; Santschi, P.; Baskaran, M.

1998-03-01T23:59:59.000Z

125

Integrated regional water management: Collaboration or water politics as usual?  

E-Print Network [OSTI]

types of water management organizations, environmental NGOs,environmental policy and integrated water management hasenvironmental and water infrastructure stakeholders involved in Bay Area water management.

Lubell, Mark N.; Lippert, Lucas

2010-01-01T23:59:59.000Z

126

Integrated regional water management: Collaboration or water politics as usual?  

E-Print Network [OSTI]

environmental policy and integrated water management hastypes of water management organizations, environmental NGOs,environmental and water infrastructure stakeholders involved in Bay Area water management.

Lubell, Mark N.; Lippert, Lucas

2010-01-01T23:59:59.000Z

127

Firmographic analysis in the previous coal mining area of Lens in the French NordPasdeCalais Region  

E-Print Network [OSTI]

Firmographic analysis in the previous coal mining area of Lens in the French Nord: Department of Transport Economics and Sociology 20 rue Elisée Reclus BP 317 59666 Villeneuve d'Ascq Cedex and Technology for Transport, Development and Networks Address: Department of Transport Economics

Boyer, Edmond

128

Western Area Power Administration, Desert Southwest Region Parker-Gila 161-kV Transmission Line Maintenance, Cross Arm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parker-Gila 161-kV Transmission Line Maintenance, Cross Arm Parker-Gila 161-kV Transmission Line Maintenance, Cross Arm Replacements at Structure 0/7 - Continuation Sheet Special Conditions Biological Resources 1. To avoid impacts to nesting birds, project activities will be scheduled between August 1 and February 15, as feasible. Crews shall not cause injury or death to nesting birds, active nests, eggs, or nestlings. If evidence of a nesting bird is found in the project area, crews shall immediately stop work in that area until Western's Environmental Group has been contacted. 2. A qualified biologist will be present during all project activities and serve as the project's Biological Monitor. The Biological Monitor will be authorized by Western to temporarily halt construction activity if needed to prevent harm to desert tortoise. The Biological Monitor's

129

Superfund record of decison (EPA Region 1): Fort Devens South Post impact area and area of contamination 41 groundwater and areas of contamination 25, 26, and 27, MA, July 5, 1996  

SciTech Connect (OSTI)

This Record of Decision (ROD) addresses AOCs 25 (Explosive Ordnance Disposal (EOD) Range), 26 (Zulu Ranges), an 27 (Hotel Range) and AOC 41 groundwater and a subset of the groundwater within the South Post Impact Area (SPIA). `No action` is the selected remedy for SPIA monitored-area groundwater, AOC 41 groundwater, and the surface water, sediment, and soils at the EOD, Zulu, and Hotel Ranges. Under this alternative, no formal remedial action will be taken and the site will be left `as is,` with no additional institutional controls, containment, removal, treatment, or other mitigating measures. Long-term groundwater monitoring will be conducted at the site under this `no action` ROD.

NONE

1996-11-01T23:59:59.000Z

130

Characterization of selected public health issues in Galveston Bay. Final report  

SciTech Connect (OSTI)

The purpose of the project is to characterize public health issues associated with bay use activities such as shellfish consumption and contact and non-contact recreation. The major objectives of the characterization study are: (1) Review and summarize activities associated with shellfish bed closures, (2) Identify and characterize sources of bacterial contamination, (3) Review and characterize areas of Galveston Bay which have exceeded water quality standards for contact and non-contact recreation, and (4) Assess the incidence of known pathogenic organisms such as Vibrio Vulnificus. The characterization includes consideration of indicator organisms and known pathogenic organisms and covers all identified water quality segments of Galveston Bay.

Jensen, P.; Su, Y.C.

1992-08-01T23:59:59.000Z

131

Regulating new construction in historic areas  

E-Print Network [OSTI]

This study is an examination of how the restrictiveness of different design regulations impacts the process of new construction in historic areas. The North End, South End, and Back Bay neighborhoods of Boston were identified ...

Sellers-Garcia, Oliver

2006-01-01T23:59:59.000Z

132

ID3, SEQUENTIAL BAYES, NAIVE BAYES AND BAYESIAN NEURAL NETWORKS  

E-Print Network [OSTI]

to ID3. ID3 learning algorithm (Quinlan 1979) and its successors ACLS (Paterson & Niblett 1982), C4#cient in many learning tasks. It is shown how Sequential Bayes can be transformed into ID3 by replacing of network's execution (Kononenko 1989) enables the us­ age of a neural network as an expert system shell

Kononenko, Igor

133

U.S. EPA Region 9 | Open Energy Information  

Open Energy Info (EERE)

Logo: U.S. EPA Region 9 Logo: U.S. EPA Region 9 Name U.S. EPA Region 9 Address 75 hawthorne st Place San Francisco, California Zip 94105 Region Bay Area Number of employees 501-1000 Website http://epa.gov/region9/ Coordinates 37.7853°, -122.398274° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7853,"lon":-122.398274,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

The Carolina Bay Restoration Project - Final Report 2000-2006.  

SciTech Connect (OSTI)

A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ? 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report.

Barton, Christopher

2007-12-15T23:59:59.000Z

135

Regional generalisations about the relationships between the environment and foraminifera along the SW Cape coast, South Africa  

Science Journals Connector (OSTI)

Abstract Factors influencing the composition of shallow water benthic foraminifera along the SW coast of South Africa at two locations (Table Bay, TB; St Helena Bay, SHB) ?200km from each other were examined. Small taxa dominated in both locations; living assemblages from SHB (28 species, Ammonia parkinsoniana dominant) differed from TB (34 species, Elphidium articulatum dominant). Environmental parameters were similar in both areas. Patchiness in assemblage structure was pronounced, differences between pipeline and non-pipeline sites within locations were evident in environmental parameters. Diversity was significantly correlated with grain size, the nitrogen and heavy metal content (especially Cd). These data represent the first for extant benthic Foraminifera from the southern Benguela upwelling area and is the first attempt at using foraminifera as indicators of pollution in this region. The data stressed the need for more than one sampling location to better understand the factors influencing foraminiferal assemblages in any regional context.

R. Toefy; M.J. Gibbons

2014-01-01T23:59:59.000Z

136

CAROLINA BAYS AND THEIR ORIGIN  

Science Journals Connector (OSTI)

...peat, very fine, soft and sticky when wet and dries to a hard, brittle mass. It...finer particles formed by the constant milling of the sand by the spring are carried away...1935; MacCarthy, 1937) and written corn- respect to bays may not be found tenable...

137

PACIFIC OCEAN SOUTH BAY HARBOR  

E-Print Network [OSTI]

PACIFIC OCEAN LONG BEACH SOUTH BAY HARBOR GATEWAY NORWALK PASADENA EAST LA DOWNTOWN LOS ANGELES W illow P Pacific CoastHw y Anaheim 5th St 1stSt P©$ P©$ Transit Mall P©$ Pacific Long Beach P Lakew

Weinreb, Sander

138

Daya Bay Reactor Neutrino Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daya Bay Reactor Neutrino Daya Bay Reactor Neutrino Experiment Daya Bay Reactor Neutrino Experiment Daya Bay is an international neutrino-oscillation experiment designed to determine the last unknown neutrino mixing angle θ13 using anti-neutrinos produced by the Daya Bay and Ling Ao Nuclear Power Plant reactors. The experiment is being built by blasting three kilometers of tunnel through the granite rock under the mountains where the power plants are located. Data collection is now scheduled to start in in 2011. On the PDSF cluster at NERSC, Daya Bay performs simulations of the detectors, reactors, and surrounding mountains to help design and anticipate detector properties and behavior. Once real data are available, Daya Bay will be using NERSC to analyze data and NERSC HPSS will be the central U.S. repository for all raw

139

Company Name Company Name Address Place Zip Product Website Region  

Open Energy Info (EERE)

Arch Venture Partners Owens Street San Francisco Arch Venture Partners Owens Street San Francisco California Venture capital firm investing in alternative energy production http www archventure com Bay Area Atrium Capital Atrium Capital Sand Hill Road Building Suite Menlo Park California Corporate strategic venture investing http www atriumcapital com Bay Area CMEA Capital CMEA Capital Embarcadero Center San Francisco California http www cmea com Bay Area CalCEF Clean Energy Angel Fund CalCEF Clean Energy Angel Fund Third Street Suite San Francisco California Seed Stage Venture Capital Firm http www calcefangelfund com Bay Area Clean Pacific Ventures Clean Pacific Ventures California Street Suite San Francisco California Venture capital firm investing in early stage clean technology companies http www cleanpacific com Bay Area

140

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Alliance Apollo Alliance Townsend Street Suite San Francisco Alliance Apollo Alliance Townsend Street Suite San Francisco California Coalition of labor business environmental and community leaders working towards a clean energy revolution http apolloalliance org Bay Area Boots on the Roof Boots on the Roof Automall Parkway Fremont California http www bootsontheroof com Bay Area CalCEF Angel Network CalCEF Angel Network Third Street Suite San Francisco California http www calcefangelnetwork org Bay Area Cleantech Open Cleantech Open Broadway Street Redwood City California http www cleantechopen com Bay Area Go Solar California Go Solar California San Francisco California Joint effort of CA energy commission and CPUC http www gosolarcalifornia ca gov Bay Area Green Depot Green Depot P O Box Santa Monica California Non profit

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Berkeley Lab / Richmond Bay Campus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Second Campus Second Campus Long Range Development Plan Environmental Docs Department of Energy NEPA Environmental Documents Frequently Asked Questions (FAQ) Timeline Community Meetings Selection Process Contacts The Science The University of California, Berkeley and the University of California at the Lawrence Berkeley National Laboratory propose to establish a new research campus - the Richmond Bay Campus - in Richmond, California. The purpose of the proposed campus is to build upon the University of California's record of accomplishment in providing long-term societal benefits through discovery and the advancement of knowledge. UC Berkeley and Lawrence Berkeley National Laboratory's goals for the Richmond Bay Campus are: Advance LBNL and UC Berkeley's tradition of world class science by

142

Sediment resuspension in Saginaw Bay  

Science Journals Connector (OSTI)

Abstract An integrated hydrodynamic and sediment transport model was applied to Saginaw Bay for the ice-free portions of 2009 and 2010. Observations of surface waves and suspended sediment concentration made during the spring of both years were used to constrain the model and to validate the model output. The results show that sediment resuspension in both the inner and outer bay is due almost entirely to surface wave action, and that the bulk of the resuspension events occur during the fall of each year. Although the model accurately predicted the occurrence of resuspension events, it did not always accurately simulate the amount of material resuspended. Because resuspension mixes bottom sediment into the water column and makes it and associated nutrients available to the biota, the effects of sediment resuspension need to be accounted for in any water quality model of the bay. Better specification of both the surface waves and the initial specification of the bottom sediment would probably improve the performance of the model.

Nathan Hawley; Todd Redder; Raisa Beletsky; Edward Verhamme; Dmitry Beletsky; Joseph V. DePinto

2014-01-01T23:59:59.000Z

143

MODELING THE FATE AND TRANSPORT OF ATRAZINE IN THE UPPER CHESAPEAKE BAY  

E-Print Network [OSTI]

for agrochemicals in the Upper Chesapeake Bay. Keywords: Chesapeake Bay, hydrodynamic model, atrazine, photolysis

Frei, Allan

144

Clean Cities: Tampa Bay Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Tampa Bay Clean Cities coalition Contact Information Stephen...

145

Humboldt Bay Initiative: 2001 update and accomplishments  

E-Print Network [OSTI]

from the Humboldt Bay Sea Level Rise Synthesis and Communityis essential to all sea level rise forecasting, estuarineDiego ? ? Visualizing sea-level rise and potential impacts

Schlosser, Susan; Price-Hall, Rebecca

2011-01-01T23:59:59.000Z

146

Exploring Hydrodynamic Modeling of Texas Bays With focus on Corpus Christi Bay & Lavaca Bay  

E-Print Network [OSTI]

evaporation data or data from which evaporation may be estimated are required. In order to estimate evaporation, ELCOM requires solar radiation data, water/air temperature data, wind speed data, cloud cover, and other geographically significant factors..., and this inflow has been demonstrated to be significant from the TxBLEND modeling. The inflow will be estimated from the USGS gauged riverflow on the Nueces river, minus estimated evaporation losses. Environmental Forcing Group #3 Exchange between Oso Bay...

Furnans, Jordan

2004-01-01T23:59:59.000Z

147

San Francisco Bay Conservation and Development Commission | Open...  

Open Energy Info (EERE)

and Development Commission Jump to: navigation, search Logo: San Francisco Bay Conservation and Development Commission Name: San Francisco Bay Conservation and Development...

148

Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration  

SciTech Connect (OSTI)

In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratorys high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model General NOAA Operational Modeling Environment (GNOME). Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.

Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

2010-04-22T23:59:59.000Z

149

Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.  

SciTech Connect (OSTI)

Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

Moser, Lee, Justin

2009-06-01T23:59:59.000Z

150

Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 1: Barotropic tides  

Science Journals Connector (OSTI)

The generation of internal tides in the ocean is due to the interaction of strong barotropic tidal currents with variable topography in stratified waters, transferring energy from the external to the deep ocean. The internal tides feed later the ocean mixing, playing a major role for the maintenance of the stratification of the global ocean. A remarkable region in terms of tidal energy is the European continental shelf. As a first step toward the study of internal tides in the Bay of Biscay, this paper aims at understanding the barotropic tides and associated energy budgets. On continental shelves and in coastal seas the use of regional models with fine grid resolution is preferred to the use of global tidal atlases derived from altimetry. The unstructured grid T-UGOm model is used to compute the NEA-2004 tidal solutions in the North-East Atlantic ocean, with errors greatly reduced in coastal areas compared with global models. Energy budgets are discussed based on the inclusion of nonlinearities in the tidal solutions. The sea surface height and depth-averaged currents are used to compute the tidal energy conversion from barotropic to baroclinic tides, tidal dissipation and energy flux. A total amount of energy of 250GW is found for the M 2 tide. The path of M 4 energy from the Southern Atlantic ocean toward the Bay of Biscay is highlighted, advocating for nonzero boundary conditions in regional models. The 3D coastal ocean SYMPHONIE model has been implemented to simulate the surface tides in the Bay of Biscay. Solutions are validated by comparison with the NEA-2004 solutions and observations.

I.L. Pairaud; F. Lyard; F. Auclair; T. Letellier; P. Marsaleix

2008-01-01T23:59:59.000Z

151

Using the eBay API  

Science Journals Connector (OSTI)

In chapters 3, 4, 5, and 6...of this book, you learned how to access the eBay service using the high-level eBay SDK, which provides an abstraction that lets you treat the remotely hosted resources of...

Ray Rischpater

2004-01-01T23:59:59.000Z

152

Low Oxygen Environments in Chesapeake Bay  

E-Print Network [OSTI]

Low Oxygen Environments in Chesapeake Bay Jeremy Testa Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Why we care about low oxygen? What causes low oxygen? Where and When does Chesapeake Bay lose oxygen? #12;#12;Hypoxia and Chesapeake Animals Low dissolved oxygen

Boynton, Walter R.

153

Geological oceanography of the Atchafalaya Bay area, Louisiana  

E-Print Network [OSTI]

.............................................................................. 43 1. Wind Drift and Longshore Currents . . . . GG 2. Coastal Current............................................... 47 3. Tidal Currents................................................... 51 4. River Flow... ............................. 88 B. Nature of Laboratory Studies..................................... 89 1. Texture of the Sediments............... ... 90 2. Study of Shell Content.............................. 92 C. Structure and Stratigraphy of the Sediments . . . 93 1...

Thompson, Warren Charles

2013-10-04T23:59:59.000Z

154

Bay Marchand revisited (again): Field development using the latest technology  

SciTech Connect (OSTI)

Low-risk well recompletion and side-track opportunities are identified within the Bay Marchand-Timbalier Bay salt complex using 3D depth migration and multi-dimensional reservoir characterization technology. In 1992 Neomar Resources hit pay zones in 12 out of 14 wells located over amplitude anomalies ({open_quotes}bright spots{close_quotes}) in a proprietary 3D survey covering all or part of Bay Marchand Block 1-5. Production from several of these wells has been disappointing, however, and problems with structural position, trap integrity, and reservoir continuity are not obvious in the 3D time migrated data. Zydeco Exploration has obtained a license and has re-processed the Bay Marchand seismic survey in-house using interactive 3D velocity analysis and 3D pre-stack and post-stack depth migration. The new data reveal systematic changes in the positions of faults and smaller reservoirs that account for structural problems, such as missed objectives, and premature pressure depletion in several of the wells. Interpretation of the depth migrated data, seismic attribute analysis of 12 Miocene reservoirs, and multi-dimensional visual correlation and geo-statistical analysis between seismic attributes and log petrophysical data yields a reliable reservoir quality classification scheme within the 3D survey area. Reservoir classification color schemes overlain on their respective horizon surfaces in the presence of fault planes and salt surfaces in a dynamic 3D display reveals reservoir continuity or trap integrity problems which account for disappointing production in several of the wells. Surface enhancement techniques highlight subtle lineations that may also indicate reservoir compartmentalization. Improved structural imaging and reservoir characterization provide more than 20-20 hindsight. We have identified several relatively low-risk recompletions, sidetrack opportunities and proposed well locations.

McTigue, J.W. Jr.; Knecht, S.W.

1995-12-31T23:59:59.000Z

155

Characterization and closure of the Met Lab Carolina Bay at the Savannah River site, Aiken, South Carolina  

SciTech Connect (OSTI)

The Met Lab Carolina Bay is subject to Subtitle C of RCRA and CERCLA requirements. Located in the northwestern section of the Savannah River Site, the Met Lab Carolina Bay is a marshy, oval-shaped natural depression covering approximately six acres. The Carolina Bay received wastes from three sources: the Met Lab Basin A-007 drainage outfall, the A-Area coal-fire power plant A-008 drainage outfall and the A/M-Area vehicle maintenance parking lot stormwater runoff A-009 outfall. Two characterization efforts conducted in 1988/89 and 1991 indicate the presence of metals in the sediments and soils of the bay. The greatest concentrations of the metals and organics being in the north-central portion of the bay. The metals and organics were primarily associated with surface sediments and the organic-rich soil layer to a depth of about two feet. Conclusions from the Human Health Baseline Risk indicate the future on-unit resident exposure to sediments and soil poses an unacceptable level of risk to human health. However, the assumptions built into the calculations lead to conservative human health risk findings. A qualitative Ecological Risk Assessment was performed on the Carolina Bay. This ecological assessment, based on historical and existing sampling data, was found to be insufficient to make a definitive decision on the contaminants` effects on the ecology of the bay. The proposed action for the Carolina Bay is to conduct an ecological characterization. It appears that the ecological risks will be in the driving factor in determining the remedial action for the Met Lab Carolina Bay.

Jerome, K.M.; Frazier, W.L.; Haselow, L.A.; Voss, L.

