National Library of Energy BETA

Sample records for regen braking energy

  1. Regenerative braking device with rotationally mounted energy storage means

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1982-03-16

    A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.

  2. Regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  3. Variable ratio regenerative braking device

    DOE Patents [OSTI]

    Hoppie, Lyle O.

    1981-12-15

    Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.

  4. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  5. Combined hydraulic and regenerative braking system

    DOE Patents [OSTI]

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  6. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, R.I.

    1990-10-16

    A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.

  7. Adaptive controller for regenerative and friction braking system

    DOE Patents [OSTI]

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  8. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  11. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  12. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Stopped Button subbanner graphic: gray bar BRAKING: PART 1 Regenerative braking converts otherwise wasted energy from braking into electricity and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using electricity to turn the wheels, the rotating wheels turn the motor and create electricity. Using energy from the wheels to turn the motor slows the vehicle down. Go to next… stage graphic: vertical blue rule Main stage: See

  13. Full Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Braking button highlighted Stopped button BRAKING PART 1 Regenerative braking converts otherwise wasted energy from braking into electricity and stores it in the battery. In regenerative braking, the electric motor is reversed so that, instead of using electricity to turn the wheels, the rotating wheels turn the motor and create electricity. Using energy from the wheels to turn the motor slows the vehicle down. Go to next… stage graphic: vertical blue rule Main stage: See through car with

  14. Regen SW | Open Energy Information

    Open Energy Info (EERE)

    SW Jump to: navigation, search Name: Regen SW Place: Exeter, United Kingdom Zip: EX4 4RN Product: Sustainable energy agency funded by South West RDA supporting green business in...

  15. Can regenerataive braking be applied to a Stirling engine (Stirling-powered regenerative-retarding propulsion system for automotive application)

    SciTech Connect (OSTI)

    Walker, G.

    1980-07-01

    A recently completed University of Calgary study has shown that regenerative retarding (the storage and later use of energy normally dissipated as heat by friction brakes) can be applied to vehicles powered by Stirling-cycle engines. Changes in the valving arrangement of a multiple-cylinder Stirling powerplant can convert the engine to a heat pump capable of recovering energy that would ordinarily be wasted during a vehicle's downhill travel and of transferring the energy through a liquid-metal heat pipe to storage in a thermal battery for later reuse in the vehicle's externally heated propulsion system. Up to 60% of the fuel needed to drive a truck uphill could be saved by regenerative braking downhill. When petroleum-based diesel fuel and gasoline are no longer available at low cost, the energy sources for Stirling-engine propulsion will include electricity, natural gas, coal, and various organic wastes. The thermal battery/Stirling engine combination will then be competitive; the battery will be charged overnight by electrical-resistance heating or the combustion of nonpetroleum fuels. The system would be most appropriate for urban or nonurban vehicles in stop-and-go applications, e.g., buses and delivery vehicles.

  16. Regenerative Fuel Cells for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1. Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O 2 ? 5. High Pressure Electrolysis vs. External Pumping 3. The Three Questions April 2011 3 RFC System Challenges Existing state of the art regenerative fuel cell systems require two separate stacks and significant auxiliary support

  17. Energy conservation from regenerative incineration

    SciTech Connect (OSTI)

    Pennington, R.L.

    1982-06-01

    The oil embargo in the winter of 1973 covered the nation with a serious energy crisis. Although the ''gas lines'' have subsided, sky-rocketing fuel costs and diminishing energy supplies linger on. Projected U.S. energy demands indicate normal energy requirements over a normal growth rate. However, when compared with the projected U.S. energy supplies, a very significant energy deficit may exist in the near future. Although coal and nuclear show substantial potential as energy sources, it is unlikely that they will fill the gap between energy demands and the gas and oil supplies. In view of the Three-Mile Island nuclear incident, and cutbacks in the state of Washington, it is doubtful that the 13% contribution to the energy supply in the part of nuclear power will ever materialize. Although coal supplies are very abundant, the development of coal technology will not meet the next decade's energy requirements as it is indicated by the fact that coal is supplying far less energy than forecasted by the government.

  18. Regenerative Fuel Cells for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel Cells Workshop, April 19, 2011 rev_fc_wkshp_mittelsteadt.pdf (723.94 KB) More Documents & Publications Reversible Fuel Cells Workshop Summary Report Development of Reversible Fuel Cell Systems at Proton Energy Hydrogen Production by Polymer Electrolyte Membrane (PEM) Electrolysis-Spotlight on Giner and Proton

  19. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using regenerative braking, which extends hybrid technology to non-drive axles. p-17_rini.pdf (124.05 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer AVTA: Full-Size Electric Vehicle Specifications and Test Procedures SuperTruck … Development

  20. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Concentrating Solar Power | Department of Energy Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power southern_research_institute_logo.jpg Southern Research Institute (SRI), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding

  1. Maass Regenerative Energien GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: Maass Regenerative Energien GmbH Place: Wesel, Germany Zip: 46485 Product: Markets, plans, installs and maintains PV power plants in Europe,...

  2. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity/011

    SciTech Connect (OSTI)

    Hopps, N. W., Atomic Weapons Research Establishment, Aldermaston, Great Britain

    1998-06-24

    The work to improve the energy stability of the regenerative amplifier (`regen`) for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered.

  3. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Braking button highlighted Stopped Button subbanner graphic: gray bar BRAKING: PART 2 If additional stopping power is needed, conventional friction brakes (e.g., disc brakes) are also applied automatically. Go back… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Battery:

  4. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  5. WIND BRAKING OF MAGNETARS

    SciTech Connect (OSTI)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-05-10

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  6. Gravity brake

    DOE Patents [OSTI]

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  7. Braking system

    DOE Patents [OSTI]

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  8. Energy-efficient regenerative liquid desiccant drying process

    DOE Patents [OSTI]

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  9. Regenerative Fuel Cells: Renewable Energy Storage Devices Based on Neutral Water Input

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Proton Energy Systems is developing an energy storage device that converts water to hydrogen fuel when excess electricity is available, and then uses hydrogen to generate electricity when energy is needed. The system includes an electrolyzer, which generates and separates hydrogen and oxygen for storage, and a fuel cell which converts the hydrogen and oxygen back to electricity. Traditional systems use acidic membranes, and require expensive materials including platinum and titanium for key parts of the system. In contrast, Proton Energy Systems’ new system will use an inexpensive alkaline membrane and will contain only inexpensive metals such as nickel and stainless steel. If successful, Proton Energy Systems’ system will have similar performance to today’s regenerative fuel cell systems at a fraction of the cost, and can be used to store electricity on the electric grid.

  10. BRAKE DEVICE

    DOE Patents [OSTI]

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  11. Hybrid: Braking

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped, such as at a red light, the gasoline engine and electric motor shut off automatically so that energy is not wasted in idling. The battery continues to power auxillary systems, such as the air conditioning and dashboard displays. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See

  12. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S.; Hodgson, Jeffrey W.

