Powered by Deep Web Technologies
Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Natural Gas Pipeline System - Midwest Region  

Gasoline and Diesel Fuel Update (EIA)

Midwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Natural Gas Pipelines in the Midwest Region...

2

EIA - Natural Gas Pipeline System - Northeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Northeast Region Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These interstate pipelines deliver natural gas to several intrastate natural gas pipelines and at least 50 local distribution companies in the region. In addition, they also serve large industrial concerns and, increasingly, natural gas fired electric power generation facilities.

3

EIA - Natural Gas Pipeline System - Western Region  

U.S. Energy Information Administration (EIA) Indexed Site

Western Region Western Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Western Region Overview | Transportation South | Transportation North | Regional Pipeline Companies & Links Overview Ten interstate and nine intrastate natural gas pipeline companies provide transportation services to and within the Western Region (Arizona, California, Idaho, Nevada, Oregon, and Washington), the fewest number serving any region (see Table below). Slightly more than half the capacity entering the region is on natural gas pipeline systems that carry natural gas from the Rocky Mountain area and the Permian and San Juan basins. These latter systems enter the region at the New Mexico-Arizona and Nevada-Utah State lines. The rest of the capacity arrives on natural gas pipelines that access Canadian natural gas at the Idaho and Washington State border crossings with British Columbia, Canada.

4

EIA - Natural Gas Pipeline System - Southwest Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southwest Region Southwest Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southwest Region Overview | Export Transportation | Intrastate | Connection to Gulf of Mexico | Regional Pipeline Companies & Links Overview Most of the major onshore interstate natural gas pipeline companies (see Table below) operating in the Southwest Region (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas) are primarily exporters of the region's natural gas production to other parts of the country and Mexico, while an extensive Gulf of Mexico and intrastate natural gas pipeline network is the main conduit for deliveries within the region. More than 56,000 miles of natural gas pipeline on more than 66 intrastate natural gas pipeline systems (including offshore-to-onshore and offshore Gulf of Mexico pipelines) deliver natural gas to the region's local natural gas distribution companies and municipalities and to the many large industrial and electric power facilities located in the region.

5

EIA - Natural Gas Pipeline System - Central Region  

U.S. Energy Information Administration (EIA) Indexed Site

Central Region Central Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Central Region Overview | Domestic Gas | Exports | Regional Pipeline Companies & Links Overview Twenty-two interstate and at least thirteen intrastate natural gas pipeline companies (see Table below) operate in the Central Region (Colorado, Iowa, Kansas, Missouri, Montana, Nebraska, North Dakota, South Dakota, Utah, and Wyoming). Twelve interstate natural gas pipeline systems enter the region from the south and east while four enter from the north carrying Canadian supplies. The average utilization rates on those shipping Canadian natural gas tend to be higher than those carrying domestic supplies.

6

EIA - Natural Gas Pipeline System - Southeast Region  

U.S. Energy Information Administration (EIA) Indexed Site

Southeast Region Southeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Southeast Region Overview | Transportation to Atlantic & Gulf States | Gulf of Mexico Transportation Corridor | Transportation to the Northern Tier | Regional Pipeline Companies & Links Overview Twenty-three interstate, and at least eight intrastate, natural gas pipeline companies operate within the Southeast Region (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee). Fifteen of the twenty-one interstate natural gas pipelines originate in the Southwest Region and receive most of their supplies from the Gulf of Mexico or from the States of Texas and/or Louisiana.

7

EIA - Natural Gas Pipeline Network - Regional Definitions  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions Map Definitions Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Definitions The regions defined in the above map are based upon the 10 Federal Regions of the U.S. Bureau of Labor Statistics. The State groupings are as follows: Northeast Region - Federal Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region 2: New Jersey, and New York. Federal Region 3:Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia. Southeast Region - Federal Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. Midwest Region - Federal Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and

8

ALPHA-DECAY STUDIES IN THE HEAVY-ELEMENT REGION  

E-Print Network (OSTI)

231, Curium-242, and Americium-241 (Thesis), AECU-2757 (rimental Results A. Alpha Decay of Americium-243 L Alpha-Particle Energy of Americium-243 New Alpha Groups of

Hummel, John Philip

2010-01-01T23:59:59.000Z

9

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

10

Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of) [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Han, Xiang Hua [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)] [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Dong-Ho [Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Hak-Ju [Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute, Seoul 130-712 (Korea, Republic of)] [Division of Green Business Management, Department of Forest Resources Utilization, Korean Forest Research Institute, Seoul 130-712 (Korea, Republic of); Hwang, Bang Yeon, E-mail: byhwang@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Lee, Sung-Joon, E-mail: junelee@korea.ac.kr [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of) [Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

2012-06-15T23:59:59.000Z

11

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Overviews and Links to Pipeline Companies Through a series of interconnecting interstate and intrastate pipelines the transportation of natural gas from one location to another within the United States has become a relatively seamless operation. While intrastate pipeline systems often transports natural gas from production areas directly to consumers in local markets, it is the interstate pipeline system's long-distance, high-capacity trunklines that supply most of the major natural gas markets in the United States. Of the six geographic regions defined in this analysis, the Southwest Region contains the largest number of individual natural gas pipeline systems (more than 90) and the highest level of pipeline mileage (over 106,000).

12

California - Coastal Region Onshore Dry Natural Gas Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

13

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

14

Chandra Detection of OVIII Ly-alpha Absorption from an Overdense Region in the Intergalactic Medium  

E-Print Network (OSTI)

We report the first detection of an OVIII Ly-alpha absorption line associated with an overdense region in the intergalactic medium (IGM) along the sightline towards PKS 2155-304 with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). The absorption line is detected at 4.5 sigma level with cz~16,600 km/s. At the same velocity Shull et al.(1998) detected a small group of spiral galaxies (with an overdensity of delta_gal ~ 100) and low metallicity HI Ly-alpha clouds. We constrain the intragroup gas that gives rise to the OVIII Ly-alpha line to a baryon density in the range 1e-5 solar abundance. These estimates are in accordance with those of the warm/hot intergalactic medium (WHIM) that are predicted from hydrodynamic simulations. Extrapolating from this single detection implies a large fraction of the ``missing baryons'' (~ 10%, or ~ 30-40% of the WHIM) are probed by the OVIII absorber.

T. Fang; H. L. Marshall; J. C. Lee; D. S. Davis; C. R. Canizares

2002-06-16T23:59:59.000Z

15

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

16

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

17

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

18

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

19

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

20

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

22

Beta/alpha continuous air monitor  

DOE Patents (OSTI)

A single deep layer silicon detector in combination with a microcomputer, recording both alpha and beta activity and the energy of each pulse, distinquishing energy peaks using a novel curve fitting technique to reduce the natural alpha counts in the energy region where plutonium and other transuranic alpha emitters are present, and using a novel algorithm to strip out radon daughter contribution to actual beta counts. 7 figs.

Becker, G.K.; Martz, D.E.

1988-06-27T23:59:59.000Z

23

AGA Western Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 888,010 816,597 813,746 830,132 876,457 908,444 941,985 966,686 1,002,402 1,021,144 997,644 956,234 1995 902,782 884,830 865,309 860,012 897,991 945,183 975,307 986,131 1,011,948 1,032,357 1,033,363 982,781 1996 896,744 853,207 837,980 849,221 885,715 916,778 929,559 928,785 946,748 949,983 939,649 899,689 1997 833,239 796,139 788,601 801,955 844,880 890,703 923,845 947,277 969,170 980,388 967,286 880,627 1998 828,658 780,476 768,264 773,053 823,311 872,913 900,181 925,287 965,846 1,001,548 1,009,978 953,379

24

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

25

AGA Western Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116 333,134 322,501 282,392 1997 216,113 179,067 171,563 184,918 227,756 273,507 306,641 330,075 351,975 363,189 350,107 263,455 1998 211,982 163,084 150,923 155,766 206,048 254,643 281,422 305,746 346,135 379,917 388,380 330,906

26

CA, Coastal Region Onshore Natural Gas Reserves Summary as of...  

U.S. Energy Information Administration (EIA) Indexed Site

151 169 180 173 305 284 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 1 1 2 1 2 2 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 150 168...

27

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

28

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

29

AGA Western Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 58,880 70,469 16,774 11,878 2,078 1,522 2,158 2,524 1,024 3,314 29,483 47,719 1995 56,732 27,801 27,857 15,789 4,280 2,252 3,265 11,858 5,401 6,025 14,354 53,469 1996 89,320 52,624 24,847 9,346 4,785 4,298 12,886 21,661 6,866 14,578 24,096 48,438 1997 73,240 41,906 22,756 15,182 4,297 3,613 5,381 8,030 7,770 12,343 22,625 88,975 1998 54,800 50,704 27,864 16,746 3,265 2,619 6,278 6,049 5,822 4,599 14,013 62,377 1999 54,762 45,467 35,081 31,196 7,773 3,792 4,982 14,342 6,642 10,488 15,128 54,531

30

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

31

AGA Eastern Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243 1,192,952 1,456,355 1,695,873 1,838,842 1,664,539 1,423,793 1997 965,310 711,444 521,508 539,750 735,527 985,803 1,230,970 1,474,855 1,702,601 1,816,709 1,706,526 1,416,580 1998 1,108,737 878,420 669,205 772,790 1,017,260 1,248,564 1,462,360 1,644,247 1,797,048 1,918,157 1,878,225 1,630,559

32

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

33

AGA Producing Region Natural Gas Underground Storage Withdrawals (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997 204,601 103,715 43,894 54,285 24,898 34,122 65,631 42,757 30,579 32,257 113,422 180,582 1998 143,042 69,667 97,322 25,555 30,394 38,537 33,314 37,034 51,903 17,812 60,078 168,445 1999 189,816 77,848 104,690 44,930 22,829 26,085 58,109 60,549 25,888 43,790 66,980 165,046

34

AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 530,741 349,007 159,102 30,353 9,093 4,218 8,493 5,462 6,537 22,750 119,120 256,340 1995 419,951 414,116 196,271 76,470 8,845 14,449 13,084 9,496 3,715 25,875 247,765 398,851 1996 435,980 333,314 236,872 66,149 12,958 4,261 2,804 5,141 5,152 24,515 213,277 269,811 1997 474,777 267,717 218,640 76,956 11,974 4,401 7,277 5,503 5,269 39,662 165,807 309,399 1998 339,858 244,813 256,560 37,278 8,764 11,317 14,830 15,207 16,026 23,854 94,110 287,801 1999 437,182 261,305 244,041 43,642 13,904 11,738 17,499 14,984 9,984 37,822 122,731 385,958

35

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

36

AGA Eastern Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 3,605,263 3,281,694 3,164,033 3,297,696 3,531,074 3,786,195 4,043,225 4,279,875 4,477,279 4,588,167 4,522,088 4,292,649 1995 3,905,789 3,514,201 3,360,765 3,369,823 3,576,559 3,812,014 3,968,751 4,159,006 4,362,855 4,483,271 4,279,539 3,905,710 1996 3,483,209 3,190,123 2,987,233 3,052,606 3,272,105 3,557,334 3,859,973 4,122,060 4,364,848 4,508,821 4,334,814 4,094,033 1997 3,630,708 3,381,047 3,190,271 3,205,661 3,398,322 3,660,850 3,905,985 4,151,456 4,379,374 4,493,802 4,383,068 4,084,339 1998 3,774,740 3,544,699 3,335,505 3,436,983 3,680,419 3,909,517 4,166,130 4,309,452 4,461,762 4,580,963 4,542,742 4,295,021

37

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

38

AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894 1,395,779 1,443,970 1,525,797 1,631,006 1,686,652 1,614,154 1,519,539 1997 1,379,108 1,303,888 1,356,678 1,385,616 1,461,221 1,536,339 1,542,480 1,596,011 1,683,987 1,770,002 1,707,810 1,559,636 1998 1,456,136 1,442,993 1,420,644 1,515,050 1,610,474 1,666,304 1,739,745 1,803,097 1,840,984 1,950,772 1,945,897 1,807,163

39

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena  

E-Print Network (OSTI)

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

Skogestad, Sigurd

40

AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring  

Open Energy Info (EERE)

Primary Natural Gas Flows Entering NGTDM Region from Neighboring Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 138, and contains only the reference case. This dataset is in billion cubic feet per year. The data is broken down into New England, Middle Atlantic, East North Central, West Central, South Atlantic, East South Central, West South Central, Mountain, Pacific, Florida, Arizona/New Mexico, California. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIS Natural Gas Data application/vnd.ms-excel icon AEO2011: Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions- Reference Case (xls, 60 KiB)

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Region Natural Gas Underground Storage Volume (MMcf)" Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030872m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030872m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

42

,"AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)" Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030882m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030882m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

43

,"AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Western Consuming Region Natural Gas Underground Storage Volume (MMcf)" Western Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030892m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030892m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

44

On fibrils and field lines: The nature of H$\\alpha$ fibrils in the solar chromosphere  

E-Print Network (OSTI)

Observations of the solar chromosphere in the line-core of the \\Halpha\\ line show dark elongated structures called fibrils that show swaying motion. We performed a 3D radiation-MHD simulation of a network region, and computed synthetic \\Halpha\\ images from this simulation to investigate the relation between fibrils and the magnetic field lines in the chromosphere. The periods, amplitudes and phase-speeds of the synthetic fibrils are consistent with those observed. We analyse the relation between the synthetic fibrils and the field lines threading through them, and find that some fibrils trace out the same field line along the fibril's length, but there are also fibrils that sample different field lines at different locations along their length. Fibrils sample the same field lines on a time scale of $\\sim200$~s. This is shorter than their own lifetime. We analysed the evolution of the atmosphere along a number of field lines that thread through fibrils and find that they carry slow-mode waves that load mass in...

Leenaarts, Jorrit; van der Voort, Luc Rouppe

2015-01-01T23:59:59.000Z

45

THE Ly{alpha} LINES OF H I AND He II: A DIFFERENTIAL HANLE EFFECT FOR EXPLORING THE MAGNETISM OF THE SOLAR TRANSITION REGION  

SciTech Connect

The Ly{alpha} line of He II at 304 Angstrom-Sign is one of the spectral lines of choice for EUV channels of narrowband imagers on board space telescopes, which provide spectacular intensity images of the outer solar atmosphere. Since the magnetic field information is encoded in the polarization of the spectral line radiation, it is important to investigate whether the He II line radiation from the solar disk can be polarized, along with its magnetic sensitivity. Here we report some theoretical predictions concerning the linear polarization signals produced by scattering processes in this strong emission line of the solar transition region, taking into account radiative transfer and the Hanle effect caused by the presence of organized and random magnetic fields. We find that the fractional polarization amplitudes are significant ({approx}1%), even when considering the wavelength-integrated signals. Interestingly, the scattering polarization of the Ly{alpha} line of He II starts to be sensitive to the Hanle effect for magnetic strengths B {approx}> 100 G (i.e., for magnetic strengths of the order of and larger than the Hanle saturation field of the hydrogen Ly{alpha} line at 1216 Angstrom-Sign ). We therefore propose simultaneous observations of the scattering polarization in both Ly{alpha} lines to facilitate magnetic field measurements in the upper solar chromosphere. Even the development of a narrowband imaging polarimeter for the He II 304 Angstrom-Sign line alone would be already of great diagnostic value for probing the solar transition region.

Trujillo Bueno, Javier; Stepan, Jiri; Belluzzi, Luca, E-mail: jtb@iac.es, E-mail: stepan@iac.es, E-mail: belluzzi@iac.es [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain)

2012-02-10T23:59:59.000Z

46

Risk-based performance analysis for regional hybrid fuel with compressed natural gas option  

Science Journals Connector (OSTI)

Compressed natural gas is widely used for transportation due to its competitive price and less environmental impacts compared with traditional gasoline. With the recent push to implement electric vehicles, it became important to evaluate the current transportation fuelling status and identify best scenarios to move towards greener transportation. This paper presents analysis of hybrid transportation with compressed natural gas as a fuelling option to determine the most effective way to implement regional green transportation. Intelligent modelling and simulation techniques are proposed to model transportation and fuelling process and used as basis for performance modelling and analysis for different scenarios. Compressed natural gas is found to be a superior fuel to gasoline based on given scenario conditions and criteria for regional green hybrid transportation. The proposed scenarios are applied on case studies in Ontario to confirm the high value of compressed natural gas as viable fuelling scenarios.

Hossam A. Gabbar; Raymond Bedard

2012-01-01T23:59:59.000Z

47

Analysis of regional demand for natural gas by black and nonblack families  

SciTech Connect

This study examines long-term implications of a hypothetical 20% increase in the price of natural gas for black and nonblack families, by household, in the continental United States. The analysis focuses on four specific effects of such an increase: demand for natural gas, expenditure for natural gas, natural gas expenditure as a share of family income, and consumer surplus. Data are organized geographically to represent three sections of the continental United States - the northeastern states, the north central states, and the southern and western states. (The state groupings are identical to those represented in the country's census regions; the southern and western census regions were combined because of data limitations). The report presents demand equations that were used to estimate gas consumption and expenditure by average black and nonblack families in the three geographic areas. Models representing typical household types, each with a specific set of attributes, are then presented to show average base-year values for natural gas consumption and expenditure for two types of black and nonblack families - those that use natural gas for any purpose and only those that use it for space heating. (Base-period values are estimated using data from a DOE survey conducted in the years 1980 and 1981). The effects of a hypothetical 20% increase in the price of natural gas on the various household types were then estimated. Those effects are summarized. Families using natural gas for a any purpose in the north central states would experience the greatest long-term effects of a 20% price increase. Black families in those states would feel the effects more dramatically than nonblack families. The relative geographic effects of such a price increase change, however, when only those families that use natural gas for space heating are analyzed. 3 references, 4 figures, 18 tables.

Poyer, D.A.

1984-08-01T23:59:59.000Z

48

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

49

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

SciTech Connect

We used the DV-X alpha method to analyze the high-resolution soft X-ray emission and absorption spectra in the CK region of titanium carbide (TiC). The spectral profiles of the X-ray emission and absorption can be ssuscfucelly reproduced by the occupied and unoccupied density of states (DOS ), respectively, in the C2p orbitals of the center carbon atoms in a Ti62C63 cluster model, suggesting that the center carbon atom in a large cluster model expanded to the cubic-structured 53 (= 125) atoms provides sufficient DOS for the X-ray spectral analysis of rock-salt structured metal carbides.

Shimomura, Kenta; Muramatsu, Yasuji; Denlinger, Jonathan D.; Gullikson, Eric M.

2008-10-31T23:59:59.000Z

50

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

51

THE SCHMIDT-KENNICUTT LAW OF MATCHED-AGE STAR-FORMING REGIONS; Pa{alpha} OBSERVATIONS OF THE EARLY-PHASE INTERACTING GALAXY TAFFY I  

SciTech Connect

In order to test a recent hypothesis that the dispersion in the Schmidt-Kennicutt law arises from variations in the evolutionary stage of star-forming molecular clouds, we compared molecular gas and recent star formation in an early-phase merger galaxy pair, Taffy I (UGC 12915/UGC 12914, VV 254) which went through a direct collision 20 Myr ago and whose star-forming regions are expected to have similar ages. Narrowband Pa{alpha} image is obtained using the ANIR near-infrared camera on the mini-TAO 1 m telescope. The image enables us to derive accurate star formation rates within the galaxy directly. The total star formation rate, 22.2 M{sub Sun} yr{sup -1}, was found to be much higher than previous estimates. Ages of individual star-forming blobs estimated from equivalent widths indicate that most star-forming regions are {approx}7 Myr old, except for a giant H II region at the bridge which is much younger. Comparison between star formation rates and molecular gas masses for the regions with the same age exhibits a surprisingly tight correlation, a slope of unity, and star formation efficiencies comparable to those of starburst galaxies. These results suggest that Taffy I has just evolved into a starburst system after the collision, and the star-forming sites are at a similar stage in their evolution from natal molecular clouds except for the bridge region. The tight Schmidt-Kennicutt law supports the scenario that dispersion in the star formation law is in large part due to differences in evolutionary stage of star-forming regions.

Komugi, S. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Tateuchi, K.; Motohara, K.; Kato, N.; Konishi, M.; Koshida, S.; Morokuma, T.; Takahashi, H.; Tanabe, T.; Yoshii, Y. [Institute of Astronomy, University of Tokyo, Osawa 2-21-1, Mitaka, Tokyo 181-0015 (Japan); Takagi, T. [Institute of Space and Astronautical Science, JAXA, 3-31-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Iono, D.; Kaneko, H.; Ueda, J. [Nobeyama Radio Observatory, National Astronomical Observatory, 462-2 Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Saitoh, T. R., E-mail: skomugi@alma.cl [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-0033 (Japan)

2012-10-01T23:59:59.000Z

52

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

53

Large methane emission upon spring thaw from natural wetlands in the northern permafrost region  

SciTech Connect

The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

2012-01-01T23:59:59.000Z

54

E-Print Network 3.0 - alpha-radiation construction calibration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha Radiation - An alpha particle is identical... of only an inch or so. Naturally occurring radioactive elements such as radon emit alpha radiation... to Construct PE Plant...

55

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

56

A Region Thesaurus Approach for High-Level Concept Detection in the Natural Disaster Domain  

Science Journals Connector (OSTI)

This paper presents an approach on high-level feature detection using a region thesaurus. MPEG-7 features are locally extracted from ... This set of region types defines the region thesaurus. Using this thesaurus

Evaggelos Spyrou; Yannis Avrithis

2007-01-01T23:59:59.000Z

57

AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 301,098 230,240 196,675 75,216 19,017 -596 -42,455 -91,460 -85,538 -74,452 -211,340 -356,599 1996 -393,813 -294,573 -322,708 -276,653 -237,719 -195,517 -107,487 -30,832 5,418 27,829 56,363 190,892 1997 151,925 190,812 179,512 141,118 121,384 95,560 38,018 18,500 6,728 -22,132 41,987 -7,213 1998 141,659 165,790 146,881 232,098 280,479 261,197 229,504 167,031 91,649 98,416 168,658 213,013

58

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

59

AGA Western Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 8,494 61,987 50,414 30,372 22,397 34,462 36,108 23,444 10,774 13,127 37,918 24,549 1996 -8,287 -34,078 -30,040 -14,465 -15,479 -28,752 -49,420 -58,971 -68,328 -85,471 -97,348 -84,552 1997 -64,507 -57,811 -49,808 -47,271 -41,056 -26,112 -6,095 16,328 21,859 30,055 27,605 -18,937 1998 -4,131 -15,983 -20,640 -29,152 -21,709 -18,864 -25,220 -24,329 -5,839 16,729 38,273 67,451

60

Determination of the 3He+alpha\\to 7Be asymp. normalization coefficients (nucl. vertex constants) and their application for extrapolation of the 3He(alpha,gamma)7Be astroph. S-factors to the solar energy region  

E-Print Network (OSTI)

A new analysis of the precise experimental astrophysical $S$-factors for the direct capture $^3He(\\alpha,\\gamma)^7{\\rm {Be}}$ reaction [B.S. Nara Singh et al., Phys.Rev.Lett. {\\bf 93} (2004) 262503; D. Bemmerer et al., Phys.Rev.Lett. {\\bf 97} (2006) 122502; F.Confortola et al., Phys.Rev. {\\bf C 75} (2007) 065803 and T.A.D.Brown et al., Phys.Rev. {\\bf C 76} (2007) 055801] populating to the ground and first excited states of $^7{\\rm Be}$ is carried out based on the modified two - body potential approach in which the direct astrophysical $S$-factor, $S_{34}(E)$, is expressed in terms of the asymptotic normalization constants for $^3{\\rm {He}}+\\alpha\\to ^7{\\rm {Be}}$ and two additional conditions are involved to verify the peripheral character of the reaction under consideration. The Woods--Saxon potential form is used for the bound ($\\alpha+^3{\\rm {He}}$)- state and the $^3{\\rm {He}}\\alpha$- scattering wave functions. New estimates are obtained for the "indirectly measured", values of the asymptotic normalization constants (the nuclear vertex constants) for $^3{\\rm {He}}+\\alpha\\to^7{\\rm {Be}}(g.s.)$ and $^3{\\rm {He}}+\\alpha\\to^7{\\rm {Be}}(0.429 MeV)$ as well as the astrophysical $S$-factors $S_{34}(E)$ at E$\\le$ 90 keV, including $E$=0. The values of asymptotic normalization constants have been used for getting information about the $\\alpha$-particle spectroscopic factors for the mirror ($^7Li^7{\\rm {Be}}$)-pair.

S. B. Igamov; K. I. Tursunmakhatov; R. Yarmukhamedov

2008-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

62

Alpha-decay Rates of Yb and Gd in Solar Neutrino Detectors  

E-Print Network (OSTI)

The $\\alpha$-decay rates for the nuclides $^{168,170,171,172,173,174,176}$Yb and $^{148,150,152,154}$Gd have been estimated from transmission probabilities in a systematic $\\alpha$-nucleus potential and from an improved fit to $\\alpha$-decay rates in the rare-earth mass region. Whereas ${\\alpha}$-decay of $^{152}$Gd in natural gadolinium is a severe obstacle for the use of gadolinium as a low-energy solar-neutrino detector, we show that ${\\alpha}$-decay does not contribute significantly to the background in a ytterbium detector. An extremely long ${\\alpha}$-decay lifetime of $^{168}$Yb is obtained from calculation, which may be close to the sensitivity limit in a low-background solar neutrino detector.