1993-07-01T23:59:59.000Z

156

Category:Green Bay, WI | Open Energy Information  

Open Energy Info (EERE)

WI WI Jump to: navigation, search Go Back to PV Economics By Location Media in category "Green Bay, WI" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVFullServiceRestauran... 79 KB SVQuickServiceRestaurant Green Bay WI Wisconsin Electric Power Co.png SVQuickServiceRestaura... 79 KB SVHospital Green Bay WI Wisconsin Electric Power Co.png SVHospital Green Bay W... 79 KB SVLargeHotel Green Bay WI Wisconsin Electric Power Co.png SVLargeHotel Green Bay... 78 KB SVLargeOffice Green Bay WI Wisconsin Electric Power Co.png SVLargeOffice Green Ba... 90 KB SVMediumOffice Green Bay WI Wisconsin Electric Power Co.png SVMediumOffice Green B... 78 KB SVMidriseApartment Green Bay WI Wisconsin Electric Power Co.png

157

Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay,  

E-Print Network [OSTI]

Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has

Boyer, Edmond

158

EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

159

Utilization of submerged aquatic vegetation habitats by fishes and decapods in the Galvestion Bay Ecosystem, Texas  

E-Print Network [OSTI]

. . . MATERIALS AND METHODS. . . . . . Page tu Site Selection. . Sampling Design. . Sampling Procedures. Statistical Analysis. 4 5 6 7 RESULTS. . Fish and Decapod Abundance and Distribution... the importance of physical, environtnental and other biological variables for each habitat site in relation to faunal density. MATERIALS AND METHODS Site Selection Three areas (six sites) within the Galveston Bay complex (Figure 1) were selected based...

Scott, Elizabeth A.

2012-06-07T23:59:59.000Z

160

Berkeley Lab Hosts Regional Science Bowl; Palo Alto Comes Out on Top  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staff Staff Participate in Regional Science Bowl NERSC Staff Participate in Regional Science Bowl February 5, 2013 | Tags: Outreach DOEScienceBowl NERSC's Elizabeth Bautista moderates DOE Science Bowl Competition at Berkeley Lab. High School students from all corners of the San Francisco Bay Area flocked to the Lawrence Berkeley National Laboratory (Berkeley Lab) on Saturday, February 2, 2013 to battle in the Department of Energy's Regional Science Bowl-an academic competition that tests students' knowledge in all areas of science. After a day of intense competition, the team from Palo Alto High School emerged as the overall winners. The Palo Alto team will travel to Washington D.C. in April to compete in the national competition. First runner up was San Francisco's Lowell High School, followed by Albany High

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Felton Bay Logistics, LLC | Open Energy Information  

Open Energy Info (EERE)

Felton Bay Logistics, LLC Felton Bay Logistics, LLC Jump to: navigation, search Logo: Felton Bay Logistics, LLC Name Felton Bay Logistics, LLC Place San Diego Zip 92115 Sector Services Product Strategies for Sustainability Year founded 2010 Number of employees 1-10 Website http://www.feltonbay.com Coordinates 32.7612759°, -117.0735241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7612759,"lon":-117.0735241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Tuscola Bay Wind | Open Energy Information  

Open Energy Info (EERE)

Tuscola Bay Wind Tuscola Bay Wind Jump to: navigation, search Name Tuscola Bay Wind Facility Tuscola Bay Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Detroit Edison Location Fairgrove MI Coordinates 43.52596°, -83.653106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.52596,"lon":-83.653106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Chesapeake Bay Test Site | Open Energy Information  

Open Energy Info (EERE)

Chesapeake Bay Test Site Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa and Newport News Energy Developer Gamesa and Newport News Energy Location Atlantic Ocean VA Coordinates 37.243°, -76.062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.243,"lon":-76.062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Muon Simulation at the Daya Bay SIte  

E-Print Network [OSTI]

Muon simulation at the Daya Bay site Guan Mengyun ? Caowe simulated the underground muon background at the Daya Baysite. To get the sea-level muon ?ux parameteri- zation, a

Mengyun, Guan

2011-01-01T23:59:59.000Z

165

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

166

Mercury bioaccumulation in Lavaca Bay, Texas  

E-Print Network [OSTI]

MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1992 Major... Subject: Oceanography MERCURY BIOACCUMULATION IN LAVACA BAY, TEXAS A Thesis by SALLY JO PALMER Approved as to style and content by: obby J. Pr y (Chair of Committee) Robe J. Tayl (Member) owell (Member) Marvin W. Rowe (Member) Gi bert T. Rowe...

Palmer, Sally Jo

2012-06-07T23:59:59.000Z

167

The construction of the Browns Bay Vessel  

E-Print Network [OSTI]

INVESTIGATIVE TECHNIQUES. 10 19 The Site. National Historic Sites Service Excavation and Raising of the Vessel Vessel on Display. The Vessel in 1985. 19 20 27 28 Method of Recording III THE CONSTRUCTION OF THE VESSEL 31 36 The Keel 36 The Stem... A flat-bottomed boat being built. 17 9 Forelocked eye-bolts from the midship beam of the Browne Bay Vessel 21 10 Broad arrow stamped in an eye-bolt from the Browns Bay Vessel. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 11 Pulley...

Amer, Christopher Francis

2012-06-07T23:59:59.000Z

168

Ecosystem under pressure: Ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010  

Science Journals Connector (OSTI)

Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (?8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ?1.2נ108metrictons of ballast water; equivalent to ?3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water.

Jamie L. Steichen; Rachel Windham; Robin Brinkmeyer; Antonietta Quigg

2012-01-01T23:59:59.000Z

169

Risks of consumption of contaminated seafood: The Quincy Bay case study  

SciTech Connect (OSTI)

A recent EPA-sponsored study of sediment and seafood contamination in Quincy Bay revealed elevated levels of several complex organic pollutants frequently of concern in human health assessments. A seafood consumption risk assessment was conducted using data from samples collected in Quincy Bay in the methodology developed for EPA's Office of Marine and Estuarine Protection for such assessments. Results showed estimate plausible, upperbound excess cancer risks in the 10{sup {minus}5} to 10{sup {minus}2} range. These results are comparable to those found in other seafood contamination risk assessments for areas where consumption advisories and fishing restrictions were implemented. Regulatory response included consumption advisories for lobster tomalley (hepatopancreas) and other types of locally caught seafood. Uncertainties inherent in seafood risk assessment in general and for the Quincy Bay case are discussed, along with implications for further action.

Cooper, C.B.; Doyle, M.E. (Metcalf and Eddy, Inc., Wakefield, MA (United States)); Kipp, K. (Environmental Protection Agency, Boston, MA (United States))

1991-01-01T23:59:59.000Z

170

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Institute Breakthrough Institute th Street Suite Oakland Institute Breakthrough Institute th Street Suite Oakland California http www thebreakthrough org Bay Area California Fuel Cell Partnership California Fuel Cell Partnership Industrial Blvd West Sacramento California Collaboration of organizations that work together to promote the commercialization of hydrogen fuel cell vehicles http www fuelcellpartnership net Bay Area ClimateWorks ClimateWorks Montgomery Street Suite San Francisco California http www climateworks org Bay Area Rahus Institute Rahus Institute Center Ave Martinez California Research and educational organization with a focus on resource efficiency http www californiasolarcenter org index html Bay Area San Francisco Biofuels Cooperative San Francisco Biofuels Cooperative Post St San Francisco California Mission is to facilitate access to

171

Characterization of non-point sources and loadings to Galveston Bay. Volume 1. Technical report. Final report  

SciTech Connect (OSTI)

The objective of the work was to conduct a geographic analysis and priority ranking of possible non-point sources and loads to Galveston Bay. The study area was defined by GBNEP to include the entire Galveston Bay drainage area with the exception of the Lake Houston and Lake Livingson watersheds; loadings from these upper watersheds were not mapped but were subjected to a separate pollutant loading analysis. The primary elements for the non-point analysis included watershed hydrology, load estimates, ranking of subwatersheds, upper watershed influences, and mapping.

Newell, C.J.; Rifai, H.S.; Bedient, P.B.

1992-03-01T23:59:59.000Z

172

Hooper Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Hooper Bay Wind Farm Hooper Bay Wind Farm Jump to: navigation, search Name Hooper Bay Wind Farm Facility Hooper Bay Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Electric Coop (AVEC) Developer Alaska Village Electric Coop (AVEC) Energy Purchaser Alaska Village Electric Coop (AVEC) Location Hooper Bay AK Coordinates 61.53572°, -166.097182° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.53572,"lon":-166.097182,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Cleveland Bay Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cleveland Bay Wind Farm Cleveland Bay Wind Farm Jump to: navigation, search Name Cleveland Bay Wind Farm Facility Cleveland Bay Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation / Great Lakes Ohio Wind / Great Lakes Energy Wind LLC / Freshwater Wind LLC / Cavallo Great Lakes Ohio Wind LLC Location Cleveland Bay OH Coordinates 41.608°, -81.809° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.608,"lon":-81.809,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

TOURISM IN GOLDEN BAY Economic Impacts & Resource Use Issues  

E-Print Network [OSTI]

TOURISM IN GOLDEN BAY Economic Impacts & Resource Use Issues - Preliminary Report - June 2000 NZ Tourism Research Institute Victoria University of Wellington Auckland University of Technology #12;INTRODUCTION Golden Bay's tourism industry faces a number of pressing issues. Intensifying competition

175

Using a Regional Chemical Transport Model for the Analysis of Gaseous and Particulate Air Pollutants in the Mexico City Metropolitan Area  

E-Print Network [OSTI]

Air quality in the Mexico City Metropolitan Area (MCMA) is the subject of many studies due to concerns from high emissions and their adverse effects on public health and the environment. In this study, a high resolution simulation is performed...

Ali, Sajjad Ghulam

2012-02-14T23:59:59.000Z

176

Los Azufres Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

(0) 10 References Area Overview Geothermal Area Profile Location: Michoaciin, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase: Coordinates:...

177

SODAR DATA FROM OYSTER BAY AT WINYAH BAY NATIONAL ESTUARINE RESEARCH RESERVE  

SciTech Connect (OSTI)

The SecondWind Triton is a SODAR (SOnic Detection And Ranging) sonic wind profiler (Triton sodar) system capable of profiling the wind characteristics up to 200m above the instrument. SODAR systems transmit acoustic chirps into the atmosphere and measure the backscattered signal returned to the device. The primary source of acoustic scattering is variations in air temperature, which cause changes in the refractive index of sound. By measuring the Doppler?shifted frequency of these returned signals, the Triton can calculate the winds speed and direction for the volume of air above the instrument, measured at ten fixed heights, known as station heights. The Triton is specifically designed for the purpose of wind energy resource assessment as it can remotely capture wind data at heights above ground where wind turbine rotors operate. The measurements made include horizontal wind speed and direction, vertical wind speed, and turbulence. Other integrated sensors provide time and location via GPS, barometric pressure, humidity, and the tilt of the instrument. The study area is located east of Georgetown, South Carolina in North Inlet ? Winyah Bay National Estuarine Research Reserve. The monitoring period for data in this report begins 5/14/2009 9:30:00 AM EST and ends 8/2/2010 11:40:00 AM EST.

Nichols, R.; Kohn, J.; Rigas, N.; Boessneck, E.; Kress, E.; Gayes, P.

2013-04-29T23:59:59.000Z

178

Glacier Bay Inc | Open Energy Information  

Open Energy Info (EERE)

Glacier Bay Inc Glacier Bay Inc Jump to: navigation, search Name Glacier Bay Inc Place Oakland, California Zip 94601 Product US-based, advanced thermal control, sound reduction, and DC power management technologies developer. Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

180

THERMOFLUID OPTIMIZATION OF A HEATED HELICOPTER ENGINE COOLING BAY SURFACE  

E-Print Network [OSTI]

effectiveness of an aircraft de-icing strategy by re-designing the cooling bay surface shape. The design of a helicopter cooling bay can be ice prone under certain atmospheric conditions. Its effective shape design1 THERMOFLUID OPTIMIZATION OF A HEATED HELICOPTER ENGINE COOLING BAY SURFACE D. Wang 1 , G. F

Wang, Gaofeng Gary

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MODELING NEKTON HABITAT USE IN GALVESTON BAY, TEXAS  

E-Print Network [OSTI]

MODELING NEKTON HABITAT USE IN GALVESTON BAY, TEXAS: AN APPROACH TO DEFINE ESSENTIAL FISH HABITAT IN GALVESTON BAY, TEXAS: AN APPROACH TO DEFINE ESSENTIAL FISH HABITAT (EFH) Project Team: Randall D. Clark.A. Matthews. 1999. Modeling nekton habitat selection in Galveston Bay, Texas: An approach to define essential

182

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect (OSTI)

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

183

Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California  

SciTech Connect (OSTI)

A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

Youngs, L.G.

1984-01-01T23:59:59.000Z

184

Regional characteristics, timing, and significance of dissolution and collapse features in Lower Cretaceous carbonate platform strata, Desoto Canyon area, offshore Alabama-Florida  

E-Print Network [OSTI]

Crust ts rasota Arch Continental Crust Thick r s ional I'ust miles 100 200 0 100 200 km Boundaries between crustal types Figure 4. Structure map of the Pre-Louann basement in the study area. The map also shows the study area in relation... Cretaceous Unconformity James Limestone~ WILCOX MIOINAY Cl yl SELT IA McSh L r Euraw Tuacalooaa W P WILCOX Cia lon R play Bl fao n EUIaw I Ecalooaa L C *I 68 TARE TNANET141 rr / NF/ 1NN our clA/ CENO/ I N AN 3/ 6 r Paleocene...

Iannello, Christine

2012-06-07T23:59:59.000Z

185

SPECIAL INQUIRY ON OFFICE OF SPECIAL COUNSEL WHISTLEBOLOWER DISCLOSURE FILE NO. DI-10-1231: ALLEGATIONS REGARDING WESTERN AREA POWER ADMINISTRATION'S DESERT SOUTHWEST REGION, OAS-SR-11-01  

Broader source: Energy.gov (indexed) [DOE]

SPECIAL INQUIRY ON OFFICE OF SPECIAL COUNSEL WHISTLEBOLOWER SPECIAL INQUIRY ON OFFICE OF SPECIAL COUNSEL WHISTLEBOLOWER DISCLOSURE FILE NO. DI-10-1231: ALLEGATIONS REGARDING WESTERN AREA POWER ADMINISTRATION'S DESERT SOUTHWEST REGION, OAS-SR-11-01 The U.S. Office of Special Counsel requested the Department investigate a whistleblower disclosure that employees at the Western Area Power Administration's Desert Southwest Region engaged in conduct that constituted violation of law, rule or regulation; gross mismanagement; and gross waste of funds. Specifically, the disclosure alleged that Western had (a) improperly provided 90 megawatts per hour of free electric transmission to a full-service energy provider; and (b) violated Federal Energy Regulatory Commission Orders by continuing to allow the energy provider to receive free transmission. Our review did not substantiate the allegations.

186

The Carolina Bay Restoration Project - Status Report II 2000-2004.  

SciTech Connect (OSTI)

A Wetlands Mitigation Bank was established at SRS in 1997 as a compensatory alternative for unavoidable wetland losses. Prior to restoration activities, 16 sites included in the project were surveyed for the SRS Site Use system to serve as a protective covenant. Pre-restoration monitoring ended in Fall 2000, and post restoration monitoring began in the Winter/Spring of 2001. The total interior harvest in the 16 bays after harvesting the trees was 19.6 ha. The margins in the opencanopy, pine savanna margin treatments were thinned. Margins containing areas with immature forested stands (bay 5184 and portions of bay 5011) were thinned using a mechanical shredder in November 2001. Over 126 hectares were included in the study areas (interior + margin). Planting of two tree species and the transplanting of wetland grass species was successful. From field surveys, it was estimated that approximately 2700 Nyssa sylvatica and 1900 Taxodium distichum seedlings were planted in the eight forested bays resulting in an average planting density of ? 490 stems ha-1. One hundred seedlings of each species per bay (where available) were marked to evaluate survivability and growth. Wetland grass species were transplanted from donor sites on SRS to plots that ranged in size from 100 300 m2, depending on wetland size. On 0.75 and 0.6 meter centers, respectively, 2198 plugs of Panicum hemitomon and 3021 plugs Leersia hexandra were transplanted. New shoots originating from the stumps were treated with a foliar herbicide (Garlon 4) during the summer of 2001 using backpack sprayers. Preliminary information from 2000-2004 regarding the hydrologic, vegetation and faunal response to restoration is presented in this status report. Post restoration monitoring will continue through 2005. A final report to the Mitigation Bank Review Team will be submitted in mid-2006.

Barton, Christopher

2006-07-13T23:59:59.000Z

187

Fagatele Bay National Marine Sanctuary GIS Capacity  

E-Print Network [OSTI]

Report, configuration notes American Samoa Spatial Data Infrastructure Maps GIS Data CDs Operating System, a number of issues regarding map projections and datums were resolved allowing GIS users to processFagatele Bay National Marine Sanctuary GIS Capacity Binder Index Background 2 Hardware, Software

Wright, Dawn Jeannine

188

Search for a Light Sterile Neutrino at Daya Bay  

E-Print Network [OSTI]

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\\rm -3}~{\\rm eV}^{2} < |\\Delta m_{41}^{2}| < 0.3~{\\rm eV}^{2}$ range. The relative spectral distortion due to electron antineutrino disappearance was found to be consistent with that of the three-flavor oscillation model. The derived limits on $\\sin^22\\theta_{14}$ cover the $10^{-3}~{\\rm eV}^{2} \\lesssim |\\Delta m^{2}_{41}| \\lesssim 0.1~{\\rm eV}^{2}$ region, which was largely unexplored.