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  13. Laser system using regenerative amplifier

    DOE Patents [OSTI]

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  14. Laser system using regenerative amplifier

    DOE Patents [OSTI]

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  15. Fully relayed regenerative amplifier

    DOE Patents [OSTI]

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  16. Fact #882: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Go? | Department of Energy 2: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy Go? Fact #882: July 20, 2015 Hybrid Vehicle Energy Use: Where Does the Energy Go? SUBSCRIBE to the Fact of the Week Hybrids are more efficient than comparable conventional vehicles, especially in stop-and-go driving, due to the use of regenerative braking, electric motor drive/assist, and start/stop technologies. Still, much of the energy is lost to engine and driveline inefficiencies or used to

  17. Real-Time Dynamic Brake Assessment Proof of Concept Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J

    2011-11-01

    This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because braking events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and

  18. Regenerative feedback resonant circuit

    DOE Patents [OSTI]

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  19. REGENERATIVE TRANSISTOR AMPLIFIER

    DOE Patents [OSTI]

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  20. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  1. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  2. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  3. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  4. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  5. High power regenerative laser amplifier

    DOE Patents [OSTI]

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  6. Regenerative switching CMOS system

    DOE Patents [OSTI]

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  7. Regenerative switching CMOS system

    DOE Patents [OSTI]

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  8. Daimler's SuperTruck Program; 50% Brake Thermal Efficiency | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Daimler's SuperTruck Program; 50% Brake Thermal Efficiency Daimler's SuperTruck Program; 50% Brake Thermal Efficiency Presents highlights of engine and vehicle advances made, and progress towards achieving aggressive goals deer12_sisken.pdf (2.38 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: SuperTruck Program: Engine Project Review SuperTruck Program: Engine Project Review Supertruck - Improving Transportation Efficiency through Integrated

  9. Regenerative fuel cell systems R and D

    SciTech Connect (OSTI)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  10. ETA-HITP06 - Braking Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective November 1, 2004 Braking Test Prepared by Electric Transportation Applications ... Activity Requirements 3 5.3 Dry Controlled Test 3 5.4 Wet Controlled Test 4 5.5 Wet Panic ...

  11. ETA-UTP006 - Braking Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective March 23, 2001 Braking Test Prepared by Electric Transportation Applications ... Activity Requirements 6 5.3 Dry Controlled Test 7 5.4 Wet Controlled Test 9 5.5 Wet Panic ...

  12. ETA-NTP006 Braking Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Effective February 1, 2008 Braking Test Prepared by Electric Transportation ... 3 5.0 Testing Activity Requirements 5 5.1 Test Preparation 6 5.2 Ambient Conditions 6 5.3 ...

  13. ETA-HTP06 - Braking Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTP06 Revision 2 Effective October 1, 2007 Braking Test Prepared by Electric ... Activity Requirements 3 5.3 Dry Controlled Test 4 6. Glossary 5 7. References 7 Appendices ...

  14. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu; Teichmann, Ralph; Avagliano, Aaron; Kammer, Leonardo Cesar; Pierce, Kirk Gee; Pesetsky, David Samuel; Gauchel, Peter

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  15. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  16. Improving the efficiency and availability analysis of a modified reheat regenerative Rankine cycle

    SciTech Connect (OSTI)

    Bassily, A.M.

    1999-07-01

    Reheating in a reheat regenerative steam power cycle increases efficiency by increasing the average temperature of heat reception, but also increases the irreversibility of feed water heaters by raising the temperature of the superheated steam used for the regenerative process. This paper introduces some modifications to the regular reheat regenerative steam power cycle that reduce the irreversibility of the regenerative process. An availability analysis of the modified cycle and the regular reheat regenerative cycle as well as a comparison study between both cycles is done. The results indicate that a gain in energy efficiency of up to 2.5% as the steam generator pressure varies is obtained when applying such modifications at the same conditions of pressure, temperature's number of reheating stages, and feed water heaters. The availability analysis showed that such increase in efficiency is due to the reduction of the irreversibility of the regeneration process of the modified cycle.

  17. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  18. Engine brake control in automatic transmission

    SciTech Connect (OSTI)

    Hayasaki, K.; Sugano, K.

    1988-09-13

    This patent describes an engine braking control for a transmission for an automotive vehicle having an engine, the transmission including an input member drivingly coupled to the engine and an output member subject to load from driving wheels of the automotive vehicle, the transmission also including a first rotary member, a second rotary member, a hydraulically operated clutch selectively establishing a drive connection between the first rotary member and the second rotary member, and a one-way clutch arranged in parallel to the hydraulically operated clutch such that when the hydraulically operated clutch is released, the one-way clutch transmits forward torque from the first rotary member to the second rotary member, but interrupts transmission of revers torque to the first rotary member from the second rotary member, the engine braking control comprising: means for providing an engine braking command fluid pressure signal when demanded by a vehicle operator; a valve means for normally discharging hydraulic fluid from the hydraulically operated clutch to deactivate the hydraulically operated clutch, the valve means being fluidly connected to the hydraulically operated clutch, the engine braking command fluid pressure signal providing means and a drain port. The valve means including a valve spool having a first position where the hydraulically operated clutch is allowed to communicate with the drain port to permit discharge of hydraulic fluid therefrom and thus the hydraulically operated clutch is caused to be deactivated and a second position where the hydraulically operated clutch is disconnected from the drain port and allowed to communicate with the engine braking command fluid pressure signal.

  19. USDA Awards Nearly $2 Million for First Phase of Regenerative Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planned for Pine Ridge Reservation | Department of Energy Awards Nearly $2 Million for First Phase of Regenerative Community Planned for Pine Ridge Reservation USDA Awards Nearly $2 Million for First Phase of Regenerative Community Planned for Pine Ridge Reservation July 2, 2015 - 9:15am Addthis A row of homes on the Pine Ridge Reservation in South Dakota. A row of homes on the Pine Ridge Reservation in South Dakota. Karen Petersen Karen Petersen Project Manager with the National Renewable

  20. The anti-glitch of magnetar 1E 2259+586 in the wind braking scenario

    SciTech Connect (OSTI)

    Tong, H.

    2014-04-01

    The anti-glitch of magnetar 1E 2259+586 is analyzed theoretically. An enhanced particle wind during the observational interval takes away additional rotational energy of the neutron star, which will result in a net spin-down of the magnetar, i.e., an anti-glitch. In the wind braking scenario of the anti-glitch, there are several predictions: (1) a radiative event will always accompany the anti-glitch, (2) there will be a decrease/variation of the braking index after the anti-glitch, and (3) the anti-glitch is just a period of enhanced spin-down. If there are enough timing observations, a period of enhanced spin-down is expected instead of an anti-glitch. Applications to previous timing events of SGR 1900+14 and PSR J1846–0258 are also included. It is shown that current timing events of 1E 2259+586, SGR 1900+14, and PSR J1846–0258 can be understood safely in the wind braking model. The enhanced spin-down and absence of an anti-glitch before the giant flare of SGR 1806–20 is consistent with the wind braking scenario.

  1. Regenerative rotary displacer Stirling engine

    SciTech Connect (OSTI)

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  2. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  3. High power, high beam quality regenerative amplifier

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  4. Rotary regenerative catalytic oxidizer for VOC emission control

    SciTech Connect (OSTI)

    Fu, J.C.; Chen, J.M.

    1998-12-31

    Thermal or catalytic oxidation has been widely accepted in industries as one of the most effective technologies for the control of VOC emissions. To reduce energy cost, this technology normally incorporates heat exchanger to recover waste heat from hot combustion exhaust. Among various heat recovery methods, it is known that the regenerative system has the highest thermal efficiency (> 90%). The normal regenerative heat exchanger design is to use ceramic heat sink material packed in a fixed-bed configuration to capture excess heat from outgoing hot combustion exhaust and use it later to preheat incoming cold VOC laden gas stream by periodically switching gas streams using valves. This paper presents a novel design of the regenerative catalytic oxidizer. This design uses a honeycomb rotor with discrete parallel channels as the heat transfer media on which catalyst is coated to promote oxidation reaction. Heat recovery of this unit is accomplished by rotating the rotor between cold and hot flow streams. The thermal efficiency of the unit can be controlled by the rotation speed. Because it can rotate between hot and cold streams at higher rate than that can be achieved by valve switching, the rotary regenerative catalytic oxidizer uses much less heat transfer media than that is normally required for the fixed-bed design for the same thermal efficiency. This leads to a more compact and less costly unit design. The continuous rotation mechanism also eliminates the pressure fluctuation that is experienced by the fixed-bed design using valves for flow switching. The advantages of this new design are demonstrated by the data collected from a laboratory scale test unit.