M. Fujiwara; T. Kawabata; P. Mohr

2002-03-03T23:59:59.000Z

63

AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,700,245 2,697,308 2,696,823 2,698,489 2,699,802 2,699,840 2,700,331 2,701,227 2,701,285 2,702,703 2,702,571 2,703,149 1995 2,699,674 2,699,575 2,696,880 2,695,400 2,726,268 2,726,255 2,668,312 2,671,818 2,672,399 2,672,258 2,671,362 2,672,808 1996 2,670,906 2,670,070 2,646,056 2,654,836 2,659,533 2,667,092 2,667,020 2,665,705 2,668,975 2,669,980 2,670,274 2,670,239 1997 2,665,398 2,669,603 2,668,763 2,665,910 2,662,796 2,675,047 2,675,015 2,676,601 2,676,773 2,677,093 2,676,542 2,667,760 1998 2,666,003 2,666,279 2,666,299 2,664,193 2,663,159 2,660,954 2,703,770 2,665,205 2,664,714 2,662,805 2,664,518 2,664,462

64

AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.70 -36.20 -48.60 -41.00 -28.00 -18.00 -8.30 -2.10 0.30 1.50 3.50 15.50 1997 18.80 36.80 52.90 35.70 20.10 10.70 3.20 1.30 0.40 -1.20 2.50 -0.50 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.10 15.10 1999 6.40 4.40 -1.40 -6.50 -7.30 -8.50 -9.70 -7.10 -3.20 -3.60 0.00 0.00 2000 -17.00 -24.70 -13.90 -19.40 -18.90 -15.40 -9.60 -9.00 -8.10 -5.20 -14.70 -25.50 2001 -17.00 -21.80 -33.80 -12.20 2.10 7.30 7.80 8.30 8.40 7.20 22.40 51.40 2002 71.20 82.00 97.70 55.40 23.00 15.30 7.90 5.20 2.40 -2.20 -10.20 -18.10

65

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

66

AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,039,864 1,032,160 1,033,297 1,032,517 1,037,294 1,037,338 1,038,940 1,036,193 1,037,422 1,035,931 1,035,050 1,043,103 1995 1,051,669 1,054,584 1,051,120 1,051,697 1,052,949 1,062,613 1,058,260 1,054,218 1,054,870 1,051,687 1,056,704 1,060,588 1996 1,067,220 1,062,343 1,027,692 1,040,511 1,055,164 1,056,516 1,052,009 1,051,395 1,052,015 1,048,151 1,052,057 1,053,173 1997 1,064,968 1,054,977 1,059,316 1,059,050 1,059,706 1,064,515 1,063,554 1,063,029 1,066,254 1,064,123 1,065,557 1,065,151 1998 1,064,741 1,058,297 1,057,927 1,057,506 1,060,241 1,055,941 1,055,660 1,055,056 1,056,417 1,057,591 1,057,539 1,038,925

67

Determination of the 3He+alpha\\to 7Be asymp. normalization coefficients (nucl. vertex constants) and their application for extrapolation of the 3He(alpha,gamma)7Be astroph. S-factors to the solar energy region  

E-Print Network (OSTI)

A new analysis of the modern precise measured astrophysical $S$ factors for the direct capture $^3He(\\alpha,\\gamma)^7{\\rm {Be}}$ reaction [B.S. Nara Singh {\\it et al.}, Phys.Rev.Lett. {\\bf 93}, 262503 (2004); D. Bemmerer {\\it et al.}, Phys.Rev.Lett. {\\bf 97}, 122502 (2006); F.Confortola {\\it et al.}, Phys.Rev.C {\\bf 75}, 065803 (2007), T.A.D.Brown {\\it et al.}, Phys.Rev. C {\\bf 76}, 055801 (2007) and A Di Leva, {\\it et al.},Phys.Rev.Lett. {\\bf 102}, 232502 (2009)] populating to the ground and first excited states of $^7{\\rm Be}$ is carried out based on the modified two - body potential approach. New estimates are obtained for the $^{\\glqq}$indirectly determined\\grqq\\, values of the asymptotic normalization constants (the nuclear vertex constants) for $^3{\\rm {He}}+\\alpha\\to{\\rm {^7Be}}$(g.s.) and $^3{\\rm {He}}+\\alpha\\to{\\rm {^7Be}}$(0.429 MeV) as well as the astrophysical $S$ factors $S_{34}(E)$ at E$\\le$ 90 keV, including $E$=0. The values of asymptotic normalization constants have been used for getting information about the $\\alpha$-particle spectroscopic factors for the mirror (${\\rm{^7Li}}{\\rm {^7Be}}$)-pair.

S. B. Igamov; Q. I. Tursunmahatov; R. Yarmukhamedov

2009-05-13T23:59:59.000Z

68

Comment on Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA by Qingming Meng  

Science Journals Connector (OSTI)

Abstract In modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA, the author asserts that landscape and environmental characteristics are the driving factors behind the siting of natural gas pads in the southwestern area of the Marcellus Shale, Pennsylvania, USA. In the article, the author largely dismisses the importance of geology for site prediction. Although the study is useful for understanding landscape characteristics in a small area of the Marcellus Shale, his premise that the key variables for natural gas fracking can be landscape and environmental variables rather than geological variables is flawed and thus could lead to erroneous assumptions when creating land use plans. A more reasonable assumption is that the surface siting of natural gas wells is secondary to geologic considerations, as the current topography bears little influence on the geology.

Wendy A. Klein; Alex K. Manda

2015-01-01T23:59:59.000Z

69

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

70

Extracting the economic benefits of natural resources in the Marcellus Shale Region  

E-Print Network (OSTI)

My thesis seeks to explore the challenge of value capture from natural resources using the case of the Marcellus Shale in West Virginia and Pennsylvania as an exemplar. I examine the mechanisms in place to capture the ...

Hess, Sara Lynn

2014-01-01T23:59:59.000Z

71

Application of territorial GIS to study of natural environment for regions under mining exploitation  

SciTech Connect

Mineral resources exploitation becomes one of the leading factors of technogenic impact to natural environment. The processes accompanying exploitation lead to changes of geological/geomorphological, engineering/geological, hydrogeological, geochemical and landscape conditions over the large territories surrounded mining exploitation districts. The types of environmental changes and disturbances are stipulated by several reasons such as kind of exploited resources (ore, petroleum, gas, coal, peat, building materials etc.); the ways of extraction (opened by quarry or closed by mine); natural zone (tundra, taiga, steppe, desert etc.). Expressive revelation and control of these environmental changes is impossible without wide using and analysis of various types and different times materials of airborne and satellite surveys (MASS). They are the basis of system approach to environmental study because of image is the decreased spatial model of territory. For integrated estimation of natural resources and perspectives of its economical profit using, as well as examination of influence of extraction objects to natural environment necessary to involve different data. Only territorial GIS permits to solve the tasks of collection, keeping, processing and analysis of this data as well as to conduct modelling of situations and presentation of information necessary to accept the decision. The core of GIS is the Data base which consists of initial remote sensing and cartographic data allow in completely obtain various information providing of full value and objectivity of investigations.

Kirsanov, A. [Institute of Remote Sensing Methods for Geology (VNIIKAM), St. Petersburg (Russian Federation)

1996-07-01T23:59:59.000Z

72

Wisconsin Department of Natural Resources Northeast Regional Headquarters and Service Center  

Green Bay, WI This project consolidated the main Northeast Regional Headquarters and three leased offices onto a single site, allowing public access to all DNR staff and programs at one location and allowing cooperating programs to be managed from a single facility. The new office, designed for environmental responsibility and service, provides a healthy, efficient space for employees and visitors.

73

Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region  

SciTech Connect

This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

2012-03-01T23:59:59.000Z

74

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

E-Print Network (OSTI)

in the CK Region of Titanium Carbide (TiC) using the DV-X?USA Keyword titanium carbide, soft X-ray spectroscopy,C K region of titanium carbide (TiC). The spectral profiles

Shimomura, Kenta

2010-01-01T23:59:59.000Z

75

Beta relaxation in the shear mechanics of equilibrium viscous liquids: Phenomenology and network modeling of the alpha-beta merging region  

E-Print Network (OSTI)

The phenomenology of the beta relaxation process in the shear-mechanical response of glass-forming liquids is summarized and compared to that of the dielectric beta process. Furthermore, we discuss how to model the observations by means of standard viscoelastic modeling elements. Necessary physical requirements to such a model are outlined, and it is argued that physically relevant models must be additive in the shear compliance of the alpha and beta parts. A model based on these considerations is proposed and fitted to data for Polyisobutylene 680.

Bo Jakobsen; Kristine Niss; Claudio Maggi; Niels Boye Olsen; Tage Christensen; Jeppe C. Dyre

2010-05-26T23:59:59.000Z

76

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

77

High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method  

E-Print Network (OSTI)

of rock-salt structured metal carbides. K. Shimomura et al.in metals, such as metal carbides and carbon/metal alloys,the CK region of metal carbides, and analyzed the spectral

Shimomura, Kenta

2010-01-01T23:59:59.000Z

78

Convergence of Regional Liquid Natural Gas (LNG) Prices : A review of regional LNG import prices using Engle Grangers Cointegration approach.  

E-Print Network (OSTI)

??This thesis investigates the bivariate long term stochastic relationship between the import Liquefied Natural Gas (LNG) prices in Japan, USA and EU. The bivariate testing (more)

Eliston, Anton Jayanand

2009-01-01T23:59:59.000Z

79

Natural radioactivity measurements and dose calculations to the public: Case of the uranium-bearing region of Poli in Cameroon  

Science Journals Connector (OSTI)

The objective of this work is to carry out a baseline study of the uranium-bearing region of Poli in which lies the uranium deposit of Kitongo, prior to its impending exploitation. This study required sampling soil, water and foodstuffs representative of the radioactivity exposure and food consumption patterns of the population of Poli. After sampling and radioactivity measurements were taken, our results indicated that the activities of natural series in soil and water samples are low. However, high levels of 210Po and 210Pb in foodstuffs (vegetables) were discovered and elevated activities of 40K were observed in some soil samples. All components of the total dose were assessed and lead to an average value of 5.2mSv/year, slightly higher than the average worldwide value of 2.4mSv/year. Most of this dose is attributable to the ingestion dose caused by the high levels of 210Po and 210Pb contained in vegetables, food items which constitute an important part of the diet in Northern Cameroon. Consequently, bringing uranium ore from underground to the surface might lead to an increased dose for the population of Poli through a higher deposition of 222Rn decay products on leafy vegetables.

Sadou; Franois O. Bochud; Sbastien Baechler; Kwato Njock Mose; Ngachin Merlin; Pascal Froidevaux

2011-01-01T23:59:59.000Z

80

Emissions Implications of Future Natural Gas Production and Use in the U.S. and in the Rocky Mountain Region  

Science Journals Connector (OSTI)

Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. ... dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). ... Edwards, P.; Brown, S.; Roberts, J.; Ahmadov, R.; Banta, R.; deGouw, J.; Dub, W.High winter ozone pollution from carbonyl photolysis in an oil and gas basin Nature 2014, 10.1038/nature13767 ...

Jeffrey D. McLeod; Gregory L. Brinkman; Jana B. Milford

2014-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy-economic theory and mathematical models for combining the systems of man and nature, case study: The urban region of Miami, Florida  

Science Journals Connector (OSTI)

This paper presents a study of the urban region of Miami, Fla. with consideration of energy flow and the relationship between energy theory and economics. Much of this work is based on the theories and work of Dr Howard T. Odum at the University of Florida. A theory of energy quality is presented which is an attempt to relate energies of different concentrations in their ability to do work. This theory allows comparison of the systems of man and nature. Another theory is proposed which seeks to describe the ability of a region to compete based on its flows of natural and fossil fuel energies. Economic, natural system, and energy data were compiled for the Miami urban region from 19501972. Cross-correlation of this data showed significant levels of correlation between the rate of change of fossil fuel use and the rates of change of population, budget, sales tax, income, building structure, and number of telephones. Calculation of several urban indicators for 1972 showed a fossil fuel energy density of 300 kcal/m2/day in the urbanized area, a per capita energy consumption of 53.8 106 kcal/capita/year, a ratio of natural to fossil fuel energies of 0.25, a developed area of 260 miles2 (673.4 km2), and a rate of development of 6.5 miles2 (16.8 km2) per year. An overall model of Miami is presented with flows and storages quantified for 1972. Based on this model a simpler model was simulated on an analog computer. This model consisted of a system of first-order in time, non-linear differential equations which included fossil fuel energy flows, main economic flows, external price functions, building structure, natural energies, and population. This model was simulated for several linearly increasing future price functions and several sets of future energy functions. Natural energies within the region were calculated by determining the land areas associated with various ecosystem types. Estimating the productivities of these systems on a per area basis allowed calculation of total energy flows. The energies associated with winds, tides, waves, and fresh/salt water concentration gradients were also determined. It was found that the ratio of natural to fossil fuel energy changed from 1.77 in 1950 to 0.25 in 1972.

James Zucchetto

1975-01-01T23:59:59.000Z

82

Wool in Mediterranean regions: a forgotten and neglected product of sheep or a natural and renewable resource for the future?  

Science Journals Connector (OSTI)

Many conferences, tours and visits have been organised. In 2004, the conference Wool of Europe, East and West took ... Republic. In May 2005, the meeting Wool scouring in Europe: regional and ecological projec...

M.-T. Chaupin; A. Simonpietri

2012-01-01T23:59:59.000Z

83

Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary  

E-Print Network (OSTI)

, Nico Goldscheider d , Anita ?. Csoma e,1 a Department of Physical and Applied Geology, Institute used uranium, radium and radon to identify mixing of fluids in the Buda Thermal Karst system for the waters. In this study we showed that uranium, radium and radon naturally occurring in groundwater can

Horváth, Ákos

84

Nationwide, Regional, and Statewide Energy Supply Chain Optimization for Natural Gas to Liquid Transportation Fuel (GTL) Systems  

Science Journals Connector (OSTI)

When data on the well-specific production are available, the figures are grouped on the basis of the county of the wells. ... The states that have major natural gas productions are Alabama, Arkansas, California, Colorado, Kansas, Kentucky, Louisiana, Michigan, Mississippi, Montana, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas, Utah, Virginia, West Virginia, and Wyoming. ... State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources ...

Josephine A. Elia; Richard C. Baliban; Christodoulos A. Floudas

2013-09-05T23:59:59.000Z

85

An alpha scintillation spectrometer  

E-Print Network (OSTI)

investi- gation of the properties of alpha radiation. In his work, the scin- tillations produced by alpha particles impinging on a zinc-sulphide screen were observed and counted visually with the aid of a low power microscope. The scintillations..., the source changing in the proportional counter is inconvenient, requiring a fairly elaborate gas handling and purifying system. Alpha particl s, when passing through a photographic emulsion, ionize the silver halide crystals with which they come...

Yates, Ralph Aaron

1952-01-01T23:59:59.000Z

86

Alpha Backgrounds for HPGe Detectors in Neutrinoless Double-Beta Decay Experiments  

E-Print Network (OSTI)

The Majorana Experiment will use arrays of enriched HPGe detectors to search for the neutrinoless double-beta decay of 76Ge. Such a decay, if found, would show lepton-number violation and confirm the Majorana nature of the neutrino. Searches for such rare events are hindered by obscuring backgrounds which must be understood and mitigated as much as possible. A potentially important background contribution to this and other double-beta decay experiments could come from decays of alpha-emitting isotopes in the 232Th and 238U decay chains on or near the surfaces of the detectors. An alpha particle emitted external to an HPGe crystal can lose energy before entering the active region of the detector, either in some external-bulk material or within the dead region of the crystal. The measured energy of the event will only correspond to a partial amount of the total kinetic energy of the alpha and might obscure the signal from neutrinoless double-beta decay. A test stand was built and measurements were performed to quantitatively assess this background. We present results from these measurements and compare them to simulations using Geant4. These results are then used to measure the alpha backgrounds in an underground detector in situ. We also make estimates of surface contamination tolerances for double-beta decay experiments using solid-state detectors.

R. A. Johnson; T. H. Burritt; S. R. Elliott; V. M. Gehman; V. E. Guiseppe; J. F. Wilkerson

2011-12-30T23:59:59.000Z

87

Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA. A rejoinder to Klein and Manda's commentary  

Science Journals Connector (OSTI)

Abstract In a comment on my early article (Meng, 2014) published in this journal, Klein and Manda (2015) critiqued some of my discussion points. Most significantly, they posited that it is [therefore] erroneous to state that [in the Marcellus Shale region] land use characteristics are driving factors in well site/pad determination because my speculation that in the Marcellus Shale region the key variables for natural gas fracking can be landscape and environmental variables rather than geological variables is flawed. In this rejoinder, I demonstrate that not only are their criticisms based on limited geological understanding of fracking, but they are also on an incorrect analysis. Therefore, my original results and conclusions on the driving force of landscape and environmental variables and on the implications to environment management and ecosystem administration and conservation remain stable and valid.

Qingmin Meng

2015-01-01T23:59:59.000Z

88

Imaging alpha particle detector  

DOE Patents (OSTI)

A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, D.F.

1980-10-29T23:59:59.000Z

89

Imaging alpha particle detector  

DOE Patents (OSTI)

A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, David F. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

90

Event counting alpha detector  

DOE Patents (OSTI)

An electrostatic detector is disclosed for atmospheric radon or other weak sources of alpha radiation. In one embodiment, nested enclosures are insulated from one another, open at the top, and have a high voltage pin inside and insulated from the inside enclosure. An electric field is produced between the pin and the inside enclosure. Air ions produced by collision with alpha particles inside the decay volume defined by the inside enclosure are attracted to the pin and the inner enclosure. With low alpha concentrations, individual alpha events can be measured to indicate the presence of radon or other alpha radiation. In another embodiment, an electrical field is produced between parallel plates which are insulated from a single decay cavity enclosure. 6 figs.

Bolton, R.D.; MacArthur, D.W.

1996-08-27T23:59:59.000Z

91

Exotic decay model and alpha decay studies  

SciTech Connect

In exotic decay studies, the lifetime of alpha emission occurs crucially in the branching ratio calculation. In this work, we extend our previous exotic decay model to calculate the same. But, in this case unlike in the exotic decay, the redistribution of charge for given masses of the fragments has to be taken into account since the charge-to-mass ratio of the alpha fragment differs from that of the parent nucleus. We have therefore modified the Yukawa-plus-exponential potential in the post-scission region in our model suitably so as to allow the required charge redistribution among the fragments in the region between sharp contact and the point up to which the finite-range effects persist. The success of this model for alpha decay is as good as for the exotic decay studies.

Shanmugam, G.; Kamalaharan, B. (Department of Physics, Presidency College, Madras 600005, India (IN))

1990-04-01T23:59:59.000Z

92

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

93

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

94

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

95

Alpha-particle optical potential proofs at astrophysically relevant energies  

E-Print Network (OSTI)

$(\\alpha,\\gamma)$ and $(\\alpha$,n) reaction cross sections recently measured close to the reaction thresholds are rather well described by a previously developed regional optical potential. Thus, particular features of the $\\alpha$-particle optical potential at energies below the Coulomb barrier, besides parameters describing $\\alpha$-particle elastic scattering at higher energies are confirmed. Additional limitations of similar statistical model calculations for minor reaction channels are shown to be most likely due to an overlooked process or critical values of statistical model parameters around closed nuclear shells.

M. Avrigeanu; V. Avrigeanu

2008-11-01T23:59:59.000Z

96

Alpha-decay half-lives, alpha-capture and alpha-nucleus potential  

E-Print Network (OSTI)

The alpha-decay half-lives and the alpha-capture cross-sections are evaluated in the framework of unified model for alpha-decay and alpha-capture. In the framework of this model the alpha-decay and alpha-capture are considered as penetration of the alpha-particle through the potential barrier formed by nuclear, Coulomb and centrifugal interactions between alpha-particle and nucleus. The spins and the parities of parent and daughter nuclei as well as the quadrupole and hexadecapole deformations of daughter nuclei are taken into account for evaluation of the alpha-decay half-lives. The alpha-decay half-lives for 344 nuclei and the alpha-capture cross-sections of 40Ca, 44Ca, 59Co, 208Pb and 209Bi agree well with the experimental data. The evaluated alpha-decay half-lives within the range 10^{-9} alpha-emitters are tabulated.

V. Yu. Denisov; A. A. Khudenko

2009-02-04T23:59:59.000Z

97

The alpha-cluster model applied to {sup 96}Ru  

SciTech Connect

The states of {sup 96}Ru are investigated in terms of the a alpha+ core structure. The ground state band of the alpha+{sup 92}Mo system is obtained through a local cluster-core potential which includes a fixed set of parameters employed in other mass regions. The calculated spectrum gives a good general description of the experimental {sup 96}Ru levels. The reduced alpha-widths, B(E2) transition rates and rms intercluster separations are determined for the members of the ground state band. The results show that the model can reproduce the order of magnitude of the experimental B(E2) values without the use of effective charges and indicate that the first members of the ground state band present a stronger alpha-cluster character. Predictions concerning a negative parity band of the alpha+{sup 92}Mo system are also shown.

Souza, M. A.; Miyake, H. [Institute of Physics, Universidade de Sao Paulo, Sao Paulo-SP (Brazil)

2010-05-21T23:59:59.000Z

98

Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity  

E-Print Network (OSTI)

and the security of supply. Index Terms-- Power system economics, electricity-gas integration, natural gas. The largest use still is for industrial heating. The second largest use is for electric power generation for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy

Catholic University of Chile (Universidad Católica de Chile)

99

Natural polymorphisms of HIV-1 CRF01_AE integrase coding region in ARV-nave individuals in Cambodia, Thailand and Vietnam: An ANRS AC12 working group study  

Science Journals Connector (OSTI)

The HIV integrase enzyme is essential for the HIV life cycle as it mediates integration of HIV-1 proviral DNA into the infected cell's genome. Recently, the development of drugs capable of inhibiting integrase has provided major new options for HIV-infected, treatment-experienced patients with multidrug resistant virus, as well treatment-nave patients. More than 40 amino acid substitutions within integrase have been described as associated mostly with resistance of HIV B-subtypes to currently available integrase inhibitors (INIs). We have analyzed the natural polymorphisms of the integrase coding region in 87 antiretroviral-nave subjects (32 from Cambodia, 37 from Thailand and 18 from Vietnam) infected with CRF01_AE virus, the predominant HIV-1 strain circulating in Southeast Asia. The 864bp integrase coding region was sequenced using the ANRS consensus sequencing technique from plasma samples, and amino acid results were interpreted for drug resistance according to the ANRS (Updated July 2009, version 18) and Stanford algorithms (Version November 6, 2009). Alignment of the 87 amino acid sequences against the 2004 Los Alamos HIV-1 clade B consensus sequence showed that overall, 119 of 288 (41.3%) amino acid positions presented at least one polymorphism each. Substitutions found in >60% of study subjects occurred at: K14, A21, V31, S39, I72, T112, T124, T125, G134, I135, K136, D167, V201, L234 and S283. Also, new amino acid substitutions of as yet unknown significance were identified: E152K/H, S153F/L, N155I and E157G. None of the known integrase resistance mutations were observed, except E157Q found in one Cambodian subject (1.1%, CI 95% 0.026.3%). The clinical impact of this substitution on resistance of B and nonB-viruses to the licensed INI raltegravir is unclear. If this substitution is confirmed to compromise the virologic response to raltegravir, further studies will be needed to better assess the prevalence of this substitution among CRF01_AE virus.

Janin Nouhin; Tawee Donchai; Khanh Thu Huynh Hoang; Sreymom Ken; Jiraporn Kamkorn; Ton Tran; Ahidjo Ayouba; Martine Peeters; Marie-Laure Chaix; Truong Xuan Lien; Eric Nerrienet; Nicole Ngo-Giang-Huong

2011-01-01T23:59:59.000Z

100

Historical Natural Gas Annual 1999  

U.S. Energy Information Administration (EIA) Indexed Site

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

$\\alpha$ Centauri A in the far infrared  

E-Print Network (OSTI)

Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. The region of the temperature reversal can be directly observed only in the far infrared and submm. We aim at the determination of the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star alpha Cen A. For the nearby binary system alpha Centauri, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate in the grid of GAIA/PHOENIX stellar model atmospheres and compute the corresponding model for the G2 V star alpha Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is co...

Liseau, R; Olofsson, G; Bryden, G; Marshall, J P; Ardila, D; Aran, A Bayo; Danchi, W C; del Burgo, C; Eiroa, C; Ertel, S; Fridlund, M C W; Krivov, A V; Pilbratt, G L; Roberge, A; Thbault, P; Wiegert, J; White, G J

2012-01-01T23:59:59.000Z

102

A Precise Determination of $\\alpha_s$ from the C-parameter Distribution  

E-Print Network (OSTI)

We present a global fit for $\\alpha_s(m_Z)$, analyzing the available C-parameter data measured at center-of-mass energies between $Q=35$ and $207$ GeV. The experimental data is compared to a N$^3$LL$^\\prime$ + $\\mathcal{O}(\\alpha_s^3)$ + $\\Omega_1$ theoretical prediction (up to the missing 4-loop cusp anomalous dimension), which includes power corrections coming from a field theoretical nonperturbative soft function. The dominant hadronic parameter is its first moment $\\Omega_1$, which is defined in a scheme which eliminates the $\\mathcal{O}(\\Lambda_{\\rm QCD})$ renormalon ambiguity. The resummation region plays a dominant role in the C-parameter spectrum, and in this region a fit for $\\alpha_s(m_Z)$ and $\\Omega_1$ is sufficient. We find $\\alpha_s(m_Z)=0.1123\\pm 0.0015$ and $\\Omega_1=0.421\\pm 0.063\\,{\\rm GeV}$ with $\\chi^2/\\rm{dof}=0.988$ for $404$ bins of data. These results agree with the prediction of universality for $\\Omega_1$ between thrust and C-parameter within 1-$\\sigma$.

Hoang, Andr H; Mateu, Vicent; Stewart, Iain W

2015-01-01T23:59:59.000Z

103

E-Print Network 3.0 - alpha-alpha interaction contribution Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Alberta Collection: Computer Technologies and Information Sciences 55 Join The Gator Nation GENERAL INFORMATION 2011-12 Summary: Pi Alpha Gamma Rho Alpha Kappa Alpha...

104

The holy light: a study of natural light in Hindu temples in the southern region of Tamilnadu, India (7th century AD to 17th century AD)  

E-Print Network (OSTI)

This thesis discusses the phenomenon of natural light that becomes the holy light in sacred architecture. In pursuing this investigation the study addressed three major objectives. First, to understand the significance of religion in the treatment...

Mukherji, Anuradha

2001-01-01T23:59:59.000Z

105

Uncertainties on alpha_S in global PDF analyses  

E-Print Network (OSTI)

We determine the uncertainty on the strong coupling alpha_S due to the experimental errors on the data fitted in global analysis of hard-scattering data, within the standard framework of leading-twist fixed-order collinear factorisation in the MSbar scheme, finding that alpha_S(M_Z^2) = 0.1202^{+0.0012}_{-0.0015} at next-to-leading order and alpha_S(M_Z^2) = 0.1171^{+0.0014}_{-0.0014} at next-to-next-to-leading order. We investigate the interplay between uncertainties on alpha_S and uncertainties on parton distribution functions (PDFs). We show, for the first time, how both these sources of uncertainty can be accounted for simultaneously in calculations of cross sections, and we provide eigenvector PDF sets with different fixed alpha_S values to allow further studies by the general user. We illustrate the application of these PDF sets by calculating cross sections for W, Z, Higgs boson and inclusive jet production at the Tevatron and LHC.

Martin, A D; Thorne, R S; Watt, G

2009-01-01T23:59:59.000Z

106

Clostridium perfringens Alpha-toxin Recognizes the GM1a-TrkA Complex*S  

E-Print Network (OSTI)

-toxin. Clostridiumperfringensalpha-toxinisthemajorvirulencefactor in the pathogenesis of gas gangrene. Alpha-toxin is a 43-kDa pro and induces a signal transduction cascade that promotes the release of chemokines. Therefore, we conclude, the pathogenic bacterium most widely distributed in nature (6), produces one PLC alpha-toxin that is highly cyto

Gleeson, Joseph G.

107

Derr Track Storage Bldg Sigma Alpha  

E-Print Network (OSTI)

!( Derr Track Storage Bldg Solar House Entomology Lab Bldg Sigma Alpha Epsilon 11 MEAS Ocean Lab & Storage Avent Ferry Complex Building Sigma Phi Epsilon 7 Pi Kappa Alpha 10 Sigma Alpha Mu 4 Tau Kappa

Reeves, Douglas S.