F. P. An; A. B. Balantekin; H. R. Band; W. Beriguete; M. Bishai; S. Blyth; I. Butorov; G. F. Cao; J. Cao; Y. L. Chan; J. F. Chang; L. C. Chang; Y. Chang; C. Chasman; H. Chen; Q. Y. Chen; S. M. Chen; X. Chen; X. Chen; Y. X. Chen; Y. Chen; Y. P. Cheng; J. J. Cherwinka; M. C. Chu; J. P. Cummings; J. de Arcos; Z. Y. Deng; Y. Y. Ding; M. V. Diwan; E. Draeger; X. F. Du; D. A. Dwyer; W. R. Edwards; S. R. Ely; J. Y. Fu; L. Q. Ge; R. Gill; M. Gonchar; G. H. Gong; H. Gong; M. Grassi; W. Q. Gu; M. Y. Guan; X. H. Guo; R. W. Hackenburg; G. H. Han; S. Hans; M. He; K. M. Heeger; Y. K. Heng; P. Hinrichs; Y. K. Hor; Y. B. Hsiung; B. Z. Hu; L. M. Hu; L. J. Hu; T. Hu; W. Hu; E. C. Huang; H. Huang; X. T. Huang; P. Huber; G. Hussain; Z. Isvan; D. E. Jaffe; P. Jaffke; K. L. Jen; S. Jetter; X. P. Ji; X. L. Ji; H. J. Jiang; J. B. Jiao; R. A. Johnson; L. Kang; S. H. Kettell; M. Kramer; K. K. Kwan; M. W. Kwok; T. Kwok; W. C. Lai; K. Lau; L. Lebanowski; J. Lee; R. T. Lei; R. Leitner; A. Leung; J. K. C. Leung; C. A. Lewis; D. J. Li; F. Li; G. S. Li; Q. J. Li; W. D. Li; X. N. Li; X. Q. Li; Y. F. Li; Z. B. Li; H. Liang; C. J. Lin; G. L. Lin; P. Y. Lin; S. K. Lin; Y. C. Lin; J. J. Ling; J. M. Link; L. Littenberg; B. R. Littlejohn; D. W. Liu; H. Liu; J. L. Liu; J. C. Liu; S. S. Liu; Y. B. Liu; C. Lu; H. Q. Lu; K. B. Luk; Q. M. Ma; X. Y. Ma; X. B. Ma; Y. Q. Ma; K. T. McDonald; M. C. McFarlane; R. D. McKeown; Y. Meng; I. Mitchell; J. Monari Kebwaro; Y. Nakajima; J. Napolitano; D. Naumov; E. Naumova; I. Nemchenok; H. Y. Ngai; Z. Ning; J. P. Ochoa-Ricoux; A. Olshevski; S. Patton; V. Pec; J. C. Peng; L. E. Piilonen; L. Pinsky; C. S. J. Pun; F. Z. Qi; M. Qi; X. Qian; N. Raper; B. Ren; J. Ren; R. Rosero; B. Roskovec; X. C. Ruan; B. B. Shao; H. Steiner; G. X. Sun; J. L. Sun; Y. H. Tam; X. Tang; H. Themann; K. V. Tsang; R. H. M. Tsang; C. E. Tull; Y. C. Tung; B. Viren; V. Vorobel; C. H. Wang; L. S. Wang; L. Y. Wang; M. Wang; N. Y. Wang; R. G. Wang; W. Wang; W. W. Wang; X. Wang; Y. F. Wang; Z. Wang; Z. Wang; Z. M. Wang; D. M. Webber; H. Y. Wei; Y. D. Wei; L. J. Wen; K. Whisnant; C. G. White; L. Whitehead; T. Wise; H. L. H. Wong; S. C. F. Wong; E. Worcester; Q. Wu; D. M. Xia; J. K. Xia; X. Xia; Z. Z. Xing; J. Y. Xu; J. L. Xu; J. Xu; Y. Xu; T. Xue; J. Yan; C. C. Yang; L. Yang; M. S. Yang; M. T. Yang; M. Ye; M. Yeh; Y. S. Yeh; B. L. Young; G. Y. Yu; J. Y. Yu; Z. Y. Yu; S. L. Zang; B. Zeng; L. Zhan; C. Zhang; F. H. Zhang; J. W. Zhang; Q. M. Zhang; Q. Zhang; S. H. Zhang; Y. C. Zhang; Y. M. Zhang; Y. H. Zhang; Y. X. Zhang; Z. J. Zhang; Z. Y. Zhang; Z. P. Zhang; J. Zhao; Q. W. Zhao; Y. Zhao; Y. B. Zhao; L. Zheng; W. L. Zhong; L. Zhou; Z. Y. Zhou; H. L. Zhuang; J. H. Zou

2014-07-27T23:59:59.000Z

189

Unexpected increasing AOT trends over northwest Bay of Bengal in the early postmonsoon season  

SciTech Connect (OSTI)

The main point of our study is that aerosol trends can be created by changes in meteorology without changes in aerosol source strength. Over the 10 year period 20002009, in October, Moderate Resolution Imaging Spectroradiometer (MODIS) showed strong increasing aerosol optical thickness (AOT) trends of approximately 14% yr-1 over northwest Bay of Bengal (BoB) in the absence of AOT trends over the east of the Indian subcontinent. This was unexpected because sources of anthropogenic pollution were located over the Indian subcontinent and aerosol transport from the Indian subcontinent to northwest BoB was carried out by prevailing winds. In October, winds over the east of the Indian subcontinent were stronger than winds over northwest BoB, which resulted in wind convergence and accumulation of aerosol particles over northwest BoB. Moreover, there was an increasing trend in wind convergence over northwest BoB. This led to increasing trends in the accumulation of aerosol particles over northwest BoB and, consequently, to strong AOT trends over this area. In contrast to October, November showed no increasing AOT trends over northwest BoB or the nearby Indian subcontinent. The lack of AOT trends over northwest BoB corresponds to a lack of trends in wind convergence in that region. Finally, December domestic heating by the growing population resulted in positive AOT trends of similar magnitude over land and sea. Our findings illustrate that in order to explain and predict trends in regional aerosol loading, meteorological trends should be taken into consideration together with changes in aerosol source strength.

Kishcha, P.; Starobinets, B.; Long, Charles N.; Alpert, P.

2012-12-13T23:59:59.000Z

190

Design and preliminary test results of Daya Bay RPC modules*  

SciTech Connect (OSTI)

Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

Hackenburg, R.

2011-09-01T23:59:59.000Z

191

Regional correlations and reservoir characterization studies of the Pennsylvanian system in the Anadarko Basin area of Western Oklahoma and the Panhandle of Texas  

SciTech Connect (OSTI)

Correlations problems have long existed between the Pennsylvanian marine clastics of the northeastern half of the Anadarko Basin and Shelf and the Pennsylvanian terrigenous washes of the extreme southwestern portion of the Anadarko Basin. These correlation problems have created nomenclature problems resulting in thousands of feet of washes often referred to on completion reports and production records as {open_quotes}granite wash{close_quotes} or {open_quotes}Atoka Wash{close_quotes} when much greater accuracy and specificity is both needed and possible. Few detailed cross-sections are available. Regional and field scale cross-sections were constructed which have been correlated well by well and field by field using nearly every deep well drilled in the basin. This process has provided for a high degree of consistency. These cross-sections have greatly diminished the correlation and nomenclature problems within the Anadarko Basin. Certain markers proved to be regionally persistent from the marine clastics into the terrigenous washes making the subdivision of thousands of feet of washes possible. Those of greatest importance were the top of the Marmaton, the Cherokee Marker, the Pink {open_quotes}Limestone{close_quotes} Interval, the top of the Atoka and the top of the Morrow. Once these and other subdivisions were made, production was allocated on a much more definitive basis. Additionally, detailed reservoir characterization of the reservoirs was conducted to include geologic and engineering data. Finally, a {open_quotes}field-specific{close_quotes} reservoir type log was chosen. A series of regional cross-sections will be presented along with the results of reservoir characterization studies conducted on reservoirs within the fields located along the cross-sections. A type log for each reservoir will also be illustrated.

Hendrickson, W.J.; Smith, P.W.; Williams, C.M. [Dwights Energydata Inc., Oklahoma City, OK (United States)

1995-09-01T23:59:59.000Z

192

Superfund record of decison (EPA Region 3): Aberdeen Proving Ground (Edgewood Area), J-field soil operable unit, Aberdeen Proving Ground, MD, September 27, 1996  

SciTech Connect (OSTI)

This Operable Unit (OU) consists of two main burn pits (the Northern Main Burn Pit and Southern Main Burn Pit). It also includes the Pushout Area, which consists of the O-ethyl-S-(2-iisoprop ylaminoethyl)methyl phosphonothiolate (VX) Burn Pit, the Mustard Burn Pit, and the Liquid Smoke Disposal Pit. This decision document addresses the actions to be taken toward remediating the principal threats provided by high levels of arsenic, lead, and PCBs at the J-Field SOU: (1) the removal of isolated hot spots of contamination from the SOU followed by (2) the construction of a Protective Soil Blanket (PSB) over the J-Field SOU.

NONE

1996-10-01T23:59:59.000Z

193

E-Print Network 3.0 - area norte da Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spatial usage by the estuarine Summary: point of the species, the Norte Bay, southern Brazil. 2. Material and Methods 2.1 Study area The Norte... shores and mangroves, the latter...

194

Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community  

SciTech Connect (OSTI)

In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energys Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each buildings energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and the Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Communitys most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This projects feasibility study and resulting plan is intended to act as a guide to the Communitys first step towards planned energy management within its buildings/facilities. It aims to reduce energy consumption by 30% or greater within the subject facilities with an emphasis on energy conservation and efficiency. The energy audits and related power consumption analyses conducted for this study revealed numerous significant energy conservation and efficiency opportunities for all of the subject sites/buildings. In addition, many of the energy conservation measures require no cost and serve to help balance other measures requiring capital investment. Reoccurring deficiencies relating to heating, cooling, thermostat setting inefficiencies, powering computers, lighting, items linked to weatherization and numerous other items were encountered that can be mitigated with the energy conservation measures developed and specified during the course of this project.

Kushman, Chris

2014-02-03T23:59:59.000Z

195

Bay Front Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Front Biomass Facility Front Biomass Facility Jump to: navigation, search Name Bay Front Biomass Facility Facility Bay Front Sector Biomass Location Ashland County, Wisconsin Coordinates 46.9794969°, -90.4824892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9794969,"lon":-90.4824892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

LNG carrier underwater noise in Baffin Bay  

Science Journals Connector (OSTI)

Large powerful liquid natural gas carriers may soon ply Arctic waters year round. Concern has been expressed over the impact the resulting noise will have on Arctic marine life. This study includes estimates of LNG carrier?radiated noise source levels and resulting sound levels at a given distance from the ship for a number of operating conditions. Measurements of sound propagation and ambient noise conditions in Baffin Bay are used to estimate the shipnoise levels in relation to the summertime noise background.

L. J. Leggat; H. M. Merklinger; J. L. Kennedy

1981-01-01T23:59:59.000Z

197

Marine geology of the Bay of Campeche  

E-Print Network [OSTI]

of Oceanography and Meteorology August, 1938 1 V .?> TABLE OF CONTENTS Page LIST OF F I G U R E S .......................... ............... v LIST OF TABLES............................................ vii LIST OF PLATES... STATION 11 AND STATION 30. . 17 6 BATHYMETRIC CHART OF THE BAY OF CAMPECHE.......... In V' Pocket YV.,;r? ' t. 7 BOTTOM PROFILES OF THE CONTINENTAL SLOPE ALONG 92?001 WEST LONGITUDE (A-A) OFF CAMPECHE BANK AND OF THE OUTER PORTION...

Creager, Joe S.

2013-10-04T23:59:59.000Z

198

New and Underutilized Technology: High Bay LED Lighting | Department of  

Broader source: Energy.gov (indexed) [DOE]

High Bay LED Lighting High Bay LED Lighting New and Underutilized Technology: High Bay LED Lighting October 7, 2013 - 8:55am Addthis The following information outlines key deployment considerations for high bay LED lighting within the Federal sector. Benefits LED light sources offer several potential benefits compared to metal halide or fluorescent lighting, including reduced energy consumption due to the ability to provide a more precise light distribution; longer operating life and lower maintenance requirements; less heat introduced into the space; and greater controllability for dimming and on/off control. Relevant to the cold storage application, LED performance improves in colder temperatures. Application High bay LED lighting is applicable for facilities containing high bay

199

BayWa Group | Open Energy Information  

Open Energy Info (EERE)

BayWa Group BayWa Group Jump to: navigation, search Name BayWa Group Place Munich, Germany Zip 81925 Sector Services, Solar Product Germany-based company with international operations specialised in wholesale and retail and in providing services. The company is also active in the biofuel and solar sectors. Coordinates 48.136415°, 11.577531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.136415,"lon":11.577531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Wetland plant communities, Galveston Bay system. Final report  

SciTech Connect (OSTI)

The report is the culmination of a field investigation of wetland plant communities, and is one phase of the project, Trends and Status of Wetland and Aquatic Habitats of the Galveston Bay System, Texas, sponsored by the Galveston Bay National Estuary Program. For purpose of the topical report, wetlands are defined and classified in terms of more classical definitions, for example, salt, brackish, and fresh marshes, in accordance with project requirements. More than 150 sites were examined in the Galveston Bay system.

White, W.A.; Paine, J.G.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA  

Science Journals Connector (OSTI)

Abstract Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (?2H, ?18O, 3H, 14C, 3He, 4He, 20Ne, 40Ar, 84Kr, and 129Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, ?2H and ?18O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3H, terrigenic helium (4Heterr), and 3H/3He ages shows that modern groundwater (temperatures (NGTs) are generally 111C in Snake and southern Spring Valleys and >11C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of \\{NGTs\\} and 4Heterr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than continuing northeastward to discharge at either Fish Springs or the Great Salt Lake Playa. The refined understanding of groundwater recharge and flow paths acquired from this multi-tracer investigation has broad implications for interbasin subsurface flow estimates and future groundwater development.

Philip M. Gardner; Victor M. Heilweil

2014-01-01T23:59:59.000Z

202

BayWa Sunways JV | Open Energy Information  

Open Energy Info (EERE)

Sunways JV Jump to: navigation, search Name: BayWa & Sunways JV Place: Germany Sector: Solar Product: Germany-based JV that specialises in developing, planning and realizing...

203

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

204

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate the World's First Long Distance 40Gbps RDMA Data Transfer News & Publications ESnet in the News ESnet News Media &...

205

The Effects of the "Ike Dike" barriers on Galveston Bay:.  

E-Print Network [OSTI]

??In 2008 Hurricane Ike flooded large parts of the barrier islands in front of the Galveston Bay near Houston, Texas. The storm surge also entered (more)

Ruijs, M.

2011-01-01T23:59:59.000Z

206

Species diversity and water quality in Galveston bay, Texas  

Science Journals Connector (OSTI)

The relationships between species diversity of phytoplankton, zooplankton, nekton and benthos samples and the water quality of Galveston Bay, Texas were quantitatively compared. Two water quality parameters...

B. J. Copeland; Timothy J. Bechtel

1971-11-01T23:59:59.000Z

207

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

208

Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia  

SciTech Connect (OSTI)

The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.

Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

2007-03-01T23:59:59.000Z

209

E-Print Network 3.0 - andean region salta Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acaule is a weed in the fields of Andean... were supplied by the Inter-Regional Potato Introduction Project (IR-1), Sturgeon Bay, Wisconsin, USA... , Jujuy A, Jujuy A, Jujuy...

210

Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study  

SciTech Connect (OSTI)

The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNCs technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clarks Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clarks Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

Vaught, Douglas J.

2007-03-31T23:59:59.000Z

211

Regional Analysis Briefs  

Reports and Publications (EIA)

Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean).

2028-01-01T23:59:59.000Z

212

The distribution of biogenic thiols in surface waters of Galveston Bay  

Science Journals Connector (OSTI)

along a salinity gradient in estuarine waters off of Galveston Bay, Texas. ... A major thiol peak was present in Lower Galveston Bay and a minor peak in Upper.

1910-00-90T23:59:59.000Z

213

CALIFORNIA STATE UNIVERSITY, EAST BAY FACULTY EMPLOYMENT OPPORTUNITY  

E-Print Network [OSTI]

CALIFORNIA STATE UNIVERSITY, EAST BAY FACULTY EMPLOYMENT OPPORTUNITY DEPARTMENT OF STATISTICS, statistics and biostatistics, as well as for employment opportunities nationwide. Our programs are flexible about CSU, East Bay visit http://www20.csueastbay.edu. THE DEPARTMENT: The Department of Statistics

Jornsten, Rebecka

214

Dissolved organic matter in Chesapeake Bay sediment pore waters  

E-Print Network [OSTI]

Dissolved organic matter in Chesapeake Bay sediment pore waters David J. Burdige * Department of recent studies of dissolved organic matter (DOM) in Chesapeake Bay sediment pore waters are summar- ized water DOM. This analysis shows that much of the DOM accumulating in sediment pore waters appears

Burdige, David

215

Regulatory effectiveness study for the Christmas Bay Coastal Preserve  

SciTech Connect (OSTI)

The report contains a description and evaluation of essential regulatory activities governing Armand Bayou and its watershed. The report will be used in management planning for the preserve, and will also contribute to the baseline regulatory data for developing the Galveston Bay Comprehensive Conservation and Management Plan. A companion report was prepared for the Christmas Bay Coastal Preserve.

Mitchell, G.; Windsor, D.

1991-12-01T23:59:59.000Z

216

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on  

E-Print Network [OSTI]

MFR PAPER 1074 Effects of Prudhoe Bay Crude Oil on Molting Tanner Crabs, Chionoecetes bairdi JOHN F bairdi , from Alaska walers were exposed 10 Prudhoe Bay crude oil in sIalic bioassays ill Ih e laboralory. Crabs in bOlh slages were similarly susceplible 10 crude oil; Ihe eSlimaled 48-hour TLIIl (Illedian

217

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Bay Clean Cities (Oakland) Coalition Bay Clean Cities (Oakland) Coalition The East Bay Clean Cities (Oakland) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Bay Clean Cities (Oakland) coalition Contact Information Richard Battersby 530-752-9666 rebattersby@ucdavis.edu Chris Ferrara 925-459-8062 caf3@pge.com Coalition Website Clean Cities Coordinators Coord Richard Battersby Coord Coord Chris Ferrara Coord Photo of Richard Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition since 2003. Battersby has over 25 years of experience in the fleet industry and has written and participated in numerous local, state, and federal grant-funded

218

Ahuachapan Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

219

Berln Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

220

Los Humeros Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

(0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase: Phase IV -...

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fukushima Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fukushima, Japan Exploration Region: Northeast Honshu Arc GEA Development Phase: Coordinates:...

222

Sediment transport and Hg recovery in Lavaca Bay, as evaluated from radionuclide and Hg distributions  

SciTech Connect (OSTI)

Mercury was released in the late 1960s from a chloralkali facility managed by ALCOA and deposited into sediments of Lavaca Bay, TX. Sediments have recorded this event as a well-defined subsurface concentration maximum. Radionuclide, mercury, X-radiography, and grain size data from sediment cores taken in 1997 at 15 stations in Lavaca bay were used to assess sediment and Hg movements in the bay. Sediment accumulation rates were calculated from bomb fallout nuclide ({sup 137}Cs, {sup 239,240}Pu) peaks in 1963 and from the steady-state delivery of {sup 210}Pb from the atmosphere. Sedimentation rates are highest at near-shore sites near the ALCOA facility and generally decrease away from shore. Sedimentation rates in some areas are likely influenced by anthropogenic activities such as dredging. Particle reworking, as assessed from {sup 7}Be measurements, is generally restricted to the upper 2--7 cm of sediments. Numerical simulations of Hg profiles using measured sedimentation and mixing parameters indicate that at most sites high remnant mercury concentrations at 15--60 cm depth cannot supply substantial amounts of Hg to surface sediments. Assuming no future Hg supplies, Hg concentrations in surface sediments are predicted to decrease exponentially with a recovery half-time of 4 {+-} 2 years.