  5. Braking system for use with an arbor of a microscope

    DOE Patents [OSTI]

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  6. Therapeutic potential of nanoceria in regenerative medicine

    SciTech Connect (OSTI)

    Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet; Munusamy, Prabhakaran; Baer, Donald R.; McGinnis, James F.; Mattson, Mark P.; Self, William; Seal, Sudipta

    2014-11-01

    Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

  7. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOE Patents [OSTI]

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  8. MLS Group | Open Energy Information

    Open Energy Info (EERE)

    Webster (Houston), Texas Zip: 77598 Sector: Wind energy Product: Designs and makes pitch control systems for wind turbines and wind turbine brakes in US and UK under license...

  9. Students Debut Redesigned 2016 Chevrolet Camaros at EcoCAR 3...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Regenerative braking is used in hybrid electric vehicles to capture and reuse energy from the brakes that would be otherwise lost. EcoCAR 3 Students Learn and Teach at Winter ...

  10. Stop/Start: Overview

    Buildings Energy Data Book [EERE]

    Braking button hilighted subbanner graphic: gray bar BRAKING PART 1 Stop/Start vehicles use a combination of regenerative and conventional friction braking to slow the vehicle. In regenerative braking, energy from the wheels turns the electric generator, creating electricity. Using energy from the wheels to turn the generator slows the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is

  11. Low-temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, R.O.; Brown, A.P.; Yao, N.P.

    1982-04-21

    A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  12. Low temperature thermally regenerative electrochemical system

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping

    1983-01-01

    A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.

  13. Putting On the Brakes to Protect America's Natural Treasures - Continuum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magazine | NREL Putting On the Brakes to Protect America's Natural Treasures Putting On the Brakes to Protect America's Natural Treasures National Parks Initiative greens roads and preserves once-in-a-lifetime experiences. A white, four-door car parked on asphalt in front of a marble, multi-columned, dome-roofed building, which is surrounded by evergreen trees and under a slightly cloudy sky. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from

  14. Multiple excitation regenerative amplifier inertial confinement system

    DOE Patents [OSTI]

    George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.

  15. Multiple excitation regenerative amplifier inertial confinement system

    DOE Patents [OSTI]

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.

  16. Lightweight pressure vessels and unitized regenerative fuel cells

    SciTech Connect (OSTI)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1996-12-31

    High specific energy (>400 Wh/kg) energy storage systems have been designed using lightweight pressure vessels in conjunction with unitized regenerative fuel cells (URFCs). URFCs produce power and electrolytically regenerate their reactants using a single stack of reversible cells. Although a rechargeable energy storage system with such high specific energy has not yet been fabricated, we have made progress towards this goal. A primary fuel cell (FC) test rig with a single cell (0.05 ft{sup 2} active area) has been modified and operated reversibly as a URFC. This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the oxygen side of the cell). Lightweight pressure vessels with state-of-the-art performance factors (burst pressure * internal volume/tank weight = Pb V/W) have been designed and fabricated. These vessels provide a lightweight means of storing reactant gases required for fuel cells (FCs) or URFCs. The vessels use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide the permeation barrier for gas storage. The bladders are fabricated using materials that are compatible with humidified gases which may be created by the electrolysis of water and are compatible with elevated temperatures that occur during fast fills.

  17. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Capps, Gary J; Franzese, Oscar

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  18. Regenerative Energie Systeme RegEnSys | Open Energy Information

    Open Energy Info (EERE)

    Zip: 67227 Sector: Solar Product: Sale and installation of solar (thermal and PV) and ventilation systems. Coordinates: 51.131202, 14.106809 Show Map Loading map......

  19. EnStorage Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: EnStorage Inc Place: Israel Zip: 30900 Product: Israel-based energy storage technology developer, developing a regenerative fuel cell energy storage...

  20. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect (OSTI)

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  1. Schulthess Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Schulthess Group Place: Wolfhausen, Switzerland Zip: CH-8633 Product: A company with activities in regenerative energy production,...

  2. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives

    SciTech Connect (OSTI)

    Blau, PJ

    2001-10-22

    The purpose of this report is to present a survey of commercial brake materials and additives, and to indicate their typical properties and functions, especially as regards their use in heavy trucks. Most truck pad and shoe materials described here were designed to wear against cast iron. Brake material test methods are also briefly described. This report does not address issues associated with the fabrication and manufacturing of brake materials. Since there are literally thousands of brake material additives, and their combinations are nearly limitless, it is impractical to list them all here. Rather, an attempt has been made to capture the primary constituents and their functions. An Appendix contains thermo-physical properties of some current and potential brake materials.

  3. Energy efficiency of electric vehicles at the 1994 American Tour de Sol

    SciTech Connect (OSTI)

    Quong, S.; Duoba, M.; Buitrago, C.; LeBlanc, N.; Larsen, R.

    1994-11-01

    In 1994, the US Department of Energy, through Argonne National Laboratory`s Center for Transportation Research, sponsored energy-efficiency data collection from student, private, and professional electric vehicles during the American Tour de Sol (ATdS). The ATDS is a multiple-day road rally event, from New York City to Philadelphia. During each leg of the event, kilowatt-hour meters measured the efficiency of the electric vehicles (EVs), which averaged from 5.68 to 65.74 km/kWh. In addition to daily energy-usage measurements, some vehicles used a data-acquisition unit to collect second-by-second information. This showed, in one case, that 21% of the total energy was captured in regenerative braking. Some of the vehicles were also tested on a dynamometer for energy-efficiency, acceleration, and steady-state power ratings. This paper also compares the energy efficiency of the vehicles during the road rally to the dynamometer results. In almost all vehicles, there was an increase in energy efficiency when the vehicle was traveling over the road, due to the non-transient duty cycle and efficient driving techniques. The dynamometer testing also showed that some EVs are equal to or better than gasoline vehicles in performance and efficiency.

  4. Wind turbine trailing-edge aerodynamic brake design

    SciTech Connect (OSTI)

    Quandt, G.

    1996-01-01

    This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

  5. Conversion of a regenerative oxidizer into catalytic unit

    SciTech Connect (OSTI)

    Matros, Y.S.; Bunimovich, G.A.; Strots, V.O.

    1997-12-31

    Use of a VOC oxidation catalyst in the existing regenerative thermal oxidizers may greatly reduce fuel consumption and improve the oxidizer performance. This was demonstrated in a commercial 25,000 SCFM unit installed at a printing facility. The paper discusses the principles of the oxidizer retrofit design and test results obtained at various conditions of operation.

  6. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect (OSTI)

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  7. Fact #884: August 3, 2015 All-electric Vehicle: Where Does the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When energy gains from regenerative braking are included, the amount of energy used for traveling down the road can rise to more than 80% in the EPA-combined city and highway ...

  8. Operator interface for vehicles

    DOE Patents [OSTI]

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  9. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.

    1997-12-31

    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  10. Theoretical and experimental study on regenerative rotary displacer Stirling engine

    SciTech Connect (OSTI)

    Raggi, L.; Katsuta, Masafumi; Isshiki, Naotsugu; Isshiki, Seita

    1997-12-31

    Recently a quite new type of hot air engine called rotary displacer engine, in which the displacer is a rotating disk enclosed in a cylinder, has been conceived and developed. The working gas, contained in a notch excavated in the disk, is heated and cooled alternately, on account of the heat transferred through the enclosing cylinder that is heated at one side and cooled at the opposite one. The gas temperature oscillations cause the pressure fluctuations that get out mechanical power acting on a power piston. In order to attempt to increase the performances for this kind of engine, the authors propose three different regeneration methods. The first one comprises two coaxial disks that, revolving in opposite ways, cause a temperature gradient on the cylinder wall and a regenerative axial heat conduction through fins shaped on the cylinder inner wall. The other two methods are based on the heat transferred by a proper closed circuit that in one case has a circulating liquid inside and in the other one is formed by several heat pipes working each one for different temperatures. An engine based on the first principle, the Regenerative Tandem Contra-Rotary Displacer Stirling Engine, has been realized and experimented. In this paper experimental results with and without regeneration are reported comparatively with a detailed description of the unity. A basic explanation of the working principle of this engine and a theoretical analysis investigating the main influential parameters for the regenerative effect are done. This new rotating displacer Stirling engines, for their simplicity, are expected to attain high rotational speed especially for applications as demonstration and hobby unities.