108

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 OctNov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

109

K{alpha} satellite transitions in elements with 12{<=}Z{<=}30 produced by electron incidence  

SciTech Connect

The emission of x-ray satellite lines in the K{alpha} region of Mg, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron incidence was studied by means of wavelength dispersive spectroscopy. The satellite lines studied were K{alpha}{sup '}, K{alpha}{sub 3}, K{alpha}{sub 4}, K{alpha}{sub 5}, K{alpha}{sub 6}, and two transitions denoted here as K{alpha}{sub 22} and K{alpha}{sub 12}. Energy shifts with respect to the main K{alpha}{sub 1} diagram line and transition probabilities relative to the whole K{alpha} group were determined for a number of lines through a careful spectral processing. The dependence of these parameters, as well as of the K{beta}:K{alpha} intensity ratio, on the atomic number was compared with previous experimental and theoretical determinations when available. A discussion about the different mechanisms responsible for vacancy creation involved in the production of double-ionization satellites was performed in the light of the results obtained. Finally, the behavior of the satellite intensities as a function of the incidence energy was discussed for silicon.

Limandri, Silvina P.; Carreras, Alejo C.; Trincavelli, Jorge C. [Instituto de Fisica Enrique Gaviola, Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); Bonetto, Rita D. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco (CINDECA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Facultad de Ciencias Exactas, Facultad de Ingenieria, Universidad Nacional de La Plata, La Plata (Argentina)

2010-09-15T23:59:59.000Z

110

E-Print Network 3.0 - alpha radioactivity measurement Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

SITE ENVIRONMENTAL REPORT4-1 Summary: a range in air of only an inch or so. Naturally occurring radioactive elements such as radon emit alpha... . This is a measure of the rate at...

111

Two source emission behaviour of alpha fragments of projectile having energy around 1 GeV per nucleon  

E-Print Network (OSTI)

The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass number.

V. Singh; M. K. Singh; Ramji Pathak

2010-09-17T23:59:59.000Z

112

Alpha Emission Near 100Sn and the Termination of the rp Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha Emission Near 100 Sn and the Termination of the rp Process The astrophysical rp-process is thought to reach a termination point in the region of 100 Sn, via the...

113

Measurement of the 187Re({\\alpha},n)190Ir reaction cross section at sub-Coulomb energies using the Cologne Clover Counting Setup  

E-Print Network (OSTI)

Uncertainties in adopted models of particle+nucleus optical-model potentials directly influence the accuracy in the theoretical predictions of reaction rates as they are needed for reaction-network calculations in, for instance, {\\gamma}-process nucleosynthesis. The improvement of the {\\alpha}+nucleus optical-model potential is hampered by the lack of experimental data at astrophysically relevant energies especially for heavier nuclei. Measuring the Re187({\\alpha},n)Ir190 reaction cross section at sub-Coulomb energies extends the scarce experimental data available in this mass region and helps understanding the energy dependence of the imaginary part of the {\\alpha}+nucleus optical-model potential at low energies. Applying the activation method, after the irradiation of natural rhenium targets with {\\alpha}-particle energies of 12.4 to 14.1 MeV, the reaction yield and thus the reaction cross section were determined via {\\gamma}-ray spectroscopy by using the Cologne Clover Counting Setup and the method of {\\ga...

Scholz, P; Hennig, A; Netterdon, L; Becker, H W; Endres, J; Mayer, J; Giesen, U; Rogalla, D; Schlter, F; Pickstone, S G; Zell, K O; Zilges, A

2015-01-01T23:59:59.000Z

114

Inclusive-jet photoproduction at HERA and determination of alphas  

E-Print Network (OSTI)

Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 energies in the region 142 energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; P. Antonioli; A. Antonov; M. Arneodo; V. Aushev; Y. Aushev; O. Bachynska; A. Bamberger; A. N. Barakbaev; G. Barbagli; G. Bari; F. Barreiro; N. Bartosik; D. Bartsch; M. Basile; O. Behnke; J. Behr; U. Behrens; L. Bellagamba; A. Bertolin; S. Bhadra; M. Bindi; C. Blohm; V. Bokhonov; T. Bold; K. Bondarenko; E. G. Boos; K. Borras; D. Boscherini; D. Bot; I. Brock; E. Brownson; R. Brugnera; N. Brummer; A. Bruni; G. Bruni; B. Brzozowska; P. J. Bussey; B. Bylsma; A. Caldwell; M. Capua; R. Carlin; C. D. Catterall; S. Chekanov; J. Chwastowski; J. Ciborowski; R. Ciesielski; L. Cifarelli; F. Cindolo; A. Contin; A. M. Cooper-Sarkar; N. Coppola; M. Corradi; F. Corriveau; M. Costa; G. D'Agostini; F. Dal Corso; J. del Peso; R. K. Dementiev; S. De Pasquale; M. Derrick; R. C. E. Devenish; D. Dobur; B. A. Dolgoshein; G. Dolinska; A. T. Doyle; V. Drugakov; L. S. Durkin; S. Dusini; Y. Eisenberg; P. F. Ermolov; A. Eskreys; S. Fang; S. Fazio; J. Ferrando; M. I. Ferrero; J. Figiel; M. Forrest; B. Foster; G. Gach; A. Galas; E. Gallo; A. Garfagnini; A. Geiser; I. Gialas; A. Gizhko; L. K. Gladilin; D. Gladkov; C. Glasman; O. Gogota; Yu. A. Golubkov; P. Gottlicher; I. Grabowska-Bold; J. Grebenyuk; I. Gregor; G. Grigorescu; G. Grzelak; O. Gueta; M. Guzik; C. Gwenlan; T. Haas; W. Hain; R. Hamatsu; J. C. Hart; H. Hartmann; G. Hartner; E. Hilger; D. Hochman; R. Hori; K. Horton; A. Huttmann; Z. A. Ibrahim; Y. Iga; R. Ingbir; M. Ishitsuka; H. -P. Jakob; F. Januschek; T. W. Jones; M. Jungst; I. Kadenko; B. Kahle; S. Kananov; T. Kanno; U. Karshon; F. Karstens; I. I. Katkov; M. Kaur; P. Kaur; A. Keramidas; L. A. Khein; J. Y. Kim; D. Kisielewska; S. Kitamura; R. Klanner; U. Klein; E. Koffeman; N. Kondrashova; O. Kononeko; P. Kooijman; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; H. Kowalski; O. Kuprash; M. Kuze; A. Lee; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; T. Y. Ling; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; K. R. Long; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; S. Magill; I. Makarenko; J. Malka; R. Mankel; A. Margotti; G. Marini; J. F. Martin; A. Mastroberardino; M. C. K. Mattingly; I. -A. Melzer-Pellmann; S. Mergelmeyer; S. Miglioranzi; F. Mohamad Idris; V. Monaco; A. Montanari; J. D. Morris; K. Mujkic; B. Musgrave; K. Nagano; T. Namsoo; R. Nania; A. Nigro; Y. Ning; T. Nobe; U. Noor; D. Notz; R. J. Nowak; A. E. Nuncio-Quiroz; B. Y. Oh; N. Okazaki; K. Oliver; K. Olkiewicz; Yu. Onishchuk; K. Papageorgiu; A. Parenti; E. Paul; J. M. Pawlak; B. Pawlik; P. G. Pelfer; A. Pellegrino; W. Perlanski; H. Perrey; K. Piotrzkowski; P. Plucinski; N. S. Pokrovskiy; A. Polini; A. S. Proskuryakov; M. Przybycien; A. Raval; D. D. Reeder; B. Reisert; Z. Ren; J. Repond; Y. D. Ri; A. Robertson; P. Roloff; I. Rubinsky; M. Ruspa; R. Sacchi; U. Samson; G. Sartorelli; A. A. Savin; D. H. Saxon; M. Schioppa; S. Schlenstedt; P. Schleper; W. B. Schmidke; U. Schneekloth; V. Schonberg; T. Schorner-Sadenius; J. Schwartz; F. Sciulli; L. M. Shcheglova; R. Shehzadi; S. Shimizu; I. Singh; I. O. Skillicorn; W. Slominski; W. H. Smith; V. Sola; A. Solano; D. Son; V. Sosnovtsev; A. Spiridonov; H. Stadie; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; A. Stifutkin; P. Stopa; S. Suchkov; G. Susinno; L. Suszycki; J. Sztuk-Dambietz; D. Szuba; J. Szuba; A. D. Tapper; E. Tassi; J. Terron; T. Theedt; H. Tiecke; K. Tokushuku; J. Tomaszewska; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; M. Vazquez; A. Verbytskyi; O. Viazlo; N. N. Vlasov; R. Walczak; W. A. T. Wan Abdullah; J. J. Whitmore; L. Wiggers; M. Wing; M. Wlasenko; G. Wolf; H. Wolfe; K. Wrona; A. G. Yagues-Molina; S. Yamada; Y. Yamazaki; R. Yoshida; C. Youngman; O. Zabiegalov; A. F. Zarnecki; L. Zawiejski; O. Zenaiev; W. Zeuner; B. O. Zhautykov; N. Zhmak; C. Zhou; A. Zichichi; Z. Zolkapli; D. S. Zotkin

2012-05-28T23:59:59.000Z

115

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

116

Workshop on Precision Measurements of $\\alpha_s$  

SciTech Connect

These are the proceedings of the Workshop on Precision Measurements of {alpha}{sub s} held at the Max-Planck-Institute for Physics, Munich, February 9-11, 2011. The workshop explored in depth the determination of {alpha}{sub s}(m{sub Z}) in the {ovr MS} scheme from the key categories where high precision measurements are currently being made, including DIS and global PDF fits, {tau}-decays, electro-weak precision observables and Z-decays, event-shapes, and lattice QCD. These proceedings contain a short summary contribution from the speakers, as well as the lists of authors, conveners, participants, and talks.

Bethke, Siegfried; /Munich, Max Planck Inst.; Hoang, Andre H.; /Vienna U.; Kluth, Stefan; /Munich, Max Planck Inst.; Schieck, Jochen; /Munich U.; Stewart, Iain W.; Aoki, S.; Beneke, M.; Bethke, S.; Blumlein, J.; Brambilla, N.; Brodsky, S.; /MIT, LNS

2011-10-01T23:59:59.000Z

117

Historical Natural Gas Annual - 1930 Through 2000  

U.S. Energy Information Administration (EIA) Indexed Site

2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

118

On the Alpha Activity of Natural Tungsten Isotopes  

E-Print Network (OSTI)

The indication for the ? decay of 180W with a half-life T ? 1/2 =1.1+0.8 ?0.4(stat)0.3(syst)1018 yr has been observed for the first time with the help of the super-low background 116CdWO4 crystal scintillators. In conservative approach the lower limit on half-life of 180W has been established as T ? 1/2 (180W) ? 0.71018 yr at 90 % C.L. Besides, new T ? 1/2 bounds were set for ? decay of

F. A. Danevich A; A. Sh. Georgadze A; V. V. Kobychev A; S. S. Nagorny A; A. S. Nikolaiko A; W

119

Naturally Occurring Alpha-Activity of Drinking Waters  

Science Journals Connector (OSTI)

... whether the observed values applied to radium-226 or also included gaseous products such as radon-222, known to exist in certain waters at considerably higher levels of activity than ... of 71 drinking waters available in Britain, and in addition we report the values for radon-222 and radium-224 (thorium X) when present.

R. C. TURNER; J. M. RADLEY; W. V. MAYNEORD

1961-02-04T23:59:59.000Z

120

Two source emission behavior of projectile fragments alpha in 84^Kr interactions at around 1 GeV per nucleon  

E-Print Network (OSTI)

The emission of projectile fragments alpha has been studied in 84^Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source.

M. K. Singh; Ramji Pathak; V. Singh

2010-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Surface Radiography with Alpha Rays  

Science Journals Connector (OSTI)

... , and C are deposited on the surfaces of objects which come in contact with radon. Three of them, namely, radium A, C and C, emit alpha rays ... two hours in a vessel (volume 70 c.c.) containing 1 me. of radon. Afterwards the wing was put for 8 min. on the emulsion of a photographic ...

Č. JECH

1948-02-28T23:59:59.000Z

122

Alpha  

NLE Websites -- All DOE Office Websites (Extended Search)

is on the order of the torus major radius. Let us now consider, following Similon and Sudan, 17 an Alfve n wave packet, with a characteristic perpendicular wave number k 0...

123

alpha. -Amylase of Clostridium thermosulfurogenes EM1: Nucleotide sequence of the gene, processing of the enzyme, and comparison to other. alpha. -amylases  

SciTech Connect

The nucleotide sequence of the {alpha}-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes Em1 suggested that the {alpha}-amylase is translated form mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature {alpha}-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 {alpha}-amylase with those from other bacterial and eukaryotic {alpha}-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca{sup 2+}-binding site (consensus region I) of this Ca{sub 2+}-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the {alpha}-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the {beta}-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.

Bahl, H.; Burchhardt, G.; Spreinat, A.; Haeckel, K.; Wienecke, A.; Antranikian, G.; Schmidt, B. (Georg-August-Univ., Gottingen (Germany))

1991-05-01T23:59:59.000Z

124

Antihydrogen Trapped in the ALPHA Experiment  

ScienceCinema (OSTI)

In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained.[ii] These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011) Organizer: Ferdinand Hahn PH/DT Detector Seminar webpage

None

2011-04-25T23:59:59.000Z

125

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

126

Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243  

E-Print Network (OSTI)

Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

U. Forsberg; D. Rudolph; L. -L. Andersson; A. Di Nitto; Ch. E. Dllmann; J. M. Gates; P. Golubev; K. E. Gregorich; C. J. Gross; R. -D. Herzberg; F. P. Hessberger; J. Khuyagbaatar; J. V. Kratz; K. Rykaczewski; L. G. Sarmiento; M. Schdel; A. Yakushev; S. berg; D. Ackermann; M. Block; H. Brand; B. G. Carlsson; D. Cox; X. Derkx; J. Dobaczewski; K. Eberhardt; J. Even; C. Fahlander; J. Gerl; E. Jger; B. Kindler; J. Krier; I. Kojouharov; N. Kurz; B. Lommel; A. Mistry; C. Mokry; W. Nazarewicz; H. Nitsche; J. P. Omtvedt; P. Papadakis; I. Ragnarsson; J. Runke; H. Schaffner; B. Schausten; Y. Shi; P. Thrle-Pospiech; T. Torres; T. Traut; N. Trautmann; A. Trler; A. Ward; D. E. Ward; N. Wiehl

2015-02-10T23:59:59.000Z

127

Targeted alpha therapy for cancer  

Science Journals Connector (OSTI)

Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 11.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The 213Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 Ci in human patients are effective in regressing melanomas, with no concomitant complications. These results point to the application of local and systemic TAT in the management of secondary cancer. Results of the phase 1 clinical trial of TAT of subcutaneous, secondary melanoma indicate proof of the principle that TAT can make tumours in patients regress.

Barry J Allen; Chand Raja; Syed Rizvi; Yong Li; Wendy Tsui; David Zhang; Emma Song; Chang Fa Qu; John Kearsley; Peter Graham; John Thompson

2004-01-01T23:59:59.000Z

128

Local Varying-Alpha Theories  

E-Print Network (OSTI)

In a recent paper we demonstrated how the simplest model for varying alpha may be interpreted as the effect of a dielectric material, generalized to be consistent with Lorentz invariance. Unlike normal dielectrics, such a medium cannot change the speed of light, and its dynamics obey a Klein-Gordon equation. This work immediately suggests an extension of the standard theory, even if we require compliance with Lorentz invariance. Instead of a wave equation, the dynamics may satisfy a local algebraic relation involving the permittivity and the properties of the electromagnetic field, in analogy with more conventional dielectric (but still preserving Lorentz invariance). We develop the formalism for such theories and investigate some phenomenological implications. The problem of the divergence of the classical self-energy can be solved, or at least softened, in this framework. Some interesting new cosmological solutions for the very early universe are found, including the possibility of a bounce, inflation and expansion with a loitering phase, all of which are induced by early variations in alpha.

John D. Barrow; Joao Magueijo

2014-12-10T23:59:59.000Z

129

Natural gas monthly, August 1996  

SciTech Connect

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

130

Natural Gas  

Science Journals Connector (OSTI)

... CHOOSING an awkward moment, Phillips Petroleum Exploration have announced a new find of natural ...naturalgas ...

1967-02-11T23:59:59.000Z

131

SHOE V.1.5 ALPHA  

Energy Science and Technology Software Center (OSTI)

002913MLTPL00 Sandia Higher Order Elements (SHOE) v 0.5 alpha http://midas3.kitware.com/midas/folder/10328

132

Alpha Decay of the Isomers of Fr214  

Science Journals Connector (OSTI)

Alpha decay from the ground state and an isomeric state of Fr214 has been observed. The ground state has a half-life of 5.00.2 msec, and the isomeric state, 3.350.05 msec, at an excitation energy of 123 keV. A level scheme for At210 based on several ? transitions observed is presented. The similarity of the energy levels of Bi208 with those of At210 suggests that the addition of a proton pair to Bi208 does not significantly alter the nature of the particle-hole interactions observed for Bi208.

David F. Torgerson; Richard A. Gough; Ronald D. Macfarlane

1968-10-20T23:59:59.000Z

133

Alpha Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Alpha Technologies Place Bellingham, Washington State Zip 98226 Sector Services, Solar Product Bellingham (WA)-based firm offering, among other products, power conversion products designed specifically for the PV market, plus installation services for solar systems. Coordinates 48.75235°, -122.471219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.75235,"lon":-122.471219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Derr Track Storage Bldg Sigma Alpha  

E-Print Network (OSTI)

!( Derr Track Storage Bldg Japan Center Memorial Bell Tower Solar House Primrose Chancellor & Storage Bio. Sci Avent Ferry Complex Building Sigma Phi Epsilon 7 Welch Pi Kappa Alpha 10 Sigma Alpha Mu 4 and Visitor's Center Thompson Admin II Bostian Library Storage Facility Winston Clark Ricks Robertson Harris

Reeves, Douglas S.

135

Elementary Processes Underlying Alpha Channeling in Tokamaks  

SciTech Connect

Alpha channeling in tokamaks is speculative, but also extraordinarily attractive. Waves that can accomplish this effect have been identified. Key aspects of the theory now enjoy experimental confirmation. This paper will review the elementary processes of wave-particle interactions in plasma that underlie the alpha channeling effect

NM.J. Fisch

2012-06-15T23:59:59.000Z

136

Alpha Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Alpha Renewable Energy Place Atlanta, Georgia Sector Biomass Product Manufacturer of biomass wood gas stoves and standalone power generators for rural areas. References Alpha Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alpha Renewable Energy is a company located in Atlanta, Georgia . References ↑ "Alpha Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alpha_Renewable_Energy&oldid=342033" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

137

Bacterial Alpha Amylase Paper Disc Tests on Starch Agar  

Science Journals Connector (OSTI)

...Articles Bacterial Alpha Amylase Paper Disc Tests on Starch Agar Egon Stark Ralph...Mass. Bacterial Alpha Amylase Paper Disc Tests on Starch Agar EGON STARK...hydrolysis of soluble starch by a bacterial alpha-amylase preparation, so...

Egon Stark; Ralph Wellerson Jr.; Philip A. Tetrault; Carl F. Kossack

1953-09-01T23:59:59.000Z

138

CRAD, Safety Basis - Oak Ridge National Laboratory TRU ALPHA...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Safety Basis - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C...

139

CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of...

140

CRAD, Management - Oak Ridge National Laboratory TRU ALPHA LLWT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Management - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to...

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

142

Regional Purchasing  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Purchasing Regional Purchasing Regional Purchasing Pursuant to Appendix M of Prime Contract No. DE-AC52-06NA25396 between DOE/NNSA and Los Alamos National Security, LLC (LANS), LANS is committed to building a strong supplier base with Northern New Mexico businesses and the local Native American pueblos in the purchases of goods and services. Contact Small Business Office (505) 667-4419 Email We seek out and utilize known Northern New Mexico business as suppliers The Northern New Mexico counties included are Los Alamos Santa Fe Rio Arriba Taos Mora San Miguel Sandoval The eight regional pueblos included are Nambe Ohkay Owingeh (formerly known as San Juan) Picuris Pojoaque San Ildefonso Santa Clara Taos Tesuque When the Laboratory cannot identify regional firms, it will expand its

143

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

144

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

145

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

146

Nuclear diagnostic for fast alpha particles  

DOE Patents (OSTI)

This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.

Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.

1983-11-23T23:59:59.000Z

147

Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in G[alpha] Subunits  

SciTech Connect

Heterotrimeric G proteins (Galphabetagamma) transmit signals from activated G protein-coupled receptors (GPCRs) to downstream effectors through a guanine nucleotide signaling cycle. Numerous studies indicate that the carboxy-terminal alpha5 helix of Galpha subunits participates in Galpha-receptor binding, and previous EPR studies suggest this receptor-mediated interaction induces a rotation and translation of the alpha5 helix of the Galpha subunit [Oldham, W. M., et al. (2006) Nat. Struct. Mol. Biol. 13, 772-777]. On the basis of this result, an engineered disulfide bond was designed to constrain the alpha5 helix of Galpha(i1) into its EPR-measured receptor-associated conformation through the introduction of cysteines at position 56 in the alpha1 helix and position 333 in the alpha5 helix (I56C/Q333C Galpha(i1)). A functional mimetic of the EPR-measured alpha5 helix dipole movement upon receptor association was additionally created by introduction of a positive charge at the amino terminus of this helix, D328R Galpha(i1). Both proteins exhibit a dramatically elevated level of basal nucleotide exchange. The 2.9 A resolution crystal structure of I56C/Q333C Galpha(i1) in complex with GDP-AlF(4)(-) reveals the shift of the alpha5 helix toward the guanine nucleotide binding site that is anticipated by EPR measurements. The structure of the I56C/Q333C Galpha(i1) subunit further revealed altered positions for the switch regions and throughout the Galpha(i1) subunit, accompanied by significantly elevated crystallographic temperature factors. Combined with previous evidence in the literature, the structural analysis supports the critical role of electrostatics of the alpha5 helix dipole and overall conformational variability during nucleotide release.

Preininger, Anita M.; Funk, Michael A.; Oldham, William M.; Meier, Scott M.; Johnston, Christopher A.; Adhikary, Suraj; Kimple, Adam J.; Siderovski, David P.; Hamm, Heidi E.; Iverson, Tina M.; (Vanderbilt); (UNC)

2009-06-01T23:59:59.000Z

148

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Impact of Interruptible Natural Gas Service A Snapshot of California Natural Gas Market: Status and Outlook EIA's Testimony on Natural Gas Supply and Demand Residential Natural Gas Price Brochure Status of Natural Gas Pipeline System Capacity Previous Issues of Natural Gas Weekly Update Natural Gas Homepage Overview: Monday, June 04, 2001 Stock builds slowed from their recent pace, even though spot prices continued their downward trend to end the week at the Henry Hub at $3.71 per MMBtu, which is a Friday-to-Friday decline of $0.14 per MMBtu. The NYMEX contract price for June delivery at the Henry Hub settled Tuesday at $3.738, the lowest close-out of a near month contract since the May 2000 contract. The July contract price was $3.930 per MMBtu on Friday, $0.103 lower than a week earlier. Mild weather in the Northeast and Midwest continued to suppress prices on the Eastern Seaboard, while a short burst of warm temperatures in southern California early in the week had the opposite effect on prices in that region. (See Temperature Map) (See Deviation from Normal Temperatures Map) Net injections to storage for the week ended Friday, May 25 were 99 Bcf, breaking a 4-week string of 100-plus net injections.

149

Regional Inventories  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: This year has not started well for gasoline inventories, with inventories being low across regions of the country. The Midwest region (PADD II) had been running lower than most regions, but began to catch up during the last week in April. Gasoline inventories ran about 9% below their 5-year average for this time of year and about 4% below where they were last year. The recent refinery problems in the Midwest, though, could erase some of that recovery. The impacts of Tosco's Wood River refinery and Marathon's St Paul refinery are not fully realized. But inventories were also precariously low along the East Coast (PADD I) and are extremely low in the Rocky Mountain region (PADD IV), although the size of this market mitigates any national impact. While the

150

Molecular cloning of alpha-amylase genes fromDrosophila melanogaster. III. An inversion at theAmy locus in an amylase-null strain  

Science Journals Connector (OSTI)

Overlapping clones of the structural gene region for alpha-amylase,Amy..., were isolated from a lambda EMBL4 library containing genomic DNA fragments from an amylase-null strain ofDrosophila melanogaster. Souther...

Phillip E. Schwartz; Winifred W. Doane

1989-02-01T23:59:59.000Z

151

A review of recent measurements of optical and thermal properties of. alpha. -mercuric iodide  

SciTech Connect

The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide ({alpha}-HgI{sub 2}) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of {alpha}-HgI{sub 2} where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication.

Burger, A.; Morgan, S.H.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; Cheng, A.Y. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

1991-01-01T23:59:59.000Z

152

Alpha Channeling in Rotating Plasma with Stationary Waves  

SciTech Connect

An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

153

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

154

Alpha Channeling in Mirror Machines  

SciTech Connect

Because of their engineering simplicity, high-?, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

Fisch N.J.

2005-10-19T23:59:59.000Z

155

QUANTIFICATION OF ACTINIDE ALPHA-RADIATION DAMAGE IN MINERALS AND CERAMICS  

SciTech Connect

There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is a consensus that actinides that have been separated from spent nuclear fuel should be immobilised within mineral-based ceramics rather than glass. Over the long-term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alphadecay. Currently, this number is estimated as 1000-2000 atoms/alpha decay event. Here, we report nuclear magnetic resonance, spin-counting experiments that measure close to 5000 atoms/alpha decay event in radiation damaged natural zircons. New radiological NMR measurements on highly radioactive, 239Pu zircon show damage similar to that created by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of dose rate. Based on these measurements, the initially crystalline structure of a 10 wt% 239Pu zircon would be amorphous after only 1400 years in a geological repository. These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics based on an atomistic understanding of the fundamental damage event.

Farnan, Ian E.; Cho, Herman M.; Weber, William J.

2007-01-11T23:59:59.000Z

156

AKARI/FIS Mapping of the ISM-Wind Bow Shock around Alpha Ori  

E-Print Network (OSTI)

We present 10' x 50' scan maps around an M supergiant Alpha Ori at 65, 90, 140 and 160 microns obtained with the AKARI Infrared Astronomy Satellite. Higher spatial resolution data with the exact analytic solution permit us to fit the de-projected shape of the stellar wind bow shock around Alpha Ori to have the stand-off distance of 4.8', position angle of 55 degrees and inclination angle of 56 degrees. The shape of the bow shock suggests that the peculiar velocity of Alpha Ori with respect to the local medium is v_* = 40 (n_H)^(-1/2), where n_H is the hydrogen nucleus density at Alpha Ori. We find that the local medium is of n_H = 1.5 to 1.9 cm^(-3) and the velocity of the local flow is at 11 km s^(-1) by using the most recent astrometric solutions for Alpha Ori under the assumption that the local medium is moving away from the Orion OB 1 association. AKARI images may also reveal a vortex ring due to instabilities on the surface of the bow shock as demonstrated by numerical models. This research exemplifies the potential of AKARI All-Sky data as well as follow-up observations with Herschel Space Telescope and Stratospheric Observatory for Infrared Astronomy for this avenue of research in revealing the nature of interaction between the stellar wind and interstellar medium.