Santschi, P.H.; Allison, M.A.; Asbill, S.; Perlet, A.B. [Texas A and M Univ., Galveston, TX (United States)] [Texas A and M Univ., Galveston, TX (United States); Cappellino, S. [Parametrix, Inc., Houston, TX (United States)] [Parametrix, Inc., Houston, TX (United States); Dobbs, C.; McShea, L. [Aluminum Co. of America, Point Comfort, TX (United States)] [Aluminum Co. of America, Point Comfort, TX (United States)

1999-02-01T23:59:59.000Z

223

Western Area Power Administration, Desert Southwest Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glen Canyon to Flagstaff #2 345-kV Transmission Line Access Road Maintenance from Structure 45/4 to 46/1 Continuation Sheet Special Conditions Biological Resources 1. Project sites should be cleaned of trash and other items at the end of each day to minimize the likelihood of attracting California condors. 2. No human interaction is allowed with condor(s), especially non-permitted hazing (i.e., attempts to scare birds away). If condor(s) occur at the project site, all activity should cease until the condor(s) leaves on its own. The Navajo Nation Department of Fish and Wildlife (928-871-6450), or the U.S. Fish and Wildlife Service (602-242-0210), should be contacted immediately. 3. Work shall be conducted between August 15 and April 15, generally outside of the breeding season for

224

Western Area Power Administration, Desert Southwest Region  

Broader source: Energy.gov (indexed) [DOE]

Glen Canyon to Flagstaff #2 345-kV Transmission Line Access Road Maintenance from Structure 45/4 to 46/1 Continuation Sheet Special Conditions Biological Resources 1. Project sites should be cleaned of trash and other items at the end of each day to minimize the likelihood of attracting California condors. 2. No human interaction is allowed with condor(s), especially non-permitted hazing (i.e., attempts to scare birds away). If condor(s) occur at the project site, all activity should cease until the condor(s) leaves on its own. The Navajo Nation Department of Fish and Wildlife (928-871-6450), or the U.S. Fish and Wildlife Service (602-242-0210), should be contacted immediately. 3. Work shall be conducted between August 15 and April 15, generally outside of the breeding season for

225

Western Area Power Administration, Desert Southwest Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Henderson-Mead 2 230-kV Transmission Line Erosion Repair, Structure 2-4 - Continuation Sheet Project Description (Continued) The scope of work includes the following: 1. Excavate...

226

Ecological evaluation of proposed dredged material from Winyah Bay, South Carolina  

SciTech Connect (OSTI)

The navigational channels of Winyah Bay, Georgetown Harbor, South Carolina require dredging to enable normal shipping traffic to use these areas. Before dredging, environmental assessments must be conducted to determine the suitability of this dredged sediment for unconfined, open-water disposal. The Charleston, South Carolina District Office of the US Army Corps of Engineers (USACE) requested that the Battelle/Marine Science Laboratory (MSL) collect sediment samples and conduct the required physical/chemical, toxicological, and bioaccumulation evaluations as required in the 1991 Implementation Manual. This report is intended to provide information required to address potential ecological effects of the Entrance Channel and Inner Harbor sediments proposed disposal in the ocean.

Ward, J.A.; Gardiner, W.W.; Pinza, M.R.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1993-10-01T23:59:59.000Z

227

Shoreline survey for unpermitted discharges to Galveston Bay  

SciTech Connect (OSTI)

The objectives of the study are to identify and map unpermitted point source discharges within selected shoreline segments of Galveston Bay and to develop a standard methodology and framework for future comprehensive shoreline surveys of the Galveston Bay system. The pilot study utilized low altitude aerial surveys and shallow draft small boat surveys to determine the extent of and to document locations of unpermitted discharges along 159 miles of bayou and bay shoreline. Nine different shoreline types were surveyed. Positions of discharges, both permitted and unpermitted were logged on to a personal computer data base management system and photographic documentation of both aerial and surface observations were catalogued.

Fay, R.R.; Sweet, S.; Wilson, R.J.

1991-08-01T23:59:59.000Z

228

The news from Saginaw Bay: Where the mussels are strong, the walleye are good-looking, and all the phosphorus is above average  

E-Print Network [OSTI]

the of 43 Areas of Concern (AOC) due to impairment of the follow- ing beneficial uses: · Restrictions devel- oped for the Saginaw River/Bay AOC with each listing activities to ad- dress the sources contributing to these beneficial use impairments (BUIs) and the progress that has been made to restore the AOC

229

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Laboratory Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org contact html Pacific Northwest Area Austin Clean Energy Incubator Austin Clean Energy Incubator West Braker Lane Austin Texas http www ati utexas edu clean energy clean energy html Texas Area Clean Edge Inc Clean Edge Inc Portland Oregon http www cleanedge com Pacific Northwest Area Clean Start McClellan Technology Incubator Clean Start McClellan Technology Incubator Bailey Loop McClellan California http www sarta org go cs Bay Area Corvalence Corvalence Jackson St San Francisco California Bay Area E Co E Co Franklin Street Bloomfield New Jersey http www eandco net EcoElectron Ventures Inc EcoElectron Ventures Inc Second Street PMB Encinitas California http www ecoelectron com Southern CA Area

230

TEC Rail TG Summary_Green Bay  

Broader source: Energy.gov (indexed) [DOE]

September 13-14, 2006 September 13-14, 2006 Green Bay, WI RAIL TOPIC GROUP Mr. Jay Jones began the meeting with a welcome and introduction of the topic members, other participants, and support staff. A brief overview was given of the topic group's activities since the last TEC meeting. This meeting focused on the Topic Group's subgroup activities. Key comments and discussions are summarized below. Status Update of the Rail Topic Group Mr. Jones mentioned the planned creation of a new topic group to be called the Routing Topic Group. The Rail Topic Group would still exist as a topic group. However, since the emphasis would be in developing routing criteria and ultimately a national suite of routes over the next year or so, this separate Routing Topic Group would be created to address

231

Massachusetts Bay Trans Auth | Open Energy Information  

Open Energy Info (EERE)

Auth Auth Jump to: navigation, search Name Massachusetts Bay Trans Auth Place Massachusetts Utility Id 49848 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0896/kWh Transportation: $0.1250/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

232

Critical Areas of State Concern (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of State Concern (Maryland) of State Concern (Maryland) Critical Areas of State Concern (Maryland) < Back Eligibility Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment This legislation designates the Chesapeake Bay, other Atlantic Coastal Bays, and their tributaries and adjacent lands as critical areas of state concern. It is state policy to protect these areas and to prevent the further degradation of water quality. Further development of non-water dependent structures and increase in lot coverage in these areas is presumed to be contrary to the policy of the state, and construction is

233

Pedro Bay Village Council (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Pedro Bay Village Council (Utility Company) Pedro Bay Village Council (Utility Company) Jump to: navigation, search Name Pedro Bay Village Council Place Alaska Utility Id 14633 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Residential School Commercial Average Rates Residential: $0.9080/kWh Commercial: $0.8510/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pedro_Bay_Village_Council_(Utility_Company)&oldid=411345

234

City of Larsen Bay, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Larsen Bay, Alaska (Utility Company) Larsen Bay, Alaska (Utility Company) Jump to: navigation, search Name City of Larsen Bay Place Alaska Utility Id 10716 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.3910/kWh Commercial: $0.3340/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Larsen_Bay,_Alaska_(Utility_Company)&oldid=40983

235

East Bay Municipal Util Dist | Open Energy Information  

Open Energy Info (EERE)

Bay Municipal Util Dist Bay Municipal Util Dist Jump to: navigation, search Name East Bay Municipal Util Dist Place California Utility Id 5571 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=East_Bay_Municipal_Util_Dist&oldid=41061

236

Wave-forced resuspension of upper Chesapeake Bay muds  

Science Journals Connector (OSTI)

Moored instruments were used to make observations of near bottom currents, waves, temperature, salinity, and turbidity at shallow (3.5 m and 5.5 m depth) dredged sediment disposal sites in upper Chesapeake Bay du...

Lawrence P. Sanford

1994-03-01T23:59:59.000Z

237

Seagrass habitat utilization by fishes in Christmas Bay, Texas  

E-Print Network [OSTI]

Fishes in Christmas Bay, TX were collected during April 1994 through March 1995 to: 1) assess temporal variability in their density, biomass, and diversity; 2) define the relationship between variability in fish population parameters...

Crotwell, Patricia Lynn

2012-06-07T23:59:59.000Z

238

Benthic exchange of nutrients in Galveston Bay, Texas  

Science Journals Connector (OSTI)

Nutrient regeneration rates were determined at three sites increasing in distance from the Trinity River, the main freshwater input source, to Galveston Bay, Texas, from 1994 through 1996. Diffusive fluxes ... be...

Kent W. Warnken; Gary A. Gill; Peter H. Santschi; Lawrence L. Griffin

2000-10-01T23:59:59.000Z

239

Rose-bay Willow-Herb and Honey Bees  

Science Journals Connector (OSTI)

... and even store surplus nectar from the rose-bay willow-herb. This plant also provides humble bees with food at a time when the next year's queens are being reared ...

1945-04-21T23:59:59.000Z

240

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Petroleum hydrocarbon-degrading bacteria in the Galveston Bay system  

E-Print Network [OSTI]

PETROLEUM HYDRQCARBOiV-DEGRADING BACTERIA IN THE GALVESTON BAY SYSTEM A Thesis by STEVEN JAMES SCHROPP Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIFNCE... December 1979 Major Subject: Biology PETROLEUM HYDROCARBON-DEGRADING BACTERIA IN THE GALVESTON BAY SYSTEM A Thesis by STEVEN JAMES SCHROPP Approved as to style and content by: (Co-Chairman of Committee) '( ~CA. ( -Chairman of Committee) (Head...

Schropp, Steven James

1979-01-01T23:59:59.000Z

242

Air and rain toxics deposition monitoring in Galveston Bay Texas  

SciTech Connect (OSTI)

In order to fulfill the mandates of the Great Waters Program and portions of the Clean Air Act Amendments of 1990, the Environmental Protection Agency (EPA) has initiated atmospheric monitoring research in important and representative water bodies, including coastal waters, for evidence of atmospheric deposition of pollutants. These pollutants include nutrients, trace metals, polynuclear aromatic hydrocarbons and PCBs. A site was established in Seabrook Texas on the western shore of Galveston Bay representative of southern, coastal water system. This study determines selected environmental pollutants of potential concern to Galveston Bay and other Gulf coastal waters. While information is currently being generated by other investigations in Galveston Bay, such as EPA EMAP, Galveston Bay National Estuary, NOAA Status and Trends and other programs on contaminants in sediments and organisms, little reliable data is available to assess atmospheric deposition. The importance of atmospheric deposition of contaminants to Galveston Bay, based on air and rain samples collected continuously from March 1995 to March 1996 will be presented and compared to the results from other Great Waters Program sites. These results are critical to the understanding of the relative importance of various contaminant inputs to Galveston Bay by estimating atmospheric depositional fluxes.

Wade, T.; Sweet, S.; Park, J.; Cifuentes, L.; Tindale, N.; Santschi, P.; Gill, G. [Texas A and M Univ., College Station, TX (United States). Coll. of Geosciences and Maritime Studies

1995-12-31T23:59:59.000Z

243

Air toxics deposition monitoring in Galveston Bay Texas  

SciTech Connect (OSTI)

In order to fulfill the mandates of the Great Waters Program and portions of the Clean Air Act Amendments of 1990, the Environmental Protection Agency (EPA) has initiated atmospheric monitoring research in important and representative water bodies, including coastal waters, for evidence of atmospheric deposition of pollutants. These pollutants include nutrients, trace metals, polynuclear aromatic hydrocarbons, PCBs and chlorinated pesticides. A site was established in Galveston Bay, Texas as a representative souther, coastal water system. This study determines selected environmental pollutants of potential concern to Galveston Bay and other Gulf coastal waters. While information is currently being generated by other investigations in Galveston Bay, such as EPA EMAP, Galveston Bay National Estuary, NOAA Status and Trends and other programs on contaminants in sediments and organisms, little reliable data is available to assess atmospheric deposition. This study is producing information on atmospheric deposition of pollutants to Galveston Bay, as well as on long range transport of pollutants to other water bodies. These research results are critical to the understanding of the relative importance of pollution inputs to Galveston Bay by estimating atmospheric depositional fluxes. The results from this Program will also be compared with the results from other Great Waters Program sites.

Wade, T.L.; Sweet, S.; Cifuentes, L.; Tindale, N.; Santschi, P.; Gill, G. [Texas A and M Univ., College Station, TX (United States)

1994-12-31T23:59:59.000Z

244

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

245

Russia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Russia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

246

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

247

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

248

Predicted survival of the bay anchovy (Anchoa mitchilli) in the heated effluent of a power plant on Galveston Bay, Texas  

Science Journals Connector (OSTI)

The bay anchovy (Anchoa mitchilli), collected from the intake canal of the P.H. Robinson Generating Station, Bacliff, Texas, were tested for 180 min at various constant temperatures during June 1974 through Septe...

Kyung S. Chung; Kirk Strawn

1982-01-01T23:59:59.000Z

249

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

250

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

251

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

252

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

253

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

254

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

255

From the Milwaukee/Waukesha Area: Take I-94 West. As you approach Madison, watch for Exit 4A LEFT  

E-Print Network [OSTI]

directions at right. From the Wausau/Stevens Point Area: Take I-39/Hwy. 51 South. At Portage, I-39 mergesFrom the Milwaukee/Waukesha Area: Take I-94 West. As you approach Madison, watch for Exit 4A LEFT. From Hwy 12/18, follow directions at right. From the Fond du Lac/Oshkosh/Appleton/Green Bay Area: Take

Wisconsin at Madison, University of

256

the Regional Development Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carry out this work, CPO partners carry out this work, CPO partners with the Los Alamos National Laboratory Foundation for education, the Regional Development Corporation for economic development, and the regional United Way organizations for community giving. Education Los Alamos National Security (LANS) invests more than $1 million each year to enhance regional educational opportunities in science, technology, engineering, and math (STEM) education. Education Focus Areas Our education commitments address four focus areas: * Workforce Development * Student Internships * Teacher and Faculty Professional Development * Public Understanding of Science In 2011, more than 1,100 students

257

Lower Flathead System Fisheries Study, South Bay of Flathead Lake, Volume III, 1983-1987 Final Report.  

SciTech Connect (OSTI)

The Lower Flathead System Fisheries Study assessed the effects of Kerr Dam operation on the fisheries of the lower Flathead ecosystem. South Bay, the southern most lobe of Flathead Lake, is the most extensive area of shallow water, and therefore, most effected by changes in lake levels. This study began in January of 1984 and was completed in early 1987. Vegetative and structural cover are relatively limited in South Bay, a condition which could contribute to lower recruitment for some fish species. Our data show that the study area contained 0.04% structural and 5.4% vegetative cover in June at full pool. Both figures are less than 1.0% at minimum pool. Structural complexity mediates the ecological interactions between littoral zone fish and their prey, and can affect local productivity and growth in fish. Structural complexity may also be important to overwinter survival of young perch in Flathead Lake. Winter conditions, including ice cover and fall drawdown, seasonally eliminate the vegetative portion of most rooted macrophytes in South Bay. This results in substantial loss of what little structural cover exists, depriving the perch population of habitat which has been occupied all summer. The loss of cover from draw-down concentrates and probably exposes perch to greater predation, including cannibalism, than would occur if structural complexity were greater. 33 refs., 10 figs., 5 tabs.

Cross, David; Waite, Ian

1988-06-01T23:59:59.000Z

258

The Cost of the Technological Sublime: Daring Ingenuity and the new San Francisco-Oakland Bay Bridge  

E-Print Network [OSTI]

Cruz. Unity Towers East Bay Bridge, New East Span ProposalSubmitted to MTC Bay Bridge Design Task Force, 6 May.Francisco- Oakland Bay Bridge, T.Y. Lin International and

Frick, Karen Trapenberg

2008-01-01T23:59:59.000Z

259

Experimental effects of black brant herbivory and fecal addition on the eelgrass animal community in Humboldt Bay, California, USA  

E-Print Network [OSTI]

HUMBOLDT BAY, CALIFORNIA, USA By Adam J. Frimodig A ThesisHUMBOLDT BAY, CALIFORNIA, USA By Adam J. Frimodig ApprovedHumboldt Bay, California, USA Adam J. Frimodig Seagrass beds

Frimodig, Adam J.

2007-01-01T23:59:59.000Z

260

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

262

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

263

Outside a Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Outside a Geothermal Region Outside a Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do not fall within an existing geothermal region. As a number of these accumulate on OpenEI, new regions can be created and areas moved into those regions accordingly. Geothermal Regions Map[1] References ↑ "Geothermal Regions Map" Geothermal Region Data State(s) Wyoming, Colorado Area USGS Resource Estimate for this Region Identified Mean Potential Undiscovered Mean Potential Planned Capacity Planned Capacity Plants Included in Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Outside a Geothermal Region

264

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

265

coherence area  

Science Journals Connector (OSTI)

1....In an electromagnetic wave, such as a lightwave or a radio wave, the area of a surface (a) every point on which the surface is perpendicular to the direction of propagation, (b) over which the e...

2001-01-01T23:59:59.000Z

266

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

268

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

269

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

270

Hydrodynamic models for San Francisco Bay: An overview of what we can model, when  

E-Print Network [OSTI]

on the domain (SF Bay) #12;A Grid: Northern SF Bay/Golden Gate ChuaandFringer(2011) Finest resolution: 10 m average Thermal front near Dumbarton Bridge #12;More complicated models: Sediment transport in South SF

271

E-Print Network 3.0 - andrew bay florida Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Florida Bay... Interagency Florida Bay Science Program by Donald F. Boesch, Neal E. Armstrong, James E. Cloern, Linda A... . Deegan, Steven C. McCutcheon, Ronald D. Perkins, and...