  11. Propellant feed system of a regeneratively cooled scramjet

    SciTech Connect (OSTI)

    Kanda, Takeshi; Masuya, Goro; Wakamatsu, Yoshio )

    1991-04-01

    An expander cycle for an airframe-integrated hydrogen-fueled scramjet is analyzed to study regenerative cooling characteristics and overall specific impulse. Below Mach 10, the specific impulse and thrust coincide with the reference values. At Mach numbers above 10, a reduction of the specific impulse occurs due to the coolant flow rate requirement, which is accompanied by an increase of thrust. It is shown that the thrust may be increased by injecting excess fuel into the combustor to compensate for the decrease of the specific impulse. 9 refs.

  12. Compliant mechanism road bicycle brake: a rigid-body replacement case study

    SciTech Connect (OSTI)

    Olsen, Brian M; Howell, Larry L; Magleby, Spencer P

    2011-01-19

    The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin. The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.

  13. Evaluation of the deposition, translocation and pathological response of brake dust with and without added chrysotile in comparison to crocidolite asbestos following short-term inhalation: Interim results

    SciTech Connect (OSTI)

    Bernstein, David M.; Rogers, Rick; Sepulveda, Rosalina; Kunzendorf, Peter; Bellmann, Bernd; Ernst, Heinrich; Phillips, James I.

    2014-04-01

    Chrysotile has been frequently used in the past in manufacturing brakes and continues to be used in brakes in many countries. This study was designed to provide an understanding of the biokinetics and potential toxicology following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake dust or crocidolite asbestos. No significant pathological response was observed at any time point in either the brake dust or chrysotile/brake dust exposure groups. The long chrysotile fibers (> 20 μm) cleared quickly with T{sub 1/2} estimated as 30 and 33 days, respectively in the brake dust and the chrysotile/brake dust exposure groups. In contrast, the long crocidolite fibers had a T{sub 1/2} > 1000 days and initiated a rapid inflammatory response in the lung following exposure resulting in a 5-fold increase in fibrotic response within 91 days. These results provide support that brake dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung following short term inhalation. - Highlights: • We evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology observed at any time point in the brake-dust groups. • Crocidolite produced pathological response - Wagner 4 interstitial fibrosis by 32d.

  14. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the

  15. System for lubrication of a brake air compressor associated with a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Spencer, J.C.

    1992-10-13

    This patent describes a system for use with a vehicle which includes a turbocharged internal combustion engine having a lubricating system wherein lubricating oil from an engine oil reservoir is circulated within the engine and also to and from an associated brake system air compressor which supplies compressed air for operation of the vehicle air braking system. This patent describes improvement in passing supercharged air to an oil crankcase of the air compressor to cause lubricating oil to drain therefrom and return to the engine oil reservoir.

  16. Options for VOC reduction in a regenerative thermal oxidizer (RTO)

    SciTech Connect (OSTI)

    Waldern, P.J.; Nutcher, P.; Lewandowski, D.

    1997-12-31

    Environmental regulations stemming from the 1990 Clean Air Act amendments are requiring treatment of high volume but relatively dilute VOC contaminated air and waste gas streams. Because of its low operating costs, Regenerative Thermal Oxidation (RTO) has emerged as the preferred treatment method for many of these streams. In the past, this technology usually required multiple (3 or more) beds of heat sink packing. However, some new units are being supplied with only two beds. Consequently, capital costs are lower. This paper describes test data from a unique twin bed RTO. Data for two different types of heat sink material will be presented, random packing and structured packing. The effect of cycle time, bed length, and packing type on thermal efficiency will be described. A cost comparison is included showing the effect of packing type on both capital and operating costs for various RTO sizes.

  17. Innovative technical advances in the application of regenerative thermal oxidizers

    SciTech Connect (OSTI)

    Grzanka, R.; Truppi, T.

    1999-07-01

    Regenerative Thermal Oxidizers (RTOs) have been applied in industry for over twenty (20) years to reduce the emissions of Volatile Organic compounds (VOCs) into the atmosphere from industrial process emissions. The Clean Air Act and its amendments have established a regulatory framework setting standards for allowable levels of VOC emissions. Several forces are driving the increasing use and acceptance of this technology: (1) High efficiency and increasing stringent standards require higher destruction efficiency; (2) Low operating cost and control of emission streams with less VOCs (therefore, less fuel value) causing higher use of natural gas for combustion; (3) Low NO{sub x}--the overlapping concern of NO{sub x} generation from the combustion process; (4) Low process upsets with improved productivity of industrial process require continuous integration of VOC abatement equipment; and (5) Reduced capital cost--capital cost criteria is $/ton of VOC abated. The latest development in RTO technology is the Single Can Oxidizer (SCO). This regenerative thermal oxidizer is the accumulation of developments in many subsystems of RTOs, combined with a dramatic new configuration. Several features of the system offer unique benefits to industrial end users: (1) Single can configuration gives reduced weight, material usage, and cost; (2) Rotary valve design gives smooth operation, and low pressure fluctuations; (3) Structured block heat recovery media reduces pressure drop, and lowers HP/operating cost; and (4) SMART system lowers NO{sub x} output/reduced operation cost. This paper will present a discussion of the features listed above. In addition, it will provide analytical documentation of test results for a full scale commercial unit.

  18. ORBITAL AND MASS RATIO EVOLUTION OF PROTOBINARIES DRIVEN BY MAGNETIC BRAKING

    SciTech Connect (OSTI)

    Zhao, Bo; Li, Zhi-Yun

    2013-01-20

    The majority of stars reside in multiple systems, especially binaries. The formation and early evolution of binaries is a longstanding problem in star formation that is not yet fully understood. In particular, how the magnetic field observed in star-forming cores shapes the binary characteristics remains relatively unexplored. We demonstrate numerically, using an MHD version of the ENZO AMR hydro code, that a magnetic field of the observed strength can drastically change two of the basic quantities that characterize a binary system: the orbital separation and mass ratio of the two components. Our calculations focus on the protostellar mass accretion phase, after a pair of stellar 'seeds' have already formed. We find that in dense cores magnetized to a realistic level, the angular momentum of the material accreted by the protobinary is greatly reduced by magnetic braking. Accretion of strongly braked material shrinks the protobinary separation by a large factor compared to the non-magnetic case. The magnetic braking also changes the evolution of the mass ratio of unequal-mass protobinaries by producing material of low specific angular momentum that accretes preferentially onto the more massive primary star rather than the secondary. This is in contrast with the preferential mass accretion onto the secondary previously found numerically for protobinaries accreting from an unmagnetized envelope, which tends to drive the mass ratio toward unity. In addition, the magnetic field greatly modifies the morphology and dynamics of the protobinary accretion flow. It suppresses the traditional circumstellar and circumbinary disks that feed the protobinary in the non-magnetic case; the binary is fed instead by a fast collapsing pseudodisk whose rotation is strongly braked. The magnetic braking-driven inward migration of binaries from their birth locations may be constrained by high-resolution observations of the orbital distribution of deeply embedded protobinaries, especially

  19. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    SciTech Connect (OSTI)

    Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA (United States); Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Theoretical Institute for Advanced Research in Astrophysics, Taipei, Taiwan (China)

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  20. Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will vary depending on the weight, shape, and size of the ... Loss of inertia due to braking and energy losses due to ... 2-4% Aerodynamic Losses 4-10% 15-22% Auxiliary Loads 7-8% ...

  1. Review of thermally regenerative electrochemical systems. Volume I. Synopsis and executive summary

    SciTech Connect (OSTI)

    Chum, H. L.; Osteryoung, R. A.

