National Library of Energy BETA

Sample records for refusegenerated chp upward

  1. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview Waste CHP plants can be used in the electricity market for upward regulation by bypassing the steam turbine. The technical design for this...

  2. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167, 8.703492 Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  3. CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships (CHP TAPs) promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies/concepts throughout the United States. Key services of the CHP TAPs include: Market Opportunity Analyses - Supporting analyses of CHP market opportunities in diverse markets including industrial,

  4. CHP Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment CHP Deployment DOE Combined Heat and Power Installation Database DOE Combined Heat and Power Installation Database The searchable combined heat and power (CHP) ...

  5. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal ...

  6. The Market for CHP in Florida, August 2008

    Broader source: Energy.gov [DOE]

    Presentation overview of CHP benefits, existing CHP installations, CHP potential, and emerging trends

  7. 2015 CHP Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 CHP Conference 2015 CHP Conference September 14, 2015 9:00AM EDT to September 15, 2015 5:00PM EDT 2015 CHP Conference...

  8. CHP Technical Assistance Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the...

  9. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA CHP Partnership Meeting, October 2002 | Department of Energy rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 This is an announcement of the 3rd Annual National CHP Roadmap Workshop which was held in conjunction with the CHP and Distributed Energy Resources for Federal Facilities Workshop, October 23-25,

  10. 2008 EPA CHP Partnership Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08 EPA CHP Partnership Update 2008 EPA CHP Partnership Update 2008 EPA CHP Partnership Update PDF icon meeting52508ruiz.pdf More Documents & Publications The International CHP...

  11. CHP R&D Project Descriptions

    Broader source: Energy.gov [DOE]

    The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

  12. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  13. Combined Heat and Power (CHP) Grant Program

    Broader source: Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  14. CHP Project Development Handbook (U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The ...

  15. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the ... Solutions, October 2005 5th Annual CHP Roadmap Workshop Breakout Group Results, ...

  16. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Iron and steel mills, aluminum production, and fabricated metals manufacturing are all good candidates ... 2 35 Department of Energy 65 New Mexico New Mexico has 1,140 MW of CHP ...

  17. IE CHP | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Product: UK power producer Scottish and Southern Energy (SSE) and UK fuel cell developer Intelligent Energy have formed a joint venture to develop fuel cell-based CHP...

  18. CHP RAC Handout_092415.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one...

  19. Combined Heat and Power (CHP) - CHP Supplies Clean and Reliable Energy

    SciTech Connect (OSTI)

    2008-10-01

    Overview of the CHP benefits, opportunity, barriers to deployment, technology development and validation.

  20. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. Advance the state-of-the-art of CHP CHP offers ...

  1. CHP Deployment Program: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment Program: AMO Technical Assistance Overview Claudia Tighe This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Combined Heat a Power (CHP): History * First developed by Thomas Edison in 1880s and is one of the world's most common form of energy recycling * Since the '70s CHP used mostly by large industrials (PURPA set the stage) * Today there are hundreds of CHP facilities in the U.S. in both industrial, institutional and

  2. Review of CHP Technologies, October 1999

    Broader source: Energy.gov [DOE]

    This report describes the leading CHP technologies, their efficiency, size, cost to install and maintain, fuels and emission characteristics.

  3. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional and Local Energy Issues, September 2006 | Department of Energy 6-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 This Action Agenda is intended to provide the situational context in which the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the upcoming year

  4. CHP Project Development Handbook (U.S. Environmental Protection Agency CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership) | Department of Energy Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The mission of the U.S. Environmental Protection Agency's (EPA's) Combined Heat and Power (CHP) Partnership is to increase the use of cost-effective, environmentally beneficial CHP projects nationwide. To accomplish this mission, the Partnership has developed resources to assist energy

  5. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  6. Breakout Session Summary Reports National CHP Workshop- One Year Later, Baltimore, October 2001

    Broader source: Energy.gov [DOE]

    Developing CHP Markets and Technologies , Eliminating Regulatory and Institute Barriers, Raising CHP Awareness

  7. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2009 | Department of Energy 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing and Urban Development's (HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for Combined Heat and Power in Multifamily Housing" describes the U.S.

  8. California CHP Market Assessment, July 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the California Energy Commission's July 2009 Combined Heat and Power Workshop. PDF icon 2009-07-15_ICF_CHP_Market_Assessment.pdf More Documents & Publications CHP Assessment, California Energy Commission, October 2009 2008 CHP Baseline Assessment and Action Plan for the California Market CHP: Connecting the Gap between

  9. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006

  10. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, ...

  11. Enabling More Widespread Use of CHP in Light Industrial, Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems ADVANCED MANUFACTURING OFFICE Enabling More Widespread Use of CHP in Light Industrial, ...

  12. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  13. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  14. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS -...

  15. Yantai Tianli Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianli Biomass CHP Co Ltd Jump to: navigation, search Name: Yantai Tianli Biomass CHP Co Ltd Place: Yantai, Shandong Province, China Zip: 265300 Sector: Biomass Product:...

  16. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy Systems for Landfills and Wastewater Treatment ...

  17. Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in industrial energy efficiency (IEE), including C ombined Heat and Power (CHP) ... prevent otherwise economic investments in IEE and CHP from occurring. * The AdministraOon ...

  18. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  19. 5th Annual CHP Roadmap Workshop Breakout Group Results, September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from ...

  20. Federal Strategies to Increase the Implementation of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 ...

  1. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  2. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  3. Development of an Advanced Combined Heat and Power (CHP) System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System ...

  4. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Producers Ltd CHP Jump to: navigation, search Name: Clean Hydrogen Producers Ltd (CHP) Place: Geneva, Switzerland Zip: 1209 Sector: Hydro, Hydrogen, Solar Product: Swiss...

  5. State Opportunities for Action: Update of States' CHP Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon chpie0321003.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 Challenges Facing CHP: A ...

  6. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, ...

  7. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  8. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities (November 2007) More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with

  9. CHP R&D Project Descriptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP R&D Project Descriptions CHP R&D Project Descriptions The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below: Advanced Reciprocating Engine Systems Advanced Reciprocating Engine Systems (ARES) The ARES program is designed to promote separate, but parallel engine development

  10. NYSERDA's CHP Program Guide, 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NYSERDA's CHP Program Guide, 2010 NYSERDA's CHP Program Guide, 2010 As one of the nation's leading CHP supporters, the New York State Energy Research and Development Authority (NYSERDA) provides assistance to customers as well as CHP suppliers. This 2010 guide offers information on NYSERDA programs available for each stage of the project lifecycle. PDF icon nyserda_chp_program_guide.pdf More Documents & Publications NYSERDA's RPS Customer Sited Tier Fuel Cell Program Solar PV Incentive

  11. expanding_chp_in_your_state.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc Microsoft Office document icon expanding_chp_in_your_state.doc More Documents & Publications Combined Heat and Power: Expanding CHP in Your State Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps

  12. DOE CHP Technical Assistance Partnerships Handout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined heat and power (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one energy-efficient step. Highlighting the benefits of CHP as an energy resource, Executive Order 13624 established a national goal of 40 gigawatts of new

  13. HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2005 | Department of Energy 1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 Questions and Answers (Q&A) on CHP for Apartment Buildings are adapted from the "Cogeneration Manual: A practical guide for evaluating and selecting equipment to be used in multi-family housing," issued by New York City in June 1989. The manual was developed to assist managers,

  14. CHP Performance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Combined Heat and Power (CHP) systems for summer on-peak demand reduction and electricity generation. Total budget of 36,000,000 is available for the program and is...

  15. Harrods commissions new CHP station

    SciTech Connect (OSTI)

    Mullins, P.

    1994-04-01

    Three new combined heat and power (CHP) sets have recently been commissioned at Harrods, the world-famous department store in the heart of London's fashionable Knightsbridge district. The sets provide all the electricity needed by the store for lighting, heating and air-conditioning and are powered by Ruston 6RK270 turbocharged, charge-air-cooled diesel engines each producing 1392 kW at 750 r/min. These high power-to-weight ratio units were chosen in view of severe engine room space limitations. Low-grade waste heat is extracted from the engine jacket water to preheat water for three new boilers supplying some 1600 kg/h of steam for process heat to the store. The engines drive Brush BJS HW 10 100/8 alternators and are fully automatic in operation through a Regulateurs Europa control system. Some 600 sensors feed data into a Satchwell Building Management System (BMS). In the event of a breakdown, the engine control system can be switched to manual. 5 figs.

  16. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  17. Small Scale CHP and Fuel Cell Incentive Program

    Broader source: Energy.gov [DOE]

     NOTE: As of December 11, 2015, New Jersey's Clean Energy Program's has temporarily ceased accepting applications for the Combined Heat & Power and Fuel Cell Program (CHP/FC). The CHP/FC...

  18. Modular CHP System for Utica College: Design Specification, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paper, April 2008 A Case for Commissioning of CHP Systems - Presentation, April 2008 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007

  19. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  20. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. PDF icon CHP and Bioenergy Systems for Landfills and

  1. CHP: Enabling Resilient Energy Infrastructure - Presentations from April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Webinar | Department of Energy - Presentations from April 2013 Webinar CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as an energy resource in the United States, the Obama Administration is supporting a National goal to achieve 40 gigawatts (GW) of new, cost-effective CHP by 2020. This set of presentations from an April 2013 webinar discusses the role for CHP

  2. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  3. CHP: A Clean Energy Solution, August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and useful thermal energy from a single fuel source. This paper provides a foundation for national discussions on effective ways to reach the 40 GW target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the

  4. New CHP Technical Assistance Partnerships Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Technical Assistance Partnerships Launched New CHP Technical Assistance Partnerships Launched October 21, 2013 - 12:00am Addthis Since 2003, the Energy Department has supported a set of regional centers to help organizations understand how combined heat and power (CHP) can improve their bottom lines and lower energy bills. Today, the Advanced Manufacturing Office announced the launch of seven regional CHP Technical Assistance Partnerships, the next generation of these centers. Located in

  5. 330 kWe Packaged CHP System with Reduced Emissions

    SciTech Connect (OSTI)

    Plahn, Paul; Keene, Kevin; Pendray, John

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  6. Accelerating CHP Deployment, United States Energy Association (USEA),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2011 | Department of Energy Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United States Energy Association (USEA) has attempted to be as inclusive and comprehensive as possible considering the diverse interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP deployment that are directed at

  7. Deployment of FlexCHP System

    SciTech Connect (OSTI)

    Cygan, David

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  8. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  9. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  10. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  11. Deployment of FlexCHP System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cygan Gas Technology Institute U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Goal  Develop a cost-effective gas turbine based CHP system that improves overall efficiency and meets California Air Resources Board (CARB) 2007 emission standards without catalytic exhaust gas treatment - on target  Objectives  Achieve

  12. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tariff Practices, 2006 | Department of Energy Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily, to

  13. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effective Energy Solutions for a Sustainable Future, December 2008 CHP: Effective Energy Solutions for a Sustainable Future, December 2008 Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its

  14. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of

  15. Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Dresser Waukesha, June 2011 | Department of Energy Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE Industrial Distributed

  16. State Opportunities for Action: Update of States' CHP Activities (ACEEE),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2003 | Department of Energy Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 American Council for an Energy-Efficient Economy (ACEEE) report brings up to date the review of state policies with regard to CHP that ACEEE completed in 2002. The report describes the current activities of states with programs during the initial survey and also reviews new