272

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12 N Collier N Charlotte S Charlotte NOAA Harmful Algal Bloom Operational Forecast System Southwest

273

Galveston Bay Biodiesel LP GBB | Open Energy Information  

Open Energy Info (EERE)

Galveston Bay Biodiesel LP GBB Galveston Bay Biodiesel LP GBB Jump to: navigation, search Name Galveston Bay Biodiesel LP (GBB) Place Houston, Texas Product Developer of a 75.8m litre per year biodiesel facility on the Galveston Bulk Terminal site, located on Galveston Island. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Chesapeake Bay Restoration Act (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Restoration Act (Maryland) Restoration Act (Maryland) Chesapeake Bay Restoration Act (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment This legislation sets limits on development near Chesapeake Bay as well as on dredging and the deposition of dredged material into the bay. The legislation establishes the Cox Creek Citizens Oversight Committee (now mostly defunct); the Hart-Miller-Pleasure Island Oversight Committee, which provides oversight and monitoring of the future development, use, and

275

EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun  

Broader source: Energy.gov (indexed) [DOE]

4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, 4: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal consisting of two floating liquefaction, storage and offloading units and a 29-mile pipeline header system to transport natural gas from existing pipeline systems to the LNG terminal facilities. PUBLIC COMMENT OPPORTUNITIES None at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 2013 EIS-0494: Notice of Intent to Prepare an Environmental Impact Statement

276

Winchester Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winchester Bay, Oregon: Energy Resources Winchester Bay, Oregon: Energy Resources (Redirected from Winchester Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770608°, -124.1748369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770608,"lon":-124.1748369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

City of Sturgeon Bay, Wisconsin (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sturgeon Bay, Wisconsin (Utility Company) Sturgeon Bay, Wisconsin (Utility Company) Jump to: navigation, search Name Sturgeon Bay City of Place Wisconsin Utility Id 18249 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service TOU - 7am - 7pm Commercial General Service TOU - 8am - 8pm Commercial General Service TOU - 9am - 9pm Commercial General Service Three-phase Commercial General Service Three-phase TOU - 7am - 7pm Commercial

278

Bay Resource Management Center Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Center Biomass Facility Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass Facility Type Municipal Solid Waste Location Bay County, Florida Coordinates 30.1805306°, -85.684578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1805306,"lon":-85.684578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network [OSTI]

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

280

Population and Production Estimates for Decapod Crustaceans in Wetlands of Galveston Bay, Texas  

E-Print Network [OSTI]

Population and Production Estimates for Decapod Crustaceans in Wetlands of Galveston Bay, Texas in regularly flooded wetlands of lower Galveston Bay, Texas, with data on small-scale (1�50- m) distribution sizes within shallow wetland habitats of the Galveston Bay system in Texas by combining regression

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FACTORS AFFECTING MACROPHYTE AND FISH DISTRIBUTION IN COASTAL WETLANDS OF GEORGIAN BAY  

E-Print Network [OSTI]

FACTORS AFFECTING MACROPHYTE AND FISH DISTRIBUTION IN COASTAL WETLANDS OF GEORGIAN BAY #12;FACTORS AFFECTING MACROPHYTE AND FISH DISTRIBUTION IN COASTAL WETLANDS OF GEORGIAN BAY By MAJA CVETKOVIC, B and fish distribution in coastal wetlands of Georgian Bay AUTHOR: Maja Cvetkovic, B.Sc. (Mc

McMaster University

282

Final Independent External Peer Review for the Biscayne Bay Coastal Wetlands Project  

E-Print Network [OSTI]

Final Independent External Peer Review for the Biscayne Bay Coastal Wetlands Project Implementation-TERM ANALYSIS SERVICE (STAS) on Final Independent External Peer Review Report Biscayne Bay Coastal Wetlands COASTAL WETLANDS PROJECT IMPLEMENTATION REPORT EXECUTIVE SUMMARY The Biscayne Bay Coastal Wetlands (BBCW

US Army Corps of Engineers

283

It is a unique programme of its kind not only in this country but also in the whole of South East Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & Technology, the programme provides research and development exper  

E-Print Network [OSTI]

Asian region. Besides offering M.Tech and Ph.D degrees in the area of Nuclear Engineering & TechnologyDepartmentofAtomicEnergy. Contact Head Nuclear Engineering & Technology Programme Indian Institute of Technology Kanpur Kanpur - 208.iitk.ac.in/net/ Nuclear Engineering & Technology Programme IITK Indian Institute of Technology Kanpur 3D Tomographic

Srivastava, Kumar Vaibhav

284

Bay County, Florida waste-to-energy facility air emission tests  

SciTech Connect (OSTI)

The Bay County Resource Management Center is located 10 miles Northeast of Panama City, Florida. Panama City is a resort community approximately 100 miles east of Pensacola, Florida, on the northwest coast of Florida's panhandle. The average population of this area is approximately 115,000. The average quantity of municipal solid (MSW) waste generated in Bay County during most of the year is 300 tons per day. However, during the summer months when the population increases to more than 150,000 the community must handle in excess of 350 tons of MSW per day. The County decided to design the facility to ultimately burn 510 tons of MSW to allow additional waste to be processed as the population and quantity of waste increases. Until other sources of MSW are procured, the facility is supplementing the 350 tpd of MSW with about 160 tpd of wood waste.The facility began initial start-up, equipment check-out, and instrument calibration in February 1987. Plant shakedown and systems operational checks were made from February through May. This paper discusses emission testing which was conducted from late April through early June. The emission compliance tests were completed on June 4-5, 1987. The facility acceptance test and emission compliance test were completed five months ahead of the original project schedule.

Beachler, D.S.; Pompelia, D.M.; Weldon, J. (Westinghouse Electric Corp., Pittsburgh, PA (USA))

1988-01-01T23:59:59.000Z

285

Environmental management inventory of Galveston Bay. Final report  

SciTech Connect (OSTI)

The purpose of the report is to provide an inventory of those agencies and laws along with their associated regulations, that constitute the regulatory framework for environmental protection of Galveston Bay, one of the estuaries of national significance covered under the 1987 law. The inventory is largely descriptive, serving as the first phase in a larger project which will ultimately evaluate the effectiveness of the existing regulatory framework. That assessment in turn will form the basis for the Comprehensive Conservation and Management Plan as well as for policy recommendations to improve the coordination of environmental management of the Bay.

Hadden, S.G.

1992-10-01T23:59:59.000Z

286

Biomarker sensitivity for polynuclear aromatic hydrocarbon contamination in two marine fish species collected in Galveston Bay, Texas  

SciTech Connect (OSTI)

The Galveston Bay estuary exhibited a contamination gradient for polynuclear aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons, and the comparative sensitivity of various biomarkers in fish from different bay locations were determined. Two fish species, hardhead catfish (Arius felis) and Atlantic croaker (Micropogon undulatus), were collected from four stations where sediment total PAHs ranged from 68 > 1,000 ng/g. The induction of cytochrome P4501A-(CYP1A)-dependent hepatic ethoxyresorufin-O-deethylase (EROD) activity, CYPIA mRNA levels, or CYPIA immunoreactive protein in hardhead catfish was highly variable in the field-collected fish and in fish dosed with up to 15 mg/kg benzo[a]pyrene (BaP). In contrast, significant differences were seen in biliary concentrations of naphthalene, phenanthrene, and BaP metabolites in hardhead catfish from polluted versus less polluted areas. In croakers taken from the same four Galveston Bay locations, EROD and glutathione S-transferase activities, immunoreactive CYP1A protein, biliary PAH metabolites, and PAH-DNA adducts were higher at the contaminated stations compared with less polluted locations. These studies suggest that the croaker is a good species for monitoring contaminants that induce CYP1A-mediated responses. Biliary PAH metabolites and PAH-DNA adducts were also sensitive indicators of exposure to PAH contamination in both species of fish.

Willett, K.L.; Steinberg, M.A.; Safe, S.H. [Texas A and M Univ., College Station, TX (United States). Veterinary Physiology and Pharmacology; McDonald, S.J.; Beatty, K.B.; Kennicutt, M.C. [Geochemical and Environmental Research Group, College Station, TX (United States)

1997-07-01T23:59:59.000Z

287

Radiological Areas  

Broader source: Energy.gov (indexed) [DOE]

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

288

Sacramento Area Voltage Support - Environment - Sierra Nevada...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sierra Nevada Region (SNR) operates and maintains more than 1,200 miles of transmission lines. These transmission lines are interconnected to other Sacramento area...

289

Bayes Net Toolbox practical Charles Fox, University of Sheffield  

E-Print Network [OSTI]

this network (which is a Directed Acyclic graph, or 'DAG'), we create an adjacency matrix: N = 4 %the number of nodes in the network dag = zeros(N,N) %connectivity matrix for the net (directed acyclic graph) C = 1 matlab >>cd bayesnet >>cd FullBNT1.0.4/ >>addpath(genpathKPM(pwd)) Creating your first Bayes net

Barker, Jon

290

Covered Product Category: Industrial Luminaires (High/Low Bay)  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

291

Empirical Bayes approach to improve wavelet thresholding for image noise  

E-Print Network [OSTI]

Empirical Bayes approach to improve wavelet thresholding for image noise reduction Maarten Jansen thresholding for image noise reduction Maarten Jansen Adhemar Bultheel Report TW 296, October 1999 Department to improve wavelet thresholding for image noise reduction Maarten Jansen and Adhemar Bultheel Department

Jansen, Maarten

292

EA-1995: Trestle Bay Ecosystem Restoration Project, Clatsop County, Oregon  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers is preparing, with DOEs Bonneville Power Administration (BPA) as a cooperating agency, an EA that evaluates the potential environmental impacts of a proposal to improve estuary habitat in Trestle Bay. BPAs proposed action is to partially fund the proposal.

293

Mission Bay Housing Services Bicycle Storage Procedures and Policies  

E-Print Network [OSTI]

Mission Bay Housing Services Bicycle Storage Procedures and Policies Procedures All bicycles must Garage. To contact the office call: (415) 476-1511. You will be issued a bicycle sticker, which should be displayed on your bicycle at all times. Once your bike has been registered, visit the Housing Services

Yamamoto, Keith

294

Measuring Heterogeneity in Forensic Databases Using Hierarchical Bayes Models  

E-Print Network [OSTI]

Measuring Heterogeneity in Forensic Databases Using Hierarchical Bayes Models By Kathryn Roeder, as currently defined, do not uniquely identify individuals. For criminal cases involving DNA evidence, forensic­ ing profiles are based on reference populations maintained by forensic testing laboratories. Each

295

Studies on the anatomy and ecological distribution of Dentalium texasianum Philippi 1848 in West Bay of the Galveston Bay complex (Mollusca: scaphopoda  

E-Print Network [OSTI]

, L''uis pass . -oz~ Trini River ~p ~~ xcv at Hwy 46 Fnckinson P ay Lower ~C raise ton Bay (~ 30 6 end ot Seawall T. P) We t' Beach Foti'ets Isl J 9d'45'W 9' 30'W 12 bottom. Penetration was only several centimeters, depending... included surface salinity values from West Bay, East Bay, and Lower Galveston Bay which were taken during three days in March, 1926 (Table 1, pg. 20) . Hopkins (1931) pub- lished water temperature, salinity, and pH values from March to August, 1929...

Peterson, Larry Randal

2012-06-07T23:59:59.000Z

296

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

297

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

298

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

299

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

300

Las Tres Virgenes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

(0) 10 References Area Overview Geothermal Area Profile Location: Baja California Sur, Mexico Exploration Region: Baja Peninsula GEA Development Phase: Coordinates:...

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Superfund Record of Decision (EPA Region 1): Fort Devens-Sudbury Training Annex (areas of contamination A4, A7, and A9), Middlesex County, MA, September 30, 1997  

SciTech Connect (OSTI)

The US Army Sudbury Annex (the Annex) is a National Priorities List (NPL) site under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This Record of Decision addresses past releases of contaminants to all media at area of contamination (AOC) A4-Waste Dump, and past releases to groundwater at AOC A7-Old Gravel Pit Landfill and AOC A9-Petroleum, Oil, and Lubricant (POL) Burn Area.

NONE

1998-01-01T23:59:59.000Z

302

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

303

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

304

Plankton blooms, ocean circulation and the European slope current: Response to weather and climate in the Bay of Biscay and W English Channel (NE Atlantic)  

Science Journals Connector (OSTI)

Abstract The flow of upper-layer surface water and circulation for the Bay of Biscay, continental slope and in the wider region of the NE Atlantic is presented, as well as the seasonality of flow and internal tides. The marine plankton environments of Biscay Ocean, Biscay Eddies, Biscay Slope and Biscay Shelf are defined. The Shelf region (Armorican and Celtic) is further divided into Stratified Shelf, Frontal and Tidally Mixed. Seasonal distributions of chlorophyll a are given for all environment from in situ measurements and remote sensing data. Mixing and stabilisation of surface water in the euphotic layer for the start of the spring bloom using in situ profiling measurements is examined. Some regional responses for the slope current, dinoflagellate blooms and interannual variations in spring diatom numbers with respect to weather and climate in the Bay of Biscay and around the British Isles are suggested and discussed. An example of the Eastern European Ocean Margin continental slope response to winter weather (sea level atmospheric pressure forcing) resulting in warm winter water in the southern Bay of Biscay (Navidad, with eddy production) and off the Shetland continental slopes (the warm-water supply route to the Arctic) is given from the slope climate observation series.

Robin D. Pingree; Carlos Garcia-Soto

2014-01-01T23:59:59.000Z

305

Mercury and Methylmercury in the San Francisco Bay area: land-use impact and indicators  

E-Print Network [OSTI]

R.P. , and Flegal A. R. 2003, Mercury speciation in the SanAbdrashitova S. A. , 2001, Mercury in Aquatic Environment: A222 Hydrology for Planner Mercury and Methylmercury in the

Kim, Hyojin

2008-01-01T23:59:59.000Z

306

L and S Bands Spectrum Survey in the San Francisco Bay Area  

E-Print Network [OSTI]

from a constellation of some 29 satellites (in January of 2004) that are in medium Earth orbit (MEO and cordless telephones. It also contains radio energy f

Stanford University

307

Biomass Energy R&D in the San Francisco Bay Area  

SciTech Connect (OSTI)

Biomass is plant matter such as trees, grasses, agricultural crops or other biological material. It can be used as a solid fuel, or converted into liquid or gaseous forms, for the production of electric power, heat, chemicals, or fuels. There are a number of ways of getting energy from biomass, and a number of factors influence the efficiency of the conversion process. All biomass can be easily combusted. The heat of combustion can be used as heat, or can be used to run gas/steam turbines to produce electricity. However, most biomass combustion processes are inefficient and environmentally non-benign. The main pollutants from direct biomass combustion are tars, particulates, and VOCs. Biodiesels can be made from oils obtained from plants/crops such as soybean, peanuts and cotton. The oils from these sources are mainly triglycerides of fatty acids and not directly suitable as diesel substitutes. Transesterification processes convert the triglycerides into simple esters of the corresponding fatty acids (for example, Fatty Acid Methyl Ester or FAME), which can be directly substitutes for diesel fuels. Starches, sugars and cellulose can be fermented to produce ethanol, which can be added to gasoline, or used directly as an engine fuel. Fermentation of starches and sugars is established technology, practiced for thousands of years. Fermentation of cellulose to make ethanol is relatively harder, requiring additional intermediate steps to hydrolyze the cellulose first by adding acids or by raising temperature. Forestry wastes predominantly comprise cellulose and lignin. Lignin cannot be fermented using the current bio-organisms, and, as mentioned above, even cellulose is difficult to ferment directly. In such cases, a suite of alternative technologies can be employed to convert the biomass into liquid fuels. For example, the biomass can be gasified with the use of air/oxygen and steam, the resultant syngas (mixture of hydrogen and carbon monoxide) can be cleaned to remove tars and particulates, the gas can be shifted to obtain the proper balance between hydrogen and carbon monoxide, and the balanced gas can be converted into either methanol or other hydrocarbons with the use of Fischer-Tropsch catalysts. The liquid fuels thus produced can be transported to the point of use. In addition, they can be reformed to produce hydrogen to drive fuel cells. In addition to agriculture and forestry, a third, and significant, source for biomass is municipal waste. The biomass component of municipal wastes consists mainly of cellulose (paper products and yard wastes) and lignin (yard wastes). This waste can be combusted or gasified, as described above. All the technologies mentioned above are relatively mature, and are being practiced in some form or another. However, there are other technologies that may be promising, yet present significant challenges and may require more work. An example of this is the use of bacteria to use light to decompose water to yield hydrogen.

Upadhye, R

2005-12-07T23:59:59.000Z

308

Climate Change Adaptation for Local Water Management in the San Francisco Bay Area  

E-Print Network [OSTI]

water supply portfolios and operations. An engineering economic model, CALVIN, which optimizes water supply of a severely warm dry climate and substantial sea level rise and to identify economically), more expensive water supply alternatives such as water recycling and desalination, and some increases

Lund, Jay R.

309

Polychlorinated biphenyls in the exterior caulk of San Francisco Bay Area buildings, California, USA  

E-Print Network [OSTI]

(plasticizer in chlorinated plastics, rubber, sealants and caulk) (Erickson and Kaley, 2011). The production. Despite the ban on production and new use of PCBs in the United States in 1979, a number of fish

310

Field study of an unconfined dredge spoil disposal area in Galveston Bay, Texas  

E-Print Network [OSTI]

to the channel, also that spoil placed in one section of an existing disposal site would eventually return to the channel. Another model study, that of Human (1963), used crushed gilso- nite, an oil shale, to simulate shoaling and spoil movements... to the channel, also that spoil placed in one section of an existing disposal site would eventually return to the channel. Another model study, that of Human (1963), used crushed gilso- nite, an oil shale, to simulate shoaling and spoil movements...

Bassi, David Edward

2012-06-07T23:59:59.000Z

311

Market Channels and Value Added to Fish Landed at Monterey Bay Area Ports  

E-Print Network [OSTI]

Barbara, CA: California Seafood Council. \\ Skinner, Linda.1996. The Seafood Handbook: Everything You Needto Know to Buy Seafood. Journal Publications: Seattle.

Pomeroy, Caroline; Dalton, Michael

2005-01-01T23:59:59.000Z

312

Market Channels and Value Added to Fish Landed at Monterey Bay Area Ports  

E-Print Network [OSTI]

local harbormasters, seafood buyers and vendors whopackagers, distributors and seafood retailers. Anotherrevenues, and local retail seafood prices. Processors were

Pomeroy, Caroline; Dalton, Michael

2007-01-01T23:59:59.000Z

313

Aerial Survey of Bay Area Planned Aug. 27 - Sept. 1 | National...  

National Nuclear Security Administration (NNSA)

by local, state and federal entities. San Francisco Police Department Media Relations Unit: sfpdmediarelations@sfgov.org Oakland Police Department Public Information Office:...

314

Iraqi Exiles Find New Lives in Bay Area, Reflect on War's Cost  

E-Print Network [OSTI]

passed since the U. S. invasion of Iraq. Do you think theinvasion was worth it? Is Iraq a better place today, and areU.S. should have liberated Iraq a long time ago. I think it

Ahmed, Huda

2010-01-01T23:59:59.000Z

315

Organ Trade : sea level rise adaptation strategies for the San Francisco Bay Area  

E-Print Network [OSTI]

It is not only coastal conditions, but inland ones, that can inform an approach to and process of wetland adaptation in the face of sea level rise. A particular watershed clip in Alameda County, located in South San Francisco ...

