National Library of Energy BETA

Sample records for regenerated amorphous cellulose

  1. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect (OSTI)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel

  2. Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks

    SciTech Connect (OSTI)

    Zhang, L.; Zhou, J.; Huang, J.; Gong, P. Zhou, Q.; Zheng, L.; Du, Y.

    1999-11-01

    Interpenetrating polymer network (IPN) coatings synthesized from castor-oil-based polyurethane (PU) with chitosan, nitrocellulose, or elaeostearin were coated on regenerated cellulose (RC) film for curing at 80--100 C for 2--5 min, providing biodegradable, water-resistant cellulose films coded, respectively, as RCCH, RCNC, and RCEs. The coated films were buried in natural soil for decaying and inoculated with a spore suspension of fungi on the agar medium, respectively, to test biodegradability. The viscosity-average molecular weight, M{sub {eta}}, and the weight of the degraded films decreased sharply with the progress of degradation. The degradation half-lifes, t{sub 1/2}, of the films in soil at 30 C were found to be 19 days for RC, 25 days for RCNC, 32 days for RCCH, and 45 days for the RCEs films. Scanning electron microscopy (SEM) showed that the extent of decay followed in the order RC {gt} RCNC {gt} RCCH {gt} RCEs. SEM, infrared (IR), high-performance liquid chromatography (HPLC), and CO{sub 2} evolution results indicated that the microorganisms directly attacked the water-resistant coating layer and then penetrated into the cellulose to speedily metabolize, while accompanying with producing CO{sub 2}, H{sub 2}O, glucose cleaved from cellulose, and small molecules decomposed from the coatings.

  3. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect (OSTI)

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  4. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  5. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  6. Cellulosic Ethanol Cost Target

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary Talk May 21, 2013 Cellulosic Ethanol Cost Target 2 | Biomass Program ... "Our goal is to make cellulosic ethanol practical and cost competitive within 6 ...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  8. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  9. Amorphous metal composites

    DOE Patents [OSTI]

    Byrne, Martin A. (Troy, NY); Lupinski, John H. (Scotia, NY)

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  10. Regenerator seal

    DOE Patents [OSTI]

    Davis, Leonard C. (Indianapolis, IN); Pacala, Theodore (Indianapolis, IN); Sippel, George R. (Indianapolis, IN)

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  11. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  12. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  13. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  15. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  16. Four Cellulosic Ethanol Breakthroughs

    Broader source: Energy.gov [DOE]

    Today, the nation's first ever commercial-scale cellulosic ethanol biorefinery to use corn waste as a feedstock officially opened for business in Emmetsburg, Iowa. POET-DSM’s Project LIBERTY is the second of two Energy Department-funded cellulosic ethanol biorefineries to come on line within the past year. Learn more about how the Energy Department is helping the nation reduce its dependence on foreign oil and move the clean energy economy forward.

  17. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  18. Silfab REgeneration | Open Energy Information

    Open Energy Info (EERE)

    REgeneration Jump to: navigation, search Name: Silfab-REgeneration Sector: Solar Product: US-based solar project developer. References: Silfab-REgeneration1 This article is a...

  19. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1998-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  20. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  1. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  2. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum Caldicellulosiruptor obsidiansis

    SciTech Connect (OSTI)

    Wang, Zhiwu; Lee, Sueng-Hwan; Elkins, James G; Morrell-Falvey, Jennifer L

    2011-01-01

    Cellulose degradation is one of the major bottlenecks of a consolidated bioprocess that employs cellulolytic bacterial cells as catalysts to produce biofuels from cellulosic biomass. In this study, we investigated the spatial and temporal dynamics of cellulose degradation by Caldicellulosiruptor obsidiansis, which does not produce cellulosomes, and Clostridium thermocellum, which does produce cellulosomes. Results showed that the degradation of either regenerated or natural cellulose was synchronized with biofilm formation, a process characterized by the formation and fusion of numerous crater-like depressions on the cellulose surface. In addition, the dynamics of biofilm formation were similar in both bacteria, regardless of cellulosome production. Only the areas of cellulose surface colonized by microbes were significantly degraded, highlighting the essential role of the cellulolytic biofilm in cellulose utilization. After initial attachment, the microbial biofilm structure remained thin, uniform and dense throughout the experiment. A cellular automaton model, constructed under the assumption that the attached cells divide and produce daughter cells that contribute to the hydrolysis of the adjacent cellulose, can largely simulate the observed process of biofilm formation and cellulose degradation. This study presents a model, based on direct observation, correlating cellulolytic biofilm formation with cellulose degradation.

  3. Amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  4. Desulfurization sorbent regeneration

    DOE Patents [OSTI]

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  5. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; et al

    2014-10-14

    cellulose microfibril dimensions and crystallite size becomes more apparent. Further, this enlargement of cellulose microfibril dimensions is attributed to specific processes, including the co-crystallization of crystalline cellulose driven by irreversible inter-chain hydrogen bonding (similar to hornification) and/or cellulose annealing that converts amorphous cellulose to paracrystalline and crystalline cellulose. Essentially, lignin acts as a barrier to prevent cellulose crystallinity increase and cellulose fibril coalescence during DAP.« less

  6. Amorphous metal alloy

    DOE Patents [OSTI]

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  7. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    SciTech Connect (OSTI)

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.; Zhang, Xiao

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement of CrI of cellulose and may be applicable to other types of cellulose polymorphs.

  8. Bioenergy Impacts … Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ethanol biorefinery. Farmers earned additional revenue from selling their leftover corn husks, stalks, and leaves to the POET-DSM biorefinery for production of cellulosic ethanol-a ...

  9. Formation of amorphous materials

    DOE Patents [OSTI]

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  10. REgeneration Finance | Open Energy Information

    Open Energy Info (EERE)

    REgeneration Finance Jump to: navigation, search Name: REgeneration Finance Place: Harrison, New York Zip: 10528 Sector: Solar Product: New York State-based distributed solar...

  11. Acid hydrolysis of cellulose to yield glucose

    DOE Patents [OSTI]

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  12. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  13. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media ...

  14. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  16. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  17. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  18. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation graham_bioenergy_2015.pdf (1.94 MB) More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  19. Compositions and methods for increasing cellulose production

    DOE Patents [OSTI]

    Yang, Zhenbiao; Karr, Stephen

    2012-05-01

    This disclosure relates to methods and compositions for genetically altering cellulose biosynthesis.

  20. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  1. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  2. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  3. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  4. Amorphous Binary Alloy Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hope Ishii, Sean Brennan and Arthur Bienenstock SSRL/SLAC Figure 1: Partial Pair Distribution Functions extracted from the scattering patterns obtained at four different photon energies near the Ge and Mo K-absorption edges. Attempting to determine and describe the atomic arrangements in an amorphous material is a daunting prospect. A considerable advance has been made in the anomalous X-ray scattering approach to determining these arrangements in materials containing two atomic species. Up

  5. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    ... H. Tsukashima, "Alkaline Permansanate Oxidation of Arti- ficial Coals Prepared from i n i n and Cellulose, " - Fuel, Lond., - 46, 177-185 (1967) . R. C. Smith and H. C. Howard, ...

  6. DuPont Danisco Cellulosic Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Danisco Cellulosic Ethanol Jump to: navigation, search Name: DuPont Danisco Cellulosic Ethanol Place: Itasca, Illinois Zip: 60143 Product: DuPont Danisco Cellulosic Ethanol is a...

  7. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic ...

  8. Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect (OSTI)

    Kittle, Joshua D.; Du, Xiaosong; Jiang, Feng; Qian, Chen; Heinze, Thomas; Roman, Maren; Esker, Alan R.

    2011-08-08

    Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.

  9. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, Steven

    1995-01-01

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions.

  10. Regenerator seal design

    DOE Patents [OSTI]

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  11. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  12. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  13. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Carlson, David E.

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  14. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  15. Synthesizing Amorphous Pharmaceuticals Using Containerless Processing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a yellow amorphous product; in the laser hearth, it forms a white crystalline product. ... pressure created by intense sound waves-to form molecular gels and amorphous solids. ...

  16. Compositions for saccharification of cellulosic material

    DOE Patents [OSTI]

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2013-11-12

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  17. Advanced Cellulosic Biofuels - Leveraging Ensyn's Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Cellulosic Biofuels Leveraging Ensyn's commercially-proven RTP technology 2015 ... Refinery Coprocessing vs traditional approaches Traditional biofuels Ethanol, biodiesel ...

  18. Compositions for saccharification of cellulosic material

    SciTech Connect (OSTI)

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2015-11-04

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  19. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  20. Fabrication of amorphous diamond films

    DOE Patents [OSTI]

    Falabella, S.

    1995-12-12

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  1. Amorphous metal alloy and composite

    DOE Patents [OSTI]

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  2. Closed end regeneration method

    DOE Patents [OSTI]

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  3. Regenerable solid imine sorbents

    DOE Patents [OSTI]

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  4. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect (OSTI)

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  5. Refiners Increasingly Employing Catalyst Regeneration as Alternative...

    Open Energy Info (EERE)

    million by the end of 2019. Refiners Benefit from Catalyst Regeneration Technology via Price Reductions and Lower Maintenance Costs The catalyst regeneration technology is the...

  6. Active Soot Filter Regeneration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Soot Filter Regeneration Active Soot Filter Regeneration 2002 DEER Conference Presentation: Cummins, Inc. PDF icon 2002deerbunting.pdf More Documents & Publications...

  7. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect (OSTI)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  8. Nanostructures having crystalline and amorphous phases

    DOE Patents [OSTI]

    Mao, Samuel S; Chen, Xiaobo

    2015-04-28

    The present invention includes a nanostructure, a method of making thereof, and a method of photocatalysis. In one embodiment, the nanostructure includes a crystalline phase and an amorphous phase in contact with the crystalline phase. Each of the crystalline and amorphous phases has at least one dimension on a nanometer scale. In another embodiment, the nanostructure includes a nanoparticle comprising a crystalline phase and an amorphous phase. The amorphous phase is in a selected amount. In another embodiment, the nanostructure includes crystalline titanium dioxide and amorphous titanium dioxide in contact with the crystalline titanium dioxide. Each of the crystalline and amorphous titanium dioxide has at least one dimension on a nanometer scale.

  9. Amorphous-diamond electron emitter

    DOE Patents [OSTI]

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  10. Annealing studies of amorphous alloys

    SciTech Connect (OSTI)

    Wiley, J.D.; Perepezko, J.H.; Nordman, J.E.

    1983-04-01

    Amorphous films of the alloys Ni-Nb, Ni-Mo, Mo-Si, and W-Si were sputter deposited on single-crystal semiconductor substrates. One-hour crystallization temperatures of the films were determined to within +-25/sup 0/C by annealing and x-ray diffraction measurements. Interdiffusion between Au or Cu overlayers and the amorphous films were studied by annealing combined with Auger Electron Spectroscopy (AES) profiling, and by Rutherford Backscatter (RBS) analysis. Supplementary measurements used to study structural relaxation and crystallization included resistivity as a function of temperature; DTA and DSC; and electron microscopy.

  11. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect (OSTI)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  12. Cermet layer for amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1979-01-01

    A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

  13. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery...

  14. Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy...

    Open Energy Info (EERE)

    OAS Cellulosic Ethanol Market Assessment Jump to: navigation, search Name Belize-OAS Cellulosic Ethanol Market Assessment AgencyCompany Organization Organization of American...

  15. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Opening Plenary Session: Celebrating Successes-The ...

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics ...

  17. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul Rey, Michael; Ding, Hanshu

    2009-10-27

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  18. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Office of Environmental Management (EM)

    Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - ...

  19. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul; Rey, Michael; Ding, Hanshu

    2012-04-03

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  20. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October ...

  1. Cellulose nanocrystal-based composite electrolyte with superior...

    Office of Scientific and Technical Information (OSTI)

    Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes Prev Next Title: Cellulose nanocrystal-based composite ...

  2. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking...

  3. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  4. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  5. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  6. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  7. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. Tandem junction amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  9. Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-01-29

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive

  10. Effects of Dilute Acid Pretreatment on Cellulose DP and the Relationship Between DP Reduction and Cellulose Digestibility

    SciTech Connect (OSTI)

    Wang, W.; Chen, X.; Tucker, M.; Himmel, M. E.; Johnson, D. K.

    2012-01-01

    The degree of polymerization(DP) of cellulose is considered to be one of the most important properties affecting the enzymatic hydrolysis of cellulose. Various pure cellulosic and biomass materials have been used in a study of the effect of dilute acid treatment on cellulose DP. A substantial reduction in DP was found for all pure cellulosic materials studied even at conditions that would be considered relatively mild for pretreatment. The effect of dilute acid pretreatment on cellulose DP in biomass samples was also investigated. Corn stover pretreated with dilute acid under the most optimal conditions contained cellulose with a DPw in the range of 1600{approx}3500, which is much higher than the level-off DP(DPw 150{approx}300) obtained with pure celluloses. The effect of DP reduction on the saccharification of celluloses was also studied. From this study it does not appear that cellulose DP is a main factor affecting cellulose saccharification.

  11. Reduced shedding regenerator and method (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential ...

  12. Reduced shedding regenerator and method (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Reduced shedding regenerator and method A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the ...