  17. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy 5 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop will set its priorities for the upcoming year and complete its goals. PDF icon 2005_nyc.pdf More Documents

  18. CHP Assessment, California Energy Commission, October 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Assessment, California Energy Commission, October 2009 CHP Assessment, California Energy Commission, October 2009 This California Energy Commission report quantifies the long-term market penetration potential for combined heat and power (CHP) and the degree to which CHP can reduce potential greenhouse gas (GHG1) emissions in support of the California Global Warming Solutions Act of 2006 (AB 32) (Assembly Bill 32, Núñez, Chapter 488, Statutes of 2006). The report also examines how

  19. CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 Presentation on CHP Integrated with Packaged Boilers, given by Carlo Castaldini of CMCE, Inc., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon packaged_boilers_castaldini.pdf More Documents & Publications CHP Integrated with Burners for

  20. CHP Research and Development - Presentation by Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory, June 2011 | Department of Energy Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge National Lab, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_rd_edwards.pdf More Documents

  1. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EMISSIONS - CASE STUDY, 2015 | Department of Energy SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 Frito-Lay North America, Inc., a division of PepsiCo, in cooperation with the Energy Solutions Center, demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. CHP is reducing the energy costs and environmental

  2. 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from the 5th Annual Combined Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach PDF icon 2004_austin.pdf More Documents & Publications Metrics for Measuring Progress Toward Implementation

  3. Consensus Action Items from CHP Roadmap Process, June 2001 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consensus Action Items from CHP Roadmap Process, June 2001 Consensus Action Items from CHP Roadmap Process, June 2001 This paper discusses three main objectives in the CHP roadmapping process: raising CHP awareness, eliminating regulatory and institutional barriers, and developing CHP markets and technologies. All levels of government are addressed including state, regional, and federal. PDF icon Consensus Action Items from 2001 CHP Roadmap.pdf More Documents & Publications

  4. 2008 CHP Baseline Assessment and Action Plan for the California Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Market 2008 CHP Baseline Assessment and Action Plan for the California Market This 2008 report provides an updated baseline assessment and action plan for combined heat and power (CHP) in California and identifies hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_california_2008.pdf More Documents & Publications 2008 CHP Baseline Assessment and Action Plan for the

  5. ITP Distributed Energy: The International CHP/DHC Collaborative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Arizona, California, New Mexico, Oregon, Utah, Montana, ... chemicals, refining and steel) which had high and ... CHP and small power production from renewables by ...

  6. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 ...

  7. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  8. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - ...

  9. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    SciTech Connect (OSTI)

    Tidball, Rick

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  10. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document presents the scorecard for the United States. PDF icon chpprofileunitedstates.pdf More Documents & Publications CHP in the Midwest - Presentation from the July ...

  11. Database (Report) of U.S. CHP Installations Incorporating Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 The primary ...

  12. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 This 2003 ...

  13. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores ...

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting ...

  15. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  16. Breakout Session Summary Reports National CHP Workshop - One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2001 One year following the Roadmap, this report from the Baltimore meeting ... More Documents & Publications 5th Annual CHP Roadmap Workshop Breakout Group Results, ...

  17. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop ...

  18. CHP in the Midwest - Presentation from the July 2010 Advancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the ...

  19. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, ...

  20. Opportunities for CHP at Wastewater Treatment Facilities: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon epawwtfopportunities.pdf More Documents & Publications 2008 EPA CHP Partnership Update Biogas Technologies and Integration with Fuel Cells Biomass Program Perspectives ...

  1. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability purposes, as well ...

  2. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008

    Broader source: Energy.gov [DOE]

    The paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, MA; Danbury, CT).

  3. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  4. CHP Education and Outreach Guide to State and Federal Government...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This ...

  5. Data Collection and Analyses of the CHP System at Eastern Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

  6. ITP Industrial Distributed Energy: 5th Annual CHP RoadmapWorkshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fuels" * Design tariffs as CHP friendly * Support the U.S. Green Building ... makers with the information needed to create CHP-friendly regulations and policies. ...

  7. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  8. 2008 CHP Baseline Assessment and Action Plan for the Nevada Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 08 CHP Baseline Assessment and Action Plan for the Nevada Market 2008 CHP Baseline Assessment and Action Plan for the Nevada Market The purpose of this report is to assess the current status of combined heat and power (CHP) in Nevada and to identify the hurdles that prevent the expanded use of CHP systems. The report summarizes the CHP "landscape" in Nevada, including the current installed base of CHP systems, the potential future CHP market, and the status of

  9. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  10. The Micro-CHP Technologies Roadmap, December 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Micro-CHP Technologies Roadmap, December 2003 The Micro-CHP Technologies Roadmap, December 2003 On June 11-12, 2003, in Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power (CHP) and residential buildings industries explored solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). This document, The Micro-CHP Technologies Roadmap, is a result of this

  11. 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hawaii Market 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market The purpose of this 2008 report is to provide an updated baseline assessment and action plan for combined heat and power (CHP) in Hawaii and to identify the hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_hawaii_2008.pdf More Documents & Publications Renewable Power Options for Electricity

  12. CHP at Post Street in Downtown Seattle

    SciTech Connect (OSTI)

    Gent, Stan

    2012-04-12

    The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steam loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.

  13. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility data and estimate paybacks. This paper describes the software and provides case studies of CHP installed in multi-family housing (e.g. Cambridge, Mass.; Danbury, Conn.). ...

  14. U.S. Department of Energy CHP Technical Assistance Partnerships

    Broader source: Energy.gov [DOE]

    This informational brochure on the Combined Heat and Power Technical Assistance Partnerships provides a summary of the key services the CHP TAPs offer as well as contact information for each region.

  15. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  16. CHP Industrial Bottoming and Topping Cycle with Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrates the CHP bottoming cycle. 3 In a bottoming cycle, which is also referred to as Waste Heat to Power (WHP), fuel is first used to provide thermal input to a furnace or...

  17. Flexible CHP System with Low NOx, CO and VOC Emissions

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will develop a FlexCHP-65 system that incorporates new burner technology into a 65 kW microturbine and 100 HP heat recovery boiler.

  18. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report, March 2013 | Department of Energy for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the design and use of CHP for reliability

  19. A Case for Commissioning of CHP Systems - Presentation, April 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Commissioning of CHP Systems - Presentation, April 2008 A Case for Commissioning of CHP Systems - Presentation, April 2008 This presentation details four example case studies. A San Francisco hotel was retrofitted with a "packaged" microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted

  20. CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 | Department of Energy CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This presentation, "Industrial/Commercial/Institutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John Cuttica, Midwest Clean Energy Application Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE

  1. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  2. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  3. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  4. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  5. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems. PDF icon

  6. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for

  7. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  8. Federal Strategies to Increase the Implementation of CHP in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States, June 1999 | Department of Energy Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 The federal government is committed to increasing the penetration of CHP technologies in the United States. This 1999 paper discusses the goal to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for

  9. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Important Lessons Learned, September 2005 | Department of Energy Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Cooling, Heating and Power (CHP) system integration is advancing. The U.S. Department of Energy partnered with industry to accelerate CHP system integration. This is an announcement for a webcast that provided detailed information on

  10. The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies, July 2008 | Department of Energy The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)/District Heat and Cooling (DHC) policy efforts that takes into account three criteria: the effectiveness of past policies in developing the CHP/DHC

  11. Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

    Broader source: Energy.gov [DOE]

    A draft white paper discussing the barriers to combine heat and power (CHP) with renewable portfolio standards

  12. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP Systems Corp., Capstone Turbine Corporation, Johnston Boiler Company, and Inland Empire Foods has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine

  13. CHP Opportunities at U.S. Colleges and Universities, November 2003 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities at U.S. Colleges and Universities, November 2003 CHP Opportunities at U.S. Colleges and Universities, November 2003 DOE worked with the International District Energy Association (IDEA) to identify and prioritize combined heat and power (CHP) opportunities at U.S. colleges and universities. PDF icon chp_markets_colleges.pdf More Documents & Publications The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 Guide

  14. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  15. Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 This report defines the opportunity for CHP in three specific commercial building market segments: smaller educational facilities, smaller healthcare facilities, and data centers/server farms/telecom switching centers. Major issues affecting each of these markets are explored in the report in detail to provide guidance on the

  16. U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), September 2003 | Department of Energy CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 This 2003 chart of U.S. CHP installations incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC) was prepared by the Cool Solutions Company of Lisle, Illinois, for UT-Battelle,

  17. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gas Technology Institute (GTI), June 2011 | Department of Energy Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio

  18. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Production in Texas, April 2011 | Department of Energy Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 This report is an examination of the possible impacts, implications, and practicality of increasing the amount of electrical energy produced from combined heat and power (CHP) facilities

  19. 2011 Industrial Distributed Energy and CHP R&D Portfolio Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Assistance » Combined Heat & Power Deployment » 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced Manufacturing Office met with research partners in June 2011 to review the status of projects in the Combined Heat and Power (CHP)/Industrial Distributed Energy portfolio. An agenda, summary report, and the following presentations from the meeting are available

  20. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  1. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  2. Database (Report) of U.S. CHP Installations Incorporating Thermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 | Department of Energy Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 The primary objective of this project was to develop a database of combined heat and power (CHP) installations incorporating TES and/or TIC systems, throughout

  3. CHP Education and Outreach Guide to State and Federal Government, Updated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This toolkit provides information for those who wish to educate their legislative representatives in the states and the federal government about combined heat and power (CHP). It was compiled in October 2000 and updated October 2005. PDF icon chp_education_and_outreach_guide.pdf More

  4. CHP Market Potential in the Western States, September 2005 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Potential in the Western States, September 2005 CHP Market Potential in the Western States, September 2005 This 2005 report summarizes the combined heat and power (CHP) market potential for eight Western States - Alaska, Arizona, California, Hawaii, Idaho, Nevada, Oregon, and Washington. This is the final summary report of a series of reports designed to assist the U.S. Department of Energy in defining the CHP opportunity in the Western United States. PDF icon

  5. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP Industrial Distributed ...

  6. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, in collaboration with Cummins Engine Business Unit, is ... The project will result in the highest-efficiency and lowest-emissions system for a CHP ...

  7. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Broader source: Energy.gov [DOE]

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  8. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of CHP in Light Commercial Hot Water Applications 2016 Building Technologies Office Peer Review Kris L. Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation 2 ...

  9. QCI Exam Test-Taking Tips from Community Housing Partners (CHP)

    Broader source: Energy.gov [DOE]

    This document contains a list of tips for taking the Quality Control Inspector (QCI) Home Energy Professional Certification Exam, provided by Community Housing Partners (CHP).

  10. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011 CHP/ Industrial Distributed Energy R&D Portfolio Review, held on June 1-2, 2011, in Washington, D.C. This report provides presentation summaries, closing remarks, and the agenda. PDF icon distributedenergy_summaryreport2011.pdf More Documents & Publications CHP Integrated

  11. A.O. Smith: Demonstrate Underutilized Micro-CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A.O. Smith: Demonstrate Underutilized Micro-CHP A.O. Smith: Demonstrate Underutilized Micro-CHP The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used. The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used.