Toshiya Ueta; Hideyuki Izumiura; Issei Yamamura; Yoshikazu Nakada; Mikako Matsuura; Yoshifusa Ita; Toshihiko Tanabe; Hinako Fukushi; Noriyuki Matsunaga; Hiroyuki Mito

2008-08-20T23:59:59.000Z

157

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

158

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: October 23, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For week ending Wednesday, October 15) Since Wednesday, October 8, natural gas spot prices increased at most markets in the Lower 48 States outside the California, West Texas, and Arizona/Nevada regions, with prices rising as much as 76 cents per million Btu (MMBtu). Prices at the Henry Hub rose 6 cents per MMBtu or about 1 percent, to $6.64 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for November delivery at the Henry Hub settled yesterday (October 15) at $6.592 per MMBtu, declining 15 cents per MMBtu or about 2 percent since last Wednesday, October 8. Natural gas in storage was 3,277 billion cubic feet (Bcf) as of

159

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: November 14, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, November 5) Since Wednesday, October 29, natural gas spot prices increased at most markets in the Lower 48 States outside the Midwest, Northeast, and Alabama/Mississippi regions, with gains of up to $1.26 per million Btu (MMBtu) in a week of highly variable prices. Prices at the Henry Hub rose 36 cents per MMBtu or about 5 percent, to $6.94 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for December delivery at the Henry Hub settled yesterday (November 5) at $7.249 per MMBtu, climbing 47 cents per MMBtu or about 7 percent since last Wednesday, October 29. Natural gas in storage was 3,405 billion cubic feet (Bcf) as of

160

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: May 22, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices increased in a majority of regions of the Lower 48 States this report week (Wednesday–Wednesday, May 7-14).The Henry Hub spot price increased $0.43 per million Btu (MMBtu) to $11.51, the highest average price recorded at the Henry Hub in more than 2 years. At the New York Mercantile Exchange (NYMEX), prices also continued on an upward trend that has resulted in weekly price increases in 6 of the last 7 report weeks. The futures contract for June delivery increased 27.1 cents per MMBtu on the week to approximately $11.60. During the week ending Friday, May 9, estimated net injections of natural gas into underground storage totaled the largest volume to date

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 8, 2009 Next Release: January 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 7, 2009) Since Wednesday, December 31, natural gas spot prices increased at most markets in the Lower 48 States except in the Northeast region. Prices at the Henry Hub rose 26 cents per million Btu (MMBtu) or about 5 percent, to $5.89 per MMBtu. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery at the Henry Hub settled yesterday (January 7) at $5.872 per MMBtu, climbing 22 cents per MMBtu or about 4 percent since last Wednesday, December 31. Natural gas in storage was 2,830 billion cubic feet (Bcf) as of January 2, which is about 3 percent above the 5-year average (2004-2008),

162

AlphaWatt Ltd | Open Energy Information  

Open Energy Info (EERE)

AlphaWatt Ltd AlphaWatt Ltd Jump to: navigation, search Name AlphaWatt Ltd Place London, United Kingdom Zip EC1V 4PY Sector Solar Product Solar project developer, plans to become an independent power provider. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Energy production in varying {\\alpha} theories  

E-Print Network (OSTI)

Aims. On the basis the theoretical model proposed by Bekenstein for {\\alpha}'s variation, we analyze the equations that describe the energy exchange between matter and both the electromagnetic and the scalar fields. Methods. We determine how the energy flow of the material is modified by the presence of a scalar field. We estimate the total magnetic energy of matter from the "sum rules techniques". We compare the results with data obtained from the thermal evolution of the Earth and other planets. Results. We obtain stringent upper limits to the variations in {\\alpha} that are comparable with those obtained from atomic clock frequency variations. Conclusions. Our constraints imply that the fundamental length scale of Bekenstein's theory "lB" cannot be larger than Planck's length "lP".

Kraiselburd, Lucila; Sisterna, Pablo; Vucetich, Hctor; 10.1051/0004-6361/201015970

2011-01-01T23:59:59.000Z

164

Alpha decay of Fr215  

Science Journals Connector (OSTI)

The ?-decay property of Fr215 has been studied by the pulsed-beam method, in which Fr215 was produced in the Bi209(C12,?2n) reaction and its ? decay was measured between natural beam bursts of the cyclotron. The ground state of Fr215 was found to decay with E?=9.3550.010 MeV and t12=0.120.02 ?sec. The reduced ? width of Fr215 is shown to fit the systematical trend of N=128 isotones very well and to agree with the simple shell-model calculation. Distributions of recoil angles for reaction products in the (C12,?xn) reaction were found to be quite different from those for (C12,xn) products, giving a convenient method of distinguishing these reaction products.[NUCLEAR REACTIONS Bi209(C12,xn), Bi209(C12,?xn), E=73-80 MeV; measured ? decay and W(?) of reaction products, E?, t12; deduced ?-decay width of Fr215.

T. Nomura; K. Hiruta; M. Yoshie; O. Hashimoto

1974-03-01T23:59:59.000Z

165

Alpha particle cluster states in fp-shell nuclei  

Science Journals Connector (OSTI)

Alpha particle cluster structure is known experimentally to persist throughout the mass range 16?A?20, and has been very successfully described in this region in terms of the Buck-Dover-Vary local potential cluster model. It is argued that an analogous cluster structure should be present in nuclei at the beginning of the fp shell, and the available experimental data are examined to determine likely alpha particle cluster state candidates in the mass range 40?A?44. Calculations of the cluster state spectra and mean square cluster-core separation distances (which may be readily used to evaluate E2 electromagnetic transition rates) for Ca40, Ca42, Sc42, Sc43, Ti43, and Ti44 using the above-mentioned model are presented, and compared with experimental measurements where possible. The agreement between theory and experiment is generally good (although inferior to that obtained in the sd shell), and points to the desirability of an extension and improvement of the measurements of the properties of the excited states in these nuclei.

A. C. Merchant

1987-08-01T23:59:59.000Z

166

Radiological hazards of alpha-contaminated waste  

SciTech Connect

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

167

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

168

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

169

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline Systems  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Thirty Largest U.S. Interstate Natural Gas Pipeline Systems, 2008 (Ranked by system capacity) Pipeline Name Market Regions Served Primary Supply Regions States in Which Pipeline Operates Transported in 2007 (million dekatherm)1 System Capacity (MMcf/d) 2 System Mileage Columbia Gas Transmission Co. Northeast Southwest, Appalachia DE, PA, MD, KY, NC, NJ, NY, OH, VA, WV 1,849 9,350 10,365 Transcontinental Gas Pipeline Co. Northeast, Southeast Southwest AL, GA, LA, MD, MS, NC, NY, SC, TX, VA, GM 2,670 8,466 10,450 Northern Natural Gas Co. Central, Midwest Southwest IA, IL, KS, NE, NM, OK, SD, TX, WI, GM 1,055 7,442 15,874 Texas Eastern Transmission Corp.

170

Production of alpha-amylase by yeast  

SciTech Connect

The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

Thomse, K.K.

1987-01-01T23:59:59.000Z

171

The SimCore/Alpha Functional Simulator  

Science Journals Connector (OSTI)

We have developed a function-level processor simulator, SimCore/Alpha Functional Simulator Version 2.0 (SimCore Version 2.0), for processor architecture research and processor education. This paper describes the design and implementation of SimCore Version ...

Kenji Kise; Takahiro Katagiri; Hiroki Honda; Toshitsugu Yuba

2004-06-01T23:59:59.000Z

172

H-alpha observations of zeta Tauri  

E-Print Network (OSTI)

We report H-alpha observations of zeta Tauri, taken between late 2000 and early 2006. Next to extending existing long-term montioring of the disk state of this star we report an intermediate timescale of about 69 days to be present in the V/R variations of the Halpha line. The observational data will be published together with this manuscript.

E. Pollmann; Th. Rivinius

2008-01-29T23:59:59.000Z

173

NATURE STUDY  

Science Journals Connector (OSTI)

...last two numbers of SCIENCE have appeared articles by Drs. Wheeler and Chapman on the abuses of nature writing as exemplified...imprint of Rand, IeNally and Co., 1903, and its author is Katherine E. Dopp, of the Extension Division of the Chicago University...

E. C. CASE

1904-04-01T23:59:59.000Z

174

Marketing Mother Natures Molecules  

Science Journals Connector (OSTI)

Marketing Mother Natures Molecules ... Yet molecules made by Mother Nature, or derivatives thereof, still account for nearly half of the drugs on the market. ...

LISA JARVIS

2012-02-19T23:59:59.000Z

175

E-Print Network 3.0 - alpha hnf-3alpha negatively Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manchester Collection: Biology and Medicine 4 VANDERBILT UNIVERSITY OFFICE OF CAMPUS RECREATION Summary: 1 Alpha Delta Pi III 2 Ankurage I II 3 Don't Haze Me Bro 2 II I 4 Gram...

176

E-Print Network 3.0 - alpha cap alpha Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Pi Greek Woman of the Year Ann... Marie Frappier - Rho Gamma Greek Man of the Year Jordan Fischette - Alpha Tau Omega Greek Professor... of the Year Carl Braunlich Philanthropy...

177

E-Print Network 3.0 - alpha-1-antitrypsin augmentation therapy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha-1-Antitrypsin Alpha-Hydroxybutyrate Dehydrogenase (aHBDH) ALTSGPT Amylase Amylase (Alpha) Amylase Source: Rodriguez, Carlos - Department of Mathematics and Statistics, State...

178

E-Print Network 3.0 - alpha-1 antitrypsin deficiency Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha-1-Antitrypsin Alpha-Hydroxybutyrate Dehydrogenase (aHBDH) ALTSGPT Amylase Amylase (Alpha) Amylase Source: Rodriguez, Carlos - Department of Mathematics and Statistics, State...

179

E-Print Network 3.0 - alpha chi sigma Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha: 2515 Leon Street KS...Kappa Sigma: 1002 West 26th Street LCA...Lambda Chi Alpha... ACW...Alpha Chi Omega: 2420 Nueces Street ADP...

180

Undetected Sources Allow Transmission of the Lyman-alpha Line From Galaxies Prior to Reionization  

E-Print Network (OSTI)

The discovery of Lyman-alpha emission from galaxies at redshifts beyond z~6.5 should not be naively interpreted as implying that the intergalactic medium (IGM) had been reionized at higher redsifts. We show that a cluster of faint undetected sources around each observed galaxy generates an HII region sufficiently large to allow transmission of the galaxy's Lyman-alpha line prior to reionization. We also show that quasars may contribute a significant fraction of the ionizing photons to HII regions around galaxies with a velocity dispersion larger than ~100km/s. These contributing quasars are not usually seen due to the small fraction of time they spend in a luminous phase.

Stuart Wyithe; Abraham Loeb

2004-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2007 (next release 2:00 p.m. on July 26, 2007) 9, 2007 (next release 2:00 p.m. on July 26, 2007) Since Wednesday, July 11, natural gas spot prices decreased at virtually all markets in the Lower 48 States. Prices at the Henry Hub declined 41 cents per MMBtu, or 6 percent, since Wednesday, July 11, to $6.24 per MMBtu. At the NYMEX, the futures contract for August delivery at the Henry Hub settled yesterday (July 18) at $6.528 per MMBtu, falling 7 cents per MMBtu, or 1 percent since last Wednesday, July 11. Natural gas in storage was 2,692 Bcf as of July 13, which is 15.7 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil gained $2.45 per barrel on the week (Wednesday-Wednesday) to $75.03 per barrel or $12.94 per MMBtu. Prices: Natural gas prices fell at virtually all market locations since last Wednesday, July 11, with declines of 25 to 50 cents per MMBtu or about 4 to 12 percent. Moderating temperatures in most areas of the Lower 48 States likely accounted for the widespread declines, as cooler temperatures mitigated cooling demand for natural gas. On a regional basis, price declines averaged between 18 and 58 cents per MMBtu, or 3 and 13 percent, since last Wednesday, July 11. The largest price decreases since last Wednesday, July 11, occurred principally in the Rocky Mountain region, where prices fell by more than 57 cents per MMBtu, or 13 percent on average. By far, the smallest decreases occurred in the Arizona/Nevada and Florida regions, where prices fell by 18 and 24 cents per MMBtu on average, respectively, with the Florida citygate posting the highest price in the Lower 48 States at $8.00 per MMBtu. Elsewhere, average price decreases by region ranged between 30 and 43 cents per MMBtu. Despite these declines and lower electric generation demand relative to last year, prices generally exceeded levels reported last year at this time, with prices at the Henry Hub $0.22 per MMBtu or 4 percent above last year's level. The principal exception to the year-over-year price increases occurred in the Rocky Mountain region, where prices at selected markets were between $1.87 and $2.28 per MMBtu or about 35 and 43 percent below last year's level.

182

CRAD, Training - Oak Ridge National Laboratory TRU ALPHA LLWT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Training - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to DOE G...

183

The effects of alpha particle irradiation on stainless steel  

E-Print Network (OSTI)

A Monte Carlo code was developed to calculate the alpha particle emission rate from WGPu. It yielded information pertaining to the alpha particle source strength at the WGPU and stainless steel interface as well as the damage production and He...

Shipp, John Douglas

1999-01-01T23:59:59.000Z

184

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2004 (next release 2:00 p.m. on January 22) 15, 2004 (next release 2:00 p.m. on January 22) Since Wednesday, January 7, natural gas spot prices have decreased at most market locations in the Lower 48 States outside of the Northeast region. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 89 cents or about 13 percent to $5.74 per MMBtu. Despite widespread declines elsewhere, prices in the Northeast region surged to more than seven times last week's levels at some market locations as extreme wintry conditions moved into the region. Yesterday (January 14), the price of the NYMEX futures contract for February delivery at the Henry Hub settled at $6.387 per MMBtu, decreasing roughly 49 cents or 7 percent since last Wednesday. Natural gas in storage was 2,414 Bcf as of January 9, which is 8.3 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil gained $1.05 per barrel or about 3 percent since last Wednesday, climbing to $34.62 per barrel or $5.969 per MMBtu.

185

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

186

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

187

EIA - Natural Gas Publications & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Publications & Analysis Publications & Analysis Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S. Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Annual Provides comprehensive information on the supply and disposition of natural gas in the U.S. ... see complete list of Natural Gas Publications Basics All Prices Exploration & Reserves Production Imports/Exports & Pipelines Storage Consumption Natural Gas Survey Forms Natural Gas Section from International Energy Annual Forecasts & Analysis Includes petroleum and natural gas forecasts and analysis for consumption, production, prices, and sales.

188

CAPITAL REGION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

t 09/20/07 15:28 FAX 301 903 4656 t 09/20/07 15:28 FAX 301 903 4656 CAPITAL REGION 0 j002 SDOE F 1325.8 (8-89) EFG (0790) Energy United States Government Department of Energy Memorandum DATE. September 18, 2007 Audit Report No.: OAS-L-07-23 REPLY TO: IG-34 (A07TG036) SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program-2007" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results o Four evaluation of the Federal Energy Regulatory Commission's (Commission) cyber security program. The evaluation was initiated in May 2007, and our fieldwork was conducted through September 2007. Our methodology is described in the attachment to this report. . INTRODUCTION AND OBJECTIVE The Commission reports that it is constantly improving thl stability, reliability, and

189

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: December 18, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, December 3, to Wednesday, December 10, 2008) Natural gas spot prices decreased at most market locations in the Lower 48 States this report week, with all trading regions registering losses with the exception of the Rocky Mountains. On the week, the spot prices at each market location outside the Rockies fell between 2 and 93 cents per MMBtu, with the Henry Hub registering a decrease of 80 cents per million Btu (MMBtu) to $5.68. At the New York Mercantile Exchange (NYMEX), futures prices for the near-month contract declined each day for the first 3 days of the report and increased on Tuesday and Wednesday (December 9-10), resulting in a

190

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2008 5, 2008 Next Release: June 12, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Spot gas at most market locations (outside the Rocky Mountain Region) traded above $10 per million Btu (MMBtu) this report week (Wednesday-Wednesday), with many points registering prices in excess of $12 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for July delivery at the Henry Hub moved higher by 38 cents per MMBtu compared with its settlement price a week ago, ending yesterday (June 4) at $12.379 MMBtu. Natural gas in storage was 1,806 billion cubic feet (Bcf) as of May 30, which is 0.1 percent below the 5-year average (2003-2007). The spot price for West Texas Intermediate (WTI) crude oil decreased

191

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2008 6, 2008 Next Release: July 3, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot price movements were mixed this report week (Wednesday–Wednesday, June 18-25), with price decreases generally occurring in producing areas in the Gulf of Mexico region and price increases at trading locations in the Rockies, the Midcontinent, and the Northeast. During the report week, the Henry Hub spot price decreased $0.17 per million Btu (MMBtu) to $12.76. At the New York Mercantile Exchange (NYMEX), a trend of rising prices for futures contracts was at least temporarily interrupted. After trading at $13.20 per MMBtu on Monday, the futures contract for July delivery decreased by 45 cents in value over the next 2 days and ended the

192

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: February 12, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 4, 2009) Natural gas spot prices decreased in half of the trading regions in the Lower 48 States this report week. Generally, areas east of the Rockies and particularly those that experienced frigid temperatures posted weekly price increases. However, there were some exceptions, including the Midcontinent and East Texas. At the New York Mercantile Exchange (NYMEX), futures trading for the near-month contract was fairly volatile, with daily price changes ranging between a 16-cent loss and a 16-cent increase. The March 2009 contract ended trading yesterday 18 cents higher than on the previous Wednesday.

193

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, May 12, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 4, 2011) Wholesale natural gas prices at market locations in the lower 48 States moved higher this week as cold weather persisted in some consuming regions. Prices also increased at the beginning of the report week as the U.S. Energy Information Administration (EIA) released data (on April 28) showing the refill of storage inventories following last winter has proceeded slower than in recent years. During the report week (April 27-May 4), the Henry Hub spot price increased $0.24 to $4.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices

194

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2009 26, 2009 Next Release: March 5, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 25, 2009) Natural gas spot prices continued to decrease this week. The return of frigid temperatures for much of the report week in the Northeast, Southeast, and part of the Midwest did little to support any upward price movements in these regions. In fact, spot prices at all trading locations covered by this report either decreased or remained unchanged. Spot prices in the Northeast dipped below $5 per million Btu (MMBtu) for the first time in more than 2 years. At the New York Mercantile Exchange (NYMEX) the near-month futures contract barely remained above $4 per MMBtu this week. The futures contract

195

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

196

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2008 0, 2008 Next Release: July 17, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Natural gas spot prices declined sharply this report week (Wednesday–Wednesday, July 2-9), with the largest decreases generally occurring in consuming regions in the Northeast and Midwest. During the report week, the Henry Hub spot price decreased $1.22 per million Btu (MMBtu) to $12.09. At the New York Mercantile Exchange (NYMEX), a trend of rising prices for futures contracts was at least temporarily interrupted. After the August 2008 contract reached a daily settlement price of $13.578 per MMBtu (a record high for this contract) on July 3, the price decreased by $1.57 per MMBtu over the next three trading sessions and ended the week

197

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Wednesday, November 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 3, 2010) Price changes were mixed this week, with much regional variation across the country. At the Henry Hub in Erath, Louisiana, prices posted a net decline on the week of 2 cents, falling from $3.37 per million Btu (MMBtu) on Wednesday, October 27, to $3.35 per MMBtu on Wednesday, November 3. At the New York Mercantile Exchange (NYMEX), the December 2010 futures contract (which became the near-month contract on October 28) rose $0.073 from $3.763 per MMBtu last Wednesday to $3.836 yesterday. Working natural gas in storage increased to 3,821 billion cubic feet

198

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: August 28, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 13, to Wednesday, August 20) During the report week (Wednesday-Wednesday, August 13-20), natural gas prices continued their overall declines in the Lower 48 States, with decreases ranging between 1 and 58 cents per million British thermal units (MMBtu). However, there were a few exceptions in the Rocky Mountains, where the only average regional price increase on the week was recorded. At the New York Mercantile Exchange (NYMEX), prices for the September delivery contract decreased 38 cents per MMBtu, settling yesterday at $8.077. On Monday and Tuesday, the September contract price dipped below $8 per MMBtu, reaching this level for the first time since

199

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, July 15, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 7, 2010) Natural gas spot prices increased this report week (Wednesday, June 30–Wednesday, July 7), as much of the East Coast experienced the hottest regional temperatures of the year. During the report week, the Henry Hub spot price increased by $0.23 to $4.76 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), the price of the futures contract for August delivery at the Henry Hub closed yesterday, July 7, at $4.565 per MMBtu, which is $0.05 lower than the previous Wednesday. Although the near-month contract increased $0.24 per MMBtu at the beginning of the report week, on Thursday, July 1, likely in response

200

Electrical Resistance of Alpha Hydrogen?Palladium  

Science Journals Connector (OSTI)

Electrical resistancemeasurements of gas?charged alpha hydrogen?palladium alloys have been made in the range 100 to 400C. The fractional increase of palladiumresistance caused by addition of hydrogen is proportional to hydrogen concentration. The constant of proportionality is independent of temperature indicating that Matthiessen's rule is inapplicable to this system. When the results of this work are combined with those of previous authors all of the data can be adequately represented in the range 75 to 400C by the equation (R/R 0) 1 = (2.410.04) m where R is the resistance of alpha hydrogen?palladium R 0 is the resistance of hydrogen?free palladium and m is the hydrogen?to?palladium atom ratio.

W. T. Lindsay Jr.; F. W. Pement

1962-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternate Alpha Induced Reactions for NIF Radiochemistry  

SciTech Connect

Radiochemical analysis of NIF capsule residues has been identified as a potential diagnostic of NIF capsule performance. In particular, alpha-induced nuclear reactions that occur on tracer elements added to the NIF capsule have been shown through simulation to be a very sensitive diagnostic for mix. The short range of the alpha particles makes them representative of the hot spot where they are created through the fusion of deuterium and tritium. Reactions on elements doped into the innermost part of the capsule ablator would therefore be sensitive to material that had mixed into the hot spot. Radiochemical determinations of activated detector elements may perhaps be the only true measure of mix that occurs in a NIF capsule, particularly in cases when the capsule fails.

Shaughnessy, D A; Moody, K J; Bernstein, L A

2010-02-26T23:59:59.000Z

202

DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS  

SciTech Connect

Thermo Power Corporation has proven the technical viability of an on-line, real-time alpha radionuclide instrument for aqueous sample analysis through laboratory and initial field tests of the instrument. The instrument has been shown to be isotonically sensitive to extremely low (ten parts per trillion, or femto Curies per liter) levels of a broad range of radioisotopes. Performance enhancement and other scaling data obtained during the course of this investigation have shown that on-line, real-time operation is possible, with a sub 30-minute response time analyzing 20 ppb (30 pCi/1) natural uranium. Now that these initial field tests in Oak Ridge, Tennessee have been successfully completed, Thermo Power plans to conduct comprehensive field tests of the instrument. The purpose of these endurance tests will be to determine the endurance characteristics of the Thermo Alpha Monitor for Water when it is used by non-Thermo Power personnel in a series of one or more extended field tests. Such endurance testing is the vital next step towards the commercialization of the Alpha Monitor. Subsequently, it will be possible to provide the DOE with an instrument that has the capability of obtaining rapid feedback about the concentrations of alpha-emitting isotope contamination in effluent water streams (Subsurface Contaminants Focus Area). It will also be useful for process control of remediation and D and D operations such as monitoring scrubber/rinse water radioactivity levels (Mixed Waste, Plutonium and D and D Focus Areas).

Unknown

1999-06-16T23:59:59.000Z

203

Complementary optical-potential analysis of alpha-particle elastic scattering and induced reactions at low energies  

E-Print Network (OSTI)

A previously derived semi-microscopic analysis based on the Double Folding Model, for alpha-particle elastic scattering on A~100 nuclei at energies below 32 MeV, is extended to medium mass A ~ 50-120 nuclei and energies from ~13 to 50 MeV. The energy-dependent phenomenological imaginary part for this semi-microscopic optical model potential was obtained including the dispersive correction to the microscopic real potential, and used within a concurrent phenomenological analysis of the same data basis. A regional parameter set for low-energy alpha-particles entirely based on elastic-scattering data analysis was also obtained for nuclei within the above-mentioned mass and energy ranges. Then, an ultimate assessment of (alpha,gamma), (alpha,n) and (alpha,p) reaction cross sections concerned target nuclei from 45Sc to 118Sn and incident energies below ~12 MeV. The former diffuseness of the real part of optical potential as well as the surface imaginary-potential depth have been found responsible for the actual difficulties in the description of these data, and modified in order to obtain an optical potential which describe equally well both the low energy elastic-scattering and induced-reaction data of alpha-particles.

M. Avrigeanu; A. C. Obreja; F. L. Roman; V. Avrigeanu; W. von Oertzen

2008-08-05T23:59:59.000Z

204

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

205

Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor  

SciTech Connect

Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvn eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

1998-12-14T23:59:59.000Z

206

NORTHEAST REGIONAL REFINED PETROLEUM PRODUCT RESERVE  

Energy.gov (U.S. Department of Energy (DOE))

The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

207

A Concept of Sustainable Use of Natural Resources  

E-Print Network (OSTI)

A Concept of Sustainable Use of Natural Resources in Regional Development Contexts Sustainable;Sustainable Regional Development in Rural Africa Part III A Concept of Sustainable Use of Natural Resources;Citation Wiesmann U. 2008. Sustainable Regional Development in Rural Africa, Part III: A Con- cept

Richner, Heinz

208

Kelvin--Helmholtz instability in solar H-alpha surges  

E-Print Network (OSTI)

We study the evolutionary conditions for Kelvin--Helmholtz (KH) instability in a H-alpha solar surge observed in NOAA AR 8227 on 1998 May 30. The jet with speeds in the range of 45--50 km/s, width of 7 Mm, and electron number density of 3.83 x 10^{10} cm^{-3} is assumed to be confined in a twisted magnetic flux tube embedded in a magnetic field of 7 G. The temperature of the plasma flow is of the order of 10^5 K while that of its environment is taken to be 2 x 10^6 K. The electron number density of surrounding magnetized plasma has a typical for the TR/lower corona region value of 2 x 10^{9} cm^{-3}. Under these conditions, the Alfven speed inside the jet is equal to 78.3 km/s. We model the surge as a moving magnetic flux tube for two magnetic field configurations: (i) a twisted tube surrounded by plasma with homogeneous background magnetic field, and (ii) a twisted tube which environment is plasma with also twisted magnetic field. The magnetic field twist in given region is characterized by the ratio of azim...

Zhelyazkov, I; Chandra, R; Srivastava, A K; Mishonov, T

2015-01-01T23:59:59.000Z

209

SOLAR H{alpha} OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS  

SciTech Connect

Chromospheric wave activity around flares and filaments has been a research focus for years, and could provide indirect measurements of local conditions that are not otherwise accessible. One interesting observed phenomenon is oscillations in filaments, activated by distant flares and the large-scale waves they produce. Characteristics of these oscillations, such as periods, amplitudes, and lifetimes, can provide unique information about the filament. We measure oscillation properties in flares and filaments from H{alpha} chromospheric data using a new method that provides important spatial and frequency content of the dynamics. We apply the method to two flare events where filaments are observed to oscillate and determine their properties. We find strong oscillatory signal in flaring active regions in the chromosphere over a range of frequencies. Two filaments are found to oscillate without any detectable chromospheric wave acting as an activation mechanism. We find that filaments oscillate with periods of tens of minutes, but variations are significant at small spatial scales along the filamentary region. The results suggest that there is a frequency dependence of the oscillation amplitude, as well as a spatial dependence along single filaments that is more difficult to quantify. It also appears that the strength of the oscillations does not necessarily depend on the strength of the trigger, although there are other possible effects that make this conclusion preliminary. Applications of this technique to other events and different data sets will provide important new insights into the local energy densities and magnetic fields associated with dynamic chromospheric structures.

