Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Activation of 200 MW refusegenerated CHP upward regulation effect...  

Open Energy Info (EERE)

CHP plants can be used in the electricity market for upward regulation by bypassing the steam turbine. The technical design for this purpose must ensure that factors such as...

2

Activation of 200 MW refusegenerated CHP upward regulation effect...  

Open Energy Info (EERE)

ineLabel":"","visitedicon":"" Display map Period Jul 2009 Dec 2010 References EU Smart Grid Projects Map1 Overview Waste CHP plants can be used in the electricity market for...

3

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, searchAccionaAcrux BtGrid Project)

4

Activation of 200 MW refusegenerated CHP upward regulation effect (Smart  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation, searchAccionaAcrux BtGrid Project)Grid

5

2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...  

Energy Savers [EERE]

CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...

6

CHP, Waste Heat & District Energy  

Broader source: Energy.gov (indexed) [DOE]

and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and...

7

ITP Distributed Energy: CHP Project Development Handbook  

Broader source: Energy.gov (indexed) [DOE]

CHP. CHP is an efficient, clean, and reliable approach to generating power and thermal energy from a single fuel source. CHP can increase operational efficiency and decrease energy...

8

National CHP Roadmap  

Broader source: Energy.gov (indexed) [DOE]

problems. Yet we have a solution to address all of these simultaneously. Combined heat and power (CHP) can allow us to make progress in solving all of these problems. The...

9

HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY...  

Broader source: Energy.gov (indexed) [DOE]

2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 HUD Combined Heat and Power (CHP)...

10

ITP Industrial Distributed Energy: 3rd Annual National CHP Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

3 rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting A Combined Event for Federal Facility Managers And CHP Advocates October...

11

5th Annual CHP Roadmap Workshop Breakout Group Results, September...  

Broader source: Energy.gov (indexed) [DOE]

Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach 2004austin.pdf...

12

HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for...

13

CHP R&D Project Descriptions  

Broader source: Energy.gov [DOE]

The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

14

CHP - New Technologies that Work  

E-Print Network [OSTI]

Efficiency 1. Reduces fuel use and operating costs 3. Increases energy security and improves power quality 2. Produces environmental benefits CHP System Design Options BUILDING DEMAND THERMAL ELECTRICAL EXPORT or WASTE } HIGHEST... and Atmosphere ? 6-8 Points ? Materials and Resources ? Environmental Quality ? Design Excellence ? 1 Point https://www.usgbc.org/ CHP System Qualifications ?CHP system efficiency exceeds 60% ?Environmental performance exceeds comparable NG boiler...

Herweck, R.

2012-01-01T23:59:59.000Z

15

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

16

Accelerating CHP Deployment, United States Energy Association...  

Broader source: Energy.gov (indexed) [DOE]

as possible considering the diverse interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP...

17

3rd Annual National CHP Roadmap Workshop CHP and DER for Federal...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 CHP: Connecting the Gap between Markets...

18

CHP RAC Handout_71614.cdr  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined heat and power (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing...

19

State Barriers to CHP Development  

E-Print Network [OSTI]

Every year, ACEEE collects data on regulatory policies in each state that theoretically serve to promote and discourage combined heat and power (CHP) development. In our annual State Energy Efficiency Scorecard (5), we assess the regulatory...

Chittum, A.; Kaufman, N.

2011-01-01T23:59:59.000Z

20

Performance Assessment Report Domain CHP System  

E-Print Network [OSTI]

Performance Assessment Report for the Domain CHP System November 2005 By Burns & McDonnell Engineering #12;Domain CHP System Performance Assessment Report for the Packaged Cooling, Heating and Power

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Suggested Treatment of CHP Within an EERS Context  

E-Print Network [OSTI]

Discussion Draft: Do not cite SUGGESTED TREATMENT OF CHP WITHIN AN EERS CONTEXT Anna Chittum Research Associate R. Neal Elliott, Ph.D., P.E. Associate Director for Research Dan Trombley Engineering Associate Suzanne Watson Policy... Orleans, LA, May 12-15, 2009 S CHP,ELEC = [(E CHP * H GRID ) ? (F CHP, TOTAL ? F CHP, THERMAL )] / H GRID Expressing the above equation in general form, yields: S CHP,ELEC = E CHP * [1-(F CHP, TOTAL ? F CHP, THERMAL ) / (E CHP * H GRID...