  12. SEE Action IEE-CHP Webinar 1: Combined Heat and Power: A Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and oxidation catalysts for CO and organic HAPs control 4 Potential Opportunity for CHP? Compliance with MACT limits will be expensive for many coal and oil units - some...

  13. Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009

    Broader source: Energy.gov [DOE]

    EPA CHP Partnership’s white paper provides information on energy portfolio standards and how they promote combined heat and power.

  14. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology ...

  15. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 11 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP/ Industrial Distributed Energy R&D Portfolio Review meeting held in Washington, D.C. on June 1-2, 2011. PDF icon portfolio_review_2011_06_agenda.pdf More Documents & Publications 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Advance Patent Waiver W(A)2010-065 Advanced

  16. 4th Annual CHP Roadmap Breakout Group Results, September 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 4th Annual CHP Roadmap Breakout Group Results, September 2003 4th Annual CHP Roadmap Breakout Group Results, September 2003 This document consists of the breakout group results from the 4th annual Combined Heat and Power (CHP) Roadmap Workshop. Key issues and actions include: work with NARUC to sponsor and organize a report and workshop on utility barriers to CHP and DG, ways to overcome these barriers, and model rates and rules; create a methodology to monetize non-traditional

  17. Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon ie111.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 State Opportunities for Action: ...

  18. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  19. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999

    Broader source: Energy.gov [DOE]

    Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

  20. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  1. Fort Yukon Gets Fired Up Over Biomass CHP Project

    Energy Savers [EERE]

    Gets Fired Up Over Biomass CHP Project In 2005, the Native Village of Fort Yukon sought a less costly fuel than diesel to heat common buildings, as well as a water system that could operate at -60˚F. As village leaders researched the options, they investigated biomass as a potential resource and learned about sustainable forest management practices. DOE funded the Council of Athabascan Tribal Governments (CATG)-a 10-tribe consortium-to study a regional wood energy program in 2007. The following

  2. Gas turbine CHP leads Italy`s energy drive

    SciTech Connect (OSTI)

    Jeffs, E.

    1995-11-01

    When Italy abandoned its nuclear power program, it was the signal for the electricity market to open to industrial CHP and independent power production. This move raised energy efficiency and cut pollution, as a prelude to the privatization of the electric utility system. The Privatization of ENEL, the National Electricity Authority, is expected to happen next year, but not before a significant component of independent power generation is already in place. ENEL itself was only created in 1963 and some of the former power companies have reemerged as the leading IPP`s. Although combined cycle and IPP capacity is only 5000 MW, it is expected to increase to 15,000 MW by the year 2000. In abandoning nuclear power, Italy may have given up on an unquestionably clean thermal energy source, but an intensive drive into private power with combined cycle, repowering, and industrial CHP schemes is achieving some worthwhile improvements in energy efficiency, and a cleaner environment than what went before. 3 figs., 1 tab.

  3. Upward-facing Lithium Flash Evaporator for NSTX-U

    Office of Scientific and Technical Information (OSTI)

    926 PPPL- 4926 Upward-facing Lithium Flash Evaporator for NSTX-U JULY, 2013 A.L. Roquemore, et. al. Princeton Plasma Physics Laboratory Report Disclaimers Full Legal Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal

  4. Field Scale Test and Verification of CHP System at the Ritz Carlton, San

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Francisco, August 2007 | Department of Energy Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 DOE, the Gas Technology Institute, Oak Ridge National Laboratory, and UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort® 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton in San Francisco. This National

  5. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, June 2011 | Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2,

  6. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  7. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications, April 2005 | Department of Energy Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 The objective of this paper is to summarize the development status of air-cooled lithium bromide (LiBr)-water absorption chillers to guide future efforts to develop chillers for combined heat and power (CHP) applications in light-commercial buildings. The key

  8. ITP Industrial Distributed Energy: Database of U.S. CHP Installations...

    Office of Environmental Management (EM)

    Database of U.S. CHP Installations Incorporating Prepared for: UT-Battelle, Oak Ridge National Laboratory sheet 1 of 5 Thermal Energy Storage (TES) andor Turbine Inlet Cooling ...

  9. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  10. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates a supplemental Ultra-Low-NOx (ULN) burner into a 65 kW microturbine and a heat recovery boiler. ...

  11. HUD Combined Heat and Power (CHP) Guide #3, September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Combined Heat and Power (CHP) Guide #3, September 2010 HUD Combined Heat and Power (CHP) Guide #3, September 2010 This Level 2 analysis tool for multifamily buildings will help an owner determine whether to invite proposals for design of a system and for a financial analysis. This 2010 guide provides an introduction to the software program, with a description of its development and advice on how it can be used. PDF icon chpguide3.pdf More Documents & Publications Promoting

  12. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  13. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  14. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  15. Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999

    Broader source: Energy.gov [DOE]

    This report is a summary document based on discussions at the CHP Vision Workshop held in Washington, DC, June 8-9, 1999

  16. Lesson Learned from Technical and Economic Performance Assessment and Benefit Evaluation of CHP-FCS

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Brooks, Kriston P.; Srivastava, Viraj; Pilli, Siva Prasad; Foster, Nikolas AF

    2014-08-22

    Recent efforts and interest in combined heat and power (CHP) have increased with the momentum provided by the federal government support for penetration of CHP systems. Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and utilize the heat normally wasted in power generation for useful heating or cooling with lower emissions compared to alternative sources. A recent study investigated the utilization of CHP-FCSs in the range of 5 to 50KWe in various commercial building types and geographic locations. Electricity, heating, and water heating demands were obtained from simulation of the U.S. Department of Energy (DOE) commercial reference building models for various building types. Utility rates, cost of equipment, and system efficiency were used to examine economic payback in different scenarios. As a new technology in the early stages of adoption, CHP-FCSs are more expensive than alternative technologies, and the high capital cost of the CHP-FCSs results in a longer payback period than is typically acceptable for all but early-adopter market segments. However, the installation of these units as on-site power generators also provide several other benefits that make them attractive to building owners and operators. The business case for CHP-FCSs can be made more financially attractive through the provision of government incentives and when installed to support strategic infrastructure, such as military installations or data centers. The results presented in this paper intend to provide policy makers with information to define more customized incentives and tax credits based on a sample of building types and geographic locations in order to attract more business investment in this new technology.

  17. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  18. Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation

    SciTech Connect (OSTI)

    Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

    2010-03-01

    This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

  19. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  20. Data Collection and Analyses of the CHP System at Eastern Maine Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center - Final Report, June 2008 | Department of Energy Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 This 2008 report describes the Eastern Maine Medical Center's installation of a Centaur 50 gas turbine and performance data for one year from December 2006 to November 2007. The turbine has a nameplate rating of 4,570 kW and can

  1. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Broader source: Energy.gov [DOE]

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  2. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  3. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  4. Effects of Increased Upward Flux of Saline Water Caused by CO2 Storage or Other Factors

    SciTech Connect (OSTI)

    Murdoch, Lawrence; Xie, Shuang; Falta, Ronald W.; Yonkofski, Catherine MR

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would likely be minor if the upward flux was smaller than a few tenths of the magnitude of recharge, according to the 2D analyses. The 3D analyses also show that upward flux could occur without a significant increase in the risk categories. The major contribution of this work is that it shows how a large increase in diffuse upward flux from a basin could cause significant problems, but a small increase in upward flux may occur without significantly affecting risks to the shallow freshwater flow system. This heightens the importance of understanding interactions between shallow and deep hydrologic systems when characterizing CO2 storage projects.

  5. Upward-facing Lithium Flash Evaporator for NSTX-U (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Upward-facing Lithium Flash Evaporator for NSTX-U Citation Details In-Document Search Title: Upward-facing Lithium Flash Evaporator for NSTX-U NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in

  6. CHP Industrial Bottoming and Topping Cycle with Energy Information Administration Survey Data

    U.S. Energy Information Administration (EIA) Indexed Site

    CHP Industrial Bottoming and Topping Cycle with Energy Information Administration Survey Data Paul Otis, August 14, 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. DISCUSSION PAPER SERIES August 2015 Paul Otis | U.S.

  7. CHP in the Midwest - Presentation from the July 2010 Advancing Renewables

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Midwest Conference | Department of Energy in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference This presentation by Recycled Enegy Development (RED) from the "Advancing Renewables in the Midwest Conference" held on July 15, 2010, proposes policy changes that could make the Midwest and the United States a world leader in reducing

  8. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the power capacity of the prime-mover, but flattened out at around 2 kW power output suggesting that a low power engine like the one tested is a good choice. (5) Reverse metering, that is, power returned to the electric grid when produced in excess of the local load, increased the primary energy savings significantly when using a 3kW to 5kW system with high fuel-to-electric efficiency. (6) In view of the current interest in plug-in electric or hybrid vehicles, the impact of night-time recharging on the micro-CHP operation was considered. Obviously, it will reduce the amount reverse metered and without reverse-metering, the primary energy savings were increased significantly. (7) The micro-CHP systems can contribute to the decrease of the carbon emissions of the local utility even with the use of diesel fuel and much more so with biodiesel use.

  9. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect (OSTI)

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  10. UPWARD MOVEMENT OF PLUTONIUM TO SURFACE SEDIMENTS DURING AN 11-YEAR FIELD STUDY

    SciTech Connect (OSTI)

    Kaplan, D.; Beals, D.; Cadieux, J.; Halverson, J.

    2010-01-25

    An 11-y lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The {sup 240}Pu/{sup 239}Pu and {sup 242}Pu/{sup 239}Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

  11. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  12. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  13. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  14. Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  15. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration

    SciTech Connect (OSTI)

    Ohlemiller, T.; Cleary, T.; Shields, J.

    1996-12-31

    This paper focuses on the issue of fire growth on composite materials beyond the region immediately subjected to an ignition source. Suppression of this growth is one of the key issues in realizing the safe usage of composite structural materials. A vinyl ester/glass composite was tested in the form of a 90{degrees} comer configuration with an inert ceiling segment 2.44 m above the top of the fire source. The igniter was a propane burner, either 23 or 38 cm in width with power output varied from 30 to 150 Kw. Upward flame spread rate and heat release rate were measured mainly for a brominated vinyl ester resin but limited results were also obtained for a non-flame retarded vinyl ester and a similar composite coated with an intumescent paint. Rapid fire growth beyond the igniter region was seen for the largest igniter power case; the intumescent coating successfully prevented fire growth for this case.

  16. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdlyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 0.5 km s{sup 1} and a minimum vertical velocity of 42 21 km s{sup 1}. The estimated energy of the waves is around 150 W m{sup 2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  17. Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective

    SciTech Connect (OSTI)

    Kelly, J.

    2003-10-10

    DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

  18. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  19. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect (OSTI)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  20. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  1. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  2. CHP Awards Announced

    SciTech Connect (OSTI)

    2010-05-01

    The U.S. Department of Energy Industrial Technologies Program has selected six projects for financial awards under the "Combined Heat and Power Systems Technology Development and Demonstration" solicitation (DE-FOA-0000016).

  3. Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum

    DOE Patents [OSTI]

    Vail, W.B. III; Momii, S.T.

    1998-02-10

    Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the ``slip`` portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical ``station-to-station logging tool`` may be modified to be a ``continuous logging tool,`` where ``continuous`` means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool. 12 figs.