Jackiewicz, Jason [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States)] [New Mexico State University, Department of Astronomy, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003 (United States); Balasubramaniam, K. S., E-mail: jasonj@nmsu.edu [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87114 (United States)

2013-03-01T23:59:59.000Z

210

Complex-Energy Shell-Model Description of Alpha Decay  

SciTech Connect

In his pioneering work of alpha decay, Gamow assumed that the alpha particle formed inside the nucleus tunnels through the barrier of the alpha-daughter potential. The corresponding metastable state can be viewed as a complex-energy solution of the time-independent Schroedinger equation with the outgoing boundary condition. The formation of the alpha cluster, missing in the original Gamow formulation, can be described within the R-matrix theory in terms of the formation amplitude. In this work, the alpha decay process is described by computing the formation amplitude and barrier penetrability in a large complex-energy configuration space spanned by the complex-energy eigenstates of the finite Woods-Saxon (WS) potential. The proper normalization of the decay channel is essential as it strongly modifies the alpha-decay spectroscopic factor. The test calculations are carried out for the ^{212}Po alpha decay.

Id Betan, R. [Rosario Physics Institute, Rosario, Argentina] [Rosario Physics Institute, Rosario, Argentina; Nazarewicz, Witold [ORNL] [ORNL

2011-01-01T23:59:59.000Z

211

Extreme alpha-clustering in the 18O nucleus  

E-Print Network (OSTI)

The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster degree of freedom plays an important role in this N not equal Z nucleus. However, the alpha-cluster structure of this nucleus is very different from the relatively simple pattern of strong alpha-cluster quasi-rotational bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced width exceeding the single particle limit was identified at an excitation energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.

E. D. Johnson; G. V. Rogachev; V. Z. Goldberg; S. Brown; D. Robson; A. M. Crisp; P. D. Cottle; C. Fu; J. Giles; B. W. Green; K. W. Kemper; K. Lee; B. T. Roeder; R. E. Tribble

2009-06-19T23:59:59.000Z

212

Results of the European Commission Marina II Study Part IIeffects of discharges of naturally occurring radioactive material  

Science Journals Connector (OSTI)

Enhanced levels of naturally occurring radioactive materials (NORM) are produced through various industrial operations and may lead to discharges to the marine environment. A recent study, called MARINA II, carried out for the European Commission considered discharges of radionuclides from the NORM industries to north European marine waters and their consequences. There are two main sources that were considered in the study. The use of phosphogypsum during the production of phosphoric acid by the fertiliser industry and the pumping of oil and gas from the continental shelf in the North Sea which produces large quantities of water contaminated with enhanced levels of naturally occurring radionuclides. Discharges of alpha emitting radionuclides from these two industries have contributed significantly to the total input of alpha emitters to north European waters over the period 19812000 (data were not available prior to 1981). Discharges due to the use of phosphogypsum have declined since the early 1990s and are now very low. Discharges from the oil and gas industries stabilised in the second half of the 1990s and are now the major contributor to alpha discharges to the region. As most European countries do not report discharges of radioactivity with the water produced during extraction, there is considerable uncertainty in the discharges used in the study. The impact of the discharges has been estimated both in terms of the effect on non-human biota and the radiological impact for people. In the 1980s the radiation dose rates to marine biota in the region around a phosphate plant on the north-west coast of England were as high due to the discharges from the phosphate plant as those near to the Sellafield reprocessing plant due to its discharges. In recent years the additional dose to marine biota in this region due to the past NORM discharges is of the same order of magnitude as the natural background. The collective dose rate was estimated to determine the radiological impact on people. The peak collective dose rate from the NORM industries occurred in 1984 and was just over 600 manSv y?1. The collective dose rate fell with time as discharges from the phosphate industry reduced and was estimated as under 200 manSv y?1 in 2000.

M. Betti; L. Aldave de las Heras; A. Janssens; E. Henrich; G. Hunter; M. Gerchikov; M. Dutton; A.W. van Weers; S. Nielsen; J. Simmonds; A. Bexon; T. Sazykina

2004-01-01T23:59:59.000Z

213

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

214

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

215

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

216

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

217

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

218

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

219

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

220

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

222

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

223

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

224

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

225

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

226

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

227

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

228

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

229

Energy Department Announces Regional Winners of University Clean...  

Energy Savers (EERE)

design flexibility. One potential application for this innovation is in designing tanks to store natural gas more efficiently in motor vehicles. Western Midwest Region (run...

230

Level: National Data and Regional Totals; Row: NAICS Codes, Value...  

Gasoline and Diesel Fuel Update (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column:...

231

Level: National and Regional Data; Row: NAICS Codes, Value of...  

Annual Energy Outlook 2012 (EIA)

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy...

232

Region 9: Pacific Rim Region, Regional Sustainability Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REGION 9: PACIFIC RIM REGION REGION 9: PACIFIC RIM REGION Regional Sustainability Plan Presented by Ruth Cox Region 9 Regional Administrator Federal Utility Partnership Working Group (FUPWG) May 22 nd , 2013 REGION 9 INFORMATION MANAGE Federal space  36 million RSF in Region Nine * 173 owned buildings, 955 leased buildings * 100,000 Federal workers housed DESIGN & CONSTRUCT new Federal buildings $1.4 billion in FY12 capital construction projects $318 million in FY13 - Los Angeles Courthouse project PROVIDE PROCUREMENT LEADERSHIP across the Federal government  $1.24 billion in total GSA Schedule sales in FY12  $468 million to small businesses  34,000 fleet vehicles, 53% of which are Alternative Fuel Vehicles Pacific Rim Profile - CA, AZ, NV, HI

233

Institutions, Natural Resources, and Economic Development in the MENA Countries  

E-Print Network (OSTI)

ABSTRACT This study examines the effect of institutions and natural resource on per capita income in the Middle East and North Africa (MENA) region. The study answers the following questions: Do institutions and natural ...

Alsayaary, Salah Saeed A.

2013-12-31T23:59:59.000Z

234

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on May 18, 2006) 1 (next release 2:00 p.m. on May 18, 2006) Springtime temperatures in most regions of the country this week and slightly lower prices for crude oil led to an easing of natural gas spot prices in the Lower 48 States since Wednesday, May 3. On the week (Wednesday-Wednesday, May 3-10), the Henry Hub spot price dropped 6 cents per MMBtu, or less than 1.0 percent, to $6.50. In contrast to spot market activity, trading of futures contracts at the New York Mercantile Exchange (NYMEX) this week resulted in gains. The NYMEX contract for June delivery increased 29.4 cents per MMBtu on the week to a daily settlement of $6.900 yesterday (May 10). Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 1,989 Bcf as of Friday, May 5, which is 56.0 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $0.11 per barrel on the week to $72.15 per barrel, or $12.44 per MMBtu.

235

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2007 (next release 2:00 p.m. on September 13, 2007) 6, 2007 (next release 2:00 p.m. on September 13, 2007) Since Wednesday, August 29, natural gas spot prices increased at most market locations in the Lower 48 States, with a few exceptions in Florida and the Rocky Mountain region. For the week (Wednesday-Wednesday), prices at the Henry Hub rose 17 cents, or about 3 percent, to $5.81 per MMBtu. Yesterday (September 5), the price of the NYMEX futures contract for October delivery at the Henry Hub settled at $5.805 per MMBtu, increasing roughly 22 cents or about 4 percent since last Wednesday (August 29). Natural gas in storage was 3,005 Bcf as of August 30, leaving natural gas inventories at 10.4 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased in all but one trading session during the week, rising $2.22 per barrel, or 3 percent, on the week to $75.74 per barrel or $13.06 per MMBtu.

236

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14 (next release 2:00 p.m. on April 21) 14 (next release 2:00 p.m. on April 21) The emergence of more spring-like temperatures in most regions of the country, ample natural gas storage supplies, and lower oil prices resulted in natural gas spot prices easing 7 to 43 cents per MMBtu in the Lower 48 States since Wednesday, April 6. On the week (Wednesday-Wednesday, April 6-13), the Henry Hub spot price dropped 39 cents per MMBtu, or about 5 percent, to $7.07. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery fell 58 cents per MMBtu on the week to a daily settlement of $6.978 yesterday (April 13), the first close below $7 for a near-month contract since March 28. A second week of net injections brought natural gas storage supplies to 1,293 Bcf as of Friday, April 8, which is 26.3 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $5.67 per barrel on the week to $50.21 per barrel, or $8.66 per MMBtu.

237

An on-going multi-wavelength survey of Ly-alpha emitters at redshifts z = 2 - 8  

E-Print Network (OSTI)

In the last decade, the technique of finding Ly-alpha emitters through narrow-band imaging has become a promising method of detecting high redshift galaxies. Ly-alpha emitters have been found from redshifts z ~ 2, up to the highest redshift source known to date at z = 6.96. Several surveys are also underway to find z = 7 - 9 sources. But these very high redshift sources are too faint to be studied in great detail, and more information can be found from studying the same class of objects at lower redshifts. Here we present our survey strategy to determine the nature of Ly-alpha emitters at lower redshifts, through multi-wavelength surveys, and our plans to extend the survey to redshift z = 8.8.

Kim K. Nilsson; Johan P. U. Fynbo; Palle Moller; Alvaro Orsi

2006-11-08T23:59:59.000Z

238

Alpha decay from fission isomeric states  

Science Journals Connector (OSTI)

Alpha-decay half-lives from shape isomeric states of some even-even isotopes of U, Pu and Cm nuclei are calculated by using fission theory in the parametrisation of a spheroid intersected with a sphere. The potential barrier was calculated in the framework of the liquid-drop model of Myers and Swiatecki (1967) extended for systems with different charge densities; a phenomenological shell correction was introduced. The WKB computed lifetimes are many orders of magnitude longer than that of the spontaneous fission process, in agreement with experimental results.

D N Poenaru; M Ivascu

1981-01-01T23:59:59.000Z

239

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

240

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

242

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

243

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

244

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

245

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

246

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

247

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

248

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

249

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

250

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

251

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

252

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

253

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

254

Natural gas pipeline technology overview.  

SciTech Connect

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

255

State & Regional Resources  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office partners with the National Biomass State and Regional Partnerships' five regional organizations that provide leadership in their regions with regard to policies...

256

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

257

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

258

DISCOVERY OF AN H{alpha} EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31  

SciTech Connect

Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric H{alpha} emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 7} M{sub Sun} for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1{sigma} level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-{sigma} relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the H{alpha} emitting disk. This result suggests that the stellar and the H{alpha} emitting disks are intrinsically different from each other. A plausible explanation is that the H{alpha} emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the H{alpha} emission is, at least partially, generated by stars.

Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br [Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP CEP 05508-090 (Brazil)

2013-01-10T23:59:59.000Z

259

Regional Summary Pacific Region Management Context  

E-Print Network (OSTI)

, for the Eastern Pacific Ocean, and the Western and Central Pacific Fishery Commission, for the Western PacificRegional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed by the Pacific Fishery Management Council (PFMC

260

Historical Natural Gas Annual 1999  

Gasoline and Diesel Fuel Update (EIA)

1999 1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1999 and detailed annual historical information by State for 1967-1999. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CSV file formats. Tables 1-3 present annual historical data at the national level for 1930-1999. The remaining tables contain detailed annual historical information, by State, for 1967-1999. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

262

Alpha-muon sticking and chaos in muon-catalysed "in flight" d-t fusion  

E-Print Network (OSTI)

We discuss the alpha-muon sticking coefficient in the muon-catalysed ``in flight" d-t fusion in the framework of the Constrained Molecular Dynamics model. Especially the influence of muonic chaotic dynamics on the sticking coefficient is brought into focus. The chaotic motion of the muon affects not only the fusion cross section but also the $\\mu-\\alpha$ sticking coefficient. Chaotic systems lead to larger enhancements with respect to regular systems because of the reduction of the tunneling region. Moreover they give smaller sticking probabilities than those of regular events. By utilizing a characteristic of the chaotic dynamics one can avoid losing the muon in the $\\mu$CF cycle. We propose the application of the so-called ``microwave ionization of a Rydberg atom" to the present case which could lead to the enhancement of the reactivation process by using X-rays.

Sachie Kimura; Aldo Bonasera

2006-05-24T23:59:59.000Z

263

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

Historical Natural Gas Annual Historical Natural Gas Annual 1930 Through 2000 EIA Home > Natural Gas > Natural Gas Data Publications Historical Natural Gas Annual The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. To read reports in PDF format download a free copy of Adobe Acrobat Reader.

264

EIA - 2010 International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2010 Natural Gas In the IEO2010 Reference case, natural gas consumption in non-OECD countries grows about three times as fast as in OECD countries. Non-OECD production increases account for 89 percent of the growth in world production from 2007 to 2035. Figure 36. World natural gas consumption 2007-2035. Click to enlarge » Figure source and data excel logo Figure 37. Change in World natural gas production by region, 2007-2035. Click to enlarge » Figure source and data excel logo Figure 38. Natural gas consumption in North America by country, 2007-2035 Click to enlarge » Figure source and data excel logo Figure 39. Natural gas consumption in OECD Europe by end-use sector 2007-2035. Click to enlarge » Figure source and data excel logo

265

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

266

CRAD, Training - Oak Ridge National Laboratory TRU ALPHA LLWT Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU ALPHA LLWT TRU ALPHA LLWT Project CRAD, Training - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory TRU ALPHA LLWT Project More Documents & Publications CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project

267

Performance of International Space Station Alpha electric power systems  

SciTech Connect

The International Space Station Alpha (ISSA) will be an Earth-orbiting laboratory in space. It will house experimental payloads, distribute resource utilities, and support human habitation for conducting research and science experiments in a microgravity environment. Electrical power is a major utility to support successful achievement of the mission goal. The ISSA United States On-Orbit Segment (USOS) Electric Power System (EPS) power generation capability will vary with orbital parameters, natural and induced environment, and hardware aging/replacement throughout the ISSA life. Power capability will be further restricted by various assembly configurations during ISSA buildup, by various flight attitudes, by shadowing on the solar arrays, by EPS operational constraints, such as pointing accuracy, battery charging, as well as operating voltage setpoints, and by ISSA operational constraints either to avoid long-term solar array shadowing from the adjacent solar array or to accommodate ISSA maneuver during proximity operations with other space vehicles, mating, and departing. Design of the ISSA USOS EPS takes into consideration the various equipment degradation modes, operation constraints, and orbital conditions to make it compatible with the environments and to meet power, lifetime, and performance requirements.

Hill, R.; Lu, C.Y.; Padhye, V.; Hajela, G.; Hague, L. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Division

1995-12-31T23:59:59.000Z

268

Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. Alpha channeling is a technique that can potentially extract energy from fusion...

269

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

270

Integral Field Spectroscopy based H\\alpha\\ sizes of local Luminous and Ultraluminous Infrared Galaxies. A Direct Comparison with high-z Massive Star Forming Galaxies  

E-Print Network (OSTI)

Aims. We study the analogy between local U/LIRGs and high-z massive SFGs by comparing basic H{\\alpha} structural characteristics, like size, luminosity and Star Formation Rate (SFR) surface density, in an homogeneous way (i.e. same tracer and size definition, similar physical scales). Methods. We use Integral Field Spectroscopy based H{\\alpha} emission maps for a representative sample of 54 local U/LIRGs (66 galaxies). From this initial sample we select 26 objects with H{\\alpha} luminosities (L(H{\\alpha})) similar to those of massive (i.e. M\\ast \\sim 10^10 M\\odot or larger) SFGs at z \\sim 2, and probing similar physical scales. Results. The sizes of the H{\\alpha} emitting region in the sample of local U/LIRGs span a large range, with r1/2(H{\\alpha}) from 0.2 to 7 kpc. However, about 2/3 of local U/LIRGs with Lir > 10^11.4 L\\odot have compact H{\\alpha} emission (i.e. r1/2 2 kpc). These are systems showing pre-coalescence merger activity and they are indistinguishable from the massive high-z SFGs galaxies in t...

Arribas, S; Alonso-Herrero, A; Rosales-Ortega, F F; Monreal-Ibero, A; Garca-Marn, M; Garca-Burillo, S; Rodrguez-Zaurn, J

2012-01-01T23:59:59.000Z

271

Plutonium-238 alpha-decay damage study of the ceramic waste form.  

SciTech Connect

An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with {sup 238}Pu which has a much greater specific activity than {sup 239}Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10{sup 18} alpha-decays/gram of material. An equivalent time period for a similar dose of {sup 239}Pu would require approximately 1100 years. After four years of exposure to {sup 238}Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the {sup 238}Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) {sup 238}Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume has expanded slightly by 0.3% again, presumably due to alpha-decay damage. (5) No bulk sample swelling was observed. (6) No amorphization of sodalite or actinide bearing phases was observed after four years of alpha-decay damage. (7) No microcracks or phase de-bonding were observed in waste form samples aged for four years. (8) In some areas of the {sup 238}Pu doped ceramic waste form material bubbles and voids were found. Bubbles and voids with similar size and density were also found in ceramic waste form samples without actinide. These bubbles and voids are interpreted as pre-existing defects. However, some contribution to these bubbles and voids from helium gas can not be ruled out. (9) Chemical durability of {sup 238}Pu CWF has not changed significantly after four years of alpha-decay exposure except for an increase in the release of salt components and Pu. Still, the plutonium release from CWF is very low at less than 0.005 g/m{sup 2}.

Frank, S M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Barber, T L [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Cummings, D G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; DiSanto, T [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Esh, D W [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; Giglio, J J [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Goff, K M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Johnson, S G [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Kennedy, J R [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Jue, J-F [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Noy, M [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; O'Holleran, T P [U.S. Department of Energy, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415; Sinkler, W [UOP LLC, 25 E Algonquin Road, Des Plaines, IL 60017

2006-03-27T23:59:59.000Z

272

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2008 7, 2008 Next Release: July 24, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview The report week ended July 16 registered significant price declines at virtually all market locations in the Lower 48 States, with the largest decreases occurring in the Arizona/Nevada, California, and Louisiana trading regions. On the week, the Henry Hub spot price decreased 94 cents per million British thermal units (MMBtu) to $11.15 as of yesterday. Similarly, at the New York Mercantile Exchange (NYMEX), prices for all futures contracts in the 12-month strip declined between 44.6 and 69.7 cents per MMBtu. The near-month contract on Monday settled below $12-per MMBtu for the first time in 6 weeks, dropping to $11.398 per MMBtu as of

273

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, to Wednesday, February 20) 13, to Wednesday, February 20) Released: February 21, 2008 Next release: February 28, 2008 Natural gas spot and futures prices increased this report week (February 13-20), as frigid temperatures returned to regions of the country that rely on the fuel for space heating. During the report week, the Henry Hub spot price increased $0.73 per million Btu (MMBtu) to $9.08. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for March delivery rose about 58 cents per MMBtu on the week to $8.965. As of Friday, February 15, working gas in storage was 1,770 Bcf, which is 5.8 percent above the 5-year (2003-2007) average. The spot price for West Texas Intermediate (WTI) crude oil increased $7.58 per barrel, trading yesterday at $100.86 per barrel or $17.39 per MMBtu.

274

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, to Wednesday, April 23) 16, to Wednesday, April 23) Released: April 24, 2008 Next release: May 1, 2008 · Spot prices at all market locations (outside the Rocky Mountain Region) are trading above $9 per million Btu (MMBtu), with a majority of the points registering prices in excess of $10 per MMBtu. · At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery at the Henry Hub settled yesterday (April 24) at $10.781 MMBtu, continuing the trend of week-over-week increases for the fifth consecutive week. · Natural gas in storage was 1,285 billion cubic feet (Bcf) as of April 18, which is 1.9 percent below the 5-year average (2003-2007). · The spot price for West Texas Intermediate (WTI) crude oil increased $4.48 per barrel on the week to $119.28 per barrel or $20.57 per MMBtu.

275

NATURE PHYSICS | VOL 8 | NOVEMBER 2012 | www.nature.com/naturephysics 771 Alpha Centauri is the closest star system to  

E-Print Network (OSTI)

Newton to fit his law of universal gravitation. Ground-based or space-based, intragalactic to the gravitational pull of an orbiting planet -- this one having been made at the European Southern Observatory

Loss, Daniel

276

Optical Counterparts to Damped Lyman Alpha Systems  

E-Print Network (OSTI)

Previously we have shown (Maller et al, 1998) that the kinematics of Damped Lyman Alpha Systems (DLAS) as measured by Prochaska and Wolfe (1998) can be reproduced in a multiple disk model (MDM) if the gaseous disks are of sufficient radial extent. Here we discuss this model's predictions for the relationship between DLAS and Lyman break galaxies (LBGs), which we here take to be objects at z~3 brighter than R=25.5. We expect that future observations of the correlations between DLAS and LBGs will provide a new data set able to discriminate between different theoretical models of the DLAS. Djorgovski (1997) has already detected a few optical counterparts and more studies are underway.

Ariyeh H. Maller; Jason X. Prochaska; Rachel S. Somerville; Joel R. Primack

2000-02-24T23:59:59.000Z

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2003 (next release 2:00 p.m. on June 19) 2, 2003 (next release 2:00 p.m. on June 19) Moderate temperatures across the country except in the Southwest contributed to natural gas spot prices easing 25 to 50 cents per MMBtu since Wednesday, June 4. On the week (Wednesday, June 4-Wednesday, June 11), the Henry Hub spot price dropped 35 cents per MMBtu to $6.06. The NYMEX futures contract for July delivery at the Henry Hub fell about 16 cents per MMBtu to $6.213. Natural gas in storage as of Friday, June 6, increased to 1,324 Bcf, which is 25.2 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose $2.36 per barrel on the week to yesterday's (June 11) closing price of $32.17 per barrel, or $5.55 per MMBtu. Prices: Natural gas spot prices at many market locations in the Lower 48 States have declined for three consecutive trading days from Friday peaks as key market areas in the Midwest and the Eastern seaboard have experienced unseasonably cool weather. Although prices remain elevated, the slackened demand for natural gas for electric generation has contributed to prices generally softening across the board. For the week, the spot price at the Henry Hub dropped about 6 percent to $6.06 per MMBtu, while other pricing points on the Gulf Coast showed slightly greater declines and fell below the $6-mark. The overall easing of prices may reflect also the slightly improving storage picture as injections in 7 of the past 8 weeks have exceeded the 5-year average with a record net addition reported last Thursday. Although the storage refill season started slowly, injections have increased considerably, with at least one major interstate pipeline serving the Northeast, Tennessee Gas Pipeline, announcing restrictions to shippers due to injection nominations exceeding capacity. The spot price at Tennessee Gas Pipeline's Zone 6, which serves major citygates in New York and other Northeastern states, this week fell 47 cents per MMBtu to $6.30. In contrast to the East, prices in the West moved higher early in the week, as maintenance on El Paso Natural Gas in the San Juan Basin restricted deliveries from the region and a heat wave sparked buying at pricing locations in California and New Mexico. The spot price at the Southern California border surged 61 cents per MMBtu on Monday to $5.78, but has since dropped to $5.51, which is a net decline of 51 cents since Wednesday, June 4.

278

Jet Production in ep Collisions at Low Q^2 and Determination of $\\alpha_{s}$  

E-Print Network (OSTI)

The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5alpha_s.

Aaron, FD; Alexa, C; Andreev, V; Antunovic, B; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; Delcourt, B; Delvax, J; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, X; Jonsson, L; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kosior, E; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nikitin, D; Nowak, G; Nowak, K; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Tabasco, J E Ruiz; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Trevino, A Vargas; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F

2010-01-01T23:59:59.000Z

279

Escherichia coli produces a cytoplasmic alpha-amylase, AmyA.  

Science Journals Connector (OSTI)

...liquefying alpha-amylases of bacilli...digested amylose, starch, amylopectin, and maltodextrins...specific for the alpha-anomeric...an alpha-amylase rather than...digested amylose, starch, amylopectin, and maltodextrins...specific for the alpha-anomeric...an alpha-amylase rather than...

M Raha; I Kawagishi; V Mller; M Kihara; R M Macnab

1992-10-01T23:59:59.000Z

280

EIA - International Energy Outlook 2009-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2009 Chapter 3 - Natural Gas In the IEO2009 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 80 percent of the growth in world production from 2006 to 2030. Figure 33. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 34. Natural Gas Consumption in North America by Country and Sector, 2006-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. Natural Gas Consumption in OECD Asia by Country and Sector, 2006 and 2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - International Energy Outlook 2008-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2008 Chapter 3 - Natural Gas In the IEO2008 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2005 to 2030. Figure 35. World Natural Gas Consumption, 1980-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Natural Gas Consumption in North America by Country, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 37. Natural Gas Consumption in OECD Europe, 2005-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

282

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

17 (next release 2:00 p.m. on March 24) 17 (next release 2:00 p.m. on March 24) Since Wednesday, March 9, natural gas spot prices have risen at most market locations in the Lower 48 States, while declining in the Northeast region. For the week (Wednesday-Wednesday), prices at the Henry Hub increased 9 cents, or about 1 percent, to $7.08 per MMBtu. Yesterday (March 16), the price of the NYMEX futures contract for April delivery at the Henry Hub settled at $7.192 per MMBtu, increasing roughly 31 cents, or about 5 percent, since last Wednesday. Natural gas in storage was 1,379 Bcf as of March 11, which is about 24 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.76 per barrel, or about 3 percent, on the week to $56.50 per barrel or $8.741 per MMBtu.

283

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2004 (next release 2:00 p.m. on January 29) 2, 2004 (next release 2:00 p.m. on January 29) Natural gas spot prices increased 10 to 60 cents per MMBtu at nearly all major trading locations in the Lower 48 States as space-heating demand remained strong amid very cold temperatures in critical gas-consuming markets. However, elevated prices of $40 per MMBtu and more in the Northeast eased closer to historical norms over the course of the week following at least a temporary reprieve from the extreme cold in the region. For the week (Wednesday-Wednesday), prices at the Henry Hub increased $0.53 per MMBtu, or 9 percent, to $6.27. The price of the NYMEX futures contract for February delivery at the Henry Hub fell approximately 24 cents per MMBtu to settle yesterday (Wednesday, January 21) at $6.150. Natural gas in storage was 2,258 Bcf as of Friday, January 16, which is 9.3 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $0.91 per barrel or about 2.6 percent since last Wednesday to trade yesterday at $35.53 per barrel or $6.13 per MMBtu.

284

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 30 (next release 2:00 p.m. on December 7, 2006) November 30 (next release 2:00 p.m. on December 7, 2006) Natural gas spot prices increased at nearly all market locations in the Lower 48 States since Wednesday, November 22, 2006, with some Midcontinent and Western regions showing increases of more than $2 per MMBtu. With only 3 trading days included in the report week owing to the Thanksgiving holiday, the spot price at the Henry Hub increased by 34 cents, or about 5 percent, to $7.75 per MMBtu. The price of the NYMEX futures contract for January delivery settled at $8.871 per MMBtu yesterday (November 29), which is 77 cents, or about 10 percent, more than last Wednesday, and the December 2006 contract expired Tuesday at $8.318 per MMBtu. As of Friday, November 24, 2006, natural gas in storage was 3,417 Bcf or 7.2 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil rose to $62.45 per barrel or $10.77 per MMBtu yesterday. This price is $5.17 per barrel, or 9 percent, more than the price last week and is the highest price since late September.