Chittum, A.; Elliott, R. N.; Trombley, D.; Watson, S.

22

Federal CHP Potential 1 Does your facility have CHP  

E-Print Network [OSTI]

. The Federal building types with greatest CHP potential are hospitals, industrial, and R&D facilities. Figure 1) systems provide thermal energy for buildings or processes while at the same time generating electricity extraordinary efficiency and environmental benefits. The U.S. Department of Energy's (DOE's) Federal Energy

Oak Ridge National Laboratory

23

CHP -- A revolution in the making  

SciTech Connect (OSTI)

Liberalization, globalization, and particularly climate change are changing energy thinking. In the future, climate change will be tackled by improved energy efficiency and carbon neutral sources of energy, but much more could be done today by the more widespread use of CHP. CHP has made reasonably good progress in the UK and Europe, due to energy industry liberalization and the widespread availability of gas. But the pursuit of sustainability objectives requires government intervention into liberalized markets. While the current UK Government is a strong supporter of CHP, major opportunities to develop CHP were missed in favor of less efficient CCGT power stations over the last decade. The two critical policy issues in the UK now are the proposed tax on the business use of energy and the current reform of electricity trading arrangements. Both could impact favorably on the development of CHP. The UK CHP Association, COGEN Europe and the International Cogeneration Alliance continue to press the case for CHP.

Green, D.

1999-07-01T23:59:59.000Z

24

CHP: Enabling Resilient Energy Infrastructure - Presentations...  

Broader source: Energy.gov (indexed) [DOE]

- Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as an energy resource in the United...

25

State Opportunities for Action: Update of States' CHP Activities...  

Broader source: Energy.gov (indexed) [DOE]

& Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 2008...

26

Promoting Combined Heat and Power (CHP) for Multifamily Properties...  

Broader source: Energy.gov (indexed) [DOE]

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and...

27

Combined Heat and Power (CHP) Resource Guide for Hospital Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007...

28

Combined Heat and Power: Expanding CHP in Your State | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program...

29

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

30

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

31

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

32

Database (Report) of U.S. CHP Installations Incorporating Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations...

33

CHP: A Technical & Economic Compliance Strategy - SEE Action...  

Broader source: Energy.gov (indexed) [DOE]

CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This...

34

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

35

Integrated CHP/Advanced Reciprocating Internal Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

With Landfill Gas, October 2002 CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

36

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

37

CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateCCHICAGO HOUSE CHP

38

Are CHP Systems Ready for Commercial Buildings?  

SciTech Connect (OSTI)

This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

2005-06-27T23:59:59.000Z

39

CHP Deployment | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden SaysEnergy Office FY144 1.DOE FCHP DeploymentCHP

40

Quick Start Guide: Completing Your CHP September 2013  

E-Print Network [OSTI]

Quick Start Guide: Completing Your CHP September 2013 This Laboratory Safety Manual (LSM) is your of what the Washington Department of Labor and Industries calls a "Chemical Hygiene Plan (CHP)." The CHP is required for all laboratories that use hazardous chemicals. EH&S developed much of your CHP for you

Wilcock, William

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Implementing CHP in Louisiana: A Case Study  

E-Print Network [OSTI]

researching current Federal and Louisiana state policies that regulate the air permitting and utility regulation for CHP systems. After the appropriate air permits and qualification for grid connection are identified, the next step in the process of solving...