  4. Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum

    DOE Patents [OSTI]

    Vail, III, William Banning; Momii, Steven Thomas

    1998-01-01

    Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the "slip" portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical "station-to-station logging tool" may be modified to be a "continuous logging tool", where "continuous" means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool.

  5. Final work plan : supplemental upward vapor intrusion investigation at the former CCC/USDA grain storage facility in Hanover, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-12-15

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In 2007, the CCC/USDA conducted near-surface soil sampling at 61 locations and also sampled indoor air at nine residences on or adjacent to its former Hanover facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. The results were submitted to the KDHE in October 2007 (Argonne 2007). On the basis of the results, the KDHE requested sub-slab sampling and/or indoor air sampling (KDHE 2007). This Work Plan describes, in detail, the proposed additional scope of work requested by the KDHE and has been developed as a supplement to the comprehensive site investigation work plan that is pending (Argonne 2008). Indoor air samples collected previously from four homes at Hanover were shown to contain the carbon tetrachloride at low concentrations (Table 2.1). It cannot be concluded from these previous data that the source of the detected carbon tetrachloride is vapor intrusion attributable to former grain storage operations of the CCC/USDA at Hanover. The technical objective of the vapor intrusion investigation described here is to assess the risk to human health due to the potential for upward migration of carbon tetrachloride and chloroform into four homes located on or adjacent to the former CCC/USDA facility. The technical objective will be accomplished by collecting sub-slab vapor samples. The preliminary data collected during the July 2007 investigation did not fully address the source of or migration pathway for the carbon tetrachloride detected in the four homes. The scope of work proposed here will generate additional data needed to help evaluate whether the source of the detected carbon tetrachloride is vapor intrusion attributable to activities of the CCC/USDA. The additional vapor sampling at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science Division of Argonne National Laboratory and H&P Mobile Geochemistry of San Diego (http://www.handpmg.com). Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The professional staff members of H&P Mobile Geochemistry are nationally leading experts in soil gas sampling and vapor intrusion investigations.

  6. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  7. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  8. AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE

    SciTech Connect (OSTI)

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others

    2011-12-01

    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  9. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency's preliminary screening exercise and shows the screens for the feasibility screening tool, computer software prepared for HUD by the Oak Ridge National Laboratory (ORNL). ...

  10. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... However, as natural gas prices have decreased and in many regions and ... The chemical manufacturing sector is the second largest consumer of energy in the industrial market. ...

  11. APPENDXD.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

  12. APPEND.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    106 Energy Information AdministrationPetroleum Supply Monthly 107 Energy Information AdministrationPetroleum Supply Monthly...

  13. PSADEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alcohol. The family name of a group of organic chemical compounds composed of carbon, ... A generic term applied to a group of organic chemical compounds composed of carbon, ...

  14. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Power Outage Cost Estimates Superstorm Sandy o Nearly 20 billion in losses from ... (unavailability of gas in NJ post Sandy) Emergency Preparedness & Planning o ...

  15. PSADEFS.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 16,225 14,883 16,627 15,979 16,802 16,447 16,891

  16. PSMSUMRY.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    inventory" on the stock graphs are the lower end of the demonstrated operational inventory range updated for known and definable changes in the petroleum delivery system....

  17. HEATRESV.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Terminal Woodbridge, NJ 1,000 Williams Energy Services New Haven, CT 500 Motiva Enterprises LLC New Haven, CT 250 Motiva Enterprises LLC Providence, RI 250 Total 2,000 Source:...

  18. PSMNOTES.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7....

  19. PSMDEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a...

  20. TABLE31.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 3,325 144 1,717 1,024 693 108 1,954 Minnesota ......0 0 2,862 152 1,806 1,225 581 106 1,636 Minnesota ......

  1. TABLE56.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2,153 0 2,153 1,884 1,514 370 Normal ButaneButylene ... 0 0 0 527 415 112 IsobutaneIsobutylene...

  2. TABLE39.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 0 0 0 Ecuador ... 4,535 0 0 0 0 0 0 540 0 0 Japan ... 0 0 0 0 0 825 0 0 0 0 Korea, Republic of...

  3. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ...... 0 433 0 344 ...

  4. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ...... 0 433 157 978 ...

  5. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ......

  6. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Total Stocks, All Oils (excluding Crude Oil) ...... 172,408 157,248 ... 44,670 2,743 7,263 120,085 Natural Gas Processing Plant ......

  7. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 965 1,163 174 206 1,543 Asphalt and Road Oil ......Processing Gain(-) or Loss(+) a ...... -1,912 -33 -1,945 ...

  8. TABLE52.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. W Withheld to avoid...

  9. TABLES5.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    a Stocks are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. b A negative number...

  10. VOL2NOTE.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    B Explanatory Notes The following Explanatory Notes are provided to assist in understanding and interpreting the data presented in this publication. * Note 1. Petroleum Supply Reporting System * Note 2. Monthly Petroleum Supply Reporting System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7. Frames Maintenance * Note 8. Descriptive Monthly Statistics * Note 9. Practical

  11. table01.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area, 1990-2010 Actual, 2011-2015 Projected (Megawatts) Interconnection NERC Regional Assesment Area 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 FRCC 27,266 28,818 30,601 32,823 32,904 34,524 35,444 35,375 38,730 37,493 37,194 39,062 40,696 40,475 42,383 46,396 45,751 46,676 44,836 NPCC 44,116 46,594 43,658 46,706 47,581 47,705 45,094 49,269 49,566 52,855

  12. table02.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 202,756 - 258,506 1,851 12,065 0 443,902 7,146 0 880,184 Natural Gas Liquids and LRGs ............ 55,963 15,419 7,378 - -15,412 - 14,810 2,118 77,244 79,784 Pentanes Plus .................................... 9,388 - 1,185 - 1,137 - 4,282 461 4,693 6,852 Liquefied Petroleum Gases ................ 46,575 15,419 6,193 - -16,549 - 10,528 1,657

  13. table03.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 6,541 - 8,339 60 389 0 14,319 231 0 Natural Gas Liquids and LRGs ........... 1,805 497 238 - -497 - 478 68 2,492 Pentanes Plus .................................... 303 - 38 - 37 - 138 15 151 Liquefied Petroleum Gases ................ 1,502 497 200 - -534 - 340 53 2,340 Ethane/Ethylene ............................ 636 24 18 - -55 - 0 0 734

  14. table04.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District I-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ........................................... 824 - 53,357 -2,000 -89 5,262 0 46,830 0 0 16,235 Natural Gas Liquids and LRGs ........ 829 569 1,233 - 4,737 -869 - 252 24 7,961 5,223 Pentanes Plus ................................ 79 - 0 - 0 7 - 0 1 71 19 Liquefied Petroleum Gases ............ 750 569 1,233 - 4,737 -876 - 252 24 7,889 5,204 Ethane/Ethylene ........................ 262

  15. table05.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2

  16. table06.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7,308 - 27,686 -2,263 59,993 -3,449 0 105,005 1,168 0 70,132 Natural Gas Liquids and LRGs ......... 8,763 2,756 3,599 - 265 -6,499 - 3,820 752 17,310 23,020 Pentanes Plus ................................... 1,146 - 42 - 519 214 - 769 455 269 1,988 Liquefied Petroleum Gases ............... 7,617 2,756 3,557 - -254 -6,713 - 3,051 297 17,041 21,032 Ethane/Ethylene ............................ 2,909 0 12 - -2,215 -110 - 0 0 816 2,868 Propane/Propylene ....................... 3,095 3,602 2,661 - 968

  17. table07.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene

  18. table08.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    106,453 - 157,490 -279 -53,603 7,143 0 202,918 0 0 717,193 Natural Gas Liquids and LRGs ........ 39,438 10,759 2,005 - -2,109 -6,438 - 7,105 885 48,541 46,872 Pentanes Plus .................................. 5,820 - 1,031 - -167 925 - 2,057 0 3,702 4,603 Liquefied Petroleum Gases .............. 33,618 10,759 974 - -1,942 -7,363 - 5,048 885 44,839 42,269 Ethane/Ethylene ........................... 15,603 751 544 - 3,485 -1,605 - 0 0 21,988 14,111 Propane/Propylene ....................... 11,268

  19. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54

  20. table10.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1,049 - 6,332 1,608 -4,050 -23 0 14,962 0 0 12,816 Natural Gas Liquids and LRGs ......... 4,049 -11 536 - -2,893 -15 - 595 6 1,095 1,354 Pentanes Plus ................................... 771 - 112 - -352 -8 - 163 5 371 219 Liquefied Petroleum Gases ............... 3,278 -11 424 - -2,541 -7 - 432 (s) 725 1,135 Ethane/Ethylene ............................ 950 0 0 - -1,270 0 - 0 0 -320 213 Propane/Propylene ....................... 1,473 284 233 - -705 -50 - 0 (s) 1,335 439 Normal Butane/Butylene

  1. vol2app.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0

    A District Descriptions and Maps The following are the Refining Districts which make up the Petroleum Administration for Defense (PAD) Dis- tricts. PAD District I East Coast: District of Columbia and the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New Jersey, Delaware, Maryland, Virginia, North Carolina, South

  2. vol2fron.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

  3. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. PAD District IV-Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ........................................... 356 - 204 52 -131 -1 0 483 0 0 Natural Gas Liquids and LRGs ........ 131 (s) 17 - -93 (s) - 19 (s) 35 Pentanes Plus .................................. 25 - 4 - -11 (s) - 5 (s) 12 Liquefied Petroleum Gases .............. 106 (s) 14 - -82 (s) - 14 (s) 23 Ethane/Ethylene ........................... 31 0 0 - -41 0 - 0 0 -10

  4. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. PAD District V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................ 67,121 - 13,641 4,786 -2,251 3,132 0 74,187 5,978 0 63,808 Natural Gas Liquids and LRGs ........ 2,884 1,346 5 - 0 -1,591 - 3,038 451 2,337 3,315 Pentanes Plus ................................... 1,572 - 0 - 0 -1 - 1,293 (s) 280 23 Liquefied Petroleum Gases .............. 1,312 1,346 5 - 0 -1,590 - 1,745 450 2,058 3,292 Ethane/Ethylene

  5. TABLE13.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PAD District V - Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ............................................ 2,165 - 440 154 -73 101 0 2,393 193 0 Natural Gas Liquids and LRGs ........ 93 43 (s) - 0 -51 - 98 15 75 Pentanes Plus ................................... 51 - 0 - 0 (s) - 42 (s) 9 Liquefied Petroleum Gases .............. 42 43 (s) - 0 -51 - 56 15 66 Ethane/Ethylene ............................ (s) 0 0 - 0 0 - 0 0 (s)

  6. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I .......................................................................................... 824 27 Florida ................................................................................................. 523 17 New York ............................................................................................. 19 1 Pennsylvania

  7. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids

  8. TABLE16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ................................................................... 44,047 2,783 46,830 70,320 12,891 21,794 105,005 Natural Gas Liquids ................................................. 252 0 252 2,613 131 1,076 3,820 Pentanes Plus ....................................................... 0 0 0 202 45 522 769 Liquefied Petroleum Gases ................................... 252 0 252 2,411 86

  9. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ........................................... 576 -7 569 2,415 -51 392 2,756 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Ethane ............................................................... W W W W W W W Ethylene ............................................................ W W W W W W W Propane/Propylene

  10. TABLE18.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil .................................................................... 14,835 511 15,346 8,591 1,779 2,386 12,756 Petroleum Products .................................................. 53,526 2,604 56,130 37,545 10,689 14,376 62,610 Pentanes Plus .......................................................... 0 0 0 4 209 225 438 Liquefied Petroleum Gases ......................................