  13. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  14. Regenerator cross arm seal assembly

    DOE Patents [OSTI]

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  15. Self-regenerating column chromatography

    DOE Patents [OSTI]

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  16. Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 b2blowres63006.pdf (8.11 MB) More Documents & Publications Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels

  17. Bacterial Cellulose Composites Opportunities and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    x 10 -7 K -1 ), High Aspect Ratio (50) Nano-sized: Interesting Optical & Barrier ... June 26, 2012 3 Leonard.Fifield@PNNL.gov Bacterial Cellulose in Polymer Composites Nano ...

  18. High-Yield Hybrid Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hig gh-Yield Hy ybrid Cellulosic Ethanol Process Using High-Impact Feedstock WBS 5.5.11.1 ... Markets Poplar C2 Platform End Markets Ethanol Acetic Acid Ethylene Vinyl Acetate 2 ...

  19. Conversion of cellulosic materials to sugar

    DOE Patents [OSTI]

    Wilke, Charles R.; Mitra, Gautam

    1976-08-03

    A process for the production of sugar, mainly glucose, by the enzymatic degradation of cellulosic materials, particularly cellulosic wastes, which comprises hydrolyzing the cellulosic material in the presence of cellulase enzyme to produce a sugar solution and recovering from the hydrolysis products a major proportion of the cellulase enzyme used in the hydrolysis reaction for re-use. At least a portion of the required makeup cellulase enzyme is produced in a two-stage operation wherein, in the first stage, a portion of the output sugar solution is utilized to grow a cellulase-secreting microorganism, and, in the second stage, cellulase enzyme formation is induced in the microorganism-containing culture medium by the addition of an appropriate inducer, such as a cellulosic material. Cellulase enzyme is precipitated from the culture liquid by the addition of an organic solvent material, such as a low molecular weight alkyl ketone or alcohol, and the cellulase precipitate is then fed to the hydrolysis reaction.

  20. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  1. Patterned substrates and methods for nerve regeneration

    DOE Patents [OSTI]

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  2. Amorphous silicon solar cell allowing infrared transmission

    DOE Patents [OSTI]

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  3. Increasing FCC regenerator catalyst level

    SciTech Connect (OSTI)

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  4. Density driven structural transformations in amorphous semiconductor...

    Office of Scientific and Technical Information (OSTI)

    As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms. Authors: Tulk, Christopher A 1 ; dos Santos, Antonio M. 2 ; ...

  5. Preparation of amorphous sulfide sieves

    DOE Patents [OSTI]

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  6. Method And Apparatus For Regenerating Nox Adsorbers

    DOE Patents [OSTI]

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  7. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan

  8. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  9. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, Raoul B. (Haifa, IL)

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  10. Homogeneous fluorescence linewidths for amorphous hosts

    SciTech Connect (OSTI)

    Lyo, S.K.; Orbach, R.

    1980-11-01

    A contribution to the homogeneous linewidth of optical transitions in amorphous hosts is calculated. The microscopic process is diagonal in the phonon interaction with two level systems (TLS) common to amorphous materials, and diagonal in the coupling between TLS and the optical center. The model predicts an optical homogeneous linewidth proportional to the square of the temperature at low temperature.

  11. Imprinting bulk amorphous alloy at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  12. Compensated amorphous-silicon solar cell

    DOE Patents [OSTI]

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  13. Amorphous Solid without Low Energy Excitations

    SciTech Connect (OSTI)

    Liu, X.; White, B.E. Jr.; Pohl, R.O.; Iwanizcko, E.; Jones, K.M.; Mahan, A.H.; Nelson, B.N.; Crandall, R.S.; Veprek, S.

    1997-06-01

    We have measured the low temperature internal friction (Q{sup -1}) of amorphous silicon (a-Si) films. {ital e}-beam evaporation or {sup 28}Si{sup +} implantation leads to the temperature-independent Q{sup -1}{sub 0} plateau common to all amorphous solids. For hydrogenated amorphous silicon with 1 at. {percent} H produced by hot wire chemical vapor deposition, however, Q{sup -1}{sub 0} is over 200 times smaller than for {ital e}-beam {ital a}-Si. This is the first observation of an amorphous solid without any significant low energy excitations. It offers the opportunity to study amorphous solids containing controlled densities of tunneling defects, and thus to explore their nature. {copyright} {ital 1997} {ital The American Physical Society}

  14. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect (OSTI)

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  15. Solid-state diffusion in amorphous zirconolite

    SciTech Connect (OSTI)

    Yang, C.; Dove, M. T.; Trachenko, K.; Zarkadoula, E.; Todorov, I. T.; Geisler, T.; Brazhkin, V. V.

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  16. Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...

  17. Florida Project Produces Nation's First Cellulosic Ethanol at...

    Office of Environmental Management (EM)

    Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm ...

  18. Largest Cellulosic Ethanol Plant in the World Opened in October

    Broader source: Energy.gov [DOE]

    TheDuPont cellulosic ethanol facility openedin Nevada, Iowa, last month and isthe largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office...

  19. Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

  20. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation b13_graham_ensyn.pdf (1.44 MB) More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  1. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  2. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  3. Crystalline to amorphous transformation in silicon

    SciTech Connect (OSTI)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  4. Method of producing hydrogenated amorphous silicon film

    DOE Patents [OSTI]

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  5. Does the Cellulose-Binding Module Move on the Cellulose Surface?

    SciTech Connect (OSTI)

    Liu, Y. S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M. E.; Smith, S. J.; Ding, S. Y.

    2009-01-01

    Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 {micro}M to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.

  6. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  7. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Electrically-Assisted Diesel Particulate Filter Regeneration Durability of ...

  8. Electrically-Assisted Diesel Particulate Filter Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Electrically-Assisted Diesel Particulate Filter Regeneration Substrate Studies of an Electrically-Assisted Diesel Particulate Filter Biofuels Impact ...

  9. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    necessary to promote bone regeneration while substituting for, at least temporarily, the tissue by maintaining these loads in vivo. Porous metallic implants used for replacement...

  10. Method of forming an electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  11. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  12. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo

    2014-07-15

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  13. Method and apparatus for treating a cellulosic feedstock

    DOE Patents [OSTI]

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  14. NOx adsorber and method of regenerating same

    DOE Patents [OSTI]

    Endicott, Dennis L.; Verkiel, Maarten; Driscoll, James J.

    2007-01-30

    New technologies, such as NOx adsorber catalytic converters, are being used to meet increasingly stringent regulations on undesirable emissions, including NOx emissions. NOx adsorbers must be periodically regenerated, which requires an increased fuel consumption. The present disclosure includes a method of regenerating a NOx adsorber within a NOx adsorber catalytic converter. At least one sensor positioned downstream from the NOx adsorber senses, in the downstream exhaust, at least one of NOx, nitrous oxide and ammonia concentrations a plurality of times during a regeneration phase. The sensor is in communication with an electronic control module that includes a regeneration monitoring algorithm operable to end the regeneration phase when a time rate of change of the at least one of NOx, nitrous oxide and ammonia concentrations is after an expected plateau region begins.

  15. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  16. Measurement and Characterization of Lean NOx Adsorber Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Adsorber Regeneration and Desulfation and Controlling NOx from Multi-mode Measurement and Characterization of Lean NOx Adsorber Regeneration and Desulfation and ...

  17. Parametric Study of NOx Adsorber Regeneration in Transient Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge ...

  18. Syngas Generator Use for Retrofit DPF Active Regeneration on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generator Use for Retrofit DPF Active Regeneration on a Medium Duty Truck Syngas Generator Use for Retrofit DPF Active Regeneration on a Medium Duty Truck Syngas enables low ...

  19. Martinez Sulfuric Acid Regeneration Plt Biomass Facility | Open...

    Open Energy Info (EERE)

    Martinez Sulfuric Acid Regeneration Plt Biomass Facility Jump to: navigation, search Name Martinez Sulfuric Acid Regeneration Plt Biomass Facility Facility Martinez Sulfuric Acid...

  20. Effect of Alternative Fuels on Soot Properties and Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters Effect of Alternative Fuels on Soot Properties and Regeneration of Diesel Particulate Filters ...

  1. Engine Tests of an Active PM Filter Regeneration System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tests of an Active PM Filter Regeneration System Engine Tests of an Active PM Filter Regeneration System 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

  2. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    DOE Patents [OSTI]

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  3. Cellulosic Biomass Sugars to Advantaged Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 May, 2013 Technology Area Review: Biochemical Conversion Randy Cortright PhD Virent, Inc WBS: 2.3.1.8 Goal Statement Project Goal - Integrate Virent's BioForming® Process with NREL's biomass deconstruction technology to efficiently produce cost effective "drop-in" fuels from corn stover with particular focus in maximizing jet fuel yields.  Improve pretreatment strategies for deconstruction of cellulose and hemicellulose while significantly reducing or eliminating costly enzymes

  4. Regenerator for gas turbine engine

    DOE Patents [OSTI]

    Lewakowski, John J.

    1979-01-01

    A rotary disc-type counterflow regenerator for a gas turbine engine includes a disc-shaped ceramic core surrounded by a metal rim which carries a coaxial annular ring gear. Bonding of the metal rim to the ceramic core is accomplished by constructing the metal rim in three integral portions: a driving portion disposed adjacent the ceramic core which carries the ring gear, a bonding portion disposed further away from the ceramic core and which is bonded thereto by elastomeric pads, and a connecting portion connecting the bonding portion to the driving portion. The elastomeric pads are bonded to radially flexible mounts formed as part of the metal rim by circumferential slots in the transition portion and lateral slots extending from one end of the circumferential slots across the bonding portion of the rim.

  5. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  6. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  7. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  8. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Groundbreaking | Department of Energy Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement.

  9. Metallization of bacterial cellulose for electrical and electronic device manufacture

    SciTech Connect (OSTI)

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  10. Florida Project Produces Nation's First Cellulosic Ethanol at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial-Scale | Department of Energy Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio

  11. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Same - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing SummaryThis technology relates to cellulosic fiber composites using protein hydrolysates. DescriptionCellulosic fiber composites currently use petroleum-derived binders such as isocyanates and phenol formaldehyde.

  12. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Same - Energy Innovation Portal Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This technology relates to cellulosic fiber composites using protein hydrolysates. Cellulosic fiber composites currently use petroleum-derived binders such as isocyanates and phenol formaldehyde. This work fills a need for a new fiber-adhesive, resin binder system that reduces the

  13. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? aden_20090212.pdf (1.83 MB) More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  14. Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Cost-Effective Enzyme for Producing Biofuels from Cellulosic Biomass Inventors: Ming Woei Lau, Bruce Dale Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing SummaryProducing biofuels from cellulosic materials, such as corn stalks, wood chips, and other biomass, requires the use of enzymes to degrade the cellulosic biomass into its molecular components. The cost to produce these enzymes is high, a factor contributing to the

  15. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A.; Garforth, A.A.

    2011-06-15

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  16. Morphological changes in the cellulose and lignin components...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Name: Cellulose (Online); Journal Volume: 21; Journal Issue: 2; Journal ID: ISSN 1572-882X Publisher: Springer Research Org: Oak Ridge ...

  17. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  18. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected. To explain this finding,...

  19. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in...

  20. Advanced Biofuels from Cellulose via Genetic Engineering of Clostridiu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review Advanced Biofuels from Cellulose via Genetic Engineering of ... and can be upgraded to branched alkane biofuels for blending into existing fuel ...

  1. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol, June 2006 Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals

  2. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  3. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  4. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  5. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Celebrating Successes—The Foundation of an Advanced Bioindustry Cellulosic Technology Advances—Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  6. Cellulose Nanomaterials: The Sustainable Material of Choice for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory June 26, 2012 Cellulose Nanomaterials: The Sustainable Material of Choice for the 21 st Century Sustainable Nanomaterials Workshop * Wood: a Sustainable & Renewable ...

  7. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    SciTech Connect (OSTI)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  8. Largest Cellulosic Ethanol Plant in the World Opened in October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  9. Electrically heated particulate filter regeneration methods and...

    Office of Scientific and Technical Information (OSTI)

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle ... An engine control module controls operation of an engine of the hybrid vehicle based on ...

  10. An amorphous phase formation at palladium / silicon oxide (Pd...

    Office of Scientific and Technical Information (OSTI)

    An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ... Title: An amorphous phase formation at palladium silicon oxide (PdSiOsub x) interface ...

  11. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide,...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 Prev Next Title: Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2 O 7 ...

  12. Inverted amorphous silicon solar cell utilizing cermet layers

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  13. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Bioactive Glass Scaffolds for Bone Regeneration Print Wednesday, 28 September 2011 00:00 Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their

  14. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  15. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  16. Regeneration of Aluminum Hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regeneration of Aluminum Hydride Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Regeneration of Lithium Aluminum Hydride (919 KB) Technology Marketing Summary Alane is one of the most promising solutions to storing hydrogen for use in hydrogen fuel cells. This technology provides exceptional improvement in solving the difficult problem of economically preparing the material. Description Describes methods and materials required for the

  17. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_crane.pdf (64.03 KB) More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter

  18. Continuous microwave regeneration apparatus for absorption media

    DOE Patents [OSTI]

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  19. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins,more » and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.« less

  20. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  1. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  2. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, Auda K. (Albuquerque, NM)

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  3. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  4. Metal electrode for amorphous silicon solar cells

    DOE Patents [OSTI]

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  5. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-03-31

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  6. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-08-25

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  7. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect (OSTI)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  9. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  10. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  11. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  12. Production of ethanol from cellulose using Clostridum thermocellum

    SciTech Connect (OSTI)

    Zertuche, L.; Zall, R.R.