285

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2003 (next release 2:00 p.m. on August 21) 14, 2003 (next release 2:00 p.m. on August 21) Natural gas spot prices climbed 25 to 55 cents across the Lower 48 States this week (Wednesday, August 6-Wednesday, August 13). Increases were highest in sun-drenched California, but also significant in the Northeast and Midwest as this summer's hottest weather to date occurred in parts of the two regions. At the Henry Hub, the spot price increased 43 cents or roughly 9 percent to $5.17 per MMBtu. The price of the NYMEX futures contract for September delivery at the Henry Hub similarly increased, gaining just over 43 cents per MMBtu since last Wednesday to settle at $5.179 per MMBtu yesterday (August 13). Natural gas in storage increased to 2,188 Bcf as of Friday, August 8, which is about 8.5 percent below the 5-year average inventory level for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $0.92 per barrel or 2.9 percent since last Wednesday to trade yesterday at $30.85 per barrel, or $5.32 per MMBtu.

286

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 6 2003 (next release 2:00 p.m. on November 13) November 6 2003 (next release 2:00 p.m. on November 13) Since Wednesday, October 29, natural gas spot prices have increased at most market locations in the Lower 48 States except in the Gulf of Mexico producing region. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 5 cents or about 1 percent to $4.45 per MMBtu. Prices climbed in most areas despite moderate temperatures in the Lower 48 States in apparent anticipation of a return to cold temperatures. Yesterday (Wednesday, November 5), the price of the NYMEX futures contract for December delivery at the Henry Hub was nearly 4 cents more than last Wednesday's price. Natural gas in storage increased to 3,155 Bcf as of October 31, which is about 3 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil gained $1.34 per barrel or about 5 percent since last Wednesday to $30.29 per barrel or $5.222 per MMBtu.

287

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 (next release 2:00 p.m. on September 8) 1 (next release 2:00 p.m. on September 8) Natural gas spot and futures prices increased sharply this week (Wednesday-Wednesday, August 24-31), as Hurricane Katrina's movement through the Gulf of Mexico region brought widespread evacuations of production facilities and an unknown amount of infrastructure damage. For the week, the spot price at the Henry Hub increased $2.70 per MMBtu to $12.70. At the New York Mercantile Exchange (NYMEX), final settlement for the September delivery contract occurred on Monday as Katrina hammered the Gulf Coast, causing a one-day increase of $1.055 per MMBtu to a final expiration price of $10.847. On the week, the price of the futures contract for October delivery at the Henry Hub moved approximately $1.45 per MMBtu higher to settle yesterday (Wednesday, August 31) at $11.472. Natural gas in storage was 2,633 Bcf as of Friday, August 26, which is 5.2 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil increased $1.53 per barrel or about 2 percent since last Wednesday to trade yesterday at $68.63 per barrel or $11.83 per MMBtu.

288

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16, 2007 (next release 2:00 p.m. on August 23, 2007) 16, 2007 (next release 2:00 p.m. on August 23, 2007) Since Wednesday, August 8, natural gas spot prices increased at virtually all markets in the Lower 48 States outside the Rocky Mountain region. Prices at the Henry Hub climbed $1.04 per MMBtu, or nearly 17 percent, since Wednesday, August 8, to $7.30 per MMBtu. At the NYMEX, the futures contract for September delivery at the Henry Hub settled yesterday (August 15) at $6.864 per MMBtu, rising 64 cents per MMBtu or 10 percent since last Wednesday, August 8. Natural gas in storage was 2,903 Bcf as of August 10, which is 15 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil gained $1.13 per barrel on the week (Wednesday-Wednesday) to $73.36 per barrel or $12.65 per MMBtu.

289

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2007 (next release 2:00 p.m. on July 6, 2007) 8, 2007 (next release 2:00 p.m. on July 6, 2007) Since Wednesday, June 20, natural gas spot prices decreased at virtually all markets in the Lower 48 States outside the Rocky Mountains and Northeast regions. Prices at the Henry Hub declined 65 cents per MMBtu, or 9 percent, since Wednesday, June 20, to $6.74 per MMBtu, posting its lowest level since March 19. At the NYMEX, the futures contract for July delivery at the Henry Hub expired yesterday (June 27) at $6.929 per MMBtu, falling 46 cents per MMBtu, or 6 percent since last Wednesday, June 20. During its tenure as the near-month contract, the futures contract for July delivery at the Henry Hub posted a decline of $1.012 per MMBtu or nearly 13 percent. Natural gas in storage was 2,443 Bcf as of June 22, which is 18 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil gained $0.48 per barrel on the week (Wednesday-Wednesday) to $68.98 per barrel or $11.89 per MMBtu.

290

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on February 17) 10 (next release 2:00 p.m. on February 17) Natural gas spot and futures prices have generally decreased for the week (Wednesday-Wednesday, February 2-9). The Henry Hub natural gas spot price fell 18 cents, or about 3 percent, while prices at most other regional markets ended the week with decreases of between 2 and 42 cents per MMBtu. The price of the NYMEX futures contract for March delivery at the Henry Hub decreased $0.211 per MMBtu, or slightly over 3 percent, settling yesterday (February 9) at $6.165 per MMBtu. The Energy Information Administration (EIA) reported working gas in underground storage of 1,906 Bcf, which reflects an implied net decrease of 176 Bcf. West Texas Intermediate crude oil on the spot market fell $1.20 per barrel, or about $0.21 per MMBtu, since last Wednesday (February 2), ending trading yesterday at $45.45 per barrel, or $7.84 per MMBtu.

291

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25 (next release 2:00 p.m. on September 1) 25 (next release 2:00 p.m. on September 1) Since Wednesday, August 17, changes to natural gas spot prices were mixed, decreasing in major consuming areas in the Northeast and Midwest, while increasing at most markets in the Rocky Mountains, California, and West Texas regions. For the week (Wednesday-Wednesday), prices at the Henry Hub increased 2 cents to $10 per MMBtu. Yesterday (August 24), the price of the NYMEX futures contract for September delivery settled at $9.984 per MMBtu, increasing about 59 cents or more than 6 percent since Wednesday. Natural gas in storage was 2,575 Bcf as of August 19, which is 5.6 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.81 per barrel, or about 6 percent, on the week to a record high price of $67.10 per barrel, or $11.57 per MMBtu.

292

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

May 26 (next release 2:00 p.m. on June 2) May 26 (next release 2:00 p.m. on June 2) Since Wednesday, May 18, natural gas spot prices have declined at most market locations in the Lower 48 States, while climbing in the Southwestern region. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 17 cents, or nearly 3 percent, to $6.33 per MMBtu. Yesterday (May 25), the price of the NYMEX futures contract for June delivery at the Henry Hub settled at $6.315 per MMBtu, decreasing roughly 8 cents, or about 1 percent, since last Wednesday. Natural gas in storage was 1,692 Bcf as of May 20, which is about 22 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.38 per barrel, or about 7 percent, on the week to $50.37 per barrel or $8.684 per MMBtu.

293

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13 (next release 2:00 p.m. on April 20, 2006) 13 (next release 2:00 p.m. on April 20, 2006) Springtime temperatures in most regions of the country this week led to an easing of natural gas spot and futures prices in the Lower 48 States since Wednesday, April 5. On the week (Wednesday-Wednesday, April 5-12), the Henry Hub spot price dropped 9 cents per MMBtu, or about 1.3 percent, to $6.79. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery fell 26.1 cents per MMBtu on the week to a daily settlement of $6.808 yesterday (April 12), the lowest closing price for a near-month contract in over a month (March 10). The first week of net injections this season brought natural gas storage supplies to 1,714 Bcf as of Friday, April 7, which is 63.4 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil increased $1.77 per barrel on the week to $68.53 per barrel, or $11.82 per MMBtu.

294

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5 2002 (next release 2:00 p.m. on December 12) 5 2002 (next release 2:00 p.m. on December 12) Cold weather over the Thanksgiving weekend and early this week lifted natural gas spot prices in many regions of the country. While prices at several Northeast trading locations climbed more than $1 per MMBtu since Wednesday, November 27, prices along the Gulf Coast and other producing areas increased by a more modest 4 to 25 cents per MMBtu. On the week (Wednesday-Wednesday), the Henry Hub spot price rose $0.04 per MMBtu to $4.24. At the NYMEX, the price of the futures contract for January delivery climbed just under a dime to $4.298 per MMBtu. Cold weather throughout the final full week in November also resulted in the season's largest withdrawal from storage. Natural gas in storage as of Friday, November 29, decreased by 91 Bcf to 2,956 Bcf, which exceeds the 5-year average by 0.9 percent. The spot price of West Texas Intermediate (WTI) crude oil dropped $0.54 per barrel in trading yesterday (Wednesday, December 4), settling at $26.80, or $4.62 per MMBtu.,

295

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2004 (next release 2:00 p.m. on April 8) 1, 2004 (next release 2:00 p.m. on April 8) Natural gas spot prices surged upward in the past three days, bringing price levels significantly above those of a week ago (Wednesday, March 24) in all regional markets. At the Henry Hub, the price for spot gas increased $0.28 per MMBtu on the week (Wednesday-Wednesday, March 24-31), or about 5 percent, trading yesterday at $5.63. Taking over as the near-month futures contract on Tuesday, March 30, the NYMEX contract for May delivery moved up sharply, ending trading yesterday at its highest-ever settlement price of $5.933 per MMBtu. EIA reported that natural gas inventories were 1,014 Bcf as of Friday, March 26, which is 7.7 percent less than the preceding 5-year average for the week. Despite anticipation of yesterday's OPEC decision to curtail oil production by up to 1 million barrels per day, the spot price for West Texas Intermediate crude oil declined on four of the five trading days of the week, trading yesterday at $35.75 ($6.16 per MMBtu), down $1.31 per barrel ($0.23 per MMBtu) on the week.

296

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8 (next release 2:00 p.m. on May 5) 8 (next release 2:00 p.m. on May 5) Since Wednesday, April 20, natural gas spot prices have remained relatively unchanged, increasing less than 12 cents per MMBtu at most market locations in the Lower 48 States, while declining less than 12 cents in the Northeast region. For the week (Wednesday-Wednesday), prices at the Henry Hub were virtually unchanged, climbing 1 cent, to $7.11 per MMBtu. Yesterday (April 27), the price of the NYMEX futures contract for May delivery at the Henry Hub expired at $6.748 per MMBtu, decreasing roughly 31 cents, or about 4 percent, since last Wednesday. Natural gas in storage was 1,416 Bcf as of April 22, which is about 29 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.08 per barrel, or about 2 percent, on the week to $51.37 per barrel or $8.857 per MMBtu.

297

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

24 (next release 2:00 p.m. on March 3) 24 (next release 2:00 p.m. on March 3) Since Wednesday, February 16, natural gas spot prices have declined at most market locations in the Lower 48 States, while increasing in the Northeast region. For the week (Wednesday-Wednesday), prices at the Henry Hub fell 9 cents, or about 1 percent, to $6.02 per MMBtu. Yesterday (February 23), the price of the NYMEX futures contract for March delivery at the Henry Hub settled at $6.311 per MMBtu, increasing roughly 20 cents, or about 3 percent, since last Wednesday. Natural gas in storage was 1,720 Bcf as of February 18, which is about 26 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.38 per barrel, or about 4 percent, on the week to $51.73 per barrel or $8.919 per MMBtu.

298

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23 (next release 2:00 p.m. on June 30) 23 (next release 2:00 p.m. on June 30) Since Wednesday, June 15, changes to natural gas spot prices were mixed, declining at most markets in the Gulf of Mexico and Northeast regions while increasing at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub edged up 1 cent, to $7.40 per MMBtu. Yesterday (June 22), the price of the NYMEX futures contract for July delivery at the Henry Hub settled at $7.442 per MMBtu, roughly equal to last Wednesday's settlement price of $7.441 per MMBtu. Natural gas in storage was 2,031 Bcf as of June 17, which is about 15 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $2.74 per barrel, or about 5 percent, on the week to $58.27 per barrel or $10.047 per MMBtu.

299

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

30, 2007 (next release 2:00 p.m. on September 6, 2007) 30, 2007 (next release 2:00 p.m. on September 6, 2007) Since Wednesday, August 22, natural gas spot prices decreased at most markets in the Lower 48 States outside the Rocky Mountain region. Prices at the Henry Hub fell 20 cents per MMBtu, or 3 percent, since Wednesday, August 22, to $5.64 per MMBtu. At the NYMEX, the futures contract for September delivery at the Henry Hub expired yesterday (August 29) at $5.430 per MMBtu, falling 15 cents or 3 percent since last Wednesday, August 22. Natural gas in storage was 2,969 Bcf as of August 24, which is 12 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil gained $4.22 per barrel on the week (Wednesday-Wednesday) to $73.52 per barrel or $12.68 per MMBtu.

300

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2007 (next release 2:00 p.m. on October 4, 2007) 7, 2007 (next release 2:00 p.m. on October 4, 2007) Since Wednesday, September 19, natural gas spot prices increased at most markets in the Lower 48 States outside the Rocky Mountain region. Prices at the Henry Hub rose 24 cents per MMBtu, or 4 percent, since Wednesday, September 19, to $6.48 per MMBtu. At the NYMEX, the futures contract for October delivery at the Henry Hub expired yesterday (September 26) at $6.423 per MMBtu, rising 24 cents or 4 percent since last Wednesday, September 19. Natural gas in storage was 3,206 Bcf as of September 21, which is 8 percent above the 5-year average (2002-2006). The spot price for West Texas Intermediate (WTI) crude oil fell $1.68 per barrel on the week (Wednesday-Wednesday) to $80.31 per barrel or $13.85 per MMBtu.

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on February 16, 2006) 9 (next release 2:00 p.m. on February 16, 2006) Despite the slightly colder weather that dominated the country this week, natural gas spot and futures prices generally decreased for the week (February 1-8). The Henry Hub natural gas spot price fell 83 cents, or about 10 percent, while prices at most other regional markets ended the week with decreases averaging 58 cents per MMBtu. The price of the NYMEX futures contract for March delivery at the Henry Hub decreased 99 cents per MMBtu, or slightly over 11 percent, settling yesterday (February 8) at $7.735 per MMBtu. The Energy Information Administration (EIA) reported working gas in underground storage of 2,368 Bcf as of February 3, which reflects an implied net decrease of 38 Bcf. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.10 per barrel, or more than 6 percent since last Wednesday (February 1), ending trading yesterday at $62.51 per barrel, or $10.78 per MMBtu.

302

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2007 (next release 2:00 p.m. on February 22, 2007) 15, 2007 (next release 2:00 p.m. on February 22, 2007) Natural gas spot prices increased this week at most market locations as frigid temperatures and winter storms blanketed the United States, particularly in the Northeast region. For the week (Wednesday to Wednesday, February 7 to February 14), the spot price at the Henry Hub increased $1.02 per MMBtu, or about 13 percent, to trade at $8.91 per MMBtu yesterday (February 14). In contrast, the price of the NYMEX futures contract for March delivery at the Henry Hub decreased 6 percent this week to settle yesterday at $7.241 per MMBtu. Natural gas in storage as of Friday, February 9, was 2,088 Bcf, which is 14.7 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased 25 cents per barrel, or less than 1 percent, since last Wednesday to trade yesterday at $58 per barrel or $10 per MMBtu.

303

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, to Wednesday, April 30) 23, to Wednesday, April 30) Released: May 1, 2008 Next release: May 8, 2008 · Natural gas spot prices increased in all trading regions in the Lower 48 States this report week (Wednesday-Wednesday, April 23-30). During the report week, the Henry Hub spot price increased $0.48 per million Btu (MMBtu) to $10.81. During the month of April, the Henry Hub spot price increased $0.95 per MMBtu, or 9.6 percent. · At the New York Mercantile Exchange (NYMEX), prices declined for the report week, after a string of price increases during the previous five report periods. The futures contract for June delivery declined 10.3 cents per MMBtu on the week to $10.843. · During the week ending Friday, April 25, estimated net injections of natural gas into underground storage totaled the largest volume to date this year at 86 billion cubic feet (Bcf). Working gas in underground storage as of April 25 was 1,371 Bcf, which is 0.2 percent below the 5-year (2003-2007) average.

304

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on March 17) 10 (next release 2:00 p.m. on March 17) Natural gas spot prices increased this week (Wednesday to Wednesday, March 2-9) as a late season cold front moved into major gas-consuming regions of the country, bringing a reminder that the end of winter is still two weeks away. Spot prices climbed 17 to 76 cents per MMBtu at trading locations in the Lower 48 States since last Wednesday. Price changes in the Northeast were at the higher end of the range, while trading in the West resulted in gains at the lower end. The Henry Hub spot price increased 38 cents per MMBtu, or 5.7 percent, to $6.99. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery gained 16.3 cents per MMBtu, settling at $6.880 on Wednesday, March 9. Natural gas in storage as of Friday, March 4, decreased to 1,474 Bcf, which is 25.7 percent above the 5-year (2000-2004) average. The spot price for West Texas Intermediate (WTI) crude oil traded at near-record highs, rising $1.75 per barrel on the week to yesterday's closing price of $54.75 per barrel, or $9.44 per MMBtu.

305

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, to Wednesday, April 2) 26, to Wednesday, April 2) Released: April 3, 2008 Next release: April 10, 2008 · Natural gas spot prices increased in all trading regions in the Lower 48 States this report week (Wednesday-Wednesday, March 26-April 2). During the report week, the Henry Hub spot price increased $0.34 per million Btu (MMBtu) to $9.59. Frigid temperatures continued for a portion of the week in the Northeast and for most of the week in the West, likely boosting space-heating demand. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered increases, albeit less than in spot markets. The futures contract for May delivery rose about 15 cents per MMBtu on the week to $9.832. · With the traditional heating season not quite over, natural gas withdrawals from underground storage continued through last week. As of Friday, March 28, working gas in storage was 1,248 billion cubic feet (Bcf), which is 0.5 percent above the 5-year (2003-2007) average.

306

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15 (next release 2:00 p.m. on June 22, 2006) 15 (next release 2:00 p.m. on June 22, 2006) Natural gas spot prices increased at almost all locations this week (Wednesday - Wednesday, June 7-14) as wide ranging temperatures across the country affected some regional demand for both heating and air conditioning needs. The Henry Hub spot price rose 27 cents, or about 5 percent, to $6.09 per MMBtu. At the New York Mercantile Exchange (NYMEX), prices also increased for almost all the futures contracts listed. The NYMEX contract for July delivery rose about 62 cents, or about 10 percent, since last Wednesday to settle at $6.590 per MMBtu yesterday (June 14). Natural gas in storage as of Friday, June 9 was 2,397 Bcf, which is 37.9 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined $1.78 per barrel, or about 3 percent, since last Wednesday, trading yesterday at $69.12 per barrel or $11.92 per MMBtu.

307

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

21 (next release 2:00 p.m. on July 28) 21 (next release 2:00 p.m. on July 28) Since Wednesday, July 13, changes to natural gas spot prices were mixed, increasing at most market locations in the Lower 48 States, while declining at most markets in the Rocky Mountains, California, and Midwest regions. For the week (Wednesday-Wednesday), prices at the Henry Hub declined 3 cents, to $7.75 per MMBtu. Yesterday (July 20), the price of the NYMEX futures contract for August delivery at the Henry Hub settled at $7.550 per MMBtu, declining about 35 cents or about 4 percent since Wednesday, July 13. Natural gas in storage was 2,339 Bcf as of July 15, which is about 10 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $3.27 per barrel, or about 5 percent, on the week to $56.73 per barrel or $9.78 per MMBtu.

308

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

January 26 (next release 2:00 p.m. on February 2, 2006) January 26 (next release 2:00 p.m. on February 2, 2006) Natural gas spot prices continued to decrease this week at all market locations as unseasonably mild temperatures persist in most regions of the United States. For the week (Wednesday to Wednesday), the spot price at the Henry Hub declined 35 cents per MMBtu, or about 4 percent, to trade at $8.50 per MMBtu yesterday (January 25). The price of the NYMEX futures contract for February delivery at the Henry Hub also decreased this week. The contract closed yesterday at $8.460 per MMBtu which is 23 cents per MMBtu, or about 3 percent, less than last Wednesday's price. Natural gas in storage as of Friday, January 20, decreased to 2,494 Bcf, which is 21.7 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil dropped 16 cents per barrel since last Wednesday to trade yesterday at $65.60 per barrel or $11.31 per MMBtu.

309

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on November 16, 2006) 9 (next release 2:00 p.m. on November 16, 2006) Natural gas spot price movements were mixed since Wednesday, November 1, including significant price decreases at locations in the Rockies, relatively small increases along the Gulf Coast, and varied movements in other regions. The spot price at the Henry Hub increased 21 cents per MMBtu, or about 3 percent, to $7.37 per MMBtu. The NYMEX futures contract for December delivery at the Henry Hub gained about 11 cents since last Wednesday to close yesterday (November 8) at $7.823 per MMBtu. Natural gas in storage as of Friday, November 3, was 3,445 Bcf, which is 7.7 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.29 per barrel, or 2.2 percent, since last Wednesday to trade yesterday at $59.93 per barrel or $10.33 per MMBtu. Yesterday's crude oil price was only 23 cents higher than the year-ago level, when crude oil traded at $59.70 per barrel on November 8, 2005.

310

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7 (next release 2:00 p.m. on November 3) 7 (next release 2:00 p.m. on November 3) Natural gas spot prices increased sharply this week (Wednesday-Wednesday, October 19-26), as a large volume of production continued to be shut in from the recent major hurricanes and cool temperatures added space-heating demand in many regions of the country. For the week, the price at the Henry Hub increased $1.15 per MMBtu, or about 8.5 percent, to $14.67. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for November delivery at the Henry Hub moved about 49 cents per MMBtu higher to settle yesterday (Wednesday, October 26) at $14.04. A steady pace of injections into underground storage has continued despite offshore production shut-ins of almost 5.6 billion cubic feet (Bcf) a day, indicating substantial demand loss in the wake of the hurricanes and amid the high-price environment. The volume of natural gas in storage was 3,139 Bcf as of Friday, October 21, which is 2.8 percent higher than the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.26 per barrel or about 2 percent since last Wednesday to trade yesterday at $60.85, or $10.49 per MMBtu.

311

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

27 (next release 2:00 p.m. on February 3) 27 (next release 2:00 p.m. on February 3) Cold temperatures in parts of the Midwest and the Northeast lifted aggregate demand this week, resulting in higher natural gas spot prices at most market locations in the Lower 48 States. For the week (Wednesday-Wednesday, January 19-26), spot prices at the Henry Hub increased 23 cents per MMBtu, or about 3.7 percent, to $6.44. Prices in the Northeast surged as extreme wintry conditions moved into the region, and constraints on interstate pipelines limited supply options for incremental deliveries. Yesterday (January 26), the price of the futures contract for February delivery at the Henry Hub settled at $6.388 per MMBtu, increasing roughly 10 cents, or 1.5 percent, since last Wednesday. Natural gas in storage was 2,270 Bcf as of January 21, which is 14.0 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil gained $1.19 per barrel or about 2.5 percent since last Wednesday, climbing to $48.80 per barrel or $8.41 per MMBtu.

312

New Advances in Alpha-Beta Searching Jonathan Schaeffer  

E-Print Network (OSTI)

New Advances in Alpha-Beta Searching Jonathan Schaeffer Dept. of Computing Science Alpha-Beta has been the algorithm of choice for game-tree search for over three decades. Its suc- cess the search efficiency. Although state-of- the-art game-playing programs build trees that are close in size

Dumas, Jean-Guillaume

313

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10, 2007 (next release 2:00 p.m. on May 17, 2007) 10, 2007 (next release 2:00 p.m. on May 17, 2007) Springtime temperatures in most regions of the country this week and lack of any significant cooling or heating load through much of the Lower 48 States led to an easing of natural gas spot prices since Wednesday, May 2. Furthermore, the formation of the first tropical storm of the 2007 Atlantic Hurricane Season 3 weeks prior to the beginning of the traditional hurricane season appeared to have no impact on the spot markets in the Lower 48 States. On the week (Wednesday-Wednesday, May 2-9), the Henry Hub spot price declined 18 cents per MMBtu, or 2.4 percent, to $7.46. In contrast to spot market activity, trading of futures contracts at the New York Mercantile Exchange (NYMEX) this week resulted in gains for all contracts with the exception of the near-month contract, possibly reflecting an expected tightness in supply over the summer months. While the NYMEX contract for June delivery decreased 1 cent per MMBtu on the week to a daily settlement of $7.720 yesterday (May 9), contracts through the end of the injection season all increased, albeit only by an average of 0.3 percent. Net injections reported in today's release of EIA's Weekly Natural Gas Storage Report brought natural gas storage supplies to 1,747 Bcf as of Friday, May 4, which is 20.5 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $2.24 per barrel on the week to $61.54 per barrel, or $10.61 per MMBtu.

314

Elastic alpha scattering experiments and the alpha-nucleus optical potential at low energies  

E-Print Network (OSTI)

High precision angular distribution data of ($\\alpha$,$\\alpha$) elastic scattering are presented for the nuclei $^{89}$Y, $^{92}$Mo, $^{106,110,116}$Cd, $^{112,124}$Sn, and $^{144}$Sm at energies around the Coulomb barrier. Such data with small experimental uncertainties over the full angular range (20-170 degrees) are the indispensable prerequisite for the extraction of local optical potentials and for the determination of the total reaction cross section $\\sigma_{\\rm{reac}}$. A systematic fitting procedure was applied to the presented experimental scattering data to obtain comprehensive local potential parameter sets which are composed of a real folding potential and an imaginary potential of Woods-Saxon surface type. The obtained potential parameters were used in turn to construct a new systematic $\\alpha$-nucleus potential with very few parameters. Although this new potential cannot reproduce the angular distributions with the same small deviations as the local potential, the new potential is able to predict the total reaction cross sections for all cases under study.

P. Mohr; G. G. Kiss; Zs. Flp; D. Galaviz; Gy. Gyrky; E. Somorjai

2012-12-12T23:59:59.000Z

315

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2004 (next release 2:00 p.m. on February 5) 9, 2004 (next release 2:00 p.m. on February 5) Spot prices in most regional markets ended the week (Wednesday-Wednesday, January 21-28) lower, despite severe cold in the Northeast beginning Friday (January 23) and continuing through the weekend. As a result, prices in the Northeast market proved the major exception to the downward trend, as cash prices moved up sharply at most locations in the region. At the Henry Hub, the spot price was 23 cents per MMBtu lower on the week, or about 4 percent, ending with yesterday's (Wednesday, January 28) level of $6.04. At the New York Mercantile Exchange (NYMEX), the futures contract for February delivery showed a modest gain of nearly 6 cents on its final day of trading, closing out at $5.775 per MMBtu. The contract for March delivery assumes the near-month position beginning today (Thursday, January 29). The Energy Information Administration (EIA) reported that natural gas inventories were 2,063 Bcf as of Friday, January 23, which is 8.6 percent greater than the previous 5-year (1999-2003) average. West Texas Intermediate crude oil on the spot market fell $1.90 per barrel, or $0.26 per MMBtu, since last Wednesday (January 21), ending trading yesterday at $33.63 per barrel, or $5.80 per MMBtu.