  11. TABLE19.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Percent Refinery Yield of Petroleum Products by PAD and Refining Districts, a January 1998 Liquefied Refinery Gases ............................................ 1.2 -0.3 1.1 3.4 -0.4 1.9 2.6 Finished Motor Gasoline b ............................................ 49.1 39.8 48.6 51.6 54.9 50.0 51.7 Finished Aviation Gasoline c ........................................ 0.1 0.0 0.1 0.0 0.1 0.1 0.0 Naphtha-Type Jet Fuel ................................................ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

  12. TABLE20.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0. Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ................................................................... 53,357 48,515 139,013 3,980 13,641 258,506 8,339 Natural Gas Liquids ...................................................... 1,233 3,599 2,005 536 5 7,378 238 Pentanes Plus ............................................................ 0 42 1,031 112 0 1,185 38 Liquefied Petroleum Gases ........................................ 1,233 3,557 974

  13. TABLE21.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, a January 1998 Arab OPEC .................................. 53,500 1,139 2,258 115 625 0 0 1,267 0 0 Algeria ...................................... 0 1,139 1,174 115 0 0 0 824 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 7,822 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 44,568 0 1,084 0 625 0 0 443 0 0 Other

  14. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. PAD District I-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,171 845 0 115 625 0 0 824 0 0 Algeria ....................................... 0 845 0 115 0 0 0 824 0 0 Saudi Arabia .............................. 6,171 0 0 0 625 0 0 0 0 0 Other OPEC .................................. 13,975 0 280 588 1,644 776 715 2,024 3 0 Nigeria ....................................... 8,825 0 0 0 0 0 0 166 0 0 Venezuela

  15. TABLE23.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,253 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 4,966 0 0 0 0 0 0 0 0 0 Other OPEC .................................. 4,136 0 0 0 0 0 0 0 0 0 Nigeria ...................................... 540 0 0 0 0 0 0 0 0 0 Venezuela ................................. 3,596 0 0

  16. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 38,701 294 2,258 0 0 0 0 443 0 0 Algeria ....................................... 0 294 1,174 0 0 0 0 0 0 0 Kuwait ........................................ 5,270 0 0 0 0 0 0 0 0 0 Saudi Arabia .............................. 33,431 0 1,084 0 0 0 0 443 0 0 Other OPEC .................................. 41,555 0 1,652 0 0 0 0 0 0 0 Nigeria

  17. TABLE25A.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    PAD District V PAD District IV January 1998 Non OPEC .................................... 3,980 424 0 0 13 0 140 0 0 0 Canada ..................................... 3,980 424 0 0 13 0 140 0 0 0 Total .............................................. 3,980 424 0 0 13 0 140 0 0 0 Arab OPEC .................................. 2,409 0 0 0 0 0 0 0 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,299 0 0 0 0 0 0 0 0 0 Saudi Arabia

  18. TABLE26.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ............................................................................................... 1,481 1,458 4,361 7,300 Delaware .................................................................................................. 0 0 305 305 Florida ...................................................................................................... 0 0 635 635 Maine

  19. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ....................................................................... 0 1,168 0 0 5,978 7,146 231 Natural Gas Liquids ...................................................... 24 752 885 6 451 2,118 68 Pentanes Plus ............................................................. 1 455 0 5 (s) 461 15 Liquefied Petroleum Gases ......................................... 24 297 885 (s) 450 1,657 53 Ethane/Ethylene

  20. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    8. Exports of Crude Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus Gases Gasoline Jet Fuel Kerosene Oil Fuel Oil January 1998 Argentina .............................................. 0 0 0 1 0 0 1 1 Australia ............................................... 0 0 (s) (s) 0 0 1 0 Bahama Islands ................................... 0 0 21 1 1 (s) 54 (s) Bahrain

  1. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Net Imports of Crude Oil and Petroleum Products into the United States by Country, (Thousand Barrels per Day) January 1998 Arab OPEC .................................. 1,726 37 20 0 (s) 41 -3 (s) 296 391 2,116 Algeria ...................................... 0 37 0 0 0 27 0 0 252 316 316 Iraq ........................................... 36 0 0 0 0 0 0 0 0 0 36 Kuwait ....................................... 252 0 0 0 0 0 0 (s) (s) (s) 252 Qatar ........................................ 0 0 0 0 0 0

  2. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ............. 16,235 70,132 717,193 12,816 63,808 880,184 Refinery ......................................................................... 15,346 12,756 45,731 2,186 21,772 97,791 Tank Farms and Pipelines ............................................. 869 56,269 94,262 9,834 29,940 191,174 Leases ........................................................................... 20 1,107 13,770 796 961 16,654 Strategic Petroleum Reserve *a ...................................... 0 0 563,430 0 0 563,430

  3. TABLE31.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    1. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD January 1998 PAD District I ........................................ 39,875 16,226 269 23,380 3,520 46,977 15,022 31,955 15,736 2,460 Connecticut ....................................... 1,625 1,625 0 0 131 4,252 999 3,253 70 W Delaware, D.C., Maryland ................. 2,413 1,906 0 507 169 2,677 869 1,808 2,331 W Florida ............................................... 6,051 0 0 6,051 115 2,063 1,131

  4. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ........................................................ 0 433 0 344 978 772 0 0 58,118 Petroleum Products ...................................... 8,045 76 0 3,328 6,928 2,885 0 100,331 23,625 Pentanes Plus ............................................ 0 0 0 0 159 0 0 0 549 Liquefied Petroleum Gases ........................ 0 0 0 1,093 5,010 262 0 3,644 4,920 Unfinished Oils

  5. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ........................................................ 0 433 157 978 772 0 58,118 Petroleum Products ...................................... 7,922 0 1,760 5,765 2,885 73,877 20,560 Pentanes Plus ............................................ 0 0 0 159 0 0 549 Liquefied Petroleum Gases ........................ 0 0 1,093 5,010 262 3,310 4,920 Motor Gasoline Blending Components ...... 0 0 1 0 0

  6. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 187 0 0 0 0 Petroleum Products ................................................ 123 76 0 1,568 1,163 0 26,454 414 Liquefied Petroleum Gases ................................... 0 0 0 0 0 0 334 0 Unfinished Oils ...................................................... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ................. 0 32 0 0 0 0 381 0 Finished Motor Gasoline ....................................... 0 0 0 808 38 0 15,816 255 Reformulated

  7. TABLE35.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Barrels) January 1998 Crude Oil .................................................................. 344 433 -89 62,087 2,094 59,993 Petroleum Products ................................................ 103,659 8,121 95,538 34,597 13,141 21,456 Pentanes Plus ....................................................... 0 0 0 678 159 519 Liquefied Petroleum Gases ................................... 4,737 0 4,737 6,111 6,365 -254 Ethane/Ethylene ............................................... 0 0 0

  8. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  9. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  10. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,512 5 2,517 1,355 82 326 1,763 Heavy Gas Oils ......638 42 680 282 125 94 501 Distillate Fuel Oil ......

  11. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... On December 6, 1991, the U.S. Department of Commerce approved a license to export 25,000 barrels per day of California heavy crude oil (less than 20 degrees API gravity) to Pacific ...

  12. TABLES3.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 265 0 988 988 213 207 0 0 February ... 248 0 709 709 290 279 0 0 March ... 347 75 813 813 184 179 0 0 April...

  13. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Supply Monthly, September 2004 2 Table S1. Crude Oil and Petroleum Products Overview, 1988 - Present (Continued) (Thousand Barrels...

  14. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Annual 1998, Volume 2 a Based on crude oil input and net reruns of unfinished oils. b Based on total finished motor gasoline output minus net input of motor gasoline blending ...

  15. vol2app.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 557 Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 558...

  16. TABLE26.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ......

  17. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ...... 53,357 48,515 139,013 ...

  18. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ...... 38,701 294 2,258 0 0 0 0 443 0 0 ...

  19. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ...... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ...

  20. TABLE25A.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Persian Gulf e ...... 2,409 0 0 0 0 0 0 0 0 0 (Thousand Barrels) Table 25. PAD Districts IV and V-Imports of Crude Oil and Petroleum Products by Country of ...

  1. Solar and CHP Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    This exemption was originally set to expire July 1, 2002, but it was extended for three more three years. In May 2005, the exemption was made permanent upon the enactment of H.B. 805.

  2. TABLE01.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    residual fuel oil, jet fuel, and liquefied petroleum gases. e Crude oil stocks in the Strategic Petroleum Reserve include non-U.S. stocks held under foreign or commercial...

  3. TABLE45.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and the U.S. Bureau of the Census. July 2004 Crude Oil a ......

  4. TABLES8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S8. PropanePropylene Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  5. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, Source: Energy Information Administration (EIA) Form EIA-814, "Monthly Imports Report." July...

  6. TABLES10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0.Other Petroleum Products Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive...

  7. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  8. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Note: Refer to Appendix A for Refining District descriptions. Source: Energy Information...

  9. TABLES6.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S6. Residual Fuel Oil Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  10. TABLE55.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Source: Energy Information Administration (EIA) Form EIA-817, "Monthly Tanker and Barge Movement Report." July 2004 Crude Oil ......

  11. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  12. TABLES2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    understated final values by approximately 50 thousand barrels per day. This causes the preliminary values of unaccounted for crude oil to overstate the final values by...

  13. TABLE38.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OPEC ... 72,086 1,138 9,203 1,472 417 19 404 571 0 74 Angola ... 1,474 0 80 0 0 0 0 0 0 0 Argentina...

  14. TABLE43.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 484,763 6,867 55,661 7,548 1,560 117 3,523 6,432 0 1,005 Angola ... 20,829 285 1,577 0 0 0 0 0 0 0 Argentina...

  15. TABLE35.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 160,260 4,335 13,631 15,344 16,656 2,431 7,861 9,379 5 217 Angola ... 11,020 0 80 0 0 0 0 383 0 0 Argentina...

  16. TABLE41.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 182,217 6,992 9,071 75,369 86,125 7,090 53,663 46,617 402 911 Angola ... 33,919 0 0 0 0 0 0 443 0 0 Argentina...

  17. TABLE44.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 89,852 349 4,995 9,344 4,244 10,635 2,403 6,068 0 0 Angola ... 2,803 0 0 0 0 0 0 0 0 0 Argentina...

  18. TABLE36.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 25,055 559 3,328 12,017 15,173 1,142 6,883 7,565 5 117 Angola ... 5,371 0 0 0 0 0 0 383 0 0 Argentina...

  19. TABLE40.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,064,030 35,714 70,087 92,261 92,427 18,179 62,792 59,916 402 1,986 Angola ... 63,341 285 1,577 0 0 0 0 443 0 0 Argentina...

  20. TABLE25.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  1. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  2. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  3. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... barrels): Alaska: State - 6,171; California: State - 1,870; Louisiana: State - ... Division estimates based on Form EIA-182, "Domestic Crude Oil First Purchase Report" data. ...