    1982-01-01

    Clostridium thermocellum was used to produce ethanol from cellulose in a continuous system. Batch fermentations were first performed to observe the effects of buffers and agitation on generation time and ethanol production. Continuous fermentations were carried out at 60/sup 0/C and pH 7 using pure cellulose as the limiting substrate. The maximum ethanol concentrations produced with 1.5 and 3% cellulose fermenting liquid were 0.3 and 0.9% respectively. The yield of ethanol was about 0.3 grams per gram of cellulose consumed. While the continuous fermentaion of cellulose with Clostridium thermocellum appears to be feasible, it may not be economically promising due to the slow growth of the organism.

  13. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOE Patents [OSTI]

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  14. Regeneration and Durability of Advanced Zinc Ferrite Sorbent for Hot Coal Gas Desulfurization

    SciTech Connect (OSTI)

    Shirai, H.; Kobayashi, M.; Nunokawa, M.; Noda, N.

    2002-09-19

    In this study, we investigate the regeneration characteristics, desulfurization performance after regeneration and the durability of zinc ferrite sorbent in the desulfurization/regeneration cycles.

  15. Reversibility and criticality in amorphous solids

    SciTech Connect (OSTI)

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaotic behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.

  16. Reversibility and criticality in amorphous solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regev, Ido; Weber, John; Reichhardt, Charles; Dahmen, Karin A.; Lookman, Turab

    2015-11-13

    The physical processes governing the onset of yield, where a material changes its shape permanently under external deformation, are not yet understood for amorphous solids that are intrinsically disordered. Here, using molecular dynamics simulations and mean-field theory, we show that at a critical strain amplitude the sizes of clusters of atoms undergoing cooperative rearrangements of displacements (avalanches) diverges. We compare this non-equilibrium critical behaviour to the prevailing concept of a ‘front depinning’ transition that has been used to describe steady-state avalanche behaviour in different materials. We explain why a depinning-like process can result in a transition from periodic to chaoticmore » behaviour and why chaotic motion is not possible in pinned systems. As a result, these findings suggest that, at least for highly jammed amorphous systems, the irreversibility transition may be a side effect of depinning that occurs in systems where the disorder is not quenched.« less

  17. Germanium detector passivated with hydrogenated amorphous germanium

    DOE Patents [OSTI]

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  18. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  19. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  20. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  1. Synthesis of new amorphous metallic spin glasses

    DOE Patents [OSTI]

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  2. Heat engine regenerators: Research status and needs

    SciTech Connect (OSTI)

    Hutchinson, R.A.

    1987-08-01

    The rapidly oscillating, variable density flows of regenerative heat engines provide a class of poorly understood unsteady flow and heat transfer problems. These problems are not currently amenable to direct experimental resolution. Experiences in engine development and test programs and efforts to develop analysis tools point to the regenerator as a key area of insufficient understanding. Focusing on flow and heat transfer in regenerators, this report discusses similarity parameters for the flows and reviews the experimental data currently available for Stirling analysis. Then a number of experimental results are presented from recent fundamental fluid mechanical and thermal investigations that shed additional light on the functioning of heat engine regenerators. Suggestions are made for approaches for further measurement and analysis efforts.

  3. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  4. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  5. Regeneration of sulfated metal oxides and carbonates

    DOE Patents [OSTI]

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  6. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  7. Largest Cellulosic Ethanol Plant in the World Opens October 30 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Largest Cellulosic Ethanol Plant in the World Opens October 30 Largest Cellulosic Ethanol Plant in the World Opens October 30 October 26, 2015 - 2:52pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic

  8. Advanced regenerator testing in the Raytheon dual-use cryocoolerr

    SciTech Connect (OSTI)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T. J.

    2014-01-29

    Significant progress has been made on the Raytheon low cost space cryocooler called the Dual-Use Cryocooler (DUC). Most notably, the DUC has been integrated and tested with an advanced regenerator. The advanced regenerator is a drop-in replacement for stainless steel screens and has shown significant thermodynamic performance improvements. This paper will compare the performance of two different regenerators and explain the benefits of the advanced regenerator.

  9. Development of an Active Regeneration Diesel Particulate Filter System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an Active Regeneration Diesel Particulate Filter System Development of an Active Regeneration Diesel Particulate Filter System 2004_deer_anderson.pdf (1.38 MB) More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles Donaldson Active Regeneration PM System A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration

  10. Method for modifying trigger level for adsorber regeneration

    DOE Patents [OSTI]

    Ruth, Michael J.; Cunningham, Michael J.

    2010-05-25

    A method for modifying a NO.sub.x adsorber regeneration triggering variable. Engine operating conditions are monitored until the regeneration triggering variable is met. The adsorber is regenerated and the adsorbtion efficiency of the adsorber is subsequently determined. The regeneration triggering variable is modified to correspond with the decline in adsorber efficiency. The adsorber efficiency may be determined using an empirically predetermined set of values or by using a pair of oxygen sensors to determine the oxygen response delay across the sensors.

  11. Method and apparatus for PM filter regeneration

    SciTech Connect (OSTI)

    Opris, Cornelius N.; Verkiel, Maarten

    2006-01-03

    A method and apparatus for initiating regeneration of a particulate matter (PM) filter in an exhaust system in an internal combustion engine. The method and apparatus includes determining a change in pressure of exhaust gases passing through the PM filter, and responsively varying an opening of an intake valve in fluid communication with a combustion chamber.

  12. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  13. Regeneration of zinc chloride hydrocracking catalyst

    DOE Patents [OSTI]

    Zielke, Clyde W.

    1979-01-01

    Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.

  14. NREL Industry Partners Move Cellulosic Ethanol Technology Forward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NREL) and DuPont will be put to use to develop and commercialize technology to produce cellulosic ethanol from non-food sources. DuPont and its partner Genencor, ...

  15. Cellulose nanocrystal-based composite electrolyte with superior...

    Office of Scientific and Technical Information (OSTI)

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind ...

  16. The Journey to Commercializing Cellulosic Biofuels in the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Journey to Commercializing Cellulosic Biofuels in the United States The Journey to Commercializing Cellulosic Biofuels in the United States October 17, 2014 - 1:28pm Addthis Secretary Moniz (center) tours the Abengoa Biorefinery in Hugoton, Kansas.| Photo Courtesy of Abengoa. Secretary Moniz (center) tours the Abengoa Biorefinery in Hugoton, Kansas.| Photo Courtesy of Abengoa. David Danielson Former Assistant Secretary for the Office of Energy Efficiency and

  17. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  18. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO b13_erickson_day2-apintro.pdf (2.18 MB) More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  19. Researchers examine behavior of amorphous materials under high strain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behavior of amorphous materials under high strain Researchers examine behavior of amorphous materials under high strain The findings offer a new way to monitor the onset of plastic deformation and mechanical properties of materials. February 10, 2016 Shown is simulation of a reversible avalanche in an amorphous solid under a periodic shear. Darker regions indicate where particles have been displaced more. The motion is exactly repeated during the next drive cycle. Above a critical strain, the

  20. Polyamorphous transition in amorphous fullerites C{sub 70}

    SciTech Connect (OSTI)

    Borisova, P. A.; Agafonov, S. S.; Glazkov, V. P.; D'yakonova, N. P.; Somenkov, V. A.

    2011-12-15

    Samples of amorphous fullerites C{sub 70} have been obtained by mechanical activation (grinding in a ball mill). The structure of the samples has been investigated by neutron and X-ray diffraction. The high-temperature (up to 1200 Degree-Sign C) annealing of amorphous fullerites revealed a polyamorphous transition from molecular to atomic glass, which is accompanied by the disappearance of fullerene halos at small scattering angles. Possible structural versions of the high-temperature amorphous phase are discussed.

  1. Sulfur-impurity Induced Amorphization of Nickel | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Sulfur-impurity Induced Amorphization of Nickel Authors: Yuan, Z., Chen, H.P, Wang, W., Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P. Recent experimental and theoretical studies have shown an essential role of sulfur segregation-induced amorphization of crystalline nickel leading to its embrittlement at a critical sulfur concentration of ∼14%, but the atomistic mechanism of the amorphization remains unexplained. Here, molecular dynamics simulations reveal that the

  2. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    SciTech Connect (OSTI)

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; Himmel, Michael E.; Tucker, Melvin; Makowski, Lee

    2015-02-28

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Lastly, these results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.

  3. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; Himmel, Michael E.; Tucker, Melvin; Makowski, Lee

    2015-02-28

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose atmore » two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Lastly, these results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.« less

  4. Order, disorder and mixing: The atomic structure of amorphous...

    Office of Scientific and Technical Information (OSTI)

    Order, disorder and mixing: The atomic structure of amorphous mixtures of titania and tantala Citation Details In-Document Search Title: Order, disorder and mixing: The atomic ...

  5. NMR Studies of Molecular Hydrogen in Hydrogenated Amorphous Silicon

    SciTech Connect (OSTI)

    Su, T.; Chen, S.; Taylor, P. C.; Crandall, R. S.; Mahan, A. H.

    2000-01-01

    Using NMR, the concentrations of molecular hydrogen have been measured directly in hydrogenated amorphous silicon made by the hot wire chemical vapor deposition (HWCVD) technique.

  6. Molecular Dynamics Simulations of Gas Selectivity in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids Previous Next List Shan Jiang, Kim E. Jelfs, Daniel Holden, Tom Hasell, Samantha Y. Chong, Maciej...

  7. The origins of growth stresses in amorphous semiconductor thin...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The origins of growth stresses in amorphous semiconductor thin films. Citation Details In-Document ... Publication Date: 2003-03-01 OSTI Identifier: 917484 Report ...

  8. Subtleties of capacitance transients in amorphous silicon

    SciTech Connect (OSTI)

    Crandall, R.S.; Lips, K.

    1996-12-31

    Using junction capacitance methods, the authors describe the effect of contacts on charge emission transients in n-type hydrogenated amorphous silicon. The results demonstrate some of the difficulties encountered in observing and interpreting anomalous temperature independent emission transients (slow relaxation). In this paper, the authors present additional data and reconcile the absence of anomalous emission transients in some cases with a discussion of the dynamics of depletion width filling. The authors show that the transient capacitance response of Schottky structure is not only related to the contact configuration but is connected to the rate of charge injection into the depletion region.

  9. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  10. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  11. Inhomogeneity of fluid flow in Stirling engine regenerators

    SciTech Connect (OSTI)

    Jones, J.D. )

    1989-10-01

    The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice

  12. The future of amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Crandall, R; Luft, W

    1995-06-01

    Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

  13. Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields

    SciTech Connect (OSTI)

    Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  14. Catalyst regeneration process including metal contaminants removal

    DOE Patents [OSTI]

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  15. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-10-13

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600[degrees]F to about 1400[degrees]F.

  16. EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in October | Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year.

  17. Method for improving the stability of amorphous silicon

    DOE Patents [OSTI]

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  18. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOE Patents [OSTI]

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  19. Amorphization and nanocrystallization of silcon under shock compression

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  20. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  1. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  2. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  3. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  4. Regeneration of aluminum hydride - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    268,288 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Regeneration of aluminum hydride United

  5. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Description Magnetic refrigeration is being investigated as an alternative to conventional gas compressor technology for cooling and heating because of its potential to save energy and reduce operating costs. The potential

  6. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryIowa State University and Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Magnetic refrigeration is

  7. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  8. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  9. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  10. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect (OSTI)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  11. Direct-patterned optical waveguides on amorphous silicon films

    DOE Patents [OSTI]

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  12. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  13. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect (OSTI)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  14. Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

    DOE Patents [OSTI]

    Siriwardane, Ranjani

    2010-08-03

    Regenerable hydrogen chloride removal sorbent and regenerable multi-functional hydrogen sulfide and hydrogen chloride removal sorbent for high temperature gas streams

  15. Direct Evidence of Phosphorus-Defect Complexes in n -Type Amorphous Silicon and Hydrogenated Amorphous Silicon

    SciTech Connect (OSTI)

    Petkov, M.P.; Weber, M.H.; Lynn, K.G.; Crandall, R.S.; Ghosh, V.J.

    1999-05-01

    We use positron annihilation spectroscopy (PAS) to identify the phosphorus-defect complex ({sup {asterisk}}D{sup {minus}}) in n -type hydrogenated amorphous Si (a -Si:H). The positrons are attracted and localized at the small open volume associated with the dangling bond defects. The radiation detected after annihilation gives a characteristic P signature, regarded as a {sup {asterisk}}D{sup {minus}} {open_quotes}fingerprint.{close_quotes} Additional evidence is obtained from a comparison to P-implanted amorphized Si, as well as from theoretical calculations. This work lays the foundation for PAS studies of impurity-defect related processes in a -Si:H. {copyright} {ital 1999} {ital The American Physical Society}

  16. Bulk amorphous steels based on Fe alloys

    DOE Patents [OSTI]

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  17. Polaron absorption in amorphous tungsten oxide films

    SciTech Connect (OSTI)

    Berggren, Lars; Azens, Andris; Niklasson, Gunnar A.