    1980-08-01

    Thermally regenerative electrochemical systems (TRES) are closed systems that convert heat into electricity in an electrochemical heat engine that is Carnot cycle limited in efficiency. Past and present work on such systems is reviewed. Two broad classes of TRES are based on the types of energy inputs required for regeneration: thermal alone and coupled thermal and electrolytic. The thermal regeneration alone encompasses electrochemical systems (galvanic or fuel cells) in which one or more products are formed. The regeneration can be performed in single or multiple steps. The compounds include metal hydrides, halides, oxides, chalcogenides, and alloys or bimetallic systems. The coupled thermal and electrolytic regeneration encompasses electrochemical systems (galvanic or fuel cells) regenerated by electrolysis at a different temperature or different pressure. Examples include metal halides and water. Thermogalvanic or nonisothermal cells are included in this category. Also included are electrochemical engines in which the working electroactive fluid is isothermally expanded through an electrolyte. TRES cover temperature ranges from about 20/sup 0/C to 1000/sup 0/C. Engines with power outputs of 0.1 mW/cm/sup 2/ to 1 W/cm/sup 2/ have been demonstrated. Recommendations are made of areas of research in science and engineering that would have long-range benefit to a TRES program.

  2. Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System

    SciTech Connect (OSTI)

    James F. McElroy; Darren B. Hickey; Fred Mitlitsky

    2006-09-30

    Single cell solid oxide regenerative fuel cells (SORFCs) have been demonstrated for over 1000 hours of operation at degradation rates as low as 0.5% per thousand hours for current densities as high as 300mA/cm{sup 2}. Efficiency levels (fuel cell power out vs. electrolysis power in) have been demonstrated in excess of 80% at 100mA/cm{sup 2}. All testing has been performed with metallic based interconnects and non-noble metal electrodes in order to limit fabrication costs for commercial considerations. The SORFC cell technology will be scaled up to a 1kW sized stack which will be demonstrated in Year 2 of the program. A self contained SORFC system requires efficient thermal management in order to maintain operating temperatures during exothermic and endothermic operational modes. The use of LiF as a phase change material (PCM) was selected as the optimum thermal storage medium by virtue of its superior thermal energy density by volume. Thermal storage experiments were performed using LiF and a simulated SORFC stack. The thermal storage concept was deemed to be technically viable for larger well insulated systems, although it would not enable a high efficiency thermally self-sufficient SORFC system at the 1 kW level.

  3. Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process

    SciTech Connect (OSTI)

    Compere, A L; Griffith, William {Bill} L

    2009-04-01

    This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

  4. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    SciTech Connect (OSTI)

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  5. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOE Patents [OSTI]

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  6. Alternative Fuels Data Center: Hydraulic Hybrids: A Success in...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    is paying off with fuel savings, lower maintenance costs, and increased productivity. ... The hydraulic regenerative braking system also means huge savings in brake maintenance. ...

  7. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect (OSTI)

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as

  8. New Regenerative Cycle for Vapor Compression Refrigeration (Technical...

    Office of Scientific and Technical Information (OSTI)

    provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. ...

  9. TV picture-tube manufacturer uses regenerative catalytic oxidizer to reduce VOC emissions

    SciTech Connect (OSTI)

    1995-11-01

    Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depth comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.

  10. AmeriFlux US-SP1 Slashpine-Austin Cary- 65yrs nat regen

    SciTech Connect (OSTI)

    Martin, Tim

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SP1 Slashpine-Austin Cary- 65yrs nat regen. Site Description - The ACMF site is a 67 hectare naturally regenerated Pinus palustris and Pinus elliottii mixed stand.

  11. MAGNETIC BRAKING FORMULATION FOR SUN-LIKE STARS: DEPENDENCE ON DIPOLE FIELD STRENGTH AND ROTATION RATE

    SciTech Connect (OSTI)

    Matt, Sean P.; Pinsonneault, Marc H.; Greene, Thomas P. E-mail: kmac@ucar.edu E-mail: thomas.p.greene@nasa.gov

    2012-08-01

    We use two-dimensional axisymmetric magnetohydrodynamic simulations to compute steady-state solutions for solar-like stellar winds from rotating stars with dipolar magnetic fields. Our parameter study includes 50 simulations covering a wide range of relative magnetic field strengths and rotation rates, extending from the slow- and approaching the fast-magnetic-rotator regimes. Using the simulations to compute the angular momentum loss, we derive a semi-analytic formulation for the external torque on the star that fits all of the simulations to a precision of a few percent. This formula provides a simple method for computing the magnetic braking of Sun-like stars due to magnetized stellar winds, which properly includes the dependence on the strength of the magnetic field, mass loss rate, stellar radius, surface gravity, and spin rate, and which is valid for both slow and fast rotators.

  12. Regenerative fuel cell systems R{ampersand}D

    SciTech Connect (OSTI)

    Mitlitsky, F., LLNL

    1998-06-24

    The LLNL effort to develop electrochemical energy storage systems occupies a crucial regime in the hydrogen technologies` adoption process, between pure research/conceptual feasibility and near-term demonstrations of commercial systems This effort leaves as many component innovations as possible to others, and seeks to integrate the best systems from the highest performance, readily procurable components. The integration research and component testing being undertaken has already uncovered many operational and design issues that might hinder the adoption of breakthrough technologies being funded by the DOE and NASA A focus on delivering energy storage to the most weight-sensitive applications (aircraft and spacecraft) ensures that key technologies will be properly implemented and combined to perform in real, upcoming vehicle tests. The two key technologies that LLNL is aggressively implementing are proton exchange membrane (PEM) -based RFCs and high-performance tankage for storing compressed hydrogen and oxygen gases Tankage built from available technologies must be lightweight and must cope with volume penalties, gas permeation, and moisture handling to adequately furnish the breakthrough levels of specific energy that RFC systems offer Such multidisciplinary specifications have yet to be combined in the form of a commercial product. Were it not fat LLNL`s role as integrator leading industry, and as technical monitor promoting relevant specifications from within DOE-funded demonstration efforts in industry, such functional combinations of component performances would be years lather than months away. In particular, the DOE PRDA funded at Thiokol is on track to deliver vehicle-compatible hydrogen test tanks to support the Ford P2000 demonstration vehicle early next year The supervision of and close interaction with this industrial demonstration project is one important example of the real effort DOE is sponsoring at LLNL to bridge research into demonstrations

  13. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  14. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F.

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  15. Experimental analysis of heat transfer characteristics and pressure drop through screen regenerative heat exchangers. Master's thesis

    SciTech Connect (OSTI)

    Wiese, J.L.

    1993-12-01

    This study investigated the effect on heat transfer and friction characteristics for screen regenerative heat exchangers with the screen thickness reduced by rolling. The experiments were performed on 250 and 325 mesh, 304 stainless steel screen using helium gas. Reynolds numbers, based on hydraulic radius, Re, were between 10 and 100. Both the Colburn factor, StPr(2/3), and friction factor, f, decreased as the screen thickness was reduced. A correlation was found for predicting friction factor, f. The drag coefficient per screen remained nearly unchanged for thicknesses reduced not more than 30 percent. The decrease in Colburn factor was significant for Re less than 40. For Re between 40 and 100 the decrease in Colburn factor was less than the experimental uncertainty. Regenerative Cooling, Regenerators, Cryogenic Engines, Screens (Woven Materials), Mesh, Stirling Cycle.

  16. Comparison of a regenerative thermal oxidizer to a rotary concentrator for gravure printer ketone emissions

    SciTech Connect (OSTI)

    Blocki, S.W.