  4. TABLE47.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    240 1,264 Chile ... 0 0 0 (s) 0 0 1 0 China, People's Republic of ... 0 (s) 511 (s) 0 0 0 (s) China, Taiwan...

  5. TABLE48.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Chile ... 0 0 0 1 148 0 1,543 280 China, People's Republic of ... 805 5 1,488 15 0 0 7 113 China, Taiwan...

  6. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... estimates IGATE-E IAC, ESA,and MNI Databases Database Schema** 45 tables-MySQL ... system (DBMS) and refers to the organization of data as a blueprint of how a database is ...

  7. CHP Emissions Reduction Estimator | Open Energy Information

    Open Energy Info (EERE)

    Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Softwaremodeling tools User Interface:...

  8. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids...

  9. CHP/Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Gas turbines also have very low emissions compared to other fossil-fuel based systems. Fuel Cell - these plants primarily produce power using Oil, Distillate Fuel Oil, Jet Fuel,...

  10. TABLE37.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  11. TABLE42.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  12. TABLE02.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Report," EIA-811, "Monthly Bulk Terminal Report," EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," EIA-814, "Monthly Imports Report,"...

  13. TABLE35.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sources: Energy Information Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," and EIA-817, "Monthly Tanker and...

  14. Advanced CHP Control Algorithms: Scope Specification

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  15. TABLE50.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (s) 8 Ecuador ... 201 (s) 0 0 -8 14 0 (s) (s) 6 207 Egypt ... 0 (s) (s) 0 0 0 -3 (s) 6 4 4 France...

  16. TABLE49.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 10 Ecuador ... 249 0 0 0 -14 22 0 (s) -2 6 256 Egypt ... 0 0 0 0 0 0 0 (s) 0 (s) (s) France...

  17. TABLE28.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0 0 0 0 0 0 0 Netherlands Antilles ...... 0 0 0 0 0 0 133 298 New Zealand ...... 0 0 (s) (s) 0 0 0 0 Nigeria ...

  18. table01.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ......... -1 (s) (9) Other Stock Change (Withdrawal (+), Addition (-)) ......... -10,214 -329 (13) Crude Input to Refineries ......

  19. table06.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  20. table04.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  1. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  2. table07.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  3. table03.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Production Production Imports Oil a Change b Losses Inputs Exports Supplied c Energy ...

  4. table08.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  5. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  6. table10.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Ending Production Production of Entry a Crude Oil b Receipts ...

  7. VOL2NOTE.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... were added to the monthly survey frames: 2 motor gasoline blenders, 30 bulk terminal operators, 3 pipeline operators, 3 crude oil stock holders, and 1 tanker and barge operator. ...

  8. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  9. table02.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Unaccounted Field Refinery For Crude Stock Crude Refinery Products Ending Production Production Imports Oil a Change b Losses Inputs Exports Supplied c ...

  10. table05.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  11. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Supply Disposition Commodity Imports by Unac- PAD counted Field Refinery District For Net Stock Crude Refinery Products Production Production of Entry a Crude Oil b Receipts Change ...

  12. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, July 2004 Liquefied Refinery Gases ... 2,082 70...

  13. TABLE46.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, a Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of...

  14. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  15. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  16. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  17. TABLE29.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0 0 0 0 (s) 0 0 11 7 17 17 Romania ...... 0 0 0 ... 0 0 0 0 (s) 0 0 6 14 19 19 Romania ...... 0 0 0 ...

  18. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 0 0 0 0 0 0 0 0 0 0 Romania ...... 0 0 ... 175 0 303 0 0 478 478 0 15 15 Romania ...... 0 0 0 ...

  19. TABLE21.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 0 0 0 0 0 0 0 0 0 0 Romania ...... 0 0 0 ... 247 0 303 0 0 550 550 0 18 18 Romania ...... 0 0 0 ...

  20. TABLES7.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S7. Jet Fuel Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b A negative number indicates a decrease...

  1. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons and oxygenates. c Based on finished aviation gasoline output minus net input of...

  2. TABLE51.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 14,487 13,929 47,253 1,928 21,142 98,739 Tank Farms and Pipelines ... 1,116 47,924 95,765 8,448 22,759...

  3. TABLE04.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 111 Liquefied Petroleum Gases ... 1,522 833 304 - 515 - 179 48 1,916 EthaneEthylene ... 676 19 (s) - 58 - 0 0 637 PropanePropylene...

  4. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 87 Liquefied Petroleum Gases ... 1,024 520 188 - 118 326 - 103 13 1,408 EthaneEthylene ... 470 19 0 - 149 41 - 0 0 597 PropanePropylene...

  5. TABLE10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases ... 8,283 4,453 2,498 - -812 4,359 - 982 273 8,808 33,507 EthaneEthylene ... 3,675 0 10 - -1,947 532 - 0 0 1,206 2,198...

  6. TABLE12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19 8 - 41 1 3 Liquefied Petroleum Gases ... 267 144 81 - -26 141 - 32 9 284 EthaneEthylene ... 119 0 (s) - -63 17 - 0 0 39 PropanePropylene...

  7. TABLE05.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    177 2 134 Liquefied Petroleum Gases ... 1,519 711 246 - 78 - 216 46 2,137 EthaneEthylene ... 672 22 (s) - 6 - 0 0 688 PropanePropylene...

  8. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases ... 5,600 259 136 - -4,993 59 - 289 37 617 1,387 EthaneEthylene ... 2,663 0 0 - -2,659 -1 - 0 0 5 324 Propane...

  9. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 31,742 16,128 5,819 - 3,652 10,099 - 3,198 394 43,650 64,754 EthaneEthylene ... 14,583 586 0 - 4,606 1,266 - 0 0 18,509 17,206...

  10. TABLE03.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 323,489 151,432 52,487 - 16,623 - 45,943 9,726 455,116 111,040 EthaneEthylene ... 143,173 4,697 93 - 1,314 - 0 0 146,649 19,729...

  11. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    17 2 - 43 1 4 Liquefied Petroleum Gases ... 269 112 94 - (s) 14 - 43 6 412 EthaneEthylene ... 117 0 (s) - -51 -1 - 0 0 68 PropanePropylene...

  12. TABLES9.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Explanatory Note 4. - Not Applicable. Notes: * Liquefied petroleum gases includes ethaneethylene, propanepropylene, normal butanebutylene, and isobutaneisobutylene. *...

  13. TABLE08.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases ... 15 69 31 - 69 37 - 5 3 140 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  14. TABLE09.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - 0 - 0 (s) - 0 2 1 Liquefied Petroleum Gases ... 15 56 45 - 98 5 - 4 3 201 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  15. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    99 0 110 Liquefied Petroleum Gases ... 1,015 462 99 - 52 61 - 120 21 1,426 EthaneEthylene ... 471 22 (s) - 129 8 - 0 0 614 PropanePropylene...

  16. TABLE06.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Gases ... 467 2,152 958 - 2,153 1,136 - 162 97 4,335 7,396 EthaneEthylene ... 17 11 0 - 0 0 - 0 0 28 0 PropanePropylene...

  17. TABLE07.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gases ... 3,152 11,938 9,601 - 20,805 1,160 - 858 563 42,915 7,396 EthaneEthylene ... 161 52 0 - 0 0 - 0 0 213 0 PropanePropylene...

  18. Local Power Empowers: CHP and District Energy

    Broader source: Energy.gov [DOE]

    This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy.

  19. Recent Publications in CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Gas: Saves Energy, Lowers Costs - Case Study, 2 pp*, July 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 4 pp*, May ...

  20. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, a Represents the PAD District in which the material entered the United States and not necessarily...

  1. TABLE23.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily...

  2. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V - Daily Average Supply and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the...

  3. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 315 4 319 202 52 301 555 Other HydrocarbonsHydrogenOxygenates ... 769 0 769 18 29 0 47 Other HydrocarbonsHydrogen...

  4. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 12,842 139 12,981 2,033 -1,275 513 1,271 Other HydrocarbonsHydrogenOxygenates ... 2,590 120 2,710 1,976 686 438 3,100 Other HydrocarbonsHydrogen...

  5. TABLES4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S4. Finished Motor Gasoline Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b Beginning in 1993,...

  6. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

  7. HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be used in multi-family housing," issued by New York City in June 1989. The manual was developed to assist managers, owners and boards of multi-family buildings in ...

  8. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  9. Menominee Tribal Enterprises (MTE) Biomass CHP District Energy System

    Energy Savers [EERE]

    The Menominee Nation once occupied 9.5 million acres of land * The present Menominee Reservation was established in 1854 with 234,000 acres. * The Menominee hunted, fished and harvested wild rice on their reservation. MTE Menominee Tribal Enterprises The Menominee Nation * The Menominee retained their island of timber & community by perseverance of their own tenacity, federal protection and fortuitous circumstance. MTE Menominee Tribal Enterprises The Menominee Nation * 95% of the

  10. Combined Heat and Power (CHP): Essential for a Cost Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In March 2011, a federal Clean Energy Standard (CES) was put forth as an approach to advancing a new national energy policy. This white paper discusses the CES concept. PDF icon ...

  11. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  12. CHP: A Technical & Economic Compliance Strategy - SEE Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Toxic Standards for Industrial, Commercial, and Institutional (ICI) Boilers and Process Heaters, February 2013 Boiler Maximum Achievable Control Technology (MACT) Technical ...

  13. FIGS-1&2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Jet Fuel Source: Energy Information Administration, Petroleum Supply Monthly, Table S1. See Summary Statistics Table and Figure Sources. Source: Energy Information...

  14. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy in end-use sectors by forming partnerships with industry consortia in the ... materials to affected industries, stakeholder groups, utilities and in state and ...

  15. Clean Energy Solutions Large Scale CHP and Fuel Cells Program...

    Broader source: Energy.gov (indexed) [DOE]

    the program has been managed by the NJ Board of Public Utilities (BPU) as a part of its Clean Energy Program. Applications should be directed to NJ BPU instead of NJ Economic...

  16. 330 kWe Packaged CHP System with Reduced Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kevin Keene - Cummins Power Generation Kevin.Keene@cummins.com 763-574-5966 U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Increase the adoption rate for high-efficiency small- scale Combined Heat and Power systems via development of a flexible, containerized 330 kWe unit.  Simplifies installation  Reduces total cost of

  17. Commissioning of CHP Systems- White Paper, April 2008

    Broader source: Energy.gov [DOE]

    This paper details four example case studies: San Francisco hotel was retrofitted with a “packaged” microturbine generator/double-effect chiller plant; a Los Angeles casino was retrofitted with an advanced reciprocating engine, hot water heat recovery, and a single-effect absorption chiller; a Brooklyn laundry was retrofitted with two reciprocating engine generators and a hot water recovery system; and a state-of-the-art hospital in Austin, Texas, was retrofitted with a combustion turbine, heat recovery steam generator, absorption and electric chillers, and thermal storage.

  18. FIG-9&10.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S9. Residual Fuel Oil Supply and Disposition, Figure S10. Residual Fuel Oil Ending Stocks, 0 300 600 900 1,200 1,500 0 300 600 900 1,200 1,500 Jul Aug Sep Oct Nov Dec Jan Feb Mar...

  19. FIGS-3&4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S3. Crude Oil Supply and Disposition, Figure S4. Crude Oil Ending Stocks, 1 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 Jul Aug...