    2001-08-15

    Amorphous thin films of tungsten oxide were deposited by sputtering onto glass substrates covered by conductive indium--tin oxide. The density and stoichiometry were determined by Rutherford backscattering spectrometry. Lithium ions were intercalated electrochemically into the films. The optical reflectance and transmittance were measured in the wavelength range from 0.3 to 2.5 {mu}m, at a number of intercalation levels. The polaron absorption peak becomes more symmetric and shifts to higher energies until an intercalation level of 0.25 to 0.3 Li{sup +}/W, where a saturation occurs. The shape of the polaron peak is in very good agreement with the theory of Bryksin [Fiz. Tverd. Tela 24, 1110 (1982)]. Within this model, the shift of the absorption peak is interpreted as an increase in the Fermi level of the material as more Li ions are inserted. {copyright} 2001 American Institute of Physics.

  18. Amorphous silicon materials and solar cells

    SciTech Connect (OSTI)

    Stafford, B.L. )

    1991-01-01

    An International Meeting on Stability of Amorphous Silicon Materials and Solar Cells was held in Denver, CO on February 20--22, 1991. The main objectives of the meeting were to bring to light-and stimulate discussion on-recent advances in (1) understanding the underlying mechanisms of light-induced instability and (2) engineering approaches to stable solar cells. Several of the experimental and theoretical papers presented here, particularly those regarding low-hydrogen-content materials, give cause for optimism that the performance may finally be yielding to worldwide concerted efforts to understand and mitigate it. The four main topics discussed are modeling metastability, experimental data and model verification, materials studies, and solar cell studies.

  19. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect (OSTI)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  20. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  1. DuPont's Journey to Build a Global Cellulosic BioFuel Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise DuPont's Journey to Build a Global Cellulosic BioFuel Business Enterprise Plenary I: Progress in Advanced ...

  2. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  3. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  4. Metal sulfide initiators for metal oxide sorbent regeneration

    DOE Patents [OSTI]

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  5. Parametric Study of NOx Adsorber Regeneration in Transient Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Parametric Study of NOx Adsorber Regeneration in Transient Cycles Parametric Study of NOx Adsorber Regeneration in Transient Cycles 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002_deer_west.pdf (1.07 MB) More Documents & Publications Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels Measurement and Characterization of NOx Adsorber Regeneration and Desulfation Measurement

  6. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time and Fuel Consumption | Department of Energy Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps deer09_nixdorf.pdf (75.42 KB) More Documents & Publications Pleated Ceramic Fiber

  7. Engineered microbes and methods for microbial oil overproduction from cellulosic materials

    SciTech Connect (OSTI)

    Stephanopoulos, Gregory; Tai, Mitchell

    2015-08-04

    The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose.

  8. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  9. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  10. Department of Energy Delivers on R&D Targets around Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    Scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum.

  11. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    DOE Patents [OSTI]

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  12. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  13. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  14. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  15. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  16. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  17. RYPOS - An Actively Regenerated DPF that Demonstrates Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RYPOS - An Actively Regenerated DPF that Demonstrates Significant NO2 Reduction Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  18. Development of a Non Air-assisted Thermal Regenerator

    Broader source: Energy.gov [DOE]

    A thermal regenerator can be used in vehicles without high-pressure air and results in low hydrocarbon emissions, good ignitability, and nozzle durability

  19. Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Trap Regeneration Selectivity Towards N2O -- Similarities and Differences Between ... More Documents & Publications Spatiotemporal Distribution of NOx Storage: a Factor ...

  20. Guangdong ZhongKe Tianyuan Regeneration Engineering Co Ltd ZKTY...

    Open Energy Info (EERE)

    equipment in China to assist firms with the production of ethanol, edible alcohol and acetic acid. References: Guangdong ZhongKe Tianyuan Regeneration Engineering Co. Ltd...

  1. Donaldson Active Regeneration PM System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donaldson Active Regeneration PM System 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005deeranderson.pdf More Documents & ...

  2. regenerable-sorbent-tda | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture Project No.: DE-FE0000469 TDA Research (TDA) is testing and validating the technical and economic potential of a regenerable physical sorbent for pre-combustion CO2 capture. TDA has developed a novel, low-cost regenerable sorbent to remove CO2 and has demonstrated its long-term stability through several thousand adsorption-desorption cycles. This new regenerable sorbent method for pre-combustion CO2 capture will remove

  3. Continuous cryopump with a device for regenerating the cryosurface

    DOE Patents [OSTI]

    Foster, C.A.

    1988-02-16

    A high throughput continuous cryopump is provided. The cryopump incorporates an improved method for regenerating the cryopumping surface while the pump is in continuous operation. The regeneration of the cryopumping surface does not thermally cycle the pump, and to this end a small chamber connected to a secondary pumping source serves to contain and exhaust frost removed from the cryopumping surface during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated. 8 figs.

  4. Cooling of stripped catalyst prior to regeneration in cracking...

    Office of Scientific and Technical Information (OSTI)

    stripped catalyst, prior to passing it into the regenerator vessel; wherein the cooling step comprises passing the stripped catalyst stream to a heat-exchanger located outside the ...

  5. A Revealing Look Inside Passive and Active DPF Regeneration:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Ash Formation and Transport A Revealing Look Inside Passive and Active DPF Regeneration: In-Situ Optical Analysis of Ash Formation and Transport Presents results from ...

  6. Continuous cryopump with a device for regenerating the cryosurface

    DOE Patents [OSTI]

    Foster, Christopher A. (Rte. 5, Box 101-B, Clinton, TN 37716)

    1988-01-01

    A high throughput continuous cryopump is provided. The cryopump (10) incorporates an improved method for regenerating the cryopumping surface (22) while the pump is in continuous operation. The regeneration of the cryopumping surface (22) does not thermally cycle the pump, and to this end a small chamber (91) connected to a secondary pumping source (60) serves to contain and exhaust frost removed from the cryopumping surface (22) during such regeneration. The frost is exhausted at a rate substantially independent of the speed of the cryopump which enhances the capability of the pump to achieve a high compression ratio and allow the pump to operate continuously while the cryopumping surface is being regenerated.

  7. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

  8. Dual stage active magnetic regenerator and method

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Gschneidner, Jr., Karl A.

    1999-03-30

    A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl.sub.2 or (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen.

  9. Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?

    SciTech Connect (OSTI)

    Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

    2009-01-01

    It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

  10. Acid softening and hydrolysis of cellulose. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report describes the experimental and analytic work to develop a process to reduce the cost of producing ethanol from cellulose. Ethanol is a renewable liquid fuel with applications in transportation, including oxygenation of fuel to reduce carbon monoxide emissions. If produced from cellulose contained in New York State's abundant low-grade wood resources or waste paper, significant quantities of petroleum could be displaced while creating new economic opportunity. The focus of the project was evaluating acid softening and hydrolysis technology to make cellulose responsive to conversion to fermentable sugar, from which production of ethanol would then be conventional and economical. The procedure is competitive with other cellulose-to-ethanol approaches such as enzyme hydrolysis; however, overall economic feasibility is problematic. To produce ethanol at $1.00 per gallon, a cost that would be competitive with producing ethanol from corn, and at the same time earn a 15 percent return for the owners of the plant, one of the major coproducts, lignin, would have to sell for $0.21 to $0.24 per pound. Identification of a suitable lignin market, a rise in petroleum prices, or restricting fossil-based carbon dioxide emissions will affect the economic feasibility of this particular type of lignin.

  11. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOE Patents [OSTI]

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  12. Simulating the amorphization of [alpha]-quartz under pressure

    SciTech Connect (OSTI)

    Binggeli, N. , PHB-Ecublens, 1015 Lausanne ); Chelikowsky, J.R. ); Wentzcovitch, R.M. )

    1994-04-01

    Extensive molecular-dynamics simulations have been performed within a classical force-field model for the pressure-induced amorphization of quartz. In agreement with earlier molecular-dynamics studies, we find that a phase transition occurs within the experimental pressure range of the amorphization transformation. However, at variance with previous interpretations, we find that the resulting phase is not amorphous. The correlation functions of the equilibrated structure can be shown to be consistent with those of a crystalline phase. Two transformations to ordered structures occur sequentially during the simulations. The first transformation is likely to be related to the recently discovered transition of quartz to an intermediate crystalline phase before its amorphization. The second transformation, instead, yields a compact octahedrally coordinated Si sublattice. The latter structure may be an artifact of the classical force field.

  13. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  14. Nuclear reactor cooling system decontamination reagent regeneration

    DOE Patents [OSTI]

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  15. Fiber optic-based regenerable biosensor

    DOE Patents [OSTI]

    Sepaniak, Michael J.; Vo-Dinh, Tuan

    1993-01-01

    A fiber optic-based regenerable biosensor. The biosensor is particularly suitable for use in microscale work in situ. In one embodiment, the biosensor comprises a reaction chamber disposed adjacent the distal end of a waveguide and adapted to receive therein a quantity of a sample containing an analyte. Leading into the chamber is a plurality of capillary conduits suitable for introducing into the chamber antibodies or other reagents suitable for selective interaction with a predetermined analyte. Following such interaction, the contents of the chamber may be subjected to an incident energy signal for developing fluorescence within the chamber that is detectable via the optical fiber and which is representative of the presence, i.e. concentration, of the selected analyte. Regeneration of the biosensor is accomplished by replacement of the reagents and/or the analyte, or a combination of these, at least in part via one or more of the capillary conduits. The capillary conduits extend from their respective terminal ends that are in fluid communication with the chamber, away from the chamber to respective location(s) remote from the chamber thereby permitting in situ location of the chamber and remote manipulation and/or analysis of the activity with the chamber.

  16. Active magnetic regenerator method and apparatus

    DOE Patents [OSTI]

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  17. Tensile properties of amorphous diamond films

    SciTech Connect (OSTI)

    Lavan, D.A.; Hohlfelder, R.J.; Sullivan, J.P.; Friedmann, T.A.; Mitchell, M.A.; Ashby, C.I.

    1999-12-02

    The strength and modulus of amorphous diamond, a new material for surface micromachined MEMS and sensors, was tested in uniaxial tension by pulling laterally with a flat tipped diamond in a nanoindenter. Several sample designs were attempted. Of those, only the single layer specimen with a 1 by 2 {micro}m gage cross section and a fixed end rigidly attached to the substrate was successful. Tensile load was calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. Displacement was corrected for machine compliance using the differential stiffness method. Post-mortem examination of the samples was performed to document the failure mode. The load-displacement data from those samples that failed in the gage section was converted to stress-strain curves using carefully measured gage cross section dimensions. Mean fracture strength was found to be 8.5 {+-} 1.4 GPa and the modulus was 831 {+-} 94 GPa. Tensile results are compared to hardness and modulus measurements made using a nanoindenter.

  18. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect (OSTI)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  19. Disordered amorphous calcium carbonate from direct precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  20. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOE Patents [OSTI]

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  1. Thermal decomposition of silane to form hydrogenated amorphous Si film

    DOE Patents [OSTI]

    Strongin, Myron; Ghosh, Arup K.; Wiesmann, Harold J.; Rock, Edward B.; Lutz, III, Harry A.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silano (SiH.sub.4) or other gases comprising H and Si, at elevated temperatures of about 1700.degree.-2300.degree. C., and preferably in a vacuum of about 10.sup.-8 to 10.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseous mixture onto a substrate outside said source of thermal decomposition to form hydrogenated amorphous silicon.

  2. Thermal decomposition of silane to form hydrogenated amorphous Si

    DOE Patents [OSTI]

    Strongin, M.; Ghosh, A.K.; Wiesmann, H.J.; Rock, E.B.; Lutz, H.A. III

    Hydrogenated amorphous silicon is produced by thermally decomposing silane (SiH/sub 4/) or other gases comprising H and Si, at elevated temperatures of about 1700 to 2300/sup 0/C, in a vacuum of about 10/sup -8/ to 10/sup -4/ torr. A gaseous mixture is formed of atomic hydrogen and atomic silicon. The gaseous mixture is deposited onto a substrate to form hydrogenated amorphous silicon.

  3. Embrittlement of Metal by Solute Segregation-Induced Amorphization |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Embrittlement of Metal by Solute Segregation-Induced Amorphization Authors: Chen, H-P., Kalia, R.K., Kaxiras, E., Lu, G., Nakano, A., Nomura, K-I., van Duin, A.C.T., Vashishta, P., Yuan, Z. Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and

  4. Apparatus and methods for regeneration of precipitating solvent

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  5. Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models

    SciTech Connect (OSTI)

    Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

    2012-01-01

    Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

  6. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  7. Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems 2003 DEER ...

  8. Process for the regeneration of metallic catalysts

    DOE Patents [OSTI]

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  9. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  10. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  11. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect (OSTI)

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  12. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  13. Study of polyelectrolyte complexes of chitosan and sulfoethyl cellulose

    SciTech Connect (OSTI)

    Baklagina, Yu. G. Kononova, S. V.; Petrova, V. A.; Kruchinina, E. V.; Nud'ga, L. A.; Romanov, D. P.; Klechkovskaya, V. V.; Orekhov, A. S.; Bogomazov, A. V.; Arkhipov, S. N.