    1996-12-31

    A large gravure printer was faced with choosing a control system to reduce ketone emissions. The volume of exhaust air requiring treatment was very large, making any system expensive to operate. The large system magnified the need to find the most cost-effective system including capital cost, operating cost, and periodic replacement cost. Future expandability and very high efficiency were required. Several proven control technologies were evaluated, including a recuperative oxidizer, a catalytic oxidizer, a stand-alone regenerative oxidizer, a rotary solvent concentrator, and a solvent recovery system. The most cost-effective system meeting the destruction requirements was achieved by integrating two technologies - a rotary solvent concentrator following by a small regenerative thermal oxidizer - into one unique and very flexible system. Operating costs used to evaluate each option are presented. Destruction and removal efficiency of the final system is presented. 3 figs., 4 tabs.

  17. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    SciTech Connect (OSTI)

    Yang, Jinghui E-mail: tg2342@columbia.edu; Gu, Tingyi E-mail: tg2342@columbia.edu; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-02-10

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters.

  18. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect (OSTI)

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    the method of moments, called Finite size domain Complete set of trial functions Method Of Moments (FCMOM) was used to solve the population balance equations. The PBE model was implemented in a commercial CFD code, Ansys Fluent 13.0. The code was used to test the model in some simple cases and the results were verified against available analytical solution in the literature. Furthermore, the code was used to simulate CO2 capture in a packed-bed and the results were in excellent agreement with the experimental data obtained in the packed bed. The National Energy Laboratory (NETL) Carbon Capture Unit (C2U) design was used in simulate of the hydrodynamics of the cold flow gas/solid system (Clark et al.58). The results indicate that the pressure drop predicted by the model is in good agreement with the experimental data. Furthermore, the model was shown to be able to predict chugging behavior, which was observed during the experiment. The model was used as a base-case for simulations of reactive flow at elevated pressure and temperatures. The results indicate that by controlling the solid circulation rate, up to 70% CO2 removal can be achieved and that the solid hold up in the riser is one of the main factors controlling the extent of CO2 removal. The CFD/PBE simulation model indicates that by using a simulated syngas with a composition of 20% CO2, 20% H2O, 30% CO, and 30% H2, the composition (wet basis) in the reactor outlet corresponded to about 60% CO2 capture with and exit gas containing 65% H2. A preliminary base-case-design was developed for a regenerative MgO-based pre-combustion carbon capture process for a 500 MW IGCC power plant. To minimize the external energy requirement, an extensive heat integration network was developed in Aspen/HYSYS® to produce the steam required in the regenerator and heat integration. In this process, liquid CO2 produced at 50 atm can easily be pumped and sequestered or stored. The preliminary economic analyses indicate that the

  19. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  20. Regenerative amplification of femtosecond pulses: Design and construction of a sub-100fs, {mu}J laser system

    SciTech Connect (OSTI)

    Schumacher, A.B. |

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level, while the pulse duration remains below 100fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  1. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect (OSTI)

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  2. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    SciTech Connect (OSTI)

    Bernstein, D.M.; Rogers, R.A.; Sepulveda, R.; Kunzendorf, P.; Bellmann, B.; Ernst, H.; Creutzenberg, O.; Phillips, J.I.

    2015-02-15

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite quickly

  3. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Batteries for Large Scale Energy Storage

    SciTech Connect (OSTI)

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  8. Electrospun Nafion®/Polyphenylsulfone composite membranes for regenerative Hydrogen bromine fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Jun; Wycisk, Ryszard; Pintauro, Peter N.; Yarlagadda, Venkata; Van Nguyen, Trung

    2016-02-29

    Here, the regenerative H2/Br2-HBr fuel cell, utilizing an oxidant solution of Br2 in aqueous HBr, shows a number of benefits for grid-scale electricity storage. The membrane-electrode assembly, a key component of a fuel cell, contains a proton-conducting membrane, typically based on the perfluorosulfonic acid (PFSA) ionomer. Unfortunately, the high cost of PFSA membranes and their relatively high bromine crossover are serious drawbacks. Nanofiber composite membranes can overcome these limitations. In this work, composite membranes were prepared from electrospun dual-fiber mats containing Nafion® PFSA ionomer for facile proton transport and an uncharged polymer, polyphenylsulfone (PPSU), for mechanical reinforcement, and swelling control.more » After electrospinning, Nafion/PPSU mats were converted into composite membranes by softening the PPSU fibers, through exposure to chloroform vapor, thus filling the voids between ionomer nanofibers. It was demonstrated that the relative membrane selectivity, referenced to Nafion® 115, increased with increasing PPSU content, e.g., a selectivity of 11 at 25 vol% of Nafion fibers. H2-Br2 fuel cell power output with a 65 m thick membrane containing 55 vol% Nafion fibers was somewhat better than that of a 150 m Nafion® 115 reference, but its cost advantage due to a four-fold decrease in PFSA content and a lower bromine species crossover make it an attractive candidate for use in H2/Br2-HBr systems.« less

  9. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOE Patents [OSTI]

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  10. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; et al

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  11. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    SciTech Connect (OSTI)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  12. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    SciTech Connect (OSTI)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; Burger, Maximilian; Schaefer, Dirk J.; Wolff, Thomas; Gurke, Lorenz; Briquez, Priscilla S.; Larsson, Hans M.; Gianni-Barrera, Roberto; Hubbell, Jeffrey A.; Banfi, Andrea

    2015-04-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.

  13. An electromagnetic and thermodynamic lumped parameter model of an explosively driven regenerative magnetohydrodynamic generator

    SciTech Connect (OSTI)

    Morrison, J.L.

    1992-12-01

    The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.

  14. Operation of the 25 kW NASA Lewis Solar Regenerative Fuel Cell Testbed Facility

    SciTech Connect (OSTI)

    Voecks, G.E.; Rohatgi, N.K.; Moore, S.H.

    1996-12-31

    Assembly of the NASA Lewis Research Center Solar Regenerative Fuel Cell Testbed Facility has recently been completed and system testing is in progress. This facility includes the integration of 50 kW photovoltaic solar cell arrays, a 25 kW proton exchange membrane (PEM) electrolysis unit, four 5 kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition. The purpose of this facility is multi-faceted, but was originally intended to serve as a testbed for evaluating a closed-loop powerplant for future NASA extended life support operations, such as a Lunar outpost, and also as a terrestrial powerplant example for remote or continuous back-up support operations. The fuel cell and electrolyzer subsystems design and assembly were conducted by the Jet Propulsion Laboratory (JPL), the photovoltaic arrays and electrical interconnect to the electrolyzer were provided by the US Navy/China Lake Naval Weapons Center, and testing and operations are being carried out by JPL.

  15. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  16. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  17. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    SciTech Connect (OSTI)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon; Kim, Youngkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.

  18. Adipose-derived stem cells retain their regenerative potential after methotrexate treatment

    SciTech Connect (OSTI)

    Beane, Olivia S.; Fonseca, Vera C.; Darling, Eric M.

    2014-10-01

    In musculoskeletal tissues like bone, chemotherapy can impair progenitor cell differentiation and proliferation, resulting in decreased bone growth and mineralization throughout a patient's lifetime. In the current study, we investigated the effects of chemotherapeutics on adipose-derived stem cell (ASC) function to determine whether this cell source could be a candidate for repairing, or even preventing, chemotherapy-induced tissue damage. Dose-dependent proliferation rates of ASCs and normal human fibroblasts (NHFs) were quantified after treatment with cytarabine (CY), etoposide (ETO), methotrexate (MTX), and vincristine (VIN) using a fluorescence-based assay. The influence of MTX on the multipotency of ASCs and freshly isolated stromal vascular fraction (SVF) cells was also evaluated using lineage-specific stains and spectrophotometry. ASC and NHF proliferation were equally inhibited by exposure to CY and ETO; however, when treated with MTX and VIN, ASCs exhibited greater resistance. This was especially apparent for MTX-treated samples, with ASC proliferation showing no inhibition for clinically relevant MTX doses ranging from 0.1 to 50 μM. Additional experiments revealed that the differentiation potential of ASCs was not affected by MTX treatment and that upregulation of dihydrofolate reductase possibly contributed to this response. Moreover, SVF cells, which include ASCs, exhibited similar resistance to MTX impairment, with respect to cellular proliferation, clonogenicity, and differentiation capability. Therefore, we have shown that the regenerative properties of ASCs resist the cytotoxicity of MTX, identifying these cells as a potential key for repairing musculoskeletal damage in patients undergoing chemotherapy. - Highlights: • Long-term effects of chemotherapeutics can include musculoskeletal dysfunction. • A screen of common drugs showed disparate effects on ASCs and fibroblasts. • One drug, methotrexate, did not impair ASC growth characteristics