  20. FIGS-7&8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S7. Distillate Fuel Oil Supply and Disposition, Figure S8. Distillate Fuel Oil Ending Stocks, 0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000 Jul Aug Sep Oct Nov...

  1. FIG15&16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Liquefied Petroleum Gases Supply and Disposition, Figure S16. Liquefied Petroleum Gases Ending Stocks, Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2003 2004 Months 0...

  2. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plants November 7, 2007 Example ADG Installations - Wastewater Treatment Plants z Metro Wastewater Reclamation District in Denver, Colorado - 7 MW of electricity produced from ...

  3. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The International CHPDHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHPDHC Collaborative - Advancing Near-Term Low Carbon ...

  4. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 61F289.261 K 16.111 C 520.67 R NOx Emissions Data Available Yes CO Emissions Data Available Yes 12-Month Run Hours...

  5. FIG11&12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. Jet Fuel Supply and Disposition, Figure S12. Jet Fuel Ending Stocks, 0 20 40 60 80 0 20 40 60 80 Average Stock Range Lower Operational Inventory Jul Aug Sep Oct Nov Dec Jan Feb...

  6. List of CHP/Cogeneration Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  7. Modular CHP System for Utica College: Design Specification, March 2007

    Broader source: Energy.gov [DOE]

    This report describes a system specification for purchasing the modularized components of a cogeneration facility for assembly, shipping, and onsite operation.

  8. ITP Industrial Distributed Energy: Barriers to CHP with Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 0.8 Hudson Valley Community College Creswell LF Conestoga Lancaster PA 1012006 ... For example, in Lancaster, PA, gas from the Creswell and Frey Farm landfills is combined ...

  9. FIG13&14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PropanePropylene Supply and Disposition, Figure S14. PropanePropylene Ending Stocks, Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2003 2004 Months 0 25 50 75 100 0...

  10. FIGS-5&6.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S5. Finished Motor Gasoline Supply and Disposition, Figure S6. Motor Gasoline Ending Stocks, 0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000 Jul Aug Sep Oct Nov...

  11. ITP Industrial Distributed Energy: CHP and Bioenergy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... generate relatively high NOx emissions z Lean-burn technologies are used with larger ... power z SC Johnson's Waxdale Manufacturing Facility in Racine, WI - 3.5 MW ...

  12. Increasing the Market Acceptance of Smaller CHP Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Combined Heat and Power System ADVANCED MANUFACTURING OFFICE Increasing the ... A lean-burn com- bustion confguration will provide enhanced reliability and emissions that ...

  13. Energy conversion system involving change in the density of an upwardly moving liquid

    DOE Patents [OSTI]

    Petrick, Michael (Jolliet, IL)

    1989-01-01

    A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.

  14. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect (OSTI)

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  15. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect (OSTI)

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  16. CHPRC CORRESPONDENCE For Questions or Distribution/MSIN Corrections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Assistance » CHP Deployment CHP Deployment DOE Combined Heat and Power Installation Database DOE Combined Heat and Power Installation Database The searchable combined heat and power (CHP) Installation Database Provides information on current CHP installations across the United States. Read more Do You Need Help with CHP? Do You Need Help with CHP? We can give you a hand. Contact CHP@ee.doe.gov to reach Specialists at our regional CHP Technical Assistance Partnerships (CHP TAPs). Read

  17. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  18. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  19. Mid-Atlantic Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  20. Combined Heat and Power: Is It Right For Your Facility? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HUD CHP GUIDE 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 New and Emerging Technologies Combined Heat and Power (CHP) Resource Guide for Hospital ...

  1. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  2. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011 ...

  3. Harbec Plastics: 750kW CHP Application - Project Profile | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006) More Documents & Publications SEP CASE STUDY WEBINAR: HARBEC SLIDES HARBEC, Inc. Case Study for Superior Energy Performance Harbec: A Fifteen Year Journey to the Beginning

  4. Field Scale Test and Verification of CHP System at the Ritz Carlton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    chiller, two fuel gas boosters, and the control hardware and software to ensure that the ... Vision for the Future, August 2009 ITP Industrial Distributed Energy: Combined Heat and ...

  5. Microsoft Word - NonProprietary DOE MicroCHP Final Report.doc

    Office of Scientific and Technical Information (OSTI)

    ... includes engine oil change, changing filters and the ... service schedule means the system needs service only once a ... heat from the engine of a class-8 diesel truck, as shown in ...

  6. New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    potential in industrial facilities and commercial buildings for ... to consider combined heat and power in strategic energy planning and energy efficiency program design. ...

  7. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation Project Summary Timeline: ... Impact: Based on testing in the AO Smith lab with the chosen engines, using real ...

  8. Combined Heat and Power (CHP): Is It Right For Your Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of peak electric demand Digester Gas: Often times considered "free gas" - consider sizing for max. electricity given available volume of digester gas (selling back to utility). ...

  9. Specification of Selected Performance Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas

    2006-10-06

    Pacific Northwest National Laboratory (PNNL) is assisting the U.S. Department of Energy (DOE) Distributed Energy (DE) Program by developing advanced control algorithms that would lead to development of tools to enhance performance and reliability, and reduce emissions of distributed energy technologies, including combined heat and power technologies. This report documents phase 2 of the program, providing a detailed functional specification for algorithms for performance monitoring and commissioning verification, scheduled for development in FY 2006. The report identifies the systems for which algorithms will be developed, the specific functions of each algorithm, metrics which the algorithms will output, and inputs required by each algorithm.

  10. Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003

    Broader source: Energy.gov [DOE]

    Study to assess the costs and benefits of distributed energy (DE) technologies to consumers and to better understand the effect of DE on the grid.

  11. Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011

    Broader source: Energy.gov [DOE]

    White paper demonstrating cost-effective and flexible approach in increasing power-sector efficiency and reducing GHG emissions

  12. ITP Industrial Distributed Energy: Combined Heat and Power- A Decade of Progress, A Vision for the Future

    Broader source: Energy.gov [DOE]

    Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals

  13. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Broader source: Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  14. CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript

    Broader source: Energy.gov [DOE]

    Kurmit Rockwell:Welcome.  I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program.  In this presentation we will introduce you to the basics of combined heat and...

  15. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to reduce the energy and carbon intensity of the calcined coke production process.

  16. Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

  17. Midwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  18. 6

    Energy Savers [EERE]

    Department of Energy 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from the 5th Annual Combined Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach PDF icon 2004_austin.pdf More Documents & Publications Metrics for Measuring Progress Toward Implementation

  19. Volume 4 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a challenge by the CHP industry, DOE established an active program of CHP research, development, and deployment. The creation of various technology roadmaps ensued. Accelerating Combined Heat & Power Deployment, 28 pp, Aug. 2011 Consensus Items from the National CHP Roadmap Process, 5 pp, June 2001 Annual Workshop Results for the National CHP Roadmap Baltimore, 3 pp, Oct. 2001

  20. 6/17/10 11:47 AM

    Office of Environmental Management (EM)

    Department of Energy 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from the 5th Annual Combined Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach PDF icon 2004_austin.pdf More Documents & Publications Metrics for Measuring Progress Toward Implementation

  1. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GW, according to the CHP Installation Database maintained by ICF International for DOE ... contained in the CHP Installation Database, which is recognized as the leading ...

  2. SC Johnson Waxdale Plant

    SciTech Connect (OSTI)

    2010-01-01

    This is a combined heat and power (CHP) project profile on a 6.4 MW CHP application at SC Johnson Waxdale Plant in Racine, Wisconsin.

  3. East Kansas Agri-Energy, LLC

    SciTech Connect (OSTI)

    2007-12-01

    This is a combined heat and power (CHP) project profile on a 1.6 MW CHP application at East Kansas Agri-Energy, LLC in Garnett, Kansas.

  4. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    use of CHP systems under 5 MW. The control systems and technologies are increasing market penetration of CHP systems in the light industrial, commercial, and institutional markets. ...

  5. One Market Plaza

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1.5 MW CHP system at One Market Plaza in San Francisco, California.

  6. Infinia Corporation formerly Stirling Technology Company | Open...

    Open Energy Info (EERE)

    CHP systems, residential gas-fired CHP systems and for parabolic dish solar thermal electricity generation systems (STEGS). Coordinates: 46.20804, -119.116984 Show Map...

  7. Powering Microturbines With Landfill Gas, October 2002 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants 7.4 Landfill Methane Utilization CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market ...

  8. State of Washington Clean Energy Opportunity: Technical Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis ...

  9. Ultra Clean and Efficient Natural Gas Reciprocating Engine for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 ...

  10. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  11. Balance of Plant Needs and Integration of Stack Components for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP ...

  12. Energy Portfolio Standards and the Promotion of Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White ...

  13. combined heat power | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat & Power and Distributed Energy Combined Heat and Power (CHP) is a key component of distributed energy within the DOE Advanced Manufacturing Office. CHP - sometimes ...

  14. Market Assessment of Biomass Gasification and Combustion Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Clean Energy States Alliance CHP combined heat and power EPA U.S. Environmental ... that utilize solid biomass to generate heat, power, or combined heat and power (CHP) ...

  15. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  16. Combined Heat and Power: Connecting the Gap Between Markets and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... we sought to explore the range of friendliness to CHP on an individual utility basis. ... general categories reflecting their friendliness to CHP: * Level Four: those actively ...

  17. Combined Heat and Power Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Webinar PDF icon 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  18. Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002

    Broader source: Energy.gov [DOE]

    An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

  19. ITP Industrial Distributed Energy: Boa Vista Apartments: New Bedford Housing Authority/ New Bedford, MA

    Broader source: Energy.gov [DOE]

    Overview of Boa Vista Apartments housing development, with CHP system to provide electricity and hot water.

  20. Microsoft PowerPoint - Overview of Biomass Energy and Economic Development Opportunities

    Energy Savers [EERE]

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP Technical Assistance Partnership Tribal Leader Forum Series Biomass Renewable Energy Opportunities and Strategies July 9, 2014 Bonneville Power Administration, Portland, Oregon 1 President's Executive Order 13624: 40GW of new CHP by 2020 * CHP TAPs are critical components of achieving the goal: - Regional CHP experts - Provide fact-based, un-biased information on CHP * Technologies * Project development *

  1. Technical White Papers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White Papers Technical White Papers The following technical white papers explore potential options to increase widespread deployment of distributed generation (DG) and combined heat and power (CHP). Issues such as the treatment of CHP in renewable portfolio standards and CHP commissioning are discussed. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, 15 pp, Aug. 2011 Barriers to CHP with Renewable Portfolio Standards, 13 pp, Sept. 2007 A Case for CHP Commissioning, 57

  2. Vision and Roadmap Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision and Roadmap Documents Vision and Roadmap Documents The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a challenge by the CHP industry, DOE established an active program of CHP research, development, and deployment. The creation of various technology roadmaps ensued. Accelerating Combined Heat & Power Deployment, 28 pp, Aug. 2011 Consensus Items from the National CHP Roadmap Process, 5 pp, June 2001 Annual Workshop Results

  3. U.S. Department of Energy Categorical Exclusion Determination Form

    Energy Savers [EERE]

    Department of Energy U.S. Department of Energy CHP Technical Assistance Partnerships U.S. Department of Energy CHP Technical Assistance Partnerships This informational brochure on the Combined Heat and Power Technical Assistance Partnerships (CHP TAPs) provides a summary of the key services the CHP TAPs offer as well as contact information for each region. PDF icon CHP TAPs Informational Brochure More Documents & Publications Boiler Maximum Achievable Control Technology (MACT) Technical

  4. Recent Research to Address Technical Barriers to Increased Use of Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Learn more about DOE's Combined Heat and Power (CHP) Program and CHP's potential benefits to the nation by downloading these recent publications. Waste Heat to Power Market Assessment, 86 pp, March 2015 District Energy in Cities, 71 pp, March 2015 CHP System at Food Processing Plant in Connecticut Increases Reliability and Reduces Emissions, 4 pp, February 2015 AMO Peer Review Presentations (including CHP Deployment and CHP R&D presentations), May 2014 Guide to Using Combined Heat and Power

  5. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  6. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  7. Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center- Presentation by Exergy Partners Corp., June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Develop & Demonstrate an Advanced Low Temp Heat Recovery Absorption Chiller Module, given by Richard Sweetser of Exergy Partners Corp., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Small Scale CHP and Fuel Cell Incentive Program The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell...