    2013-03-15

    The complexing of polycation chitosan and polyanion sulphoethyl cellulose during the formation of polyelectrolyte simplex membranes using the layer-by-layer deposition of a solution of one polyion on a gel-like film of another one has been studied. The structural characteristics of the multilayer composites and their components have been analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray microanalysis. A technique is proposed for studying the structure of surface layers of thin polymer films (15-20 {mu}m) using a portable DIFREI-401 diffractometer. It is shown that the sequence of layer deposition during the formation of membrane films does not affect their structural characteristics. The interaction between positively charged chitosan groups (-NH{sub 3}{sup +}) and negatively charged sulfoethyl cellulose groups (-SO{sub 3}{sup -}) during the growth of polyelectrolyte complexes results in a packing of chitosan chains in the multilayer film.

  14. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect (OSTI)

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  15. Regeneration of anion exchange resins by catalyzed electrochemical reduction

    DOE Patents [OSTI]

    Gu, Baohua; Brown, Gilbert M.

    2002-01-01

    Anion exchange resins sorbed with perchlorate may be regenerated by a combination of chemical reduction of perchlorate to chloride using a reducing agent and an electrochemical reduction of the oxidized reducing agent. Transitional metals including Ti, Re, and V are preferred chemical reagents for the reduction of perchlorate to chloride. Complexing agents such as oxalate are used to prevent the precipitation of the oxidized Ti(IV) species, and ethyl alcohol may be added to accelerate the reduction kinetics of perchlorate. The regeneration may be performed by continuously recycling the regenerating solution through the resin bed and an electrochemical cell so that the secondary waste generation is minimized.

  16. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T.; Steinberg, Meyer

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  17. Approaches for regeneration of amine-carboxylic acid extracts

    SciTech Connect (OSTI)

    Dai, Y.; King, C.J.

    1995-07-01

    Extraction processes based on reversible chemical complexation can be useful for separation of polar organics from dilute solution. Tertiary amines are effective extractants for the recovery of carboxylic acids from aqueous solution. The regeneration of aminecarboxylic acid extracts is an important step which strongly influences the economic viability of the separation process. Several regeneration methods are critically reviewed, and the factors that affect swing regeneration processes, including temperature-swing, diluent composition-swing and pH-swing with a volatile base are discussed. Interest in this area comes from interest in treatment of waste streams, particularly in petrochemical and fermentation manufacture.

  18. Modeling the Regeneration Chemistry of Lean NOx Traps | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Regeneration Chemistry of Lean NOx Traps Modeling the Regeneration Chemistry of Lean NOx Traps Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_larson.pdf (637.26 KB) More Documents & Publications Kinetic and Performance Studies of the Regeneration Phase of Model Pt/Rh/Ba NOx Traps for Design and Optimization Production, Storage, and FC Analysis

  19. NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels Collaboration to focus on next-generation production technologies for renewable fuels October 4, 2006 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), headquartered in Golden, Colo., today announced a strategic research alliance to advance the development of renewable transportation fuels. Chevron Technology Ventures LLC (CTV), a

  20. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    SciTech Connect (OSTI)

    Peck, H.D. Jr.; Ljungdahl, L.G.; Mortenson, L.E.; Wiegel, J.K.W.

    1994-11-01

    This project studies the biochemistry and physiology of four major groups (primary, secondary, ancillary and methane bacteria) of anaerobic bacteria, that are involved in the conversion of cellulose to methane or chemical feedstocks. The primary bacterium, Clostridium thermocellum, has a cellulolytic enzyme system capable of hydrolyzing crystalline cellulose and consists of polypeptide complexes attached to the substrate cellulose with the aid of a low molecular yellow affinity substance (YAS) produced by the bacterium in the presence of cellulose. Properties of the complexes and YAS are studied. Aspects of metabolism are being studied which appear to be relevant for the interactions on consortia and their bioenergetics, particularly related to hydrogen, formate, CO, and CO{sub 2}. The roles of metals in the activation of H{sub 2} are being investigated, and genes for the hydrogenases cloned and sequenced to established structural relationships among the hydrogenases. The goals are to understand the roles and regulation of hydrogenases in interspecies H{sub 2} transfer, H{sub 2} cycling and the generation of a proton gradient. The structures of the metal clusters and their role in the metabolism of formate will be investigated with the goal of understanding the function of formate in the total synthesis of acetate from CO{sub 2} and its role in the bioenergetics of these microorganisms. Additionally, the enzyme studies will be performed using thermophiles and also the isolation of some new pertinent species. The project will also include research on the mechanism of extreme thermophily (growth over 70{degrees}) in bacteria that grow over a temperature span of 40{degrees}C or more. These bacteria exhibit a biphasic growth response to temperature and preliminary evidence suggests that the phenomenon is due to the expression of a new set of enzymes. These initial observations will be extended employing techniques of molecular biology.

  1. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  2. Development of effective modified cellulase for cellulose hydrolysis process

    SciTech Connect (OSTI)

    Park, J.W.; Kajiuchi, Toshio . Dept. of Chemical Engineering)

    1995-02-20

    Cellulase was modified with amphilic copolymers made of [alpha]-allyl-[omega]-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture.

  3. Lasing modes in polycrystalline and amorphous photonic structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng Fatt; Rooks, Michael J.; Solomon, Glenn S.; Cao Hui

    2011-09-15

    We systematically studied the lasing characteristics in photonic polycrystalline and amorphous structures. 2D arrays of air holes were fabricated in a GaAs membrane. InAs quantum dots embedded in the membrane provide gain for lasing under optical pumping. The lasing modes are spatially localized, and blue shift as the structural order becomes short ranged. Our three-dimensional numerical simulations reveal that the out-of-plane leakage of the lasing mode dominates over the in-plane leakage. The lasing modes in a photonic polycrystalline move away from the center frequency of the photonic band gap to reduce the out-of-plane leakage. In a photonic amorphous structure, the short-range order improves optical confinement and enhances the quality factor of resonances. Understanding the behavior of photonic polycrystalline laser and amorphous laser opens the possibility of controlling lasing characteristic by varying the degree of structural order.

  4. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect (OSTI)

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  5. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation

    SciTech Connect (OSTI)

    Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H.

    1996-08-01

    A recent molecular dynamics simulation method for growth of fully dense nanocrystalline materials crystallized from melt was used with the Stillinger-Weber three-body potential to synthesize nanocrystalline Si with a grain size up to 75{Angstrom}. Structures of the highly constrained grain boundaries (GBs), triple lines, and point grain junctions were found to be highly disordered and similar to the structure of amorphous Si. These and earlier results for fcc metals suggest that a nanocrystalline microstructure may be viewed as a two-phase system, namely an ordered crystalline phase in the grain interiors connected by an amorphous, intergranular, glue-like phase. Analysis of the structures of bicrystalline GBs in the same materials reveals the presence of an amorphous intergranular equilibrium phase only in the high-energy but not the low-energy GBs, suggesting that only high-energy boundaries are present in nanocrystalline microstructures.

  6. Optimization of Regenerators for AMRR Systems

    SciTech Connect (OSTI)

    Nellis, Gregory; Klein, Sanford; Brey, William; Moine, Alexandra; Nielson, Kaspar

    2015-06-18

    Active Magnetic Regenerative Refrigeration (AMRR) systems have no direct global warming potential or ozone depletion potential and hold the potential for providing refrigeration with efficiencies that are equal to or greater than the vapor compression systems used today. The work carried out in this project has developed and improved modeling tools that can be used to optimize and evaluate the magnetocaloric materials and geometric structure of the regenerator beds required for AMRR Systems. There has been an explosion in the development of magnetocaloric materials for AMRR systems over the past few decades. The most attractive materials, based on the magnitude of the measured magnetocaloric effect, tend to also have large amounts of hysteresis. This project has provided for the first time a thermodynamically consistent method for evaluating these hysteretic materials in the context of an AMRR cycle. An additional, practical challenge that has been identified for AMRR systems is related to the participation of the regenerator wall in the cyclic process. The impact of housing heat capacity on both passive and active regenerative systems has been studied and clarified within this project. This report is divided into two parts corresponding to these two efforts. Part 1 describes the work related to modeling magnetic hysteresis while Part 2 discusses the modeling of the heat capacity of the housing. A key outcome of this project is the development of a publically available modeling tool that allows researchers to identify a truly optimal magnetocaloric refrigerant. Typically, the refrigeration potential of a magnetocaloric material is judged entirely based on the magnitude of the magnetocaloric effect and other properties of the material that are deemed unimportant. This project has shown that a material with a large magnetocaloric effect (as evidenced, for example, by a large adiabatic temperature change) may not be optimal when it is accompanied by a large hysteresis

  7. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys

  8. Development of an Active Regeneration Diesel Particulate Filter...

    Broader source: Energy.gov (indexed) [DOE]

    A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles Donaldson Active Regeneration PM System A New CFD Model for understanding and Managing Diesel Particulate Filter ...

  9. Kinetic and Performance Studies of the Regeneration Phase of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase of Model PtRhBa NOx Traps for Design and Optimization Kinetic and Performance Studies of the Regeneration Phase of Model PtRhBa NOx Traps for Design and ...

  10. Spinal Injury: Regeneration, Recovery, and a Possible New Approach

    ScienceCinema (OSTI)

    Cohen, Avis [University of Maryland, College Park, Maryland, United States

    2010-01-08

    Spinal injury is most frequent in young healthy men, desperate to walk. Most treatments have focused on regeneration of the injured axons, but no one has as yet achieved success with this approach. However, in the lamprey, a primitive fish with a spinal cord having all the critical features of the human spinal cored, spinal injury is followed by complete regeneration of injured axons. Additionally, the animal recovers the ability to swim, and in many, the swimming is normal. Unfortunately, in most others, it is highly abnormal. This talk will review evidence from the abnormal regeneration, why it bespeaks difficulties heretofore not considered, and suggest an alternate approach for the near future. In so doing, the speaker will introduce the normal function of the spinal cord, what happens in normal and abnormal regeneration, and the new techniques that employ methods from neuromorphic engineering, a synthesis of neuroscience and engineering to engineer smart devices.

  11. Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization...

    Office of Scientific and Technical Information (OSTI)

    in a Fixed-Bed Reactor Citation Details In-Document Search Title: Durable Zinc Oxide-Based Regenerable Sorbents for Desulfurization of Syngas in a Fixed-Bed Reactor You are ...

  12. Containerless synthesis of amorphous and nanophase organic materials

    DOE Patents [OSTI]

    Benmore, Chris J.; Weber, Johann R.

    2016-05-03

    The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.

  13. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  14. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  15. At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum Magazine | NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive In NREL's new Energy Systems Integration Facility, the Insight Collaboration Laboratory shows a 3D model of cellulose microfibrils. Photo by Dennis Schroeder, NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive DOE challenge met-research advances cut costs to produce fuel from non-food plant sources. Imagine a near perfect transportation fuel-it's clean, domestic, abundant, and

  16. RYPOS - An Actively Regenerated DPF that Demonstrates Significant NO2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction | Department of Energy - An Actively Regenerated DPF that Demonstrates Significant NO2 Reduction RYPOS - An Actively Regenerated DPF that Demonstrates Significant NO2 Reduction Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_depetrillo.pdf (362.64 KB) More Documents &

  17. Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-09_parks.pdf (507.29 KB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean

  18. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration Phenomena In Heavy Duty Applications 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_west.pdf (197.06 KB) More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project

  19. Measurement and Characterization of NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy Characterization of NOx Adsorber Regeneration and Desulfation Measurement and Characterization of NOx Adsorber Regeneration and Desulfation 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_huff.pdf (894.29 KB) More Documents & Publications Exploring Advanced Combustion Regimes for Efficiency and Emissions Combining Low-Temperature Combustion with Lean-NOx Trap Yields Progress Toward Targets of Efficient NOx Control for Diesels

  20. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOE Patents [OSTI]

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  1. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOE Patents [OSTI]

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  2. Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbents - Energy Innovation Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Regenerable Sorbent Technique for Capturing CO2 Using Immobilized Amine Sorbents The BIAS (Basic Immobilized Amine Sorbent) Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary This technology allows for optimal CO2 removal capacity for a given absorption and regeneration reactor

  3. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  4. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOE Patents [OSTI]

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  5. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    SciTech Connect (OSTI)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  6. Regenerator optimization for Stirling cycle refrigeration

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1993-08-01

    A cryogenic regenerator for a Stirling cycle is designed using a fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. For the optimum channel flow nonturbulent design, the maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity criterion of sound speed times loss fraction. This velocity with a given frequency leads to a Stirling cycle dead volume ratio and consequently a channel of specified length and width. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. It is found that stainless steel or plastics are adequate for 30 to 300 K, but that lower temperature stages 4 to 30 K require either a special lead alloy of moderate conductivity or a segmented anisotropic construction of alternate highly conducting lead layers and alternate insulating glass or epoxy fiber glass spacers. An overall efficiency of {congruent} 50% of Carnot is predicted at a frequency of 30 Hz and a pressure of one atmosphere.

  7. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect (OSTI)

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  8. Department of Energy Delivers on R&D Targets around Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Facility, where scientists led pilot-scale projects for two cellulosic ... Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). ...