316

CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRU TRU ALPHA LLWT Project CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Radiation Protection Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Oak Ridge National Laboratory TRU ALPHA LLWT Project More Documents & Publications CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT

317

CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Oak Ridge National Laboratory TRU ALPHA Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Quality Assurance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Oak Ridge National Laboratory TRU ALPHA LLWT Project More Documents & Publications

318

AGA Producing Regions Natural Gas Underground Storage Net Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 181,202 117,919 6,043 -70,389 -119,495 -54,764 -90,630 -78,703 -78,810 -41,384 3,174 110,677 1995 141,597 94,129 43,122 -46,127 -83,740 -81,214 -42,329 7,753 -77,793 -50,909 62,552 147,261 1996 189,543 108,720 103,253 -39,312 -70,578 -61,809 -55,791 -81,685 -105,390 -57,617 79,056 94,165 1997 159,274 68,321 -45,732 -28,852 -82,922 -65,620 -5,729 -52,520 -86,054 -85,240 63,672 147,412 1998 101,163 10,342 23,740 -93,466 -97,929 -57,723 -73,822 -57,671 -36,017 -111,305 2,052 120,522 1999 153,986 27,076 55,017 -35,949 -87,235 -74,047 -14,239 -6,737 -77,700 -35,924 515 132,062 2000 201,606 127,455 21,465 -13,293 -27,098 -58,272 -39,442 -4,324 -66,987 -78,226 66,960 220,332

319

Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 522,879 331,173 124,912 -130,593 -238,756 -257,820 -260,791 -239,448 -202,316 -111,484 72,027 239,868 1995 406,337 409,183 160,222 -9,242 -215,146 -246,282 -229,634 -202,997 -210,670 -134,133 209,977 386,661 1996 423,704 294,292 204,119 -64,083 -220,759 -281,537 -300,612 -265,082 -242,746 -141,841 173,946 240,936 1997 458,719 253,097 193,362 -16,545 -195,364 -253,685 -243,499 -246,626 -228,461 -113,251 112,710 299,061 1998 317,949 231,479 208,491 -102,134 -246,072 -223,109 -219,439 -191,819 -162,103 -120,349 41,592 259,459 1999 419,150 252,359 217,813 -67,439 -215,308 -194,151 -167,850 -202,059 -213,208 -108,825 35,337 360,730

320

Western Consuming Regions Natural Gas Underground Storage Net Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 56,431 69,927 3,052 -17,211 -45,978 -32,279 -32,989 -25,334 -44,879 -18,799 23,717 41,318 1995 53,772 18,375 19,016 5,109 -38,707 -45,134 -34,084 -11,010 -25,651 -19,848 -1,356 50,466 1996 86,501 43,928 15,252 -11,149 -36,431 -31,788 -13,101 874 -17,907 -3,217 10,566 39,316 1997 66,259 37,049 7,088 -13,297 -42,743 -45,825 -33,161 -23,050 -21,826 -11,630 12,560 87,001 1998 49,259 48,858 13,435 -4,634 -46,550 -45,804 -23,795 -28,194 -25,888 -30,145 -12,444 55,973 1999 50,539 41,943 24,411 13,246 -34,017 -39,197 -35,399 -12,599 -24,100 -10,388 -3,678 49,889 2000 61,240 43,345 13,411 -22,936 -21,890 -24,998 -20,100 3,374 -14,602 -11,083 50,522 31,251

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CA, Coastal Region Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

146 163 173 165 290 266 1977-2013 Adjustments 0 2 1 13 1 -11 1977-2013 Revision Increases 21 41 38 20 150 13 1977-2013 Revision Decreases 69 14 16 31 16 14 1977-2013 Sales 6 0 1 0...

322

CA, Coastal Region Onshore Associated-Dissolved Natural Gas Proved...  

Gasoline and Diesel Fuel Update (EIA)

50 168 178 172 303 282 1979-2013 Adjustments 1 2 2 15 2 -8 1979-2013 Revision Increases 21 42 38 21 157 14 1979-2013 Revision Decreases 72 14 17 31 17 15 1979-2013 Sales 6 0 1 0 0...

323

CA, Coastal Region Onshore Nonassociated Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 2 1 2 2 1979-2013 Adjustments 0 1 0 0 0 0 1979-2013 Revision Increases 0 0 1 0 1 0 1979-2013 Revision Decreases 0 1 0 1 0 0 1979-2013 Sales 0 0 0 0 0 0 2000-2013 Acquisitions 0...

324

AGA Producing Regions Natural Gas Underground Storage Net Withdrawals...  

Annual Energy Outlook 2012 (EIA)

Year-9 1990's -114,419 113,822 102,555 -13,990 -270,114 36,826 2000's 350,177 -489,871 196,415 -81,500 -18,748 18,569 -203,400 46,656 -5,990 -138,071 2010's -95,259 -112,380...

325

Case Study - Liquefied Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Environmental Environmental Science Enviro Express Kenworth LNG tractor. Connecticut Clean Cities Future Fuels Project Case Study - Liquefied Natural Gas As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant. Introduction The American Recovery and Reinvestment Act legislation

326

E-Print Network 3.0 - alpha gamma sur Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson Alpha Delta Pi Summary: Marie Frappier - Rho Gamma Greek Man of the Year Jordan Fischette - Alpha Tau Omega Greek Professor... : Sigma Gamma Rho 3.13 PHC: Alpha Xi...

327

Thalamocortical Mechanisms for the Anteriorization of Alpha Rhythms during Propofol-Induced Unconsciousness  

E-Print Network (OSTI)

As humans are induced into a state of general anesthesia via propofol, the normal alpha rhythm (813 Hz) in the occipital cortex disappears and a frontal alpha rhythm emerges. This spatial shift in alpha activity is called ...

Vijayan, Sujith

328

Measurement of microbial alpha-amylases with p-nitrophenyl glycosides as the substrate complex.  

Science Journals Connector (OSTI)

...Starch is acted on by alpha-amylase to yield alpha-amylose plus amylopectin. This enzymatic hydrolysis...on straight-chain amylose than on branched amylopectin. Fur- thermore, the alpha-amylase is not thought to...

R W Trepeta; S C Edberg

1984-01-01T23:59:59.000Z

329

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

330

Vegetation uptake from burial ground alpha waste trenches  

SciTech Connect

This study was conducted as part of an evaluation of the potential radiological consequences of reinhabiting the SRS burial ground. The objective was to determine the uptake of buried, low-level, transuranic waste from unlined earthen trenches by forest vegetation. Two tree plots were established in 1979. One plot was put over a trench containing alpha waste and the other in an area without trenches. When the tree seedlings were sampled during 1979 and 1980, and analysized for {sup 239}Pu and {sup 238}Pu, there was only a small difference in radionuclude concentration between trees planted over the trench and those planted on the control plot because of the limited root intrusion into the trench by the seedlings. However, when trees were sample in 1986, 1987, and 1988 and analyzed for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, and {sup 237}Np activity, the average activity of all of these isotopes was significantly higher over the trenches than in the control plot. These measurements indicate that tree roots will extract transuranic isotopes from buried, low-level waste. The amount of radioisotopes moved from the trenches to the surface is small and the level in the trees is low enough that dose from exposure will be small. The long term effects of transport of radioisotopes from the trenches to the surface soil was evaluated by estimating the accumulation in the surface soil. Transuranic activity in selected food crops was calculated using the soil activity and the literature derived concentration factors. In all cases, the activity of the transuranic isotopes in the edible portion of the plants was quite low. The activity in the leaf tissue was much higher than in the seed. However, it should be noted that in only one case was the activity higher than the naturally occurring activity of {sup 40}K in the pine foliage.

Murphy, C.E. Jr.; Tuckfield, R.C.

1989-01-01T23:59:59.000Z

331

The atmospheric reactivity of. alpha. -methyltetrahydrofuran  

SciTech Connect

Biomass-derived {alpha}-methyltetrahydrofuran (MTHF) has been proposed as an automotive fuel additive. Since MTHF is a volatile organic compound, the environmental impact of evaporation to the atmosphere needs to be considered. The major loss process of MTHF in the atmosphere is expected to occur via reaction with hydroxyl radical; hence we have conducted a study of the kinetics of the reaction OH + MTHF {yields} products using both absolute (flash photolysis resonance fluorescence) and relative rate techniques. The absolute rate experiments were performed over the temperature range 240-400 K at total pressures of 35 Torr (4.7 kPa) argon; the relative rate experiments were conducted at 295 K in 740 Torr (99 kPa) synthetic air. The results from both techniques were in good agreement and yield k{sub 1} = (2.52 {plus minus} 0.74) {times} 10{sup {minus}12} exp-((650 {plus minus} 80)/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}, with k{sub 1} (298 K) = 2.2 {times} 10{sup {minus}11} cm{sup 3} molecule{sup {minus}1}. The implications of these results for the atmospheric chemistry of MTHF are discussed.

Wallington, T.J.; Siegl, W.O. (Ford Motor Company, Dearborn, MI (USA)); Liu, Renzhang; Zhang, Zhengyu; Huie, R.E.; Kurylo, M.J. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

1990-10-01T23:59:59.000Z

332

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

333

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

334

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

335

Method for route selection of transcontinental natural gas pipelines  

E-Print Network (OSTI)

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

Kouroupetroglou, Georgios

336

E-Print Network 3.0 - alpha particle emission Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(or, positron-- the anti-particle to the beta-- emission) or alpha particle... Different types of radiation (alpha, beta, gammas, and neutrons) have different ways in which they...

337

E-Print Network 3.0 - alpha -bungarotoxin binding Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Keywords: binding sites; protein structure; geometry; alpha... CPA, 4CPA, 5CPA, alpha-amylase 6TAA) their ... Source: Engelman, Donald M.- Department of Molecular...

338

Thick-Target Neutron Yield from the 19F(alpha,n) Reaction  

E-Print Network (OSTI)

Thick-target neutron yields from the 19F(alpha,n) reaction are reported for E(alpha) = 3.5 - 10.0 MeV.

E. B. Norman; T. E. Chupp; K. T. Lesko; G. L. Woodruff; P. J. Grant

2014-11-01T23:59:59.000Z

339

E-Print Network 3.0 - alpha particle energy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

to mirror machines can benefit this concept by efficiently redirecting alpha particle energy... -transverse wave propagation. As a result, modes suitable for alpha particle...

340

E-Print Network 3.0 - alpha particle effects Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

to mirror machines can benefit this concept by efficiently redirecting alpha particle energy... -transverse wave propagation. As a result, modes suitable for alpha particle...

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sensitive Immunoassay of a Biomarker TumorNecrosis Factor-[alpha...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomarker TumorNecrosis Factor-alpha Based on Poly(guanine)-Functionalized Silica Nanoparticle Sensitive Immunoassay of a Biomarker TumorNecrosis Factor-alpha Based on...

342

Thick-Target Neutron Yield from the 19F(alpha,n) Reaction  

E-Print Network (OSTI)

Thick-target neutron yields from the 19F(alpha,n) reaction are reported for E(alpha) = 3.5 - 10.0 MeV.

Norman, E B; Lesko, K T; Woodruff, G L; Grant, P J

2014-01-01T23:59:59.000Z

343

E-Print Network 3.0 - alpha2-adrenoceptor antagonists studied...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physiology & Behavior (2002) 76... . amic alpha1 and alpha2adrenoceptors and food intake in rats. 39. Dglucose 40. 41... nervous system in the regulation of these ......

344

E-Print Network 3.0 - alpha fetoprotein radioimmunoassay Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

test Alpha-fetoprotein (AFP), Estriol, h... , Benefits for Alpha-Fetoprotein IV Screening Test, Benefits for Treatment of Genetic Errors of Metabolism Source: Lammers, Peter J. -...

345

E-Print Network 3.0 - alpha reactions Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

resulting from... radioactive decay of the release an alpha particle from its parent isotope (e.g., alpha decay ... Source: Yucca Mountain Project, US EPA Collection:...

346

Generating long streams of $1/f^alpha$ noise  

E-Print Network (OSTI)

We review existing methods for generating long streams of 1/f^alpha noise ($0generator (white outside some bounds) in order to generate very long streams of noise without an exhaustive computer memory load. For $\\alpha=2$ it is shown why the process is equivalent to a random-walk and can be obtained simply by a first order filtering of white noise. As soon as $\\alphagenerators with $\\alpha>2$. The software is available from http://planck.lal.in2p3.fr/article.php3?id\\_article=8

S. Plaszczynski

2005-10-04T23:59:59.000Z

347

Non-resonant triple alpha reaction rate at low temperature  

SciTech Connect

Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Carter, J.; Donaldson, L.; Sideras-Haddad, E. [Schools of Physics, University of Witwatersrand, Johannesburg 2050 (South Africa); Furuno, T.; Kawabata, T. [Departments of Physics, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Kamimura, M. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan); Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C. [iThemba Laboratory for Accelerator Based Sciences Somerset, West, 7129 (South Africa)

2014-05-02T23:59:59.000Z

348

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 129 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled

349

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

350

2014 REGIONAL ECONOMIC OUTLOOK  

E-Print Network (OSTI)

2014 REGIONAL ECONOMIC OUTLOOK #12;2014 REGIONAL ECONOMIC OUTLOOK 2014 Overview The Cincinnati USA Partnership for Economic Development and the Northern Kentucky Chamber of Commerce are pleased to present the 2014 Regional Economic Outlook. This report was prepared by the Cincinnati USA Partnership's Regional

Boyce, Richard L.

351

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

July 1 (next release 2:00 p.m. on July 8) July 1 (next release 2:00 p.m. on July 8) Since Wednesday, June 23, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 24 cents or about 4 percent to $6.05 per MMBtu. Yesterday (June 30), the price of the NYMEX futures contract for August delivery at the Henry Hub settled at $6.155 per MMBtu, decreasing roughly 33 cents or about 5 percent since last Wednesday. Natural gas in storage was 1,938 Bcf as of June 25 which is 0.5 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell 64 cents per barrel or nearly 2 percent on the week to $36.92 per barrel or $6.37 per MMBtu. Prices: Widespread moderate temperature conditions and falling crude oil prices contributed to price declines of between 10 and 49 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, June 2, with declines exceeding 30 cents per MMBtu at most market locations. After prices climbed 10 to 20 cents per MMBtu at most market locations on Thursday, June 24, they then fell during the next four trading days. The steepest declines occurred principally in the Northeast, Louisiana, and Texas regions, where prices fell more than 35 cents per MMBtu since last week. Despite these widespread declines, prices remain high relative to last year's levels, exceeding last year's level by more than 8 percent. For example, prices at the Henry Hub are 70 cents or 13 percent above last year's level.

352

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

18, 2007 (next release 2:00 p.m. on January 25, 2007) 18, 2007 (next release 2:00 p.m. on January 25, 2007) Natural gas spot prices increased by $0.07 to $1.05 per MMBtu at nearly all trading locations in the Lower 48 States as space-heating demand remained strong amid very cold temperatures in critical gas-consuming markets. Prices at some market locations in the Northeast peaked at more than $10 per MMBtu on Tuesday and then declined significantly in Wednesday's (yesterday, January 17) trading. The average price in the Northeast remained among the highest of all regions during yesterday's trading. For the week (Wednesday-Wednesday), prices at the Henry Hub increased $0.16 per MMBtu, or 2.5 percent, to $6.57. The price of the NYMEX futures contract for February delivery at the Henry Hub fell approximately 52 cents per MMBtu to settle yesterday at $6.234. Natural gas in storage was 2,936 Bcf as of Friday, January 12, which is 20 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.65 per barrel or about 3 percent since last Wednesday to trade yesterday at $52.30 per barrel or $9.02 per MMBtu. The price of crude oil as of yesterday was $14.06 per barrel lower than the year-ago level, and $24.75 less than the all-time high price of $77.05 per barrel reached in early August 2006.

353

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on July 29) 2 (next release 2:00 p.m. on July 29) Since Wednesday, July 14, natural gas spot prices have increased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub remained at $5.91 per MMBtu. Yesterday (July 21), the price of the NYMEX futures contract for August delivery at the Henry Hub settled at $5.931 per MMBtu, decreasing roughly 5 cents or less than 1 percent since last Wednesday (July 14). Natural gas in storage was at 2,227 Bcf as of July 16, which is 2.6 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell 35 cents per barrel or less than 1 percent on the week to $40.63 per barrel or $7.005 per MMBtu. Prices: Strengthening weather fundamentals and increasing power generation loads since Monday, July 19, contributed to rebounding gas prices at most market locations in the Lower 48 States. The growing potential for a supply-side disturbance also contributed to rising prices on Wednesday, July 21, as the first tropical depression of the Atlantic hurricane season may be gathering south of Hispaniola. The largest gains in spot prices since last Wednesday, July 14, principally occurred west of the Rockies as increases in the California and Rocky Mountains regions averaged 21 and 19 cents per MMBtu, respectively. Prices in the Northeast gained 11 cents per MMBtu on average with prices at the Algonquin and New York City citygates climbing 19 and 17 cents per MMBtu, respectively. Gains elsewhere were less pronounced with prices in the Midcontinent, Midwest, and Texas regions increasing less than a dime on average. In contrast to the general pattern of rising prices in the Lower 48 States, prices in Florida fell on average 8 cents per MMBtu. Prices continue to exceed last year's levels by almost a dollar. As of July 21, 2004, prices at the Henry Hub are 90 cents or 17 percent above last year's level.

354

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on May 27) 0 (next release 2:00 p.m. on May 27) Since Wednesday, May 12, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 21 cents or about 3 percent to $6.18 per MMBtu. Yesterday (May 19), the price of the NYMEX futures contract for June delivery at the Henry Hub settled at $6.455 per MMBtu, decreasing roughly 5 cents or less than 1 percent since last Wednesday. Natural gas in storage was 1,388 Bcf as of May 14, which is 1.1 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil climbed $1.31 per barrel or 3 percent on the week to $41.61 per barrel or $7.174 per MMBtu. Prices: Moderating temperatures led to price declines of 12 to 48 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, May 12. The steepest declines occurred principally west of the Rockies, where prices fell more than 35 cents per MMBtu at most markets. In California, prices fell more than 40 cents per MMBtu, while declines in the Rocky Mountains region averaged roughly 36 cents per MMBtu. East of the Rockies, price decreases were widespread with declines ranging between 20 and 35 cents per MMBtu at most markets. These declines were more pronounced along the northern tier with declines averaging 28, 27, and 23 cents per MMBtu in the Midcontinent, Northeast and Midwest regions, respectively. In the south, including Texas, Louisiana, and Florida, price decreases were less than 23 cents per MMBtu on average. Despite these widespread declines, prices nevertheless remain somewhat high relative to historical trends and exceed last year's levels by 3 to 5 percent. For example, prices at the New York citygate are 34 cents or 5 percent above last year's level. Principal contributing factors sustaining the higher price levels likely include higher oil prices this year as the price of crude oil exceeds last year's level by more than 42 percent.

355

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on June 17) 10 (next release 2:00 p.m. on June 17) Since Wednesday, June 2, natural gas spot prices have decreased at virtually all market locations in the Lower 48 States. For the week (Wednesday-Wednesday), prices at the Henry Hub decreased 46 cents or about 7 percent to $6.05 per MMBtu. Yesterday (June 9), the price of the NYMEX futures contract for July delivery at the Henry Hub settled at $6.082 per MMBtu, decreasing roughly 44 cents or nearly 7 percent since last Wednesday. Natural gas in storage was 1,666 Bcf as of June 4, which is 0.2 percent below the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil fell $2.36 per barrel or nearly 6 percent on the week to $37.60 per barrel or $6.48 per MMBtu. Prices: Widespread moderate temperatures and falling crude oil prices contributed to price declines of 31 to 87 cents per MMBtu at virtually all market locations in the Lower 48 States since last Wednesday, June 2. The steepest declines occurred principally west of the Rockies, where prices fell more than 70 cents per MMBtu at most markets, with the largest declines in California. The lack of temperature-driven demand also caused operational difficulties, with a number of pipelines in the West issuing either high inventory OFOs or critical notices in response to high linepack on their systems. East of the Rockies, price decreases were widespread with declines ranging between 40 and 60 cents per MMBtu at most markets. These declines were more pronounced in the central regions of the Lower 48 States with declines averaging between 50 and 60 cents per MMBtu in the Midcontinent, Midwest, and Texas regions. In Louisiana and east of the Mississippi, prices fell less than 50 cents. With these widespread declines, prices have fallen below last year's levels by as much as 39 cents per MMBtu. For example, prices at the southern California border are 39 cents or nearly 7 percent below last year's level, while prices at the Henry Hubare 20 cents or 3 percent below last year's level.

356

Methods of Using Alpha Channeling Together with Transformer Recharging |  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods of Using Alpha Channeling Together with Transformer Recharging Methods of Using Alpha Channeling Together with Transformer Recharging A tokamak current can be sustained using rf waves for transformer recharging at low density and high-Z with high efficiency if the resistivity is kept high enough during the radio frequency recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. The two separate inventions can be made to work synergistically. Specifically, by operating the tokamak in a low-density recharge phase, the lower hybrid wave penetrates the plasma more effectively. High reactivity is obtained by operation in the hot ion mode through the alpha channeling technique. Then, by using a high temperature relaxation stage, not only is the plasma current sustained

357

City of Alpha, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Alpha, Minnesota (Utility Company) Alpha, Minnesota (Utility Company) Jump to: navigation, search Name City of Alpha Place Minnesota Utility Id 266 Utility Location Yes Ownership M NERC Location MRO Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0758/kWh Commercial: $0.0957/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Alpha,_Minnesota_(Utility_Company)&oldid=409261" Categories:

358

Energetics of [alpha]-helix formation in peptides and proteins  

E-Print Network (OSTI)

This thesis focuses on the energetics of !-helix formation in peptides and proteins. The [alpha]-helix is the most prevalent type of secondary structure found in proteins, and has arguably dominated our thinking about ...

Schubert, Christian Reinhold

2009-01-01T23:59:59.000Z

359

Use of S-. alpha. diagram for representing tokamak equilibrium  

SciTech Connect

A use of the S-{alpha} diagram is proposed as a tool for representing the plasma equilibrium with a qualitative characterization of its stability through pattern recognition. The diagram is an effective tool for visually presenting the relationship between the shear and dimensionless pressure gradient of an equilibrium. In the PBX-M tokamak, an H-mode operating regime with high poloidal {beta} and L-mode regime with high toroidal {beta}, obtained using different profile modification techniques, are found to have distinct S-{alpha} trajectory patterns. Pellet injection into a plasma in the H-mode regime with high toroidal {beta}, obtained using different profile modification techniques, are found to have distinct S-{alpha} trajectory patterns. Pellet injection into a plasma in the H-mode regime results in favorable qualities of both regimes. The {beta} collapse process and ELM event also manifest themselves as characteristic changes in the S-{alpha} pattern.

Takahashi, H.; Chance, M.; Kessel, C.; LeBlanc, B.; Manickam, J.; Okabayashi, M.

1991-05-01T23:59:59.000Z

360

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Research Highlights Nature Nanotechnology  

E-Print Network (OSTI)

© 2009 APS Research Highlights Nature Nanotechnology Published online: 17 July 2009 | doi:10 perfect fluid. Phys. Rev. Lett. 103, 025301 (2009). | Article |1. Nature Nanotechnology ISSN 1748 : Nature Nanotechnology http://www.nature.com/nnano/reshigh/2009/0709/full/nnano.2009.222.html 1 of 1 18

Müller, Markus

362

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

363

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

24 (next release 2:00 p.m. on August 31, 2006) 24 (next release 2:00 p.m. on August 31, 2006) Since Wednesday, August 16, natural gas spot prices increased at most market locations with the exception of a few locations in the Northeast. For the week (Wednesday-Wednesday), prices at the Henry Hub increased 17 cents to $7.19 per MMBtu. Yesterday (August 23), the price of the NYMEX futures contract for September delivery settled at $6.875 per MMBtu, increasing about 11 cents or about 2 percent since Wednesday. Natural gas in storage was 2,857 Bcf as of August 18, which is 13.5 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil decreased 19 cents per barrel, or about 0.3 percent, on the week to $71.45 per barrel, or $12.32 per MMBtu. Prices: Despite the lower cooling load across much of the Lower 48 States and a diminished threat from Tropical Storm Debby, natural gas spot prices increased at most market locations on the week. The increases, however, were moderate, as they were mostly limited to less than 15 cents per MMBtu. With the exception of the southern United States, power loads have been steadily diminishing in the past couple of weeks. Gas demand for electric power generation was much lower compared with the week ending August 5, when the Edison Electric Institute (EEI) reported record-high weekly electricity demand, leading to the 12 Bcf net withdrawal for the storage week ended August 4, 2006. On a regional basis, market locations in East Texas recorded the largest increases since Wednesday, August 16, averaging 18 cents per MMBtu, followed by Louisiana (16 cents per MMBtu). Most locations along the Gulf Coast recorded increases between 3 and 18 cents, while major consuming areas in the Midwest recorded an average increase of 14 cents per MMBtu. Despite the general increases this week, a few market locations in the Northeast recorded decreases since last Wednesday, the largest one of which was the 10-cent decrease at the Dracut, MA, trading point. Even with the overall increases in recent weeks, as of August 23, 2006, spot prices at market locations in the Lower 48 States are 17 to 30 percent lower than last year's levels.

364

Quantum Monte Carlo calculations of neutron-alpha scattering  

E-Print Network (OSTI)

We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale

2006-12-09T23:59:59.000Z

365

EIA - Assumptions to the Annual Energy Outlook 2008 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2008 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

366

EIA - Assumptions to the Annual Energy Outlook 2009 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2009 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

367

Assumptions to the Annual Energy Outlook - Natural Gas Transmission and  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumption to the Annual Energy Outlook Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

368

EIA - Assumptions to the Annual Energy Outlook 2010 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2010 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and

369

X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies  

SciTech Connect

Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10/sup 4/K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated L..cap alpha../H..cap alpha.. line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/H..cap alpha.. ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped H..cap alpha.. photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(H..cap alpha..) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations.

Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

1980-07-01T23:59:59.000Z

370

Characterization of salivary alpha-amylase binding to Streptococcus sanguis  

SciTech Connect

The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. (State Univ. of New York, Buffalo (USA))

1989-09-01T23:59:59.000Z

371

Minnesota Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 5,535 5,563 5,789 6,051 6,354 6,516 1990-2013

372

Louisiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 481,448 506,368 537,381 569,532 588,760 616,097 1990-2013

373

Virginia Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 7,627 7,917 7,809 8,111 7,771 8,769 1997-2013

374

Oregon Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 18,802 21,071 24,355 26,317 27,099 27,826 1990-2013

375

California Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

376

Utah Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 93,084 97,539 101,216 104,637 109,135 112,135 1990-2013

377

Alabama Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,455 28,958 28,160 28,582 28,018 29,312 1995-2013

378

Indiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 87,254 89,244 91,822 94,240 97,911 101,106 1990-2013

379

Washington Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

380

Texas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 638,154 659,387 666,457 668,068 696,056 730,492 1990-2013

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ohio Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

382

California Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 494,687 526,990 548,682 551,855 553,972 563,219 1990-2013

383

Oklahoma Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 270,117 293,368 310,075 317,797 325,829 340,801 1990-2013

384

Mississippi Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 188,580 205,724 214,887 222,273 217,684 229,843 1990-2013

385

Kansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

386

Kentucky Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 165,997 174,089 181,856 187,293 192,663 201,374 1990-2013

387

Alaska Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

388

Montana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 207,626 210,385 214,435 219,447 224,995 224,335 1990-2013

389

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

390

Illinois Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

391

Iowa Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013

392

Alaska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 28,203 29,473 30,384 31,284 32,766 34,652 2013-2013

393

Arkansas Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

394

Iowa Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 215,593 221,664 230,749 245,317 261,998 273,823 1990-2013

395

Utah Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 97,539 101,216 104,637 109,135 112,135 113,539 1990-2013

396

Colorado Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 70,182 74,046 80,390 87,199 94,797 100,693 1990-2013

397

Illinois Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 746,993 774,182 809,958 842,081 876,844 917,781 1990-2013

398

Oklahoma Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 293,368 310,075 317,797 325,829 340,801 351,660 1990-2013

399

Mississippi Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 205,724 214,887 222,273 217,684 229,843 244,371 1990-2013

400

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 506,368 537,381 569,532 588,760 616,097 641,658 1990-2013

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Indiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 89,244 91,822 94,240 97,911 101,106 102,341 1990-2013

402

Tennessee Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 340 340 340 340 340 340 1997-2013

403

Minnesota Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 5,563 5,789 6,051 6,354 6,516 6,874 1990-2013

404

Oregon Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 21,071 24,355 26,317 27,099 27,826 28,494 1990-2013

405

Virginia Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 7,917 7,809 8,111 7,771 8,769 9,216 1997-2013

406

Missouri Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

407

Maryland Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 53,540 55,026 57,959 59,418 61,671 62,862 1990-2013

408

Washington Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 30,412 33,787 37,711 40,833 43,621 45,359 1990-2013

409

Ohio Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 390,648 417,691 447,275 468,055 493,454 516,625 1990-2013

410

Pennsylvania Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 567,796 613,368 634,789 656,308 693,662 712,848 1990-2013

411

Pennsylvania Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 520,387 567,796 613,368 634,789 656,308 693,662 1990-2013

412

Nebraska Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 25,055 25,858 26,866 27,234 29,408 31,383 1990-2013

413

Missouri Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 10,867 11,358 11,873 12,197 12,433 12,660 1990-2013

414

Texas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 582,834 638,154 659,387 666,457 668,068 696,056 1990-2013

415

Arkansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 11,133 11,575 11,977 12,383 12,816 13,020 1990-2013

416

Montana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 205,601 207,626 210,385 214,435 219,447 224,995 1990-2013

417

Michigan Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

418

Michigan Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 643,563 706,443 777,107 839,963 906,927 972,307 1990-2013

419

Kansas Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 200,725 214,725 228,046 244,878 256,709 266,439 1990-2013

420

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2003 (next release 2:00 p.m. on July 17) 0, 2003 (next release 2:00 p.m. on July 17) The threat of production interruptions from a tropical storm and increased cooling demand contributed to natural gas spot prices climbing 35 to 70 cents per MMBtu at most trading locations in the Lower 48 States since Wednesday, July 2. On the week (Wednesday-Wednesday), the Henry Hub spot price climbed 51 cents to $5.56 per MMBtu, while spot prices in the Northeast were slightly higher with gains of nearly 60 cents in response to regional cooling demand. The NYMEX futures contract for August delivery gained just over 32 cents per MMBtu to a close of $5.52 on Wednesday, July 9. Working gas in storage as of Friday, July 4 increased to 1,773 Bcf, which is 15.2 percent below the 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil rose $0.58 per barrel on the week to $30.87, or $5.32 per MMBtu.

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on August 19) 2 (next release 2:00 p.m. on August 19) Natural gas spot and futures prices moved lower on the week (Wednesday to Wednesday, August 4-11), as unseasonably cool temperatures prevailed in most high gas-consuming regions of the nation. At the Henry Hub, the spot price declined 6 cents on the week, or just over 1 percent, to yesterday's (Wednesday, August 11) level of $5.64 per MMBtu. On the NYMEX, the futures contract for September delivery edged down nearly 5 cents per MMBtu, or about 1 percent, to settle yesterday at $5.614. EIA reported that inventories were 2,452 Bcf as of Friday, August 6, which is 5.0 percent greater than the average for the previous 5 years (1999-2003). The spot price for West Texas Intermediate (WTI) crude oil rose sharply in last Thursday's (August 5) trading to top $44 per barrel and stayed above that level for 4 of the 5 trading days in the week. The WTI spot price ended trading yesterday at $44.72 per barrel, or $7.71 per MMBtu, which is $1.99 per barrel, or almost 5 percent, higher than last Wednesday's (August 4) price.

422

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

August 29, 2002 (next release 2:00 p.m. on September 5) August 29, 2002 (next release 2:00 p.m. on September 5) Despite sizeable drops in both spot and futures contract prices in the past two days, week-on-week (Wednesday, August 21 to Wednesday August 28) increases were recorded in both cash and futures markets. Temperatures which had begun to moderate even before Thursday, August 22, particularly in the Northeast and West regions, seemed finally to begin exerting downward pressure on prices. For the week, the spot price at the Henry Hub gained $0.11 per MMBtu to average $3.33 yesterday (Wednesday, August 28). The NYMEX futures contract for September delivery expired yesterday at the closing price of $3.288 per MMBtu, up only $0.014 from the previous Wednesday's settlement. The Energy Information Administration's (EIA) Weekly Natural Gas Storage Report showed total stocks of 2,716 Bcf for the week ended Friday, August 23, which is 13 percent above the 5-year average. The run-up in the spot price of West Texas Intermediate (WTI) crude oil that resulted in an increase of $2.18 per barrel over the previous week was almost completely offset this past week, as the WTI spot price fell $2.06 per barrel to end trading on Wednesday, August 28 at an average price of $28.31 per barrel, or $4.88 per MMBtu.

423

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25, 2007 (next release 2:00 p.m. on November 1, 2007) 25, 2007 (next release 2:00 p.m. on November 1, 2007) Natural gas spot and futures prices generally decreased this report week (Wednesday to Wednesday, October 17-24), as moderate weather prevailed across much of the Lower 48 States. Although tropical storms entering the Gulf of Mexico production region-evidenced by a system currently moving through the Caribbean-could still disrupt supplies, the passing of at least the most active part of the hurricane season may help explain the price declines. On the week the Henry Hub spot price decreased $1.01 per MMBtu to $6.10. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant decreases. The futures contract for November delivery declined about 49 cents per MMBtu on the week to $6.972. Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture ahead of the winter heating season. As of Friday, October 19, working gas in storage was 3,443 Bcf, which is 7.2 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.11 per barrel, ending trading yesterday at $88.30, or $15.22 per MMBtu.

424

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

11, 2003 (next release 2:00 p.m. on September 18) 11, 2003 (next release 2:00 p.m. on September 18) Spot natural gas prices increased 5 to 15 cents in most regional markets for the week (Wednesday to Wednesday, September 3-10). The Henry Hub spot price gained 10 cents on the week, ending trading yesterday (Wednesday, September 10) at $4.78 per MMBtu. Futures prices were up as well, with the gains owing almost entirely to yesterday's large price increases. The NYMEX futures contract for October delivery moved up nearly 24 cents in yesterday's trading, and for the week gained $0.278 per MMBtu with its settlement yesterday at $4.968. The Energy Information Administration (EIA) reported that inventories were 2,486 Bcf as of Friday, September 5, which is 5.5 percent less than the 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil fell below $29 per barrel for the first time since late June, lingering in the high-$28s for the first 3 days of the week before regaining nearly all of its decreases on Tuesday and Wednesday. WTI crude oil ended the week at $29.41 per barrel ($5.07 per MMBtu), just 2 cents per barrel below the week-ago price.

425

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2007 (next release 2:00 p.m. on March 22, 2007) 15, 2007 (next release 2:00 p.m. on March 22, 2007) Spring-like temperatures in most regions of the country this week led to lower natural gas spot and futures prices in the Lower 48 States since Wednesday, March 7. On the week (Wednesday-Wednesday, March 7-14), the Henry Hub spot price decreased 66 cents per MMBtu, or about 9 percent, to $6.86. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery fell 28 cents per MMBtu on the week to a daily settlement of $7.083 yesterday (March 14). Working gas in underground storage was 1,516 Bcf as of Friday, March 9, which is 12 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $3.70 per barrel on the week to $58.15 per barrel, or $10.03 per MMBtu.

426

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

12, 2007 (next release 2:00 p.m. on April 19, 2007) 12, 2007 (next release 2:00 p.m. on April 19, 2007) Unseasonably cold temperatures in most regions of the country led to increases of both spot and futures prices since Wednesday, April 4. On the week (Wednesday-Wednesday, April 4-11) the Henry Hub spot price increased 50 cents per MMBtu, or about 6.7 percent, to $7.96. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery increased 34 cents per MMBtu to a daily settlement of $7.855 yesterday (April 11). The first weekly report of the traditional injection season brought natural gas volumes in underground storage to 1,592 Bcf as of Friday, April 6, which is 28.4 percent above the 5-year average inventory for the report week. The spot price for the West Texas Intermediate (WTI) crude oil decreased $2.42 per barrel to $61.98 per barrel or $10.69 per MMBtu.

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on April 27, 2006) 0 (next release 2:00 p.m. on April 27, 2006) High crude oil prices and increasing cooling demand in some regions contributed to natural gas spot prices climbing more than 10 percent at trading locations in the Lower 48 States since Wednesday, April 12. On the week (Wednesday-Wednesday, April 12-19), the Henry Hub spot price rose 93 cents per MMBtu to $7.72. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery rose in each trading session this week, gaining $1.384 per MMBtu to close at $8.192 per MMBtu yesterday (April 19). Net storage injections continued for the second week this refill season. Working gas in storage as of Friday, April 14, increased to 1,761 Bcf, which is 62.6 percent above the 5-year (2001-2005) average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.54 per barrel on the week to $72.07, or $12.43 per MMBtu.

428

EIA - International Energy Outlook 2007-Natural Gas Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

7 7 Figure 40. World Natural Gas Consumption by End-Use Sector, 2004-2030 Figure 40 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 41. World Natural Gas Consumption by Region, 2004-2030 Figure 41 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 42. World Natural Gas Reserves by Region, 1980-2007 Figure 42 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 43. World Natural Gas Reserves by Geographic Region as of January 1, 2007 Figure 43 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 44. World Natural Gas Resources by Geographic Region, 2006-2025 Figure 44 Data. Need help, contact the National Energy Information Center at 202-586-8800.

429

Norepinephrine infusion with and without alpha-adrenergic blockade by phentolamine increases salivary alpha amylase in healthy men  

Science Journals Connector (OSTI)

AbstractBackground Mental stress reliably induces increases in salivary alpha amylase (sAA), a suggested surrogate marker for sympathetic nervous system (SNS) reactivity. While stress-induced sAA increases correlate with norepinephrine (NE) secretion, a potential mediating role of noradrenergic mechanisms remains unclear. In this study, we investigated for the first time in humans whether a NE-stress-reactivity mimicking NE-infusion with and without alpha-adrenergic blockade by phentolamine would induce changes in sAA. Methods In a single-blind placebo-controlled within-subjects design, 21 healthy men (2966 years) took part in three different experimental trials varying in terms of substance infusion with a 1-min first infusion followed by a 15-min second infusion: saline-infusion (trial-1), NE-infusion (5?g/min) without alpha-adrenergic blockade (trial-2), and with phentolamine-induced non-selective blockade of alpha1- and alpha2-adrenergic receptors (trial-3). Saliva samples were collected immediately before, during, and several times after substance infusion in addition to blood pressure and heart rate readings. Results Experimental trials significantly differed in sAA reactivity to substance-infusion (p=.001) with higher sAA reactivity following NE-infusion with (trial-3; p=.001) and without alpha-adrenergic-blockade (trial-2; p=.004) as compared to placebo-infusion (trial-1); sAA infusion reactivity did not differ between trial-2 and trial-3 (p=.29). Effective phentolamine application was verified by blood pressure and heart rate infusion reactivity. Salivary cortisol was not affected by NE, either with or without alpha-adrenergic-blockade. Conclusions We found that NE-infusion stimulates sAA secretion, regardless of co-administered non-selective alpha-adrenergic blockade by phentolamine, suggesting that the mechanism underlying stress-induced sAA increases may involve NE.

Ulrike Kuebler; Roland von Knel; Nadja Heimgartner; Claudia Zuccarella-Hackl; Guido Stirnimann; Ulrike Ehlert; Petra H. Wirtz

2014-01-01T23:59:59.000Z

430

Purification and characterization of the extracellular alpha-amylase from Streptococcus bovis JB1.  

Science Journals Connector (OSTI)

...alpha-amylase. alpha-Amylase activity on...active on amylopectin as on amylose. The major...extracellular alpha-amylase from Streptococcus...active on amylopectin as on amylose. The major...2.1.1 alpha-Amylases | Amino Acid...

S N Freer

1993-05-01T23:59:59.000Z

431

Improving image segmentation by learning region affinities  

SciTech Connect

We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

2010-11-03T23:59:59.000Z

432

Jet Production in ep Collisions at High $Q^2$ and Determination of $\\alpha_s$  

E-Print Network (OSTI)

The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).

Aaron, FD; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D -J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jemanov, V; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Korbel, V; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H -U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naroska, B; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H -C; Sefkow, F; Shaw-West, R N; Sheviakov, I; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

2010-01-01T23:59:59.000Z

433

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

434

Historical Natural Gas Annual - 1930 Through 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-2000 and detailed annual historical information by State for 1967-2000. Entire . The entire report as a single file. PDF 1.5 MB Front Matter . Historical Natural Gas Annual Cover Page, Preface, Common Abbreviations Used, and Table of Contents PDF . . Tables . 1 Quantity and Average Price of Natural Gas Production in the United States, 1930-1998 PDF

435

MFSPSSMpred: identifying short disorder-to-order binding regions in disordered proteins based on contextual local evolutionary conservation  

Science Journals Connector (OSTI)

Molecular recognition features (MoRFs) are short binding regions located in longer intrinsically disordered protein regions. Although these short regions lack a ... in the natural state, they readily undergo disorder

Chun Fang; Tamotsu Noguchi; Daisuke Tominaga; Hayato Yamana

2013-10-01T23:59:59.000Z

436

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

437

,"Mississippi Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

"N3050MS3","N3010MS3","N3020MS3","N3035MS3","NA1570SMS3","N3045MS3" "Date","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Mississippi Natural Gas...

438

Nature/Culture/Seawater  

E-Print Network (OSTI)

This essay considers seawater as a substance and symbol in anthropological and social theory. Seawater has occupied an ambiguous place with respect to anthropological categories of nature and culture. Seawater as nature ...

Helmreich, Stefan

439

Natural Gas Monthly  

Reports and Publications (EIA)

Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

2014-01-01T23:59:59.000Z

440

Natural gas annual 1996  

SciTech Connect

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Connecticut Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3010CT3","N3020CT3","N3035CT3","N3045CT3" "Date","Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)","Connecticut Price of Natural Gas Delivered to...

442

Natural Gas Weekly Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Rotary Rig Count Rises to Highest Level since February 2009. The natural gas rotary rig count was 992 as of Friday, August 13, according to data released by Baker...

443

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

The Boston forum is open to the public. Additional information is available at http:www.energy.govnews3197.htm. Natural Gas Rig Count: The number of rigs drilling for natural...

444

Western Regional Partnership Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Overview Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP states range from 41.8% - 84.5% of total state land WRP Region's Importance to DoD  Extensive Training Ranges  Interconnected ground/air ranges provide unmatched warfighter training opportunities

445

Structures and charging of alpha-alumina (0001)/water interfaces studies by sum-frequency vibrational spectroscopy  

SciTech Connect

Sum-frequency vibrational spectroscopy in the OH stretch region was employed to study structures of water/{alpha}-Al{sub 2}O{sub 3} (0001) interfaces at different pH values. Observed spectra indicate that protonation and deprotonation of the alumina surface dominate at low and high pH, respectively, with the interface positively and negatively charged accordingly. The point of zero charge (p.z.c.) appears at pH {approx}6.3, which is close to the values obtained from streaming potential and second harmonic generation studies. It is significantly lower than the p.z.c. of alumina powder. The result can be understood from the pK values of protonation and deprotonation at the water/{alpha}-Al{sub 2}O{sub 3} (0001) interface. The p.z.c. of amorphous alumina was found to be similar to that of powder alumina.

Zhang, L.; Tian, C.; Waychunas, G.A.; Shen, Y.R.

2008-11-10T23:59:59.000Z

446

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

. Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

447

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

448

Natural gas annual 1995  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

449

FR Cnc Nature Revisited  

Science Journals Connector (OSTI)

The results of photometric and spectroscopic monitoring of FR Cnc reported a tricky nature. We carried out...

M. C. Glvez; A. Golovin; M. Hernn-Obispo

2010-01-01T23:59:59.000Z

450

Natural Gas: More Gasbuggies  

Science Journals Connector (OSTI)

... first US experiment in the use of underground nuclear explosions to increase the recovery of natural ...naturalgas ...

1969-04-12T23:59:59.000Z

451

Geology of Natural Gas  

Science Journals Connector (OSTI)

... to an accepted plan have produced a most comprehensive geological account of the occurrence of natural ...naturalgas ...

E. F. A.

1936-01-04T23:59:59.000Z

452

3alpha clustering in the excited states of 16C  

E-Print Network (OSTI)

The alpha cluster states of 16C are investigated by using the antisymmetrized molecular dynamics. It is shown that two different types of alpha cluster states exist: triangular and linear-chain states. The former has an approximate isosceles triangular configuration of alpha particles surrounded by four valence neutrons occupying sd-shell, while the latter has the linearly aligned alpha particles with two sd-shell neutrons and two pf-shell neutrons. It is found that the structure of the linear-chain state is qualitatively understood in terms of the 3/2 pi- and 1/2 sigma- molecular orbit as predicted by molecular-orbital model, but there exists non-negligible Be+alpha+2n correlation. The band-head energies of the triangular and linear-chain rotational bands are 8.0 and 15.5 MeV, and the latter is close to the He+Be threshold energy. It is also shown that the linear-chain state becomes the yrast sstate at J=10 with excitation energy 27.8 MeV owing to its very large moment-of-inertia comparable with hyperdeformation.

T. Baba; Y. Chiba; M. Kimura

2014-10-03T23:59:59.000Z

453

Regional Comparisons, Spatial Aggregation,  

Gasoline and Diesel Fuel Update (EIA)

Regional Regional Comparisons, Spatial Aggregation, and Asymmetry of Price Pass-Through in U.S. Gasoline Markets MICHAEL YE*, JOHN ZYREN**, JOANNE SHORE**, AND MICHAEL BURDETTE** Abstract Spot to retail price pass-through behavior of the U.S. gasoline market was investigated at the national and regional levels, using weekly wholesale and retail motor gasoline prices from January 2000 to the present. Asymmetric pass-through was found across all regions, with faster pass-through when prices are rising. Pass-through patterns, in terms of speed and time for completion, were found to vary from region to region. Spatial aggregation was investigated at the national level and the East Coast with the aggregated cumulative pass-through being greater than the volume-weighted regional pass-through when spot prices increase. These results are useful to the petroleum industry, consumers,

454

Natural Gas Reforming  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This technology is an important pathway for near-term hydrogen production.

455

Applying Alpha-Channeling to Mirror Machines  

SciTech Connect

The ?-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic ?- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of ?- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the ?-channeling mechanism. For practical implementation of the ? -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the ? -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the ?-channeling wave to the fuel ions.

A.I. Zhmoginov and N.J. Fisch

2012-03-16T23:59:59.000Z

456

Implications of Disruption to Natural Gas Deliverability  

SciTech Connect

This project was sponsored by Department of Energy/Office of Electricity Delivery and Energy Reliability and managed by the National Energy Technology Laboratory. The primary purpose of the project was to analyze the capability of the natural gas production, transmission and supply systems to continue to provide service in the event of a major disruption in capacity of one or more natural gas transmission pipelines. The project was specifically designed to detail the ability of natural gas market to absorb facility losses and efficiently reallocate gas supplies during a significant pipeline capacity disruption in terms that allowed federal and state agencies and interests to develop effective policies and action plans to prioritize natural gas deliveries from a regional and national perspective. The analyses for each regional study were based on four primary considerations: (1) operating conditions (pipeline capacity, storage capacity, local production, power dispatch decision making and end user options); (2) weather; (3) magnitude and location of the disruption; and, (4) normal versus emergency situation. The detailed information contained in the region reports as generated from this project are Unclassified Controlled Information; and as such are subject to disclosure in accordance with the Freedom of Information Act. Therefore, this report defines the regions that were analyzed and the basic methodologies and assumptions used to completing the analysis.

Science Applications International

2008-09-30T23:59:59.000Z

457

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

458

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

459

NATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS AND RESULTS  

E-Print Network (OSTI)

to dose evaluation, namely gross alpha and beta activity, uranium and radium isotopes content. For tritium activity and uranium isotope concentration have been measured. A Quantulus-Wallac scintillation counter hasNATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS

460

Ly-alpha emission from GRB host galaxies  

E-Print Network (OSTI)

Ly-alpha emission is indicative of on-going star formation in a dust-poor environment. Ly-alpha imaging is therefore a probe of the star formation rate and of the dust-content of Gamma-Ray Burst host galaxies. Both of these parameters are central to our understanding of GRB progenitors and of how the environments affect the propagation of afterglow emission out of host galaxies. We have started a program aimed at imaging high redshift (z>2) host galaxies of GRBs at the Ly-alpha resonance line from neutral hydrogen. Here were report the results from imaging of the fields of GRB 000301C and GRB 000926 and outline upcoming observations of further hosts.

J. P. U. Fynbo; P. Moller; B. Thomsen; J. Hjorth; J. Gorosabel; M. I. Andersen; M. P. Egholm; S. Holland; B. L Jensen; H. Pedersen; M. Weidinger

2003-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "region alpha natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

462

Indirect Measurements for (p,{alpha}) Reactions Involving Boron Isotopes  

SciTech Connect

Light elements lithium, beryllium and boron (LiBeB) were used in the last years as 'possible probe' for a deeper understanding of some extra-mixing phenomena occurring in young Main-Sequence stars. They are mainly destroyed by (p,{alpha}) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 10}B(p,{alpha}){sup 7}Be reactions is shown.

Lamia, L.; Spitaleri, C.; Romano, S.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Pizzone, R. G.; Puglia, S. M. R.; Sergi, M. L.; Tudisco, S.; Tumino, A. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Universita di Catania, Catania (Italy); Carlin, N.; Szanto, M. G. del; Liguori Neto, R.; Moura, M. M. de; Munhoz, M. G.; Souza, F. A.; Suaide, A. A. P.; Szanto, E. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil)] (and others)

2008-04-06T23:59:59.000Z

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2007 (next release 2:00 p.m. on November 15, 2007) 8, 2007 (next release 2:00 p.m. on November 15, 2007) Natural gas spot price movements varied this week (Wednesday-Wednesday, October 31-November 7). Prices in Lower 48 market areas in the West and the Midcontinent decreased significantly on the week. Other regions, however, most notably the high-demand areas of the Northeast and the Midwest, as well as Gulf Coast production areas, recorded price increases. The spot price at the Henry Hub gained 16 cents per MMBtu, or about 2 percent, to $7.42 per MMBtu. In contrast to the spot market, prices of futures contracts at the New York Mercantile Exchange (NYMEX) for the next 12 months uniformly decreased, with the futures contract for December delivery at the Henry Hub decreasing about 71 cents since last Wednesday to close yesterday (November 7) at $7.624 per MMBtu. Working gas stocks as of Friday, November 2, again hit a record high with 3,545 Bcf in storage, which is 8.9 percent above the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil increased $2.30 per barrel, or 2.4 percent, since last Wednesday to trade yesterday at $96.46 per barrel or $16.63 per MMBtu. Yesterday's crude oil price was $37.52 per barrel higher than the year-ago level, when crude oil traded at $58.94 per barrel on November 7, 2006.

464

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

19, 2002 (next release 2:00 p.m. on September 26) 19, 2002 (next release 2:00 p.m. on September 26) Spot and futures prices surged upward as two tropical storms in close succession made their presence felt in gas markets over the past week. At the Henry Hub, the average spot price rose 47 cents week-to-week (Wednesday, September 11 to Wednesday, September 18) to $3.79 per MMBtu, which is at its highest level since May 1. In addition to some production shut-ins from Tropical Storm Hanna's arrival in the Gulf of Mexico on Friday (September 13), spot prices were also bolstered somewhat by warmer-than-normal temperatures in most regions since last Wednesday, as well as by outages of a number of nuclear-fired electric plants for routine maintenance. On the NYMEX, the settlement price of the futures contract for October delivery rose in five consecutive trading sessions, reaching a 4-month high yesterday at $3.787 per MMBtu. Natural gas in storage increased by 69 Bcf to 2,924 Bcf, 12 percent above the 5-year average. After falling 82 cents on Thursday (September 12) to dip below $29 per barrel, the spot price of West Texas Intermediate (WTI) crude oil rebounded strongly on Friday and remained above the $29 per barrel mark for the rest of the week, ending trading yesterday at $29.57 per barrel, or $5.10 per MMBtu. This is a decline of 20 cents per barrel from the WTI spot price of last Wednesday.

465

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

21, 2002 (next release 2:00 p.m. on December 5) 21, 2002 (next release 2:00 p.m. on December 5) Both spot and futures prices recorded significant gains over the past week (Wednesday, November 13 to Wednesday, November 20), as temperatures in many regions of the country headed below normal and the National Weather Service (NWS) predicted more of the same through the end of the month for at least the eastern two-thirds of the nation. Most of the gains came in large one-day price increases on Monday. At the Henry Hub, the average spot price increased 5 days in a row, and ended trading yesterday (November 20) at $4.27 per MMBtu, 44 cents higher than last Wednesday, 27 cents of which was gained on Monday. The NYMEX futures contract for December delivery at the Henry Hub ended trading yesterday at $4.254 per MMBtu, up $0.377 for the week. Nearly 75 percent of this increase ($0.282) came in Monday's trading. Natural gas in storage as of Friday, November 15 decreased by 1 Bcf to 3,096 Bcf, which exceeds the 5-year average by 3.3 percent. The spot price of West Texas Intermediate (WTI) crude oil, after reaching a 5-month low last Wednesday, at $25.28 per barrel ($4.36 per MMBtu), increased $1.72, settling at $27.00 per barrel, ($4.66 per MMBtu) in trading yesterday (Wednesday, November 20).

466

127 Natural Gas Transmission and Distribution Module  

E-Print Network (OSTI)

and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of the supply options available to bring gas to market centers within each of the NGTDM regions (Figure 9). The major assumptions used within the NGTDM are groupe