  9. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  10. AMO Weekly Announcements 3/25

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office Releases the “Combined Heat and Power (CHP) Technical Potential in the United States” Study The Department of Energy’s (DOE) Advanced Manufacturing Office (AMO) has released the “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report. This study provides data on the technical potential in industrial facilities and commercial buildings for “topping cycle” CHP, waste heat to power CHP (WHP CHP), and district energy CHP in the U.S. The report provides valuable data on the technical potential for CHP in strategic energy planning and energy efficiency program design. The study shows that within the U.S. there is estimated to be more than 240GW of technical potential at over 291,000 sites. Data is provided nationally by CHP system size range, facility type, and state.

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and ... combined-heat-and-power (CHP) plants. 9 Industrial combined-heat-and-power (CHP) plants. ...

  12. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, ... combined-heat-and-power (CHP) plants. 12 Industrial combined-heat-and-power (CHP) plants. ...

  13. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  14. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP...

  15. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. PDF icon chp_opportunityfuels.pdf More

  16. Integrated Assessment of the Energy Savings and Emissions-Reduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of CHP, June 1999 | Department of Energy Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Integrated Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Generating electricity on or near the point of use avoids transmission and distribution losses and defers expansion of the electricity transmission grid. This 1999 paper discusses developments that make dramatic expansion of CHP a cost-effective possibility over

  17. Technical Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available, including the technical reports below. For example, Assessing the Benefits of On-Site Combined Heat and Power (CHP) During the August 14, 2003, Blackout highlights facilities that were able to remain operational during the 2003 blackout due to backup generators or distributed generation (DG) resources, including CHP. Assessing the Benefits of On-Site CHP During the

  18. The Intersection of Net Metering and Retail Choice: An Overview of Policy,

    Energy Savers [EERE]

    Technologies, July 2008 | Department of Energy The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)/District Heat and Cooling (DHC) policy efforts that takes into account three criteria: the effectiveness of past policies in developing the CHP/DHC

  19. Industrial Assistance and Projects Databases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assistance and Projects Databases Industrial Assistance and Projects Databases AMO's databases provide information on energy assessments and recommendations, results and paybacks, and lessons learned by manufacturers who implement projects to save energy. Also review case studies from manufacturers. Combined Heat and Power (CHP) Project Profiles Database Arrow DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. The documents

  20. New CREW Database Receives First Set of Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New CHP Technical Assistance Partnerships Launched New CHP Technical Assistance Partnerships Launched October 21, 2013 - 12:00am Addthis Since 2003, the Energy Department has supported a set of regional centers to help organizations understand how combined heat and power (CHP) can improve their bottom lines and lower energy bills. Today, the Advanced Manufacturing Office announced the launch of seven regional CHP Technical Assistance Partnerships, the next generation of these centers. Located in

  1. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Equipment, Waste Heat Recovery Costs, ... Fuel Cell CHP Fuel Cell Electric Gas Turbine Internal Combustion ... Equipment, Waste Heat Recovery Costs, ...

  2. Guide to the Successful Implementation of State Combined Heat and Power Policies

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2013-03-11

    Provides utility regulators and other policymakers with actionable information based on effective state strategies for implementing CHP policies

  3. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  4. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Broader source: Energy.gov [DOE]

    Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future

  5. State of Washington Clean Energy Opportunity: Technical Market Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP, August 2010 | Department of Energy of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 State of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 The State of Washington has significant clean energy technical market potential including clean heat and power (CHP)/cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy Application Center (NW

  6. Energy Procurement Information Center (EPiC) - Deb Bouslog, Systems

    Energy Savers [EERE]

    (CHP) White Paper, April 2009 | Department of Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 This 2009 U.S. Environmental Protection Agency (EPA) Combined Heat and Power (CHP) Partnership paper covers Energy Portfolio Standards (EPS) which are becoming a widely applied method of encouraging the development of renewable and efficient

  7. Balance of Plant Needs and Integration of Stack Components for Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and CHP Applications | Department of Energy Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Presentation on Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications for Fuel Cell Pre-solicitation Workshop March 10, 2010 PDF icon fuelcell_pre-solicitation_wkshop_mar10_ainscough.pdf More Documents &

  8. Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings

    Broader source: Energy.gov [DOE]

    During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

  9. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. PDF icon chp_large.pdf More Documents & Publications CHP Assessment, California Energy Commission, October

  10. The Market and Technical Potential for Combined Heat and Power in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector, January 2000 | Department of Energy Industrial Sector, January 2000 The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000 This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As part of this effort, OSEC has characterized typical technologies used in industrial CHP, analyzed existing CHP capacity in

  11. Webcasts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts Webcasts End users interested in combined heat and power (CHP) can participate in free webcasts made available to them through various resources, including those listed below. View presentations and documents from previous webinars and webcasts "Combined Heat and Power: Expanding CHP in Your State" was held on December 4, 2013. View the archived webinar. "CHP: Enabling Resilient Energy Infrastructure" was held on April 3, 2013. Access the presentations. View the

  12. Market Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Market Analyses Market Analyses Need information on the market potential for combined heat and power (CHP) in the U.S.? These assessments and analyses cover a wide range of markets including commercial and institutional buildings and facilities, district energy, and industrial sites. The market potential for CHP at federal sites and in selected states/regions is also examined. Commercial CHP and Bioenergy Systems for Landfills and Wastewater Treatment

  13. Boiler MACT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Boiler MACT Boiler MACT DOE currently provides technical assistance on combined heat and power (CHP) technologies to commercial and industrial facilities through its seven regional CHP Technical Assistance Partnerships (CHP TAPs). Starting in January 2013, DOE supplemented this effort by providing site-specific technical and cost assistance to the major source facilities affected by the Boiler Maximum Achievable Control Technology (Boiler MACT) rule.

  14. Florida Power & Light Company, 700 Universe Blvd. Juno Beach 33408

    Energy Savers [EERE]

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  15. International Energy Agency

    Broader source: Energy.gov [DOE]

    DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide.

  16. State Petitions for Exemption from Federal Preemption | Department of

    Broader source: Energy.gov (indexed) [DOE]

    October 2003 | Department of Energy 2003 American Council for an Energy-Efficient Economy (ACEEE) report brings up to date the review of state policies with regard to CHP that ACEEE completed in 2002. The report describes the current activities of states with programs during the initial survey and also reviews new programs offered by states. PDF icon chp_ie032_1003.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices,

  17. Industry Profile

    Office of Energy Efficiency and Renewable Energy (EERE)

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  18. California Hydrogen Infrastructure Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by ICF International to the Integrated Energy Policy Report Committee at the California Energy Commission's July 2009 Combined Heat and Power Workshop. PDF icon 2009-07-15_ICF_CHP_Market_Assessment.pdf More Documents & Publications CHP Assessment, California Energy Commission, October 2009 2008 CHP Baseline Assessment and Action Plan for the California Market The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic

    California

  19. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries ...

  20. Static Sankey Diagram of Onsite Generation in U.S. Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and electricity through means of CHP, boilers and other electricity generating equipment. ... from renewable sources other than biomass (e.g., solar, wind, hydropower, and geothermal). ...

  1. Table Definitions, Sources, and Explanatory Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sector that consists of electricity-only and combined heat and power (CHP) plants whose primary ... The facilities are usually hollowed-out salt domes, geological ...

  2. Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study

    SciTech Connect (OSTI)

    2013-03-29

    Case study of Thermal Energy Corporation (TECO) demonstrating a high-efficiency combined heat and power (CHP) system at Texas Medical Center in Houston, Texas

  3. The market and technical potential for combined heat and power in the commercial/institutional sector

    SciTech Connect (OSTI)

    None, None

    2000-01-01

    Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

  4. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district energy...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    system and most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,... Eligibility: Schools, State Government Savings Category:...

  6. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  7. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  8. Frequently Asked Questions

    Broader source: Energy.gov [DOE]

    Frequently asked questions (FAQs) and their corresponding answers regarding industrial distributed energy (DE) and combined heat and power (CHP) are provided below.

  9. SP Newsprint

    SciTech Connect (OSTI)

    2009-11-01

    This is a combined heat and power (CHP) project profile on a 45 MW steam turbine at SP Newsprint in Dublin, Georgia.

  10. Market Assessment of Distributed Energy in New Commercial and...

    Broader source: Energy.gov (indexed) [DOE]

    efficiency of providing electrical and thermal energy through combined heat and power (CHP); reduced losses from long-distance transmission of electricity (line losses); and ...

  11. Personal Tax Credit | Open Energy Information

    Open Energy Info (EERE)

    Institutional Residential Rural Electric Cooperative Schools Anaerobic Digestion Biomass Hydrogen Landfill Gas Photovoltaics Solar Thermal Electric Wind Municipal Solid Waste CHP...

  12. Personal Tax Incentives | Open Energy Information

    Open Energy Info (EERE)

    Institutional Residential Rural Electric Cooperative Schools Anaerobic Digestion Biomass Hydrogen Landfill Gas Photovoltaics Solar Thermal Electric Wind Municipal Solid Waste CHP...

  13. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions and Air Pollution: Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP ...

  14. DOE Workshop Overview and Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today's gasoline ICEVs) * >80% reduction for FCEVs (vs. advanced PHEVs) Reduced Air Pollution * up to 90% reduction in criteria pollutants for CHP systems Fuel Flexibility * ...

  15. Overview of DOE Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions and Air Pollution: Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP ...

  16. Investment Tax Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and CHP placed in service on or before 12312016. Summary Vermont offers an investment tax credit for installations of renewable energy equipment on business properties....

  17. A9RF71D.tmp

    Energy Savers [EERE]

    A.O. Smith: Demonstrate Underutilized Micro-CHP A.O. Smith: Demonstrate Underutilized Micro-CHP The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used. The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used.

  18. Pilot Program Builds Sustainable Lab-Industry Partnerships for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Program Builds Sustainable Lab-Industry Partnerships for Breakthrough Manufacturing ... Corporation are exploring using microturbines in combined heat and power (CHP) systems. ...

  19. EA-1922: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1922: Draft Environmental Assessment Combined Power and Biomass Heating System, Fort ... equipment and develop a CHP Plant and district energy system, harvest biomass for use ...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Heat recovery Small Scale CHP and Fuel Cell Incentive Program The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and...