  9. High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review High-Yield Hybrid Cellulosic Ethanol Process Using High- Impact Feedstock ... & Operations: ZeaChem Inc., Pacific Ethanol Management Services Timeline Barriers ...

  10. Saccharification of wheat-straw cellulose by enzymatic hydrolysis following fermentative and chemical pretreatment

    SciTech Connect (OSTI)

    Detroy, R.W.; Lindenfelser, L.A.; St. Julian, G. Jr.; Orton, W.L.

    1980-01-01

    In our investigations, wheat straw fermentations were conducted using the edible, white-rot fungus commonly known as the oyster mushroom, Pleurotus ostreatus (Jacq. ex Fr.) Kummer, as fermentation organism. Fermented substrates were evaluated for degree of lignin and cellulose degradation and saccharification. In addition, since our primary objective in the P. ostreatus fermentation was to increase the amount of availabile cellulose in straw for further fermentation, cellulose hydrolysis rates were determined. Cellulose conversion to fermentable sugar was also determined on chemically modified straws by subjecting them to enzymatic hydrolysis. Progress and extent of delignification was follwed also by scanning electron microscopy (SEM), and structural changes were determined in treated-straw substrates.

  11. WPN 97-6: Approval of Wet-Spray Cellulose Insulation as an Allowable Weatherization Material

    Broader source: Energy.gov [DOE]

    To provide states with information about the approved use of wet-spray cellulose for use in the low-income Weatherization Assistance Program.

  12. Project Summary of the NREL Amorphous Silicon Team

    SciTech Connect (OSTI)

    Nelson, B. P.; Branz, H. M.; Crandall, R. S.; Iwaniczko, E.; Mahan, A. H.; Stradins, P.; Wang, Q.; Xu, Y.

    2003-05-01

    The Amorphous Silicon Team at NREL has improved the properties of many materials, increased solar cell device performance, and improved the fundamental understanding of thin-film silicon based materials and devices since the last NCPV Program Review Meeting. In this paper we present a summary of the work of the team since that last meeting.

  13. Density driven structural transformations in amorphous semiconductor clathrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tulk, Christopher A; dos Santos, Antonio M.; Neuefeind, Joerg C; Molaison, Jamie J; Sales, Brian C; Honkimaeki, Veijo

    2015-01-01

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with themore » consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.« less

  14. Method of depositing wide bandgap amorphous semiconductor materials

    DOE Patents [OSTI]

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  15. Density driven structural transformations in amorphous semiconductor clathrates

    SciTech Connect (OSTI)

    Tulk, Christopher A; dos Santos, Antonio M.; Neuefeind, Joerg C; Molaison, Jamie J; Sales, Brian C; Honkimaeki, Veijo

    2015-01-01

    The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection of the mechanisms associated with pressure induced amorphization in these systems, as well as the structure of the recovered phase. It is observed that, between 14.7 and 35 GPa the second peak in the structure factor function gradually disappears. Analysis of the radial distribution function extracted from those data indicate that this feature is associated with gradual cage collapse and breakdown of the tetrahedral structure with the consequent systematic lengthening of the nearest-neighbor framework bonds. This suggests an overall local coordination change to an even higher density amorphous form. Upon recovery from high pressure, the sample remains amorphous, and while there is some indication of the guest-host cage reforming, it doesn't seem that the tetrahedral coordination is recovered. As such, the compresion-decompression process in this systems gives rise to three distict amorphous forms.

  16. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    SciTech Connect (OSTI)

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.

  17. Regenerator optimization for Stirling cycle refrigeration II

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1994-07-01

    A cryogenic regenerator for a Stirling cycle is discussed using fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. We argue that the optimum design corresponds to uniform channel flow with minimum turbulence where the gas velocity and channel width are optimized as a function of gas temperature. The maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity equal to sound speed times loss fraction, 1/{sigma}. This velocity and an axial thermal conductivity in the gas leads to a minimum channel width and characteristic length, L=T(dz/dT). A particular scaling of width, W{sup 2} = W{sub o}{sup 2}T{sup 1/2}, and length, L = L{sub o} T{sup {minus}1/2} leads to a design where longitudinal conduction decreases as T{sup 3/2} and the remaining two losses, transverse conduction and friction are equal and constant. The loss fraction, 1/{sigma}, must be made quite small, {approximately}(1/60) in order that the cumulative losses for a large temperature ratio like 300K to 4K, be small enough, like 20% to 40%. This is because half the entropy generated as a loss must be transported first to the cold end before returning to the hot end before being rejected. The dead volume ratio then determines the minimum frequency and with it and the pressure the necessary wall properties. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. This generation of entropy in the walls is derived in terms of the wall heat capacity and thermal conductivity.

  18. Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

  19. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ida; Evans, Barbara R.; Foston, Marcus B.; Ragauskas, Arthur J.

    2015-05-08

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  1. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOE Patents [OSTI]

    Cascao-Pereira, Luis G.; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D.

    2012-08-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  2. Compositions and methods comprising cellulase variants with reduced affinity to non-cellulosic materials

    DOE Patents [OSTI]

    Cascao-Pereira, Luis G; Kaper, Thijs; Kelemen, Bradley R; Liu, Amy D

    2015-04-07

    The present disclosure relates to cellulase variants. In particular the present disclosure relates to cellulase variants having reduced binding to non-cellulosic materials. Also described are nucleic acids encoding the cellulase, compositions comprising said cellulase, methods of identifying cellulose variants and methods of using the compositions.

  3. Silicon cantilever functionalization for cellulose-specific chemical force imaging of switchgrass

    SciTech Connect (OSTI)

    Lee, Ida; Evans, Barbara R; Foston, Marcus B; Ragauskas, Arthur J

    2015-01-01

    A method for direct functionalization of silicon and silicon nitride cantilevers with bifunctional silanes was tested with model surfaces to determine adhesive forces for different hydrogen-bonding chemistries. Application for biomass surface characterization was tested by mapping switchgrass and isolated switchgrass cellulose in topographic and force-volume mode using a cellulose-specific cantilever.

  4. Kits and methods of detection using cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect (OSTI)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  6. Two-stage regeneration of zinc ferrite desulfurization sorbent

    SciTech Connect (OSTI)

    Jha, M.C.; Berggren, M.H.

    1988-06-28

    The Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE) is interested in the potential of using a two-step process for regenerating the zinc ferrite desulfurization sorbent. In the first regeneration step, a gas mixture consisting of 12 percent SO{sub 2}, 2 percent O{sub 2}, and 86 percent N{sub 2} is used to convert zinc and iron sulfides to their sulfate forms using a sorbent bed inlet temperature of about 850{degrees}F (454{degrees}C). For the second step, the temperature is raised to about 1400{degrees}F (760{degrees}C), and the sulfates are decomposed to oxides with the concurrent release of sulfur dioxide. The same gas composition used for first step is also used for the second step. The proposed technique would require no steam and also has the advantage of producing a regeneration gas rich in sulfur dioxide. In a commercial operation, recirculating regeneration gas would be supplemented with air as required to supply the necessary oxygen. A bleed stream from regeneration (concentrated SO{sub 2} gas in nitrogen) would constitute feed to sulfur recovery.

  7. Regeneration technology helps reduce catalyst costs and waste disposal

    SciTech Connect (OSTI)

    Neuman, D.J.; Roller, W.

    1997-05-01

    Worldwide hydroprocessing capacity and hydroprocessing catalyst usage has been increasing dramatically. Two major factors contributing to the increase are sulfur restrictions in gasoline, diesel and other fuels; and increasing demand for lighter products. The limit of 0.05 wt% sulfur for diesel fuels in US has led to the construction of many {open_quotes}low-sulfur diesel{close_quotes} hydrotreaters. Similarly strict sulfur restrictions have been imposed or considered in countries throughout Europe. These restrictions have also resulted in higher severity operation and shorter cycles in existing hydrotreating units. New catalyst regeneration technology is available for hydroprocessing catalysts of various sizes. These catalysts can be regenerated in a single pass, even at carbon levels above 30%. Regenerated carbon and sulfur levels are typically well below 1%, and nearly 100% recovery of the available surface area and catalyst length are achieved. The use of an inert gas stripper to remove excess hydrocarbons and water has also been successfully demonstrated. Pre-treating the catalyst in the stripper prior to regeneration has eliminated the potential for temperature excursions. Catalysts containing up to 40% volatile matter are now regenerated in a single pass by first pre-treating the catalyst in the stripper.

  8. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  9. Amorphous metal formulations and structured coatings for corrosion and wear resistance

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2011-12-13

    A system for coating a surface comprising providing a source of amorphous metal that contains more than 11 elements and applying the amorphous metal that contains more than 11 elements to the surface by a spray. Also a coating comprising a composite material made of amorphous metal that contains more than 11 elements. An apparatus for producing a corrosion-resistant amorphous-metal coating on a structure comprises a deposition chamber, a deposition source in the deposition chamber that produces a deposition spray, the deposition source containing a composite material made of amorphous metal that contains more than 11 elements, and a system that directs the deposition spray onto the structure.

  10. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  11. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruan, Leilei; Bhardwaj, Ajay K.; Hamilton, Stephen K.; Robertson, G. Philip

    2016-06-01

    Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N2O) and other forms of reactive N, including nitrate. We measured soil N2O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N2O emissions that each year became stronger (R2 > 0.9, P < 0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsivemore » each year to N fertilizer. Nitrate leaching (and calculated indirect N2O emissions) also increased exponentially in response to N inputs, but neither methane (CH4) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of–5.71 ± 0.22 Mg CO2e ha–1 yr–1 in switchgrass fertilized at 56 kgNha–1 to only –2.97 ± 0.18 MgCO2e ha–1 yr–1 in switchgrass fertilized at 196 kgNha–1. In conclusion, minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.« less

  12. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  13. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  14. High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film

    SciTech Connect (OSTI)

    Liu, X.; Feldman, J. L.; Cahill, D. G.; Crandall, R. S.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.

    2009-01-23

    We measured the thermal conductivity {kappa} of an 80 {micro}m thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3{omega} (80-300 K) and the time-domain thermoreflectance (300 K) methods. The {kappa} is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher {kappa} for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  15. Structural origin of bulk molecular hydrogen in hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Liu, X.; Pohl, R.O.; Crandall, R.S.

    1999-07-01

    The elastic anomaly observed previously at the triple point of bulk molecular hydrogen in hydrogenated amorphous silicon films prepared by hot-wire chemical-vapor deposition has also been observed in deuterated films at the triple point of D{sub 2}. The origin of this anomaly has now been traced to bubbles formed at the crystalline-amorphous interface. An upper limit of the pressure in these bubbles at their formation temperature, 440 C, has been estimated to be 11 MPa, and is suggested to be a measure of the bonding strength between film and substrate at that temperature. Bubble formation after heat treatment at 400 C has also been observed in films prepared by plasma-enhanced chemical-vapor deposition. The internal friction anomalies resemble those observed previously in cold-worked hydrogenated iron where they have been interpreted through plastic deformation of solid hydrogen in voids.

  16. Flexible A-15 superconducting tape via the amorphous state

    SciTech Connect (OSTI)

    Clapp, M.T.; Shi, D.

    1985-05-15

    The melt spinning technique was used to rapidly solidify superconducting materials. In the Ti/sub 3/Nb/sub 6/Mo/sub 3/Si/sub 4/ alloy system, it was possible to form metastable A-15 and amorphous ribbons as the quenching rate was increased. The liquid-quenched A-15 ribbons were extremely brittle, which is typical of this crystal structure. The metastable A-15 phase could also be formed by annealing the amorphous ribbons. These, however, were far more flexible, their percent elongation being up to 30 times greater than that of the liquid quenched A-15's. The flexibility appeared to depend on grain size, and increased as the grain size decreased. This is consistent with behavior observed in other brittle materials of a brittle to ductile transition as a function of grain size.

  17. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  18. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  19. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  20. Amorphous tin-cadmium oxide films and the production thereof

    DOE Patents [OSTI]

    Li, Xiaonan; Gessert, Timothy A

    2013-10-29

    A tin-cadmium oxide film having an amorphous structure and a ratio of tin atoms to cadmium atoms of between 1:1 and 3:1. The tin-cadmium oxide film may have an optical band gap of between 2.7 eV and 3.35 eV. The film may also have a charge carrier concentration of between 1.times.10.sup.20 cm.sup.-3 and 2.times.10.sup.20 cm.sup.-3. The tin cadmium oxide film may also exhibit a Hall mobility of between 40 cm.sup.2V.sup.-1 s.sup.-1 and 60 cm.sup.2V.sup.-1 s.sup.-1. Also disclosed is a method of producing an amorphous tin-cadmium oxide film as described and devices using same.

  1. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect (OSTI)

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120?meV and 200?meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37?ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724?mV was achieved, demonstrating excellent silicon surface passivation.

  2. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  3. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  4. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy; Lai, Hsin -Chih

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  5. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  6. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOE Patents [OSTI]

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  7. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  8. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect (OSTI)

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  9. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data

  10. Engine-External HC-Dosing for Regeneration of Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-External HC-Dosing for Regeneration of Diesel Particulate Filters for Heavy Duty and NRMM According to Annex XXVII StVZO Engine-External HC-Dosing for Regeneration of Diesel ...