Ungureanu, Cristina

2010-01-01T23:59:59.000Z

316

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

317

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

318

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

319

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

320

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

322

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

323

Regional Purchasing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Purchasing Regional Purchasing Regional Purchasing Pursuant to Appendix M of Prime Contract No. DE-AC52-06NA25396 between DOE/NNSA and Los Alamos National Security, LLC (LANS), LANS is committed to building a strong supplier base with Northern New Mexico businesses and the local Native American pueblos in the purchases of goods and services. Contact Small Business Office (505) 667-4419 Email We seek out and utilize known Northern New Mexico business as suppliers The Northern New Mexico counties included are Los Alamos Santa Fe Rio Arriba Taos Mora San Miguel Sandoval The eight regional pueblos included are Nambe Ohkay Owingeh (formerly known as San Juan) Picuris Pojoaque San Ildefonso Santa Clara Taos Tesuque When the Laboratory cannot identify regional firms, it will expand its

324

Regional Maps  

Gasoline and Diesel Fuel Update (EIA)

1 East Central Area Reliability Coordination Agreement (ECAR) 1 East Central Area Reliability Coordination Agreement (ECAR) 2 Electric Reliability Council of Texas (ERCOT) 3 Mid-Atlantic Area Council (MAAC) 4 Mid-America Interconnected Network (MAIN) 5 Mid-Continent Area Power Pool (MAPP) 6. New York (NY) Southern Nevada (RA) 7. New England (NE) 8 Florida Reliability Coordinating Council (FL) 9 Southeastern Electric Reliability Council (SERC) 10 Southwest Power Pool (SPP) 11 Northwest Power Pool (NWP) 12. Rocky Mountain Power Area, Arizona, New Mexico, and 13 California (CA) Source: Energy Information Administration. Office of Integrated Analysis and Forecasting Figure 3. Petroleum Administration for Defense Districts Source: Energy Information Administration. Office of Integrated Analysis and Forecasting AK WA NV

325

Lakes by the Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

the Bay, Florida: Energy Resources the Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5723287°, -80.3253308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5723287,"lon":-80.3253308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Suttons Bay, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suttons Bay, Michigan: Energy Resources Suttons Bay, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9766663°, -85.6506387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9766663,"lon":-85.6506387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Half Moon Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, California: Energy Resources Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4635519°, -122.4285862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4635519,"lon":-122.4285862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

MHK Projects/Whiskey Bay | Open Energy Information  

Open Energy Info (EERE)

Whiskey Bay Whiskey Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4014,"lon":-91.6961,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

329

Discovery Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Discovery Bay, California: Energy Resources Discovery Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.9085357°, -121.6002291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9085357,"lon":-121.6002291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Morro Bay, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morro Bay, California: Energy Resources Morro Bay, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3658075°, -120.8499013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3658075,"lon":-120.8499013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Highlights » 2013 Science Highlights » 2013 » The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » June 2013 The Daya Bay Reactor Neutrino Experiment Sees Evidence that Electron Neutrinos Turn into Muon Neutrinos Surprisingly large effect greatly increases the probability that new neutrino experiments will be able to see the differences between matter and

332

Kawela Bay, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kawela Bay, Hawaii: Energy Resources Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333°, -158.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.7033333,"lon":-158.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Put-in-Bay, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Put-in-Bay, Ohio: Energy Resources Put-in-Bay, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6542158°, -82.8207429° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6542158,"lon":-82.8207429,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Cutler Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cutler Bay, Florida: Energy Resources Cutler Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.5783°, -80.3377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.5783,"lon":-80.3377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

MHK Projects/Swansea Bay | Open Energy Information  

Open Energy Info (EERE)

Swansea Bay Swansea Bay < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5818,"lon":-3.89843,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

336

Runaway Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Runaway Bay, Texas: Energy Resources Runaway Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.1678941°, -97.8783696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1678941,"lon":-97.8783696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Tonka Bay, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tonka Bay, Minnesota: Energy Resources Tonka Bay, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9085741°, -93.5930133° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9085741,"lon":-93.5930133,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Hampton Bays, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampton Bays, New York: Energy Resources Hampton Bays, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8689892°, -72.5175893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8689892,"lon":-72.5175893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

South Bay, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bay, Florida: Energy Resources Bay, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6639559°, -80.7161701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6639559,"lon":-80.7161701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Nassau Bay, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nassau Bay, Texas: Energy Resources Nassau Bay, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5446753°, -95.0910413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5446753,"lon":-95.0910413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - Green Bay Notes - FINAL.doc  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) TRANSPORTATION EXTERNAL COORDINATION (TEC) WORKING GROUP MEETING September 13-14, 2006 Green Bay, WI Welcome and Meeting Overview The U.S. Department of Energy (DOE), Transportation External Coordination Working Group (TEC) held its 26 th meeting on September 13-14, 2006, in Green Bay, WI. One- hundred thirty-two participants, representing national, State, Tribal, and local government; industry; professional organizations; and other interested parties, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved coordination between DOE,

342

Buzzards Bay, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Buzzards Bay, Massachusetts: Energy Resources Buzzards Bay, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7453829°, -70.618087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7453829,"lon":-70.618087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Microsoft Word - P-12711 Cobscook Bay Project EA.doc  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PROJECT PILOT LICENSE Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 (DOE/EA1916) Maine Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 January 2012 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

344

Tampa Bay Designated as the Newest Clean Cities Coalition  

Office of Energy Efficiency and Renewable Energy (EERE)

This week, Clean Cities welcomed another major partner in the effort to reduce our nations dependence on petroleum the brand-new Tampa Bay Clean Cities Coalition. Through its network of nearly 100 coalitions across the country, the Energy Departments Clean Cities program brings together stakeholders to increase the use of alternative fuel and advanced technology vehicles, reduce idling, and improve fuel economy.

345

Air pollutant monitoring for the East Bay Children's Respiratory Health Study  

SciTech Connect (OSTI)

This report describes the methodology and presents the summary results of the air pollutant monitoring program conducted by Lawrence Berkeley National Laboratory in support of the East Bay Children's Respiratory Health Study. The full study is examining the effects of chronic exposure to traffic-related pollutants on respiratory health among 3rd and 4th grade children attending ten neighborhood elementary schools in the San Francisco East Bay Area (Hayward, San Leandro and Oakland, CA). The demographically similar schools are located at varying distances from the I-880 and CA-92 freeways. Several schools were selected because they are located within 300 m in the predominant downwind direction (east) from either of the freeways. Measurements of multiple pollutants were made outdoors at the schools over 1-2 week intervals for 14 weeks in spring and eight weeks in fall 2001 using a custom-designed and validated package of commercially available monitoring equipment. Particulate matter was sampled over all hours (24 h per day) or during schools hours only with battery-operated programmable pumps and inlet devices for PM{sub 10} and PM{sub 2.5}. These pumps were modified to allow for up to 10 days of continuous operation. Fine particle mass and black carbon (BC) were determined from the collected filters. Nitrogen oxides (NO{sub x} and NO{sub 2}) were measured with passive samplers. Carbon monoxide (CO) was measured continuously with an electrochemical sensor. Gasoline-related volatile organic compounds (VOCs) were measured with passive samplers during three 4-week intervals in spring 2001 and two 4-week periods in early 2002. All samplers were deployed in a metal cabinet located outside at each school. Ranges of study average pollutant concentrations (all-hours) at the ten individual schools were: NO{sub x}, 33-68 ppb; NO{sub 2}, 19-31 ppb; PM{sub 10} mass, 27-32 {micro}g/m{sup 3}; PM{sub 2.5} mass, 12-15 {micro}g/m{sup 3}; and BC associated with PM{sub 2.5}, 0.6-1.0 {micro}g/m{sup 3}. Although statistical analysis of the data is yet to be performed, some general observations can be made. Absolute pollutant levels varied by season and week, but the simultaneous sampling design allowed for comparisons of concentrations among schools during each interval. Pollutant concentrations at each school were normalized to the sampling period averages among all schools. The normalized concentrations were generally consistent at each school throughout the entire study, suggesting that measured differences represent ongoing conditions and chronic exposures in the vicinities of the schools. Substantially elevated concentrations of NO{sub x}, NO{sub 2}, and BC, and somewhat elevated concentrations of PM{sub 2.5} were observed at one school located less than 100 meters to the east of I-880. Normalized concentrations of NO{sub x}, NO{sub 2}, and BC were also higher at the three other ''nearby and downwind'' schools relative to those located far from any freeway or other major traffic source. An ancillary monitoring program was implemented to examine the correlation between school-based pollutant measurements and measurements throughout the neighborhoods adjacent to three of the schools. Volunteer households were obtained from among the families of participating schoolchildren. Concentrations of NO{sub x} and NO{sub 2} were measured with passive samplers outside the homes of these volunteers during one of two 1-week periods in spring 2002. Simultaneous measurements were conducted at all ten of the schools and a central monitoring station during each week. The neighborhoods surrounding two schools were predominantly upwind of the I-880 freeway, while the neighborhood surrounding the other school was downwind from I-880. The overall distribution of concentrations observed for the residences near the downwind school appeared to be substantially higher than the regional background concentrations. The variability observed within the neighborhoods appeared to be, at least in part, explained by the proximity of individual residences to the freeway or

Singer, Brett C.; Hotchi, Toshifumi; Hodgson, Alfred T.

2002-11-01T23:59:59.000Z

346

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

347

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect (OSTI)

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

348

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

Sierra Nevada Region Sierra Nevada Region Categorical Exclusion Determinations: Western Area Power Administration-Sierra Nevada Region Categorical Exclusion Determinations issued by Western Area Power Administration-Sierra Nevada Region. DOCUMENTS AVAILABLE FOR DOWNLOAD July 3, 2013 CX-010684: Categorical Exclusion Determination Cottonwood-Roseville Optical Groundwire Project CX(s) Applied: B4.6, B4.7, B4.11, B4.13 Date: 07/03/2013 Location(s): California Offices(s): Western Area Power Administration-Sierra Nevada Region September 15, 2011 CX-006896: Categorical Exclusion Determination Maxwell - O'Banion Optical Ground Wire CX(s) Applied: B1.7, B4.6, B4.7, B4.11 Date: 09/15/2011 Location(s): Sutter County, California Office(s): Western Area Power Administration-Sierra Nevada Region, National

349

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

Upper Great Plains Region Upper Great Plains Region Categorical Exclusion Determinations: Western Area Power Administration-Upper Great Plains Region Categorical Exclusion Determinations issued by Western Area Power Administration-Upper Great Plains Region. DOCUMENTS AVAILABLE FOR DOWNLOAD March 22, 2013 CX-010553: Categorical Exclusion Determination Appledorn Substation Construction CX(s) Applied: B4.11 Date: 03/22/2010 Location(s): Minnesota Offices(s): Western Area Power Administration-Upper Great Plains Region December 3, 2012 CX-009534: Categorical Exclusion Determination Construct New Transmission Line and Footings, Garrison Switchyard CX(s) Applied: B4.13 Date: 12/03/2012 Location(s): North Dakota Offices(s): Western Area Power Administration-Upper Great Plains Region October 11, 2011

350

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

Desert Southwest Region Desert Southwest Region Categorical Exclusion Determinations: Western Area Power Administration-Desert Southwest Region Categorical Exclusion Determinations issued by Western Area Power Administration-Desert Southwest Region. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010882: Categorical Exclusion Determination Liberty-Parker Dam #2 230-Kilovolt Transmission Line, Optical Power Ground Wire Repair CX(s) Applied: B4.7 Date: 08/22/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region August 12, 2013 CX-010883: Categorical Exclusion Determination PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at Structure No. 28-2 With NCI Type Polymers CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

351

The integration of GIS into demographic surveying of informal settlements: The case of Nelson Mandela Bay Municipality, South Africa  

Science Journals Connector (OSTI)

Abstract A number of informal areas in Nelson Mandela Bay Municipality, South Africa have experienced rapid expansion over the past decade. Census data available for these areas is outdated and does not provide enough information for local authorities to plan tasks such as service delivery management and resource allocation. In this study, a GIS based demographic study of informal settlements within Nelson Mandela Bay was undertaken. The study aimed to significantly improve the collection, analysis, interpretation, display and management of demographic survey data and provide the accurate and necessary updates required between census collections. Data relating to informal settlements were captured from 1996 aerial photographs and 2007 satellite imagery, and demographic data were collected from field surveys. Specific demographic trends identified through spatial analyses included a 71% and 109% decline and increase in informal and formal dwellings respectively. A significant increase in backyard shacks paradoxically came with the development of many formal structures in settlements. The capture and collection of data at household level and creation of customized boundaries for informal settlements facilitated analyses independent of any fixed set of areal units. The study concluded that GIS based demographic studies are vital for providing the necessary updates to decennial censuses for municipalities, particularly in urban environments of developing countries.

V. Kakembo; S. van Niekerk

2014-01-01T23:59:59.000Z

352

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

353

Regional Inventories  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This year has not started well for gasoline inventories, with inventories being low across regions of the country. The Midwest region (PADD II) had been running lower than most regions, but began to catch up during the last week in April. Gasoline inventories ran about 9% below their 5-year average for this time of year and about 4% below where they were last year. The recent refinery problems in the Midwest, though, could erase some of that recovery. The impacts of Tosco's Wood River refinery and Marathon's St Paul refinery are not fully realized. But inventories were also precariously low along the East Coast (PADD I) and are extremely low in the Rocky Mountain region (PADD IV), although the size of this market mitigates any national impact. While the

354

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region Details Areas (0) Power...

355

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt056gilbert2010p.pdf More Documents & Publications Midwest Region Alternative Fuels Project Midwest Region Alternative Fuels Project Chicago Area Alternative...

356

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

357

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

358

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

359

Investigation of Quaternary eustatic shorelines in the Galveston Bay Region, Texas  

E-Print Network [OSTI]

) SOUTH FRAVCE (D pcreU MOROC. CO (Cho hen Ruhlatan C gout, Ze ocr) IBrc I, ZI I I) (htour Zc n ) ORTU- (FRSEY CAL VURTH I'RANCE )Dc L . no)he, Z unrr SOUTH DOWNS (Sp 1. Zr'r ) HAMP. 9'HHIE H urn ) DEVON (Cree ) LO AND I. or... ) SOUTH FRAVCE (D pcreU MOROC. CO (Cho hen Ruhlatan C gout, Ze ocr) IBrc I, ZI I I) (htour Zc n ) ORTU- (FRSEY CAL VURTH I'RANCE )Dc L . no)he, Z unrr SOUTH DOWNS (Sp 1. Zr'r ) HAMP. 9'HHIE H urn ) DEVON (Cree ) LO AND I. or...

Henry, Vernon James

2012-06-07T23:59:59.000Z

360

Ecology of recent ostracodes of the Todos Santos Bay region, Baja California, Mexico  

E-Print Network [OSTI]

/oo. This is to be expected in a large shallow basin where evaporation greatly exceeds precipitation and both fresh and marine waters flow in during most of the year. The salinity was measured in terms of chlorin- ity in the Rio San Miguel Lagoon (Fig. 12) by STEWART.../oo. This is to be expected in a large shallow basin where evaporation greatly exceeds precipitation and both fresh and marine waters flow in during most of the year. The salinity was measured in terms of chlorin- ity in the Rio San Miguel Lagoon (Fig. 12) by STEWART...

Benson, R. H.

1959-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Phosphorus Cycling in the Red Tide Incubator Region of Monterey Bay in Response to Upwelling  

E-Print Network [OSTI]

soluble reactive phosphorus (SRP), nitrate (NO 3 , includingdetection limits were 0.03 ?mol SRP L ?1 , 0.04 ?mol NO ? 30.04 ?mol silicate L ?1 . SRP is operationally de?ned and

Mackey, Katherine R. M; Mioni, Cecile E; Ryan, John P; Paytan, Adina

2012-01-01T23:59:59.000Z

362

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network [OSTI]

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wei Wang; for the Daya Bay collaboration

2009-10-23T23:59:59.000Z

363

E-Print Network 3.0 - andreyev bay naval Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the exact location (inside the bay) where the naval operations take place... . Armstrong, 2004. Prediction of instantaneous currents in San Diego ... Source: Chu, Peter C. -...

364

Object Oriented Safety Analysis of an Extra High Voltage Substation Bay  

Science Journals Connector (OSTI)

Experiences of application of the object oriented approach to safety analysis of an extra high voltage substation bay are presented. As the first step...

Bartosz Nowicki; Janusz Grski

1998-01-01T23:59:59.000Z

365

E-Print Network 3.0 - admiralty bay king Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ryde Drummoyne Parramatta Epping Carlingford Macquarie Homebush Bay Strathfield Sydney Kings Cross... Frenchs Forest Brookvale The Spit Manly Chatswood Lane Cove Watsons...

366

Key Neutrino behavior observed at Daya Bay (The College of William...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wm.edunewsstories2012key-neutrino-behavior-observed-at-daya-bay-123.php Submitted: Thursday, March 8, 2012 - 12:00am...

367

Comparison of physical characteristics between created and natural estuarine marshes in Galveston Bay, Texas  

Science Journals Connector (OSTI)

Five natural and ten created Spartinaalternifloramarshes in the Lower Galveston BaySystem were compared to determine if there weresignificantly different physical characteristicsassociated with each type of marsh...

Tim P. Delaney; James W. Webb; Thomas J. Minello

2000-10-01T23:59:59.000Z

368

Assessing the Exposure of Fish to a Petroleum Spill in Galveston Bay, Texas  

Science Journals Connector (OSTI)

On July 28, 1990 nearly 700,000 gallons of a petroleum product were spilled in Galveston Bay, Texas. The exposure of fish to polynuclear aromatic...

S. J. McDonald; T. L. Wade; J. M. Brooks

1991-01-01T23:59:59.000Z

369

Vegetation and sediment characteristics of created and natural Spartina alterniflora marshes in Lower Galveston Bay, Texas.  

E-Print Network [OSTI]

??Five natural and ten created Spartina altemiflora marshes in the Lower Galveston Bay System, Texas, were compared to determine if there were significantly different vegetative (more)

Albertson, Andrea Kai

2012-01-01T23:59:59.000Z

370

The hunt for theta13 at the Daya Bay nuclear power plant  

E-Print Network [OSTI]

The Daya Bay reactor neutrino experiment is located at the Daya Bay nuclear power plant in Shenzhen, China. The experiment deploys eight "identical" antineutrino detectors to measure antineutrino fluxes from six 2.9 GW_{th} reactor cores in three underground experimental halls at different distances. The target zone of the Daya Bay detector is filled with 20 t 0.1% Gd doped LAB liquid scintillator. The baseline uncorrelated detector uncertainty is ~0.38% using current experimental techniques. Daya Bay can reach a sensitivity of <0.01 to $sin^2 2theta_{13}$ with baseline uncertainties after 3 years of data taking.

Wang, Wei

2009-01-01T23:59:59.000Z

371

Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kawaihae Area (Thomas, 1986) Kawaihae Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The aeromagnetic data noted above refer to a low-level aeromagnetic survey that was flown over the entire island of Hawaii at an altitude of approximately 300 m. The results of the survey over Kawaihae clearly indicate an anomalously magnetized body between the town of Waimea and Kawaihae Bay to the west. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Kawaihae_Area_(Thomas,_1986)&oldid=402415

372

Wisconsin Department of Natural Resources Northeast Regional Headquarters and Service Center  

High Performance Buildings Database

Green Bay, WI This project consolidated the main Northeast Regional Headquarters and three leased offices onto a single site, allowing public access to all DNR staff and programs at one location and allowing cooperating programs to be managed from a single facility. The new office, designed for environmental responsibility and service, provides a healthy, efficient space for employees and visitors.

373

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

374

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

375

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

376

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

377

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

378

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

379

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

380

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

382

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

383

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

384

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

385

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

386

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

387

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

388

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

389

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

390

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

391

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

392

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

393

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

394

MODELING PHYTOPLANKTON ABUNDANCE IN SAGINAW BAY, LAKE HURON: USING ARTIFICIAL NEURAL NETWORKS TO DISCERN FUNCTIONAL INFLUENCE  

E-Print Network [OSTI]

MODELING PHYTOPLANKTON ABUNDANCE IN SAGINAW BAY, LAKE HURON: USING ARTIFICIAL NEURAL NETWORKS; phytoplankton Abbreviations: ANN, artificial neural network; Cl? , chloride; DOC, dissolved organic carbon; Kd Phytoplankton abundance, as chl a, in Saginaw Bay, Lake Huron was modeled using arti- ficial neural networks

395

Antecedent Geologic Controls on the Distribution of Oyster Reefs in Copano Bay, Texas  

E-Print Network [OSTI]

Copano Bay is a shallow (< 2-3 m), microtidal estuary in south central Texas. In an effort to both determine the distribution as well as investigate the controls on the distribution of oyster reefs, a geophysical survey of Copano Bay was conducted...