  19. ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  20. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Energy Overview Charlie McMillan, Director of Los Alamos National Laboratory 0:50 Director McMillan on energy security With energy use increasing across the nation and the world, Los Alamos National Laboratory is using its world-class scientific capabilities to enhance

  1. Advanced research in solar-energy storage

    SciTech Connect (OSTI)

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  2. Batteries and energy systems

    SciTech Connect (OSTI)

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  3. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Pajarito Powder, LLC, a fuel-cell-catalyst company based in Albuquerque, is one of the voucher recipients that will partner with Los Alamos. Fuel-cell technology companies win small-business aid Pajarito Powder, LLC, (Albuquerque), NanoSonic (Pembroke, Va.)

  4. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  5. Vehicles | Open Energy Information

    Open Energy Info (EERE)

    our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution...

  6. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  7. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  8. An analytical approach to multi-cylinder regenerative machines with application to 3-cylinder heat-aided Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, Sumio; Fujishima, Ichiro; Corey, J.; Isshiki, Naotsugu

    1996-12-31

    This paper describes a method for analysis and optimization of multi-cylinder regenerative machines. The authors have devised this method in a project at KUBOTA to develop an improved gas engine-driven heat pump using both shaft power and exhaust heat sources. Based on combinations of included Stirling cycles, this analytical approach allows use of well-established and validated Stirling simulation models to optimize partial systems. The technique further provides a method of integrating such optimal partial-system Stirling cycles into a complex combination system. It is shown that this remains an optimum solution for the three-cylinder heat-assisted heat pump case. Results from hardware tests of the main Stirling heat pump cycle (2-cylinders) are given and compared with analytical expectations using Sage simulation code. This is extended to validate Sage modeling of 3-cylinder machines.

  9. FVB Energy Inc. Technical Assistance Project

    SciTech Connect (OSTI)

    DeSteese, John G.

    2011-05-17

    The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

  10. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect (OSTI)

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  11. Hydropower Vision - U.S. Department of Energy | Department of Energy

    Energy Savers [EERE]

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

    How

  12. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  13. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

  14. How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Wind Turbine Works How a Wind Turbine Works June 20, 2014 - 9:09am Addthis How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor

  15. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  16. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    SciTech Connect (OSTI)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T.; Jhaveri, Hiral M.; Mishra, Gyan C.; Wani, Mohan R.

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  17. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  18. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  19. Research and Development of High-Power and High-Energy Electrochemical Storage Devices

    SciTech Connect (OSTI)

    No, author

    2014-04-30

    validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits

  20. Development of a He{sup 3}−He{sup 4} sub Kelvin active magnetic regenerative refrigerator (AMRR) with no moving parts

    SciTech Connect (OSTI)

    Jahromi, A. E.; Miller, F. K.

    2014-01-29

    Current state of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin cooling over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. We propose an active Magnetic Regenerative Refrigerator (AMRR) that uses a Superfluid Magnetic Pump (SMP) to circulate liquid He{sup 3}−He{sup 4} through a magnetic regenerator to provide the necessary cooling at sub-Kelvin temperatures. Such system will be capable of distributing the cooling load to a relatively large array of objects. One advantage of using a fluid for heat transfer in such systems is to isolate components such as the superconducting magnets from detectors that are sensitive to magnetic fields. Another advantage of the proposed tandem AMRR is that it does not need Gas Gap Heat Switches (GGHS) to transfer heat during various stages of the magnetic cooling. Our proposed system consists of four superconducting magnets, one superleak, and three heat exchangers. It will operate continuously with no moving parts and it will be capable of providing the necessary cooling at sub-Kelvin temperatures for future space science applications.

  1. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  2. Sandia Energy Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity http:energy.sandia.govdoe-international-energy-stora...

  3. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  4. Utilization of rotor kinetic energy storage for hybrid vehicles

    SciTech Connect (OSTI)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  5. Maass Prim Sola | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Maass Prim Sola Place: China Sector: Solar Product: Joint venture between Maass Regenerative Energien and Prim Sola to secure the delivery of...

  6. Sandia Energy Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Energy Program Wins Two Federal Laboratory Consortium 2015 Awards http:energy.sandia.govsandias-energy-program-wins-two-federal-laboratory-consortium-2015-awards...

  7. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Surety, Facilities, Global Climate & Energy, Grid Integration, Mesa del Sol, Microgrid, News, News & Events, Renewable Energy, SMART Grid, Solar Mesa del Sol Unveils First...

  8. Sandia Energy Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  9. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  10. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  11. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  12. Re Gen | Open Energy Information

    Open Energy Info (EERE)

    Re Gen Jump to: navigation, search Name: Re-Gen Place: United Kingdom Product: A biogas power generation company acquired by Infinis in January 2007, with 43.5MW current...

  13. Department of Energy - Energy Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    25 en Indian Energy Blog Archive http:energy.govindianenergylistingsindian-energy-blog-archive energy-blog-archive"...

  14. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  15. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Power Clicks with Geochemistry Energy, News, News & Events, Nuclear Energy Computer Power Clicks with Geochemistry Sandia is developing computer models that show how...

  16. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  17. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  18. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  19. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  20. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  1. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  2. Aquion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  3. Helium Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Helium Energy Place: Spain Sector: Renewable Energy Product: Spain-based renewable energy development company. References: Helium Energy1...

  4. Semplice Energy | Open Energy Information

    Open Energy Info (EERE)

    Semplice Energy Jump to: navigation, search Name: Semplice Energy Place: Reading, United Kingdom Sector: Efficiency, Renewable Energy Product: Semplice Energy is an energy...

  5. Vision Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Vision Energy Place: Cincinnati, Ohio Zip: 45227 Sector: Wind energy Product: Vision Energy focuses on wind energy development and...

  6. Best Energy | Open Energy Information

    Open Energy Info (EERE)

    Best Energy Place: Italy Sector: Renewable Energy Product: Italy-based energy company engaged in the development of renewable energy projects. References: Best Energy1 This...

  7. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  8. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  9. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  10. ocean energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  11. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  12. Sandia Energy Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  13. Sandia Energy Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  14. Energy Planning

    Broader source: Energy.gov (indexed) [DOE]

    Energy Planning Agenda * What is energy planning? * The process * The plan * Strategic Energy Planning (SEP) Workbook * Other resources 2 What is Energy Planning? * Brings desired ...

  15. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy Addthis Description See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity. Topic Geothermal Text Version Below is the text version for the Energy 101: Geothermal Energy video. The words "Energy 101: Geothermal Energy"

  16. Regulation control and energy management scheme for wireless power transfer

    DOE Patents [OSTI]

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  17. Solgal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Solgal Energy Name: Solgal Energy Address: Israel Place: Alon Hagalil Zip: 17920 Product: Renewable energy solutions Year Founded: 2008...

  18. Simple Energy | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Simple Energy AgencyCompany Organization: Simple Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Softwaremodeling tools User...

  19. EVZA Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: EVZA Energy Place: Germany Sector: Renewable Energy Product: Waste disposal comapany involved with renewable energy in the form of...

  20. Also Energy | Open Energy Information

    Open Energy Info (EERE)

    Also Energy Jump to: navigation, search Logo: Also Energy Name: Also Energy Address: PO Box 17877 Place: Boulder, Colorado Zip: 80308 Region: Rockies Area Product: Renewable Energy...