  11. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  12. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect (OSTI)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  13. Effects of Diesel Exhaust Emissions on Soot Oxidation and DPF Regeneration

    Broader source: Energy.gov [DOE]

    DPF regeneration experiments verified the effects of NO2 and O2 emissions found from the thermogravimetric analyzer soot oxidation.

  14. Emissions from the European Light Duty Diesel Vehicle During DPF Regeneration Events

    Office of Energy Efficiency and Renewable Energy (EERE)

    Repeated partial regenerations may cause changes in the mechanical and chemical properties of the PM in the DPF.

  15. Method of making a cellulose acetate low density microcellular foam

    DOE Patents [OSTI]

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  16. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    SciTech Connect (OSTI)

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  17. Microbiology and physiology of anaerobic fermentations of cellulose

    SciTech Connect (OSTI)

    Wiegel, J.

    1991-05-01

    The biochemistry and physiology of four major groups of anaerobic bacteria involved in the conversion of cellulose to methane or chemical feedstocks are examined. Aspects of metabolism which are relevant to the interactions and bioenergetics of consortia are being studied. Properties of the cellulolytic enzyme cluster of Clostridium thermocellum are investigated. Five different hydrogenases have been characterized in detail from anaerobic bacteria. Genes for different hydrogenases are being cloned and sequenced to determine their structural relationships. The role of metal clusters in activation of H{sub 2} is being investigated, as is the structure and role of metal clusters in formate metabolism. The function of formate in the total synthesis of acetate from CO{sub 2} and the role of this primary in anaerobes will be examined as well. Finally, these enzyme studies will be performed on thermophilic bacteria and new, pertinent species will be isolated. 50 refs., 3 figs., 1 tab.

  18. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  19. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  20. Study of fibreoptic communication links with the optical regeneration of signals

    SciTech Connect (OSTI)

    Shtyrina, O V; Fedoruk, Mikhail P; Turitsyn, Sergei K

    2005-02-28

    Wavelength-division-multiplexing fibreoptic communication links with optical 2R regenerators based on a saturable absorber are mathematically simulated. The results of optimisation of specific configurations of symmetric lines are presented, and it is shown that the transmission distance in systems with the periodic optical regeneration of signals considerably exceeds that in systems without optical regenerators. (fibreoptic communication. waveguides)

  1. REGENERATION OF FISSION-PRODUCT-CONTAINING MAGNESIUM-THORIUM ALLOYS

    DOE Patents [OSTI]

    Chiotti, P.

    1964-02-01

    A process of regenerating a magnesium-thorium alloy contaminated with fission products, protactinium, and uranium is presented. A molten mixture of KCl--LiCl-MgCl/sub 2/ is added to the molten alloy whereby the alkali, alkaline parth, and rare earth fission products (including yttrium) and some of the thorium and uranium are chlorinated and

  2. Studies on flow resistance of regenerator in Stirling engine

    SciTech Connect (OSTI)

    Sakano, Akira; Isshiki, Seita; Ushiyama, Izumi

    1995-12-31

    Studies on flow resistance of regenerator in Stirling engine are to be reported. The purpose of this study is to measure the flow resistance of regenerator in oscillating flow condition, compare with the results of previous studies and examine whether the friction factor changes between accelerating period and decelerating period of the oscillation cycle. New experimental apparatus for measurement of flow resistance of regenerator element was designed and built. Using semiconductor pressure transducer, instantaneous pressure drops during many oscillation cycle were measured. As regenerator elements, layer of usual mesh and packed mesh were used. It was clear that friction factor of usual mesh, obtained from maximum values of pressure drops in oscillation cycle, lay between two previous studies, while friction factor of packed mesh became higher than the previous studies. Also it became obvious that friction factor did not change between accelerating period and decelerating period of oscillation cycle under revolution speed of 100 rpm, while over 200 rpm, friction factor in decelerating period became higher than in accelerating period at same lower Reynolds number.

  3. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    DOE Patents [OSTI]

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  4. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  5. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  6. Recovery and reuse of cellulase catalyst in an exzymatic cellulose hydrolysis process

    DOE Patents [OSTI]

    Woodward, Jonathan

    1989-01-01

    A process for recovering cellulase from the hydrolysis of cellulose, and reusing it in subsequent hydrolyois procedures. The process utilizes a commercial adsorbent that efficiently removes cellulase from reaction products which can be easily removed by simple decantation.

  7. DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary I: Progress in Advanced Biofuels DuPont’s Journey to Build a Global Cellulosic BioFuel Business Enterprise William Provine, Director–Science and Technology External Affairs, DuPont

  8. Energy Department Announces Up to $14 Million for Applying Landscape Design to Cellulosic Bioenergy

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $14 million to support landscape design approaches that maintain or enhance the environmental and socio-economic sustainability of cellulosic bioenergy through the improvement of feedstock production, logistics systems, and technology development.

  9. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOE Patents [OSTI]

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  10. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  11. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions...

    Office of Scientific and Technical Information (OSTI)

    amorphization. Authors: Jiang, Weilin ; Wang, Haiyan ; Kim, Ickchan ; Zhang, Yanwen ; Weber, William J. Publication Date: 2010-11-23 OSTI Identifier: 994026 Report Number(s): ...

  12. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    SciTech Connect (OSTI)

    Ye, Chang Ren, Zhencheng; Zhao, Jingyi; Hou, Xiaoning; Dong, Yalin; Liu, Yang; Sang, Xiahan

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

  13. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect (OSTI)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  14. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  15. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect (OSTI)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  16. Properties of hydrogenated amorphous silicon produced at high temperature

    SciTech Connect (OSTI)

    Crandall, R.S.; Mahan, A.H.; Nelson, B. ); Vanecek, M. ); Balberg, I. )

    1992-12-01

    A comprehensive study of hydrogenated amorphous silicon ([ital a]-Si:H) deposited by hot wire and conventional glow discharge suggests that temperatures above the so called optimum 250 [degree]C substrate temperature can produce device-quality films. These films show enhanced transport properties and improved structural order. In addition we show that hot wire material can be produced with just as many hydrogen atoms as are needed to passivate most of the dangling bonds present in unhydrogenated [ital a]-Si:H.

  17. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  18. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect (OSTI)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  19. Process for producing amorphous and crystalline silicon nitride

    DOE Patents [OSTI]

    Morgan, P.E.D.; Pugar, E.A.

    1985-11-12

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.

  20. Process for producing amorphous and crystalline silicon nitride

    DOE Patents [OSTI]

    Morgan, Peter E. D.; Pugar, Eloise A.

    1985-01-01

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of "whiskers" or needles is heated at temperature ranging from about 900.degree. C. to about 1200.degree. C. to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900.degree. C.

  1. Cathodic deposition of amorphous alloys of silicon, carbon, and fluorine

    SciTech Connect (OSTI)

    Lee, C.H.; Kroger, F.A.

    1982-05-01

    Amorphous silicon containing fluorine and carbon, pure and doped with boron or phosphorus, was deposited cathodically from solutions of K/sub 2/SiF/sub 6/ in acetone with HF. The conditions for optimum deposition were determined, and the deposits were characterized by electron microprobe x-ray emission, electrical conductivity, and infrared absorption. Doping with phosphorus causes a change from p- to n-type semiconductor behavior, with a maximum of resistivity >10/sup 13/ /OMEGA/ cm at the compensation point. 48 refs.

  2. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  3. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    SciTech Connect (OSTI)

    Miranda, Andre

    2015-08-27

    Hafnium Oxide (HfO2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO2 thin films which hasn’t been done with the technique of this study. In this study, two HfO2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer. Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.

  4. Preparation and uses of amorphous boron carbide coated substrates

    DOE Patents [OSTI]

    Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.

    1979-12-05

    Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  5. Preparation and uses of amorphous boron carbide coated substrates

    DOE Patents [OSTI]

    Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.

    1981-09-01

    Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.

  6. Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2104B (Engineered Microbe Tolerance) Marketing Summary_2.pdf (194 KB) Technology Marketing Summary Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of

  7. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110C at adiabatic conditions. Additional testing is recommended.

  8. Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefineries - Energy Innovation Portal Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol Biorefineries Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA method was invented at ORNL for removing inhibitor compounds from process water in biomass-to-ethanol production. This invention can also be used to produce power for other industrial processes. DescriptionLarge amounts of water are used in the processing of cellulosic

  9. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  10. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  11. High pressure HC1 conversion of cellulose to glucose

    SciTech Connect (OSTI)

    Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  13. Structure-property relations in amorphous carbon for photovoltaics

    SciTech Connect (OSTI)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  14. Stability and migration of small copper clusters in amorphous dielectrics

    SciTech Connect (OSTI)

    Guzman, David M.; Onofrio, Nicolas; Strachan, Alejandro

    2015-05-21

    We use density functional theory (DFT) to study the thermodynamic stability and migration of copper ions and small clusters embedded in amorphous silicon dioxide. We perform the calculations over an ensemble of statistically independent structures to quantify the role of the intrinsic atomic-level variability in the amorphous matrix affect the properties. The predicted formation energy of a Cu ion in the silica matrix is 2.7 ± 2.4 eV, significantly lower the value for crystalline SiO{sub 2}. Interestingly, we find that Cu clusters of any size are energetically favorable as compared to isolated ions; showing that the formation of metallic clusters does not require overcoming a nucleation barrier as is often assumed. We also find a broad distribution of activation energies for Cu migration, from 0.4 to 1.1 eV. This study provides insights into the stability of nanoscale metallic clusters in silica of interest in electrochemical metallization cell memories and optoelectronics.

  15. Low-temperature thermal expansion of amorphous solids

    SciTech Connect (OSTI)

    Ackerman, David Alan

    1982-01-01

    For most amorphous materials at temperatures below approx. = 1 K, the magnitudes and temperature dependences of specific heat, thermal conductivity and ultrasonic dispersion are qualitatively similar, independent of chemical composition. It has been suggested that thermal expansion also exhibits this universal behavior. The development of a dilatometer capable of resolving sample strains as small as 10/sup -12/ has permitted measurement of the linear thermal expansion of various glasses below 1 K. These investigations have demonstrated, however, that the low-temperature thermal expansion coefficient of glasses can be positive, negative, large or small. Analysis of measurements performed on two types of vitreous silica, two amorphous polymers, As/sub 2/S/sub 3/ and ZrO/sub 2/:Y/sub 2/O/sub 3/ is presented in the context of the phenomenological tunneling-states model. Consistency in explanation of thermal expansion and ultrasonic behavior is maintained by assuming a broad, weakly energy-dependent distribution of coupling strengths between phonons and the localized excitations thought to be characteristic of the glassy state.

  16. On coarse projective integration for atomic deposition in amorphous systems

    SciTech Connect (OSTI)

    Chuang, Claire Y. E-mail: meister@unm.edu Sinno, Talid; Han, Sang M. E-mail: meister@unm.edu; Zepeda-Ruiz, Luis A. E-mail: meister@unm.edu

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  17. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOE Patents [OSTI]

    Kochen, R.L.; Navratil, J.D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  18. Method for regenerating magnetic polyamine-epichlorohydrin resin

    DOE Patents [OSTI]

    Kochen, Robert L.; Navratil, James D.

    1997-07-29

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  19. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, Luc

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  20. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  1. Cellulose triacetate based novel optical sensor for uranium estimation

    SciTech Connect (OSTI)

    Joshi, J.M.; Pathak, P.N.; Pandey, A.K.; Manchanda, V.K.

    2008-07-01

    A cellulose triacetate (CTA) based optode has been developed by immobilizing tricapryl-methyl ammonium chloride (Aliquat 336) as the extractant and 2-(5-bromo-2-pyridylazo)-5- diethyl-aminophenol (Br-PADAP) as the chromophore. The optode changes color (from yellow to magenta) due to uranium uptake in bicarbonate medium ({approx}10{sup -4} M) at pH 7-8 in the presence of triethanolamine (TEA) buffer. The detection limit of the optode film (dimension: 3 cm x 1 cm) was determined to be {approx}0.3 {mu}g/mL for a 15 mL pure uranium sample at pH 7-8 (in TEA buffer). The effects of experimental parameters have been evaluated in terms of maximum uptake of U(VI), minimum response time, and reproducibility and stability of the Br-PADAP-U(VI ) complex formed in the optode matrix. The applicability of the optimized optode has been examined in the effluent samples obtained during magnesium diuranate precipitation step following the TBP purification cycle. (authors)

  2. Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

  3. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  4. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  5. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization

    Broader source: Energy.gov [DOE]

    This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when running at full operational status.

  6. New results on the microstructure of amorphous silicon as observed by internal friction

    SciTech Connect (OSTI)

    Crandall, R.S.; Mahan, A.H.; Iwaniczko, E.; Jones, K.M.; Liu, X.; White, B.E. Jr.; Pohl, R.O.

    1997-07-01

    The authors have measured the low temperature internal friction (Q{sup {minus}1}) of amorphous silicon (a-Si) films. Electron-beam evaporation leads to the well-known temperature-independent Q{sub 0}{sup {minus}1} plateau common to all amorphous solids. For hydrogenated amorphous silicon (a-Si:H) with about 1 at.% H produced by hot wire chemical vapor deposition, however, the value of Q{sub 0}{sup {minus}1} is over two hundred times smaller than for e-beam a-Si. This is the first observation of an amorphous solid without any significant low energy excitations. This finding offers the opportunity to study amorphous solids containing controlled densities of tunneling defects, and thus to explore their nature.