Piper, Erin Alynn

2011-08-08T23:59:59.000Z

396

COVER PHOTOGRAPH COVER PHOTOGRAPH: SAN FRANCISCO BAY, CALIFORNIA, U.S.A.  

E-Print Network [OSTI]

of the giant sand wave field at the mouth of San Francisco Bay, just seaward of the Golden Gate Bridge exaggeration. The Golden Gate Bridge is approximately 2 km long (1.2 mi). The bathymetry inside the bay is from Dartnell and Gardner (1999). Golden Gate Bridge model courtesy of Interactive Visualization Systems

397

Time Series Measurements of Temperature, Current Velocity, and Sediment Resuspension in Saginaw Bay  

E-Print Network [OSTI]

Time Series Measurements of Temperature, Current Velocity, and Sediment Resuspension in Saginaw Bay and verification. These measurements will be made as part of this project. Measurements of sediment resuspension sediment resuspension in the bay during the spring. Measurements of sediment resuspension are important

398

Sediment Quality Triad Assessment in Kachemak Bay: Characterization of Soft Bottom Benthic Habitats and  

E-Print Network [OSTI]

Sediment Quality Triad Assessment in Kachemak Bay: Characterization of Soft Bottom Benthic Habitats. Sediment Quality Triad Assessment in Kachemak Bay: Characterization of Soft Bottom Benthic Habitats and Contaminant Bioeffects Assessment. NOAA Technical Memorandum NOS NCCOS 104. 170pp. #12;iii Sediment Quality

399

The Commercial Bait Shrimp Fishery in Galveston Bay, Texas, 1959-87  

E-Print Network [OSTI]

The Commercial Bait Shrimp Fishery in Galveston Bay, Texas, 1959-87 KENNETH N. BAXTER, CARLTON H-_---.J~_ ___'__ __'__ __'__ 10 gO ___' Figure I.-Galveston Bay bait index versus Texas offshore actual catch, 1960-1986. Marine, especially in Florida and Texas (De Sylva, 1954; Woodburn et al., 1957; Chin, 1960; Saloman, 1965; Inglis

400

Effects of Marsh Terracing on Nekton Abundance at Two Locations in Galveston Bay, Texas  

E-Print Network [OSTI]

ARTICLE Effects of Marsh Terracing on Nekton Abundance at Two Locations in Galveston Bay, Texas Joy Bay, Texas were constructed June to October 1999 at Galveston Island State Park (GI) and Pierce Marsh evaluated two marsh terracing restoration projects (GI=Galveston Island State Park, PM=Pierce Marsh

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal  

E-Print Network [OSTI]

i Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes Refuge in northern San Francisco Bay, California. #12;iii Final Report for Sea-level Rise Response)................................................................... 7 Sea-level rise scenario model inputs

Fleskes, Joe

402

Analysis of relative sea level variations and trends in the Chesapeake Bay: Is there evidence for  

E-Print Network [OSTI]

for acceleration in sea level rise? Tal Ezer and William Bryce Corlett Center for Coastal Physical Oceanography Old decades the pace of relative sea level rise (SLR) in the Chesapeake Bay (CB) has been 2-3 times faster--Chesapeake Bay, sea level rise, coastal inundation, tide gauge data, climate change. I. INTRODUCTION Water level

Ezer,Tal

403

Results of the first two seasons of underwater surveys at Episkopi Bay and Akrotiri, Cyprus  

E-Print Network [OSTI]

.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Coastal plain below Kourion looking east ....................................................... 36 2.4 Tunnel at Number Three Bay looking southwest......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39... .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Coastal plain below Kourion looking east ....................................................... 36 2.4 Tunnel at Number Three Bay looking southwest......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39...

Leidwanger, Justin Ryan

2009-05-15T23:59:59.000Z

404

Independent External Peer Review Report Green Bay 20 June 2011 ii  

E-Print Network [OSTI]

#12;Independent External Peer Review Report ­ Green Bay 20 June 2011 ii Table of Contents List for Peer Review Panel 6 3.4 Performing the IEPR 7 3.5 Preparation of Comments and Panel Consensus Process 4 Figure 3. IEPR Team 9 #12;Independent External Peer Review Report ­ Green Bay 20 June 2011 iii

US Army Corps of Engineers

405

Wastewater Discharge, Nutrient Loading, and Dissolved Oxygen Dynamics in a Shallow Texas Bay  

E-Print Network [OSTI]

In Oso Bay, a wastewater treatment plant acts as a source of eutrophication and may have measureable impact on the health of the bay. The objectives of this study were to create a model for modeling dissolved oxygen concentrations over time...

Schroer, Lee Allen

2014-05-07T23:59:59.000Z

406

The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR Study. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR...

407

Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets  

Science Journals Connector (OSTI)

We recently introduced the concept of a Hyperbolic Dirac Net (HDN) for medical inference on the grounds that, while the traditional Bayes Net (BN) is popular in medicine, it is not suited to that domain: there are many interdependencies such that any ... Keywords: Bayes Net, Complex, Decision support system, Dirac, Expert system, Hyperbolic, Hyperbolic Dirac Net, Medical inference

Barry Robson

2014-08-01T23:59:59.000Z

408

Sedimentary parameters of lower Barataria Bay, Jefferson Parish, Louisiana  

E-Print Network [OSTI]

, is located between the Grand T'erre Islands, three miles to the east of Barataria Pass. It is narrow and has a depth of only 13 feet. Another manor pass, Pass Justin, located half a mile to the east of Pass Abel was tn existence during the previous studies... and the Grand Terre Islands is presently retreating at a rate of 15 to 25 feet per year according to this study, Similar Bays' a)ong the Gulf Coast F. P. Shepard (1953) noted that subsidence along the Texas Gulf Coast is occurring at a rate of approximately...

Frazier, David E

2012-06-07T23:59:59.000Z

409

Meter-baseline tests of sterile neutrinos at Daya Bay  

E-Print Network [OSTI]

We explore the sensitivity of an experiment at the Daya Bay site, with a point radioactive source and a few meter baseline, to neutrino oscillations involving one or more eV mass sterile neutrinos. We find that within a year, the entire 3+2 and 1+3+1 parameter space preferred by global fits can be excluded at the 3\\sigma level, and if an oscillation signal is found, the 3+1 and 3+2 scenarios can be distinguished from each other at more than the 3\\sigma level provided one of the sterile neutrinos is lighter than 0.5 eV.

Y. Gao; D. Marfatia

2013-05-07T23:59:59.000Z

410

Maximum likelihood reconstruction for the Daya Bay Experiment  

E-Print Network [OSTI]

The Daya Bay Reactor Neutrino experiment is designed to precisely determine the neutrino mixing angle theta13. In this paper, we report a maximum likelihood (ML) method to reconstruct the vertex and energy of events in the anti-neutrino detector, based on a simplified optical model that describes light propagation. We calibrate the key paramters of the optical model with Co60 source, by comparing the predicted charges of the PMTs with the observed charges. With the optimized parameters, the resolution of the vertex reconstruction is about 25cm for Co60 gamma.

Xia Dongmei

2014-03-07T23:59:59.000Z

411

Frequentist-Bayes Goodness-of-fit Tests  

E-Print Network [OSTI]

;?)), ? ? B, j = 1, 2, ..., where F (;?) is the cumulative distribution function corresponding to f(;?). Define, for j = 1, 2, ..., the class of densities Fj by Fj = {fj(;?, ?j) : ? ? B,?? < ?j < ?}, 12 where fj(x;?, ?j) = C(?, ?j) exp...(?j?j(x;?))f(x;?), (2.3) and C(?, ?j) is a positive constant ensuring that fj integrates to 1. Our test statistics are approximations to the posterior probability of H0 assuming that the true density is in one of the classes F0,F1, .... Using Bayes theorem: P (H0|x...

Wang, Qi

2012-10-19T23:59:59.000Z

412

Photo of the Week: The Daya Bay Antineutrino Detector | Department of  

Broader source: Energy.gov (indexed) [DOE]

Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector Photo of the Week: The Daya Bay Antineutrino Detector September 7, 2012 - 3:07pm Addthis While they might look like drops of water or soap bubbles, these colorful figures are actually photomultiplier tubes that line the walls of the Daya Bay neutrino detector. Neutrinos and antineutrinos are neutral particles produced in nuclear beta decay when neutrons turn into protons. This experiment aims to measure the final unknown mixing angle that describes how neutrinos oscillate. The tubes are designed to amplify and record the faint flashes of light that signify an antineutrino interaction. Lawrence Berkeley and Brookhaven National Labs and a number of physicists at U.S. universities played leading roles in the Daya Bay experiment, from designing the detectors all the way through to analyzing the data gathered. | Photo by Roy Kaltschmidt, LBNL.

413

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

414

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Broader source: Energy.gov (indexed) [DOE]

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

415

Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay | Department of  

Broader source: Energy.gov (indexed) [DOE]

2.24.2011]: Dynamical Fingerprints and Daya Bay 2.24.2011]: Dynamical Fingerprints and Daya Bay Geek-Up[2.24.2011]: Dynamical Fingerprints and Daya Bay February 25, 2011 - 4:37pm Addthis Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Nuclear power plants like the twin Daya Bay reactors, yield large amounts of electron antineutrinos -- millions of quadrillions of them every second. | Photo Courtesy of Roy Kaltschmidt, Lawrence Berkeley National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Researchers at Oak Ridge National Lab have a developed "fingerprints" to match the results of experiments with data from supercomputer

416

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Broader source: Energy.gov (indexed) [DOE]

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

417

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

418

Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground for flow models of Quaternary continental glaciers.  

E-Print Network [OSTI]

Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground City came from the NNE (from the "Labrador center"). When ice blocked the N end of Hudson Bay and Lake This Abstract: Sanders, J. E.; and Merguerian, Charles, 1995b, New York City region: Unique testing ground

Merguerian, Charles

419

Probing Non-Standard Interactions at Daya Bay  

E-Print Network [OSTI]

In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a global shift in the oscillation amplitude without distorting the shape of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by $\\theta_{13}$, making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and $\\theta_{13}$ that may lead to significant deviations in the reported value of the reacto...

Agarwalla, Sanjib Kumar; Forero, David V; Tortola, Mariam

2014-01-01T23:59:59.000Z

420

Speciation and cycling of mercury in Lavaca Bay, Texas, sediments  

SciTech Connect (OSTI)

Sediment depth profiles of total mercury (THg) and monomethylmercury (MMHg) were collected at 15 sites in an anthropogenically contaminated estuarine system (Lavaca Bay, TX). THg in the solid phase increased with depth to a maximum located at 10--30 cm, which corresponds to historic industrial discharges to the bay. MMHg in the solid phase was highest in the upper 0--3 cm of the cores, decreasing rapidly with depth. The MMHg content of the surface sediment was a narrowly constrained fraction of the total over a range of sediment types, while making up only 0.01--0.05% of THg at depth. Porewater concentrations exhibited trends similar to but more exaggerated than in the solid phase. The distribution coefficients (log K{sub d}) for inorganic Hg were similar in most samples, averaging 4.89 {+-} 0.43. The log K{sub d} for MMHg averaged 2.70 {+-} 0.78 over all sites and depths but exhibited a subsurface minimum of 2.29 {+-} 0.67 at the point of maximum dissolved Fe. A time series showed a maximum in both solid phase and porewater MMHg during the early spring, followed by a decrease throughout the remainder of the year.

Bloom, N.S. [Frontier Geosciences Inc., Seattle, WA (United States)] [Frontier Geosciences Inc., Seattle, WA (United States); Gill, G.A. [Texas A and M Univ., Galveston, TX (United States). Dept. of Oceanography] [Texas A and M Univ., Galveston, TX (United States). Dept. of Oceanography; Cappellino, S. [Parametrix Inc., Houston, TX (United States)] [Parametrix Inc., Houston, TX (United States); Dobbs, C.; Mcshea, L. [Aluminum Co. of America, Point Comfort, TX (United States)] [Aluminum Co. of America, Point Comfort, TX (United States); Driscoll, C. [Syracuse Univ., NY (United States). Dept. of Civil and Environmental Engineering] [Syracuse Univ., NY (United States). Dept. of Civil and Environmental Engineering; Mason, R. [Univ. of Maryland, Solomons, MD (United States). Chesapeake Bay Lab.] [Univ. of Maryland, Solomons, MD (United States). Chesapeake Bay Lab.; Rudd, J. [Freshwater Inst., Winnipeg, Manitoba (Canada). Dept. of Fisheries and Oceans] [Freshwater Inst., Winnipeg, Manitoba (Canada). Dept. of Fisheries and Oceans

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Implementation strategy for the Galveston Bay plan. Final report  

SciTech Connect (OSTI)

The Plan recommends 82 management actions to be carried out by 20 federal and stage agencies, over 100 local governments and special purpose districts, and other bay users. This report describes how Plan implementation will be led by a newly created Galveston Bay Program (GBP) of the Texas Natural Resource Conservation Commission (TNRCC) and outlines the major roles of other federal, state, and local governments, `stakeholders,` and the public. A summary table of agency responsibilities for each of The Plan`s actions is also included in this document. The report also identifies the possibly enforceable policies in each of The Plan`s actions, and cites the relevant federal and/or state statutory and regulatory basis for enforcement. Additional actions required (if any) to make the policies enforceable are also described. Based on the analysis of enforceable policies, necessary federal and state legislation, Memoranda of Understanding, and local ordinances are identified. The report concludes with a description of how implementation results will be tracked and evaluated.

Keller, R.L.; Masterson, C.E.; Mitchell, G.; Polasek, E.G.; Taebel, J.M.

1994-11-01T23:59:59.000Z

422

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

423

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

424

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

425

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

426

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

427

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

428

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

429

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

430

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

431

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

432

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

433

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

434

Observations of the internal tide on the California continental margin near Monterey Bay  

Science Journals Connector (OSTI)

Abstract Observations of the semidiurnal internal tide on the California continental margin between Monterey Bay and Point Sur confirm the existence of northward energy flux predicted by numerical models of the region. Both a short-duration tide-resolving survey with expendable profilers and a multi-week timeseries from FLIP measured northward flux in the mean, supporting the hypothesis that topographic features off Point Sur are the source of the strong internal tides observed in Monterey Canyon. However, the observed depth-integrated semidiurnal flux of 450200Wm?1 is approximately twice as large as the most directly-comparable model and FLIP results. Though dominated by low modes with O(100km) horizontal wavelengths, a number of properties of the semidiurnal internal tide, including kinetic and potential energy, as well as energy flux, show lateral variability on O(5km) scales. Potential causes of this spatial variability include interference of waves from multiple sources, the sharp delineation of beams generated by abrupt topography due to limited azimuthal extent, and local generation and scattering of the internal tide into higher modes by small-scale topography. A simple two-source model of a first-mode interference pattern reproduces some of the most striking aspects of the observations.

Samantha R. Terker; James B. Girton; Eric Kunze; Jody M. Klymak; Robert Pinkel

2014-01-01T23:59:59.000Z

435

CAPITAL REGION  

Broader source: Energy.gov (indexed) [DOE]

t 09/20/07 15:28 FAX 301 903 4656 t 09/20/07 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) Energy United States Government Department of Energy Memorandum DATE. September 18, 2007 Audit Report No.: OAS-L-07-23 REPLY TO: IG-34 (A07TG036) SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2007" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results o Four evaluation of the Federal Energy Regulatory Commission's (Commission) cyber security program. The evaluation was initiated in May 2007, and our fieldwork was conducted through September 2007. Our methodology is described in the attachment to this report. . INTRODUCTION AND OBJECTIVE The Commission reports that it is constantly improving thl stability, reliability, and

436

Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.  

SciTech Connect (OSTI)

Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.

Dallman, Ann Renee; Neary, Vincent Sinclair

2014-10-01T23:59:59.000Z

437

Coos Bay, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources (Redirected from Coos Bay, OR) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3665007°, -124.2178903° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3665007,"lon":-124.2178903,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

City of Bay City, Michigan (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City, Michigan (Utility Company) City, Michigan (Utility Company) Jump to: navigation, search Name City of Bay City Place Michigan Utility Id 1366 Utility Location Yes Ownership M NERC Location ECAR NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 100 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 150 WATTS) Lighting COMPANY OWNED STREET LIGHTING (High Pressure Sodium - 250 WATTS) Lighting

439

Changes on the Waterfront - Transforming Harbor Areas  

E-Print Network [OSTI]

Bay Bridge and the Golden Gate Bridge, the ferry service inthis freeway up to the Golden Gate Bridge was planned. This

Hans Harms

2008-01-01T23:59:59.000Z

440

Probing Non-Standard Interactions at Daya Bay  

E-Print Network [OSTI]

In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a global shift in the oscillation amplitude without distorting the shape of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by $\\theta_{13}$, making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and $\\theta_{13}$ that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ~ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

Sanjib Kumar Agarwalla; Partha Bagchi; David V. Forero; Mariam Tortola

2014-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

442

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

443

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

444

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

445

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

446

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

447

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

448

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

449

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

450

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

451

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

452

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

453

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

454

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

455

ECONOMIC IMPACTS OF A WIDE AREA RELEASE OF ANTHRAX  

E-Print Network [OSTI]

ECONOMIC IMPACTS OF A WIDE AREA RELEASE OF ANTHRAX May 2009 Prepared Regional Technology Center for Homeland Security Economic Impacts of a Wide Area Release of Anthrax KS .................................................................................................................................................. 1 Categories of Economic Impacts

456

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jul-2013 Jul-2013 1,480.0 700.0 180.0 110.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,090.1 574.8 70.9 Aug-2013 1,430.0 550.0 195.0 120.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,026.4 415.2 54.4 Sep-2013 1,270.0 320.0 165.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 899.8 196.8 30.4 Oct-2013 1,070.0 270.0 125.0 105.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 739.2 151.2 27.5 Nov-2013 1,105.0 150.0 100.0 85.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 796.6 49.4 8.6 Dec-2013 1,175.0 130.0 100.0 95.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 866.4 19.0 3.0 Jan-2014 1,155.0 140.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 847.0 29.0 4.6 Feb-2014 1,180.0 140.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 941.3 110.0 17.4 Mar-2014 1,210.0 190.0 55.0 30.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 948.3 145.3 20.6 Apr-2014 1,320.0 230.0 50.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,064.2 186.3 24.3 May-2014 1,425.0 510.0 70.0 50.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,151.1 446.1 52.1 Jun-2014

457

Western Area Power Administration, Desert Southwest Region Facilities Ratings Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Ratings Project Facilities Ratings Project Hoover-Mead #1 and #5 230-kV and Mead-Marketplace 500-kV Transmission Lines Continuation Sheet Project Description (Continued) Hoover-Mead # 1 230-kV Transmission Line Along the Hoover-Mead #1 230-kV transmission line, the existing line will be reconductored between structures 0/4 and 4/2, about 3.5 linear miles. Structure 0/4 is located northeast of Mead Substation; structure 4/2 is located southeast of Boulder City Tap. The scope of work for the reconductoring includes the following: * At tangent structures (where there is no change in the angle of the transmission line), pulleys or travelers will be installed where the existing conductor attaches to the insulator. The old conductor will be pulled out through the travelers and new wire will be pulled in. A bucket truck

458

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aug-2013 Aug-2013 1,586.0 523.0 167.0 89.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,210.4 419.2 46.6 Sep-2013 1,499.0 309.0 216.0 92.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 1,077.8 203.8 26.3 Oct-2013 1,229.0 230.0 268.0 105.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 755.2 111.2 19.8 Nov-2013 1,384.0 192.0 268.0 96.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 907.6 80.4 12.3 Dec-2013 1,470.0 165.0 344.0 119.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 917.4 30.0 4.4 Jan-2014 1,509.0 160.0 351.0 126.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 950.0 18.0 2.5 Feb-2014 1,353.0 162.0 351.0 119.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 793.3 28.0 5.2 Mar-2014 1,559.0 191.0 282.0 95.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,070.3 81.3 10.2 Apr-2014 1,558.0 312.0 147.5 52.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,204.7 246.3 28.4 May-2014 1,677.0 455.0 108.5 40.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,364.6 401.1 39.5 Jun-2014 1,740.0 525.0 162.0 78.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,372.1 434.1

459

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun-2013 Jun-2013 1,560.0 640.0 55.0 35.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,299.1 592.1 63.3 Jul-2013 1,465.0 690.0 125.0 70.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,130.1 604.8 71.9 Aug-2013 1,400.0 500.0 170.0 95.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,021.4 390.2 51.4 Sep-2013 1,235.0 310.0 165.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 864.8 186.8 30.0 Oct-2013 1,040.0 270.0 125.0 100.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 709.2 156.2 29.6 Nov-2013 1,145.0 150.0 100.0 85.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 836.6 49.4 8.2 Dec-2013 1,190.0 120.0 100.0 95.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 881.4 9.0 1.4 Jan-2014 1,130.0 140.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 822.0 29.0 4.7 Feb-2014 1,145.0 130.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 906.3 100.0 16.4 Mar-2014 1,185.0 190.0 55.0 25.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 923.3 150.3 21.9 Apr-2014 1,330.0 220.0 45.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,079.2 176.3 22.7 May-2014

460

Western Area Power Administration Rocky Mountain Region (RMR)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(RMR) (RMR) Meter Application Agreement (Boundary Meter, Revenue Meter, Delivery Point Change, or Usage or Ownership Change) Agreement Number and Effective Date (to be assigned by Western): Requesting Company Name: Street Address: City: State: Zip Code: Meter Type: Boundary Revenue Type of meter work requested (define project scope): Drawing Requirement: Please include a Utility System or Substation Single Line diagram of the proposed meter location. A legible, hand drawn diagram is acceptable.