  1. Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Energy Efficiency Below are resources for Tribes on energy efficiency. ... Source: Northwest SEED. Home and Building Technologies Basics Learn about energy ...

  2. Nature Energie | Open Energy Information

    Open Energy Info (EERE)

    Nature Energie Jump to: navigation, search Name: Nature Energie Place: France Sector: Solar, Wind energy Product: French developer of wind and solar energy projects. References:...

  3. JMB Energie | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: JMB Energie Place: Marseilles, France Sector: Solar, Wind energy Product: JMB Energie is producer of green energy primarily through the...

  4. Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Energy Department Announces Six Clean Energy Projects through Partnership with Israel U.S. Department of Energy and Israel's Ministry of National Infrastructure, Energy and...

  5. Leonardo Energy | Open Energy Information

    Open Energy Info (EERE)

    Area: Energy Efficiency, Renewable Energy, Transportation Resource Type: Webinar, Training materials Website: www.leonardo-energy.org References: Leonardo Energy 1 "Leonardo...

  6. Energy Insight | Open Energy Information

    Open Energy Info (EERE)

    Energy Insight Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Insight AgencyCompany Organization: Tendril Connect Sector: Energy Focus Area: Energy Efficiency...

  7. Conexia Energy | Open Energy Information

    Open Energy Info (EERE)

    Conexia Energy Jump to: navigation, search Name: Conexia Energy Place: Aix-en-Provence, France Zip: 13857 Sector: Renewable Energy Product: French renewable energy consulting and...

  8. Raz Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Raz Energy Place: Carolles, France Zip: 50740 Sector: Renewable Energy Product: Carolles-based renewable energy consultancy and project...

  9. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  10. Land Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Land Energy Place: North Yorkshire, United Kingdom Zip: YO62 5DQ Sector: Biomass, Renewable Energy Product: A renewable-energy company...

  11. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education | Department of Energy Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education News and Updates Check out our new Energy Literacy video series! The Energy Literacy Framework is also available in Spanish: Conocimiento de Energía. What is Energy Literacy? Energy Literacy is an understanding

  12. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  1. 21st Century Locomotive Technology: 2003 Annual Technical Status Report DOE/AL68284-TSR03

    SciTech Connect (OSTI)

    Lembit Salasoo

    2004-01-09

    The 21st Century Locomotive program objective is to develop 25% more efficient freight locomotives by 2010. Diesel engine-related research addresses advanced fuel injection, electric turbocharger and abradable seals. Assembly of a common rail fuel injection test system is underway, and a CFD combustion model has been validated. An electrically assisted turbocharger has been constructed and operated, meeting the generator mode design rating. System characterization and optimization is ongoing. Candidate abradable seal materials have been identified and test coupons prepared. Locomotive system-related research addresses capturing, storing and utilizing regenerative braking energy in a hybrid locomotive, and fuel optimization control. Hybrid locomotive energy storage requirements have been identified and studies on specific energy storage solutions are in progress. Energy management controls have been defined and testing initiated. Train and track parameter identification necessary for fuel optimization has been demonstrated.

  2. Duke Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duke Energy - U.S. Operations 55 % 38 % Franchised Electric & Gas Duke Energy Renewables 2

  3. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect (OSTI)

    Rick Schmoyer, RLS

    2004-12-03

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other

  4. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  5. Sandia Energy Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian's Receive Hydrogen and Fuel Cell Program Achievement Award http:energy.sandia.govsandians-receive-hydrogen-and-fuel-cell-program-achievement-award-2 http:...

  6. Sandia Energy Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ss-voucher-pilot-opensfeed 0 Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successf...

  7. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  8. Sandia Energy Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  9. Energy 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literacy » Energy 101 Energy 101 What is the Energy 101 Initiative? The Energy 101 Dialogue Series: Dialogue #1: Energy in the Classroom Webinar Slides Increasing opportunities for students learning about energy in the Nation's two-year and four-year colleges and universities The Energy 101 initiative is an effort to support energy education in the post-secondary setting to increase students' opportunities to enter the energy workforce, ensuring that the Nation excels in energy research and

  10. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  11. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  12. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  13. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful

  14. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Conference Energy Literacy Linda Silverman Education and Workforce Development Department of Energy July 30, 2014 2 | Energy Education and Workforce Development eere.energy.gov * Setting the Context: Global Energy Challenge * Energy Literacy Principles * Energy 101 * Possible Uses Agenda 3 | Energy Education and Workforce Development eere.energy.gov * Carbon neutral; * Diverse, homegrown supply options; * Sustainable use of natural resources; * Creates American jobs; * Accessible,

  15. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov Energy Literacy I want to talk about building a sustainable energy future.... The United States is committed to taking action to meet the energy and climate challenge. Secretary Chu, December 6, 2010 Presenter: Matthew Inman Albert Einstein Distinguished Educator Fellow US Department of Energy, EERE-EEWD matthew.inman@ee.doe.gov 2 | Energy Education and Workforce Development eere.energy.gov Energy Literacy Energy Literacy Promote Energy Literacy The Department will actively participate in

  16. Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Photo courtesy of Dennis Schroeder, NREL 24348 Photo courtesy of Dennis Schroeder, NREL 24348 Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy Systems Analysis, and Portfolio Impacts Analysis. The Energy Analysis website is designed to help energy experts and policymakers access energy analysis resources related to renewable energy and energy efficiency. It contains

  17. Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Utilize energy efficiency to improve your industrial customer's business performance without the cost of major capital improvements. Energy efficiency is not...

  18. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  19. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the full transcript of the Energy Efficiency video Learn More Cool School Challenge Money Saving Energy Efficiency Tips Alliance to Save Energy: Consumer Tips Bonneville...

  20. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  1. Energy Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Analysis Energy Analysis Photo courtesy of Dennis Schroeder, NREL 24348 Photo courtesy of Dennis Schroeder, NREL 24348 Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy Systems Analysis, and Portfolio Impacts Analysis. The Energy Analysis website is designed to help energy experts and policymakers access energy analysis resources related to renewable energy and energy efficiency. It

  2. Tenax Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Tenax Energy Name: Tenax Energy Place: Darwin, NT Country: Australia Zip: 0801 Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Year Founded:...

  3. Ergon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ergon Energy Place: Rockhampton, Queensland, Australia Zip: 4700 Product: Energy distribution and retailer focused on Queensland....

  4. Colexon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Colexon Energy Place: Hamburg, Hamburg, Germany Zip: 20354 Sector: Solar, Wind energy Product: Germany-based PV system integrator and solar...

  5. ENRO Energie | Open Energy Information

    Open Energy Info (EERE)

    Energie Jump to: navigation, search Name: ENRO Energie Place: Essen, Germany Zip: 45128 Sector: Geothermal energy Product: Germany-based company engaged in the design and...

  6. Positive Energy | Open Energy Information

    Open Energy Info (EERE)

    Positive Energy Name: Positive Energy Address: 3201 Calle Marie Place: Santa Fe, New Mexico Zip: 87507 Sector: Solar Product: Renewable energy products and services Phone Number:...

  7. Veolia Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy 1 Veolia Energy is a company located in Oklahoma City, with offices in Cambridge (Massachusetts), Houston, Boston, and New York City. Veolia Energy is a large...

  8. Zapotec Energy | Open Energy Information

    Open Energy Info (EERE)

    Zapotec Energy Jump to: navigation, search Name: Zapotec Energy Place: Cambridge, MA Website: www.zapotecenergy.com References: Zapotec Energy1 Information About Partnership with...

  9. Tigo Energy | Open Energy Information

    Open Energy Info (EERE)

    Tigo Energy Jump to: navigation, search Name: Tigo Energy Place: Los Gatos, California Zip: 95032 Sector: Solar Product: Tigo Energy builds hardware and software intelligence into...

  10. Prudent Energy | Open Energy Information

    Open Energy Info (EERE)

    ss":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: VRB Energy Storage System1 Prudent Energy Inc. (Prudent Energy), with offices in Vancouver,...