  7. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOE Patents [OSTI]

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  8. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  9. Non-crosslinked, amorphous, block copolymer electrolyte for batteries

    DOE Patents [OSTI]

    Mayes, Anne M.; Ceder, Gerbrand; Chiang, Yet-Ming; Sadoway, Donald R.; Aydinol, Mehmet K.; Soo, Philip P.; Jang, Young-Il; Huang, Biying

    2006-04-11

    Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0.degree. C. to about 70.degree. C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of Li.sub.xM.sub.yN.sub.zO.sub.2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the M.sub.yN.sub.z portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.

  10. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    DOE Patents [OSTI]

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  11. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOE Patents [OSTI]

    Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

    1994-01-01

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  12. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent

    DOE Patents [OSTI]

    Jalan, Vinod M.; Frost, David G.

    1984-01-01

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500.degree. C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  13. Structural and electronic properties of dense liquid and amorphous nitrogen

    SciTech Connect (OSTI)

    Boates, B; Bonev, S A

    2011-02-11

    We present first-principles calculations of the structural and electronic properties of liquid nitrogen in the pressure-temperature range of 0-200 GPa and 2000-6000 K. The molecular-polymerization and molecular-atomic liquid phase boundaries have been mapped over this region. We find the polymeric liquid to be metallic, similar to what has been reported for the higher-temperature atomic fluid. An explanation of the electronic properties is given based on the structure and bonding character of the transformed liquids. We discuss the structural and bonding differences between the polymeric liquid and insulating solid cubic-gauche nitrogen to explain the differences in their electronic properties. Furthermore, we discuss the mechanism responsible for charge transport in polymeric nitrogen systems to explain the conductivity of the polymeric fluid and the semi-conducting nature of low-temperature amorphous nitrogen.

  14. TEM observations of hydrogen nanobubbles in implanted amorphous silicon

    SciTech Connect (OSTI)

    Jones, K.M.; Al-Jassim, M.M.; Williamson, D.L.; Acco, S.

    1996-12-31

    Over the last two decades extensive studies on the optical and electrical properties of hydrogenated amorphous Si (a-Si:H) have been reported. However, less attention was given to the structural characterization of this material partly due to the insensitivity to hydrogen of structural probes such as x-rays and electron diffraction. From a recent set of experiments, results on the solubility limit of hydrogen in a special type of a-Si:H and the characterization of hydrogen induced complexes or nanobubbles has been reported. In this study, we report TEM observations of the structural morphology of hydrogen related defects that support these recent measurements obtained by secondary ion mass spectrometry (SIMS) and small-angle x-ray scattering (SAXS).

  15. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect (OSTI)

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  16. Characterization of cellulosic wastes and gasification products from chicken farms

    SciTech Connect (OSTI)

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  17. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H. D.; Yang, Feng; et al

    2014-05-29

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggestsmore » that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Finally, we found mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.« less

  18. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    SciTech Connect (OSTI)

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese RW; Petyuk, Vladislav A.; Camp, David G.; Smith, Richard D.; Cate, Jamie H.; Yang, Feng; Glass, Louise

    2014-11-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  19. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    SciTech Connect (OSTI)

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  20. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    SciTech Connect (OSTI)

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H. D.; Yang, Feng; Glass, N. Louise

    2014-05-29

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Finally, we found mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  1. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOE Patents [OSTI]

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  2. Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  3. Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    Microwave regeneration of the DPF can be done without diesel fuel or a catalyst in less than 5 minutes with the engine off.

  4. Repetitive Regeneration of Media #1 after REE Sorption from Brine #1 at 70C

    SciTech Connect (OSTI)

    Gary Garland

    2015-07-23

    This dataset shows the ability of media #1 to be loaded with REE's, stripped of the REE's sequestered, regenerated, and reused over many cycles.

  5. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  6. Erbium-based magnetic refrigerant (regenerator) for passive cryocooler

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1996-07-23

    A two stage Gifford-McMahon cryocooler is disclosed having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er{sub 6}Ni{sub 2}Sn, Er{sub 6}Ni{sub 2}Pb, Er{sub 6}Ni{sub 2}(Sn{sub 0.75}Ga{sub 0.25}), and Er{sub 9}Ni{sub 3}Sn comprising a mixture of Er{sub 3}Ni and Er{sub 6}Ni{sub 2}Sn in the microstructure. 14 figs.

  7. Erbium-based magnetic refrigerant (regenerator) for passive cryocooler

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1996-07-23

    A two stage Gifford-McMahon cryocooler having a low temperature stage for reaching approximately 10K, wherein the low temperature stage includes a passive magnetic heat regenerator selected from the group consisting of Er.sub.6 Ni.sub.2 Sn, Er.sub.6 Ni.sub.2 Pb, Er.sub.6 Ni.sub.2 (Sn.sub.0.75 Ga.sub.0.25), and Er.sub.9 Ni.sub.3 Sn comprising a mixture of Er.sub.3 Ni and Er.sub.6 Ni.sub.2 Sn in the microstructure.

  8. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOE Patents [OSTI]

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  9. Method for the regeneration of spent molten zinc chloride

    DOE Patents [OSTI]

    Zielke, Clyde W.; Rosenhoover, William A.

    1981-01-01

    In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

  10. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOE Patents [OSTI]

    Shen, Ming-Shing (Rocky Point, NY); Yang, Ralph T. (Middle Island, NY)

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  11. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    SciTech Connect (OSTI)

    Supeno; Daik, Rusli; El-Sheikh, Said M.

    2014-09-03

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  12. Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry

    SciTech Connect (OSTI)

    Baluyut, John

    2012-04-03

    The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.

  13. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  14. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  15. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  16. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  17. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  18. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    SciTech Connect (OSTI)

    Li, Yongchao; Xu, Tao; Tschaplinski, Timothy J; Engle, Nancy L; Graham, David E; He, Zhili; Zhou, Jizhong

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress

  19. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  20. Development of regenerable energy storage for space multimegawatt applications

    SciTech Connect (OSTI)

    Olszewski, M.

    1986-01-01

    A program has recently been initiated as a part of the national Strategic Defense Initiative (SDI) to develop energy storage technology for space power applications. This program is jointly conducted by the Department of Energy and the Department of Defense. It is focused on the development of advanced technologies in regenerable energy storage that will be required for generation of multimegawatt levels of sprint power for SDI space missions. Energy storage technology considered in the program relate to devices that have a high specific capacity for energy storage, which can provide high levels of electric power on demand, and which may be recharged with electric power. The devices of principal interest are electrochemical batteries, chemical fuel cells, and electromechanical flywheels (the latter includes the motors and generators used to provide the electrical to mechanical coupling). The intent of the program is to resolve technical feasibility issues associated with an electrically regenerable energy storage system satisfying SDI needs. Specifically, energy storage technology will be developed through the proof-of-concept stage within the next six years that provides a specific power greater than 2.5 kW/kg with an energy storage density of at least 450 kJ/kg.

  1. Process for regenerating spent heavy hydrocarbon hydroprocessing catalyst

    SciTech Connect (OSTI)

    Clark, F.T.; Hensley, A.L. Jr.

    1991-12-10

    This patent describes a process for hydroprocessing a hydrocarbon feedstock which comprises contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst is a regenerated spent hydroprocessing catalyst regenerated by a process. It comprises partially decoking the spent catalyst in an initial coke-burning step wherein the catalyst is contacted with an oxygen-containing gas at a temperature ranging from about 400{degrees} F. to about 700{degrees} F.; incorporating at least one rare earth metal with the partially decoked catalyst, such that the partially decoked catalyst contains from about 0.1 to about 20.0 wt. % of the rare earth metal component calculated as the elemental metal and based on the fresh weight of the spent catalyst; and decoking the rare earth metal-containing catalyst in a final coke-burning step wherein the rare earth metal-containing is contacted with an oxygen-containing gas at a temperature of about 600{degrees} F. to about 1400{degrees} F.

  2. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  3. Cellulose and lignin: biodegradation. January 1978-May 1987 (Citations from the Life Sciences Collection data base). Report for January 1978-May 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 379 citations, none of which are new entries to the previous edition.)

  4. Cellulose and lignin: biodegradation. June 1987-September 1988 (Citations from the Life Sciences Collection data base). Report for June 1987-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 65 citations, all of which are new entries to the previous edition.)

  5. Cellulose and lignin: Biodegradation. June 1987-September 1989 (Citations from the Life Sciences Collection data base). Report for June 1987-September 1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This bibliography contains citations concerning the biodegradation of waste cellulose, cellulose-containing substances, lignin, and lignin-containing substances. Attention is given to the organisms that decompose cellulose and lignin, and the processes by which this takes place. (This updated bibliography contains 120 citations, 46 of which are new entries to the previous edition.)

  6. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  7. LAB STUDY ON REGENERATION OF SPENT DOWEX 21K 16-20 MESH ION EXCHANGE RESIN

    SciTech Connect (OSTI)

    DUNCAN, J.B.

    2007-01-24

    Currently the effort to remove chromate from groundwater in the 100K and 100H Areas uses DOWEX 21K 16-20. This report addresses the procedure and results of a laboratory study for regeneration of the spent resin by sodium hydroxide, sulfuric acid, or sodium sulfate to determine if onsite regeneration by the Effluent Treatment Facility is a feasible option.

  8. Electronic excitation induced amorphization in titanate pyrochlores: an ab initio molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen; Zu, X. T.; Li, Sean

    2015-02-09

    In this study, the response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser,more » electron and ion irradiations.« less

  9. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    SciTech Connect (OSTI)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  10. Selective alkane activation with single-site atoms on amorphous support

    DOE Patents [OSTI]

    Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo

    2015-11-24

    The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.

  11. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOE Patents [OSTI]

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  12. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOE Patents [OSTI]

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  13. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  14. Amorphous silicon cell array powered solar tracking apparatus

    DOE Patents [OSTI]

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  15. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Nelson, B.P.; Iwaniczko, E.; Wang, Q.; Molenbroek, E.C.; Asher, S.E.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-01-01

    This paper details preliminary results obtained in incorporating low H content, high substrate temperature hot wire (HW) deposited amorphous silicon material into a substrate solar cell structure. By necessity, since the learning curve for this complete structure involves metal/{ital n}-{ital i}/Schottky barrier structure optimization, a large part of the results are focused on this (partial) structure. We have found that the treatment of the top surface of the HW {ital i} layer during cooling is crucial to device performance. Without any particular attention paid to the treatment of this surface while the sample is cooling from its high deposition temperature, a significant amount of H diffuses out of the sample during the cooling process, particularly near the surface, resulting in devices with very poor photovoltaic properties. By designing a surface treatment to address this problem, we have been able to deposit HW Schottky structures with device characteristics as good as the best glow discharge devices produced in our laboratory. We present data concerning these surface treatments, and how they influence the H content at the {ital i}/Pd interface. {copyright} {ital 1996 American Institute of Physics.}

  16. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C., Jr.; Unold, T.; Crandall, R.S.; Guha, S.; Yang, J. |

    1997-02-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. We find that the treatment of the top surface of the HW i-layer while it is cooled from its high deposition temperature is crucial to device performance. We present data concerning these surface treatments, and correlate these treatments with Schottky device performance. We also present first generation HW n-i-p solar cell data, where a glow discharge (GD) {mu}c-Si(p) layer completes the partial devices. No light trapping layer is used to increase the device Jsc. Our preliminary results yield efficiencies of up to 6.8{percent} for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10{percent} after a 900h AM1 light soak. We suggest areas for further improvement of our devices. {copyright} {ital 1997 American Institute of Physics.}

  17. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect (OSTI)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.; Guha, S.; Yang, J.

    1996-09-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and they correlate these treatments with Schottky device performance. They also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. The preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4,000 {angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. They suggest avenues for further improvement of the devices.

  18. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Yan, D.; Wan, Y.; Cuevas, A.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-04-28

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopyenergy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  19. Amorphous silicon solar cells techniques for reactive conditions

    SciTech Connect (OSTI)

    Shimizu, Satoshi; Okawa, Kojiro; Kamiya, Toshio; Fortmann, C.M.; Shimizu, Isamu

    1999-07-01

    The preparation of amorphous silicon films and solar cells using SiH{sub 2}Cl{sub 2} source gas and electron cyclotron resonance assisted chemical vapor deposition (ECR-CVD) was investigated. By using buffer layers to protect previously deposited layers improved a-Si:H(Cl) solar cells were prepared and studied. The high quality a-Si:H(Cl) films used in this study exhibited low defect densities ({approximately}10{sup 15} cm{sup {minus}3}) and high stability under illumination even when the deposition rate was increased to {approximately} 15A/s. The solar cells were deposited in the n-i-p sequence. These solar cells achieved V{sub oc} values of {approximately}0.89V and {approximately}3.9% efficiency on Ga doped ZnO (GZO) coated specular substrate. The a-Si:H(Cl) electron and hole {mu}{tau} products were {approximately}10{sup {minus}8} cm{sup 2}/V.

  20. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect (OSTI)

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.