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nov-2013 Nov-2013 1,165.0 150.0 85.0 75.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 871.6 59.4 9.5 Dec-2013 1,345.0 130.0 100.0 115.0 26.6 16.0 182.0 0.0 0.0 1.0 0.0 1,036.4 0.0 0.0 Jan-2014 1,100.0 120.0 100.0 115.0 26.0 16.0 182.0 0.0 0.0 11.0 0.0 792.0 0.0 0.0 Feb-2014 1,120.0 140.0 30.0 15.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 881.3 110.0 18.6 Mar-2014 1,275.0 190.0 35.0 20.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,033.3 155.3 20.2 Apr-2014 1,560.0 310.0 45.0 25.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,309.2 271.3 28.8 May-2014 1,550.0 410.0 55.0 35.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,291.1 361.1 37.6 Jun-2014 1,585.0 540.0 45.0 30.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,334.1 497.1 51.7 Jul-2014 1,470.0 500.0 115.0 65.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,145.1 419.8 49.3 Aug-2014 1,270.0 420.0 135.0 80.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 926.4 325.2 47.2 Sep-2014 1,105.0 310.0 140.0 90.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 759.8 206.8 37.8 Oct-2014

462

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feb-2013 Feb-2013 1,165.0 260.0 105.0 75.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 851.3 170.0 29.7 Mar-2013 1,280.0 310.0 125.0 110.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 948.3 185.3 26.3 Apr-2013 1,330.0 380.0 50.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,074.2 336.3 43.5 May-2013 1,560.0 530.0 75.0 50.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,281.1 466.1 48.9 Jun-2013 1,745.0 640.0 120.0 85.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,419.1 542.1 53.1 Jul-2013 1,780.0 650.0 210.0 145.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,360.1 489.8 48.4 Aug-2013 1,670.0 500.0 190.0 135.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,271.4 350.2 37.0 Sep-2013 1,445.0 380.0 145.0 100.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 1,094.8 266.8 33.9 Oct-2013 1,225.0 330.0 180.0 140.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 839.2 176.2 28.2 Nov-2013 1,340.0 200.0 170.0 140.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 961.6 44.4 6.4 Dec-2013 1,255.0 180.0 130.0 105.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 916.4

463

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mar-2013 Mar-2013 1,475.0 220.0 30.0 20.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 1,238.3 185.3 20.1 Apr-2013 1,400.0 380.0 45.0 30.0 23.8 13.7 182.0 0.0 0.0 0.0 0.0 1,149.2 336.3 40.6 May-2013 1,455.0 550.0 65.0 45.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,186.1 491.1 55.7 Jun-2013 1,650.0 610.0 100.0 65.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,344.1 532.1 55.0 Jul-2013 1,590.0 630.0 195.0 135.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,185.1 479.8 54.4 Aug-2013 1,560.0 480.0 175.0 115.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,176.4 350.2 40.0 Sep-2013 1,290.0 360.0 145.0 110.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 939.8 236.8 35.0 Oct-2013 1,090.0 290.0 170.0 140.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 714.2 136.2 25.6 Nov-2013 1,115.0 170.0 125.0 105.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 781.6 49.4 8.8 Dec-2013 1,195.0 150.0 145.0 125.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 841.4 9.0 1.4 Jan-2014 1,180.0 150.0 100.0 95.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 872.0 39.0

464

Western Area Power Administration Rocky Mountain Region (Western...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Your Company's Contact Information Point of Contact Name and Title: Office Phone Number: Cell Phone Number: E-mail: Project Manager (if different than the contact named above):...

465

FINAL Western Area Power Administration Desert Southwest Region...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capture future rising prices were seen by many as antithetical to the dreams of the small-scale American farmer (James 1917). Conservationists saw a federal reclamation law...

466

Regional Transportation Coordination Plan for the Capital Area  

E-Print Network [OSTI]

costs, increased ridership, and improved cost-effectiveness by reducing duplicate services and using one vehicle to transport clients of different agencies. I would like to express the great need to provide some type of public transportation...

Capital Area Regional Transit Coordination Committee

467

Western Area Power Administration, Desert Southwest Region Tucson...  

Broader source: Energy.gov (indexed) [DOE]

complete project. Utility lines: This NWP authorizes the construction, maintenance, or repair of utility lines, including outfall and intake structures, and the associated...

468

Western Area Power Administration, Desert Southwest Region Facilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

submitted to the Service's Nevada Fish and Wildlife Office in Las Vegas within 90 days of completion of the project. 18. Prior to surface-disturbing activities associated with the...

469

Western Area Power Administration, Desert Southwest Region Parker...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parker- Gila 161-kV Transmission Line Maintenance, Structure 921 to 949 - Continuation Sheet Special Conditions 1. The Yuma Proving Ground shall be notified at least 15 days in...

470

Western Area Power Administration, Desert Southwest Region Parker...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parker-Gila 161-kV Transmission Line Maintenance, Cross Arm Replacements at Structure 07 - Continuation Sheet Special Conditions Biological Resources 1. To avoid impacts to...

471

2015 Resource Pool - Sierra Nevada Region - Western Area Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2015 Resource Pool 2015 Resource Pool 2015 Resource Pool Updates 2015 Base Resource Percentages Including Resource Pool Allocations Federal Register Notices Final 2015 Resource Pool Allocations (PDF 147KB) Proposed Allocations FRN (PDF - 59KB) Notice of Extension (PDF - 49KB) Applicant Profile Data Form (WORD - 89KB) Call for 2015 Resource Pool Applications (PDF - 70KB) Final 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 57.4KB) Proposed 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 60.7KB) Public Meetings Comment Forum on the Proposed 2015 Resource Pool Size and Eligibility Criteria Date: Wednesday, May 21, 2008, at 1:00 p.m., PST Location: Lake Natoma Inn located at 702 Gold Lake Drive, Folsom, California Comments on 2015 Resource Pool Size and General Eligibility Criteria

472

Western Area Power Administration Starting Forecast Month: Sierra Nevada Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May-2013 May-2013 1,460.0 520.0 95.0 55.0 21.9 13.9 182.0 0.0 0.0 0.0 0.0 1,161.1 451.1 52.2 Jun-2013 1,580.0 620.0 55.0 40.0 23.9 12.9 182.0 0.0 0.0 0.0 0.0 1,319.1 567.1 59.7 Jul-2013 1,510.0 730.0 160.0 105.0 27.9 15.2 182.0 0.0 0.0 0.0 0.0 1,140.1 609.8 71.9 Aug-2013 1,590.0 510.0 150.0 95.0 26.6 14.8 182.0 0.0 0.0 0.0 0.0 1,231.4 400.2 43.7 Sep-2013 1,275.0 350.0 165.0 115.0 23.2 13.2 182.0 0.0 0.0 0.0 0.0 904.8 221.8 34.1 Oct-2013 1,070.0 270.0 125.0 120.0 23.8 13.8 182.0 0.0 0.0 0.0 0.0 739.2 136.2 24.8 Nov-2013 1,090.0 160.0 105.0 100.0 26.4 15.6 182.0 0.0 0.0 0.0 0.0 776.6 44.4 7.9 Dec-2013 1,170.0 140.0 105.0 120.0 26.6 16.0 182.0 0.0 0.0 0.0 0.0 856.4 4.0 0.6 Jan-2014 1,155.0 140.0 100.0 110.0 26.0 16.0 182.0 0.0 0.0 0.0 0.0 847.0 14.0 2.2 Feb-2014 1,210.0 130.0 55.0 25.0 26.7 15.0 182.0 0.0 0.0 0.0 0.0 946.3 90.0 14.1 Mar-2014 1,240.0 190.0 60.0 30.0 24.7 14.7 182.0 0.0 0.0 0.0 0.0 973.3 145.3 20.1 Apr-2014

473

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility Facility Doe Bay Village Resort Sector Geothermal energy Type Pool and Spa Location Olga, Washington Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

474

Numerical Simulation of Wind Currents and Propagation of Impurities in the Balaklava Bay  

Science Journals Connector (OSTI)

We present the results of numerical experiments aimed at the simulation of the circulation of waters and transport ... of impurities in the Balaklava Bay for typical wind conditions established on the basis of th...

V. V. Fomin; L. N. Repetin

2005-07-01T23:59:59.000Z

475

Copano Bay: Assessing the Accountability of Spatial/Temporal Variability in Benthic Molluscan Paleocommunities  

E-Print Network [OSTI]

. In order to study this relationship, benthic molluscan live and dead assemblages are being collected from an ongoing time series and a spatial transect from Copano Bay, Texas. Previous work on this time series transect has demonstrated that death...

Horbaczewski, Adam Michael

2008-08-19T23:59:59.000Z

476

E-Print Network 3.0 - apalachicola bay usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apalachicola bay usa Page: << < 1 2 3 4 5 > >> 1 LONG-TERM FLUCTUATIONS OF EPIBENTHIC FISH AND INVERTEBRATE POPULATIONS IN Summary: LONG-TERM FLUCTUATIONS OF EPIBENTHIC FISH AND...

477

E-Print Network 3.0 - activator bay k8644 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Macmillan Magazines Ltd., 1989 Summary: ). In the presence of Bay K 8644 (1-10 M),80% of LCa. 11 cells with gigaohm input resistances gave rise to detectable... (a) and after (b)...

478

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Office of Energy Efficiency and Renewable Energy (EERE)

NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

479

Impacts of Ecotourism on Short-Beaked Common Dolphins (Delphinus delphis) in Mercury Bay, New Zealand  

E-Print Network [OSTI]

Impacts of Ecotourism on Short-Beaked Common Dolphins (Delphinus delphis) in Mercury Bay, New on this species. Key Words: short-beaked common dolphins, Delphinus delphis, ecotourism, dolphin-watching, swim

480

Guidelines for left-turn bays at unsignalized access locations on arterial roadways  

E-Print Network [OSTI]

It has long been recognized that effective access management along arterial streets can alleviate traffic congestion. A major goal within access management is to limit the speed differential between turning and through vehicles. Left-turn bays...

Hawley, Patrick Emmett

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "region bay area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Behavioral flexibility of feeding dusky dolphins (Lagenorhynchus obscurus) in Admiralty Bay, New Zealand  

E-Print Network [OSTI]

that frequent Admiralty Bay during winter spend their summers off Kaikoura, where they become part of an established multi-million dollar ecotourism industry (Fairweather and Simmons 1998). Currently, the impacts of ecotourism on these dolphins appear...

McFadden, Cynthia Joy

2004-09-30T23:59:59.000Z

482

Radiation Dose Estimation from the Analysis of Radionuclides in Marine Fish of the Bay of Bengal  

Science Journals Connector (OSTI)

...Radiation Protection Dosimetry Article Radiation Dose Estimation from the Analysis of Radionuclides in Marine Fish of the Bay of Bengal S. Ghose M.N. Alam M.N...respectively. The annual effective doses due to ingestion of radionuclides......

S. Ghose; M.N. Alam; M.N. Islam

2000-02-01T23:59:59.000Z

483

A numerical study of circulation and mixing in a macrotidal estuary: Cobscook Bay, Maine  

E-Print Network [OSTI]

that tracked particle position, calculated by interpolating the velocities of the surrounding grid cells to the point where a particle was located, were used to estimate residence times in the bay. Residence times for individual particles varied with initial...

Baca, Michael William

2012-06-07T23:59:59.000Z

484

Analysis of landscape patterns in coastal wetlands of Galveston Bay, Texas (USA)  

Science Journals Connector (OSTI)

High productivity and accessibility have made coastal wetlands attractive sites for human settlements. This study analyzed the patterns of wetland landscapes in Galveston Bay, Texas, USA. The first objective of t...

Amy J. Liu; Guy N. Cameron

2001-10-01T23:59:59.000Z

485

Sediment quality triad assessment survey of the Galveston Bay, Texas system  

Science Journals Connector (OSTI)

To characterize the quality of sediments at key sites in the Galveston Bay Estuary, sediment samples were collected concurrently for chemical and physical analyses, toxicity testing and an assessment of benthi...

R. Scott Carr; Duane C. Chapman; Cynthia L. Howard; James M. Biedenbach

1996-12-01T23:59:59.000Z

486

Positive Relationship between Freshwater Inflow and Oyster Abundance in Galveston Bay, Texas  

Science Journals Connector (OSTI)

Analysis of fisheries-independent data for Galveston Bay, Texas, USA, since 1985 shows eastern oysters...Crassostrea virginica) frequently demonstrate increased abundance of market-sized oysters 1 to 2years afte...

David Buzan; Wen Lee; Jan Culbertson; Nathan Kuhn; Lance Robinson

2009-01-01T23:59:59.000Z

487

Sources and bioavailability of polynuclear aromatic hydrocarbons in Galveston Bay, Texas  

Science Journals Connector (OSTI)

Oyster and sediment samples collected from six sites in Galveston Bay from 1986 to 1998 were analyzed for polynuclear aromatic hydrocarbons (PAHs). Total concentrations of parent PAHs in oysters ranged from 20...

Yaorong Qian; Terry L. Wade; Jose L. Sericano

2001-12-01T23:59:59.000Z

488

Comparison of natural and man-made salt marshes in Galveston Bay Complex, Texas  

Science Journals Connector (OSTI)

Vegetation characteristics of three natural marshes and one marsh that was experimentally established on dredged material in 1976 and 1977 were compared in the Galveston Bay Complex, Texas. During fall 1978, Six ...

James W. Webb; Charles J. Newling

1984-12-01T23:59:59.000Z

489

Variations in trace metal concentrations in American oyster (Crassostrea virginica) collected from Galveston Bay, Texas  

Science Journals Connector (OSTI)

Nearly one thousand oysters (Crassostrea virginica) were collected at 15 sites on four sampling trips to Galveston Bay during 19921993. Iron, silver, arsenic, cadmium, copper, lead, and zinc were determined in t...

Kuo-Tung Jiann; Bobby Joe Presley

1997-12-01T23:59:59.000Z

490

Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay  

E-Print Network [OSTI]

Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

Palmer, Margaret A.

491

Sharpening the second law of thermodynamics with the quantum Bayes theorem  

E-Print Network [OSTI]

We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation ...

Gharibyan, Hrant

492

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR  

E-Print Network [OSTI]

SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR Mads of the NREL 5MW wind turbine tower subjected to bending fatigue and horizontal circumferential cracking

Boyer, Edmond

493

An unusually large turtle barnacle (Chelonibia p. patula) on a blue crab from Delaware Bay  

Science Journals Connector (OSTI)

A turtle barnacle,Chelonibia patula patula (Ranzani) of unusually large size was found on a large female blue crab in Delaware Bay in September, 1954. This appears to be the largest known specimen ofC. p. patula....

Austin B. Williams; Hugh J. Portner

1964-01-01T23:59:59.000Z

494

Transformation of a building type : a study of Back Bay houses in Boston  

E-Print Network [OSTI]

The objective of this thesis is to explore the transformation of an existing building type and the application of the support/infill concept in a new context. For this purpose, a traditional Back Bay residential form in ...

Liu, Ricky Pei-Shen

1986-01-01T23:59:59.000Z

495

Monitoring of Gin Drinkers' Bay landfill, Hong Kong: I. Landfill gas on top of the landfill  

Science Journals Connector (OSTI)

The present study centered on the composition of landfill gas and its effects on soil and ... at the Gin Drinkers' Bay (GDB) landfill in Hong Kong This first part of ... the study was a whole-year monitoring of landfill

M. H. Wong; C. T. Yu

496

Categorical Exclusion Determinations: Western Area Power  

Broader source: Energy.gov (indexed) [DOE]

November 23, 2010 November 23, 2010 CX-004887: Categorical Exclusion Determination Cable and Conduit Addition Within the Fenced Area of the Buck Boulevard Substation CX(s) Applied: B4.6 Date: 11/23/2010 Location(s): Riverside County, California Office(s): Western Area Power Administration-Desert Southwest Region November 23, 2010 CX-007129: Categorical Exclusion Determination Buck Boulevard Substation CX(s) Applied: B4.6 Date: 11/23/2010 Location(s): Ripley, California Office(s): Western Area Power Administration-Desert Southwest Region November 5, 2010 CX-004898: Categorical Exclusion Determination Gila-Wellton-Mohawk (Structure Maintenance) CX(s) Applied: B1.3 Date: 11/05/2010 Location(s): Yuma County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region