Kozman, T. A.; Carriere, J. L.; Lee, J.

42

ITP Distributed Energy: The Market for CHP in Florida, August...  

Broader source: Energy.gov (indexed) [DOE]

Current US CHP Capacity Looks Impressive 0 10 20 30 40 50 60 70 80 90 100 EU 25 USA Russia China Japan India Canada Netherlands UK Finland France Denmark WADE 2006 CHP Capacity,...

43

Obstacles and Opportunity: Overcoming Barriers in Today's CHP Marketplace  

E-Print Network [OSTI]

Combined heat and power (CHP), which can offer tremendous efficiency benefits to industrial facilities around the country, continues to be viewed as a long-term efficiency opportunity. However, the high up-front cost of CHP equipment and fuel...

Chittum, A.; Kaufman, N.

2011-01-01T23:59:59.000Z

44

Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)  

SciTech Connect (OSTI)

D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

Not Available

2013-07-01T23:59:59.000Z

45

Biomass DHP/ CHP benefits at local and regional level  

E-Print Network [OSTI]

Biomass DHP/ CHP ­ benefits at local and regional level Krzysztof Gierulski EC Baltic RenewableEnergy Workshop, Brussels 01.07.2002 #12;Biomass DHP/ CHP in Poland n Plan of the presentation n Promotion and dissemination of best practices (,,Promotion of conversion to biomass CHP at larger sites in PL", OPET) n

46

Integrating Renewables and CHP into the UK Electricity System  

E-Print Network [OSTI]

Integrating Renewables and CHP into the UK Electricity System Xueguang Wu, Nick Jenkins, Goran Report 13 #12;1 Integrating Renewables and CHP into the UK Electricity System Tyndall Centre Technical and Regional CHP Projections to 2010 ...............................................18 2.5 Scenarios

Watson, Andrew

47

Designing and control of a SOFC micro-CHP system  

E-Print Network [OSTI]

Designing and control of a SOFC micro-CHP system Vincenzo Liso Dissertation submitted 201X #12;Designing and control of a SOFC micro-CHP system Vincenzo Liso c Printed in Denmark by Uni my family #12;ii #12;Abstract Vincenzo Liso April 17-- 2012 Designing and control of a SOFC micro-CHP

Liso, Vincenzo

48

Molecular Cell High-Affinity Binding of Chp1 Chromodomain  

E-Print Network [OSTI]

Molecular Cell Article High-Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3, Chp1, and siRNAs derived from centro- meric repeats. Recruitment of RITS to centromeres has been establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide

Halazonetis, Thanos

49

Renewables and CHP Deployment in the UK January 2002  

E-Print Network [OSTI]

Renewables and CHP Deployment in the UK to 2020 Jim Watson January 2002 Tyndall Centre for Climate Change Research Working Paper 21 #12;Renewables and CHP Deployment in the UK to 2020 Jim Watson Energy....................................................................................................6 3. The Deployment of Renewables and CHP to 2020

Watson, Andrew

50

Design and Control of Household CHP Fuel Cell System  

E-Print Network [OSTI]

Design and Control of Household CHP Fuel Cell System PhD. project Dissertation Anders Risum and Control of Household CHP Fuel Cell System" Anders R. Korsgaard, M.Sc. Mechanical Engineering, e-mail: ark for micro combined heat and power (CHP) systems for local households. Several components in the PEM fuel

Berning, Torsten

51

Sustaining Operational Efficiency of a CHP System  

SciTech Connect (OSTI)

This chapter provides background information on why sustaining operations of combined cooling, heating and power systems is important, provides the algorithms for CHP system performance monitoring and commissioning verification, and concludes with a discussion on how these algorithms can be deployed.

Katipamula, Srinivas; Brambley, Michael R.

2010-01-04T23:59:59.000Z

52

ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES  

SciTech Connect (OSTI)

This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all of these criteria. Executive Order 13123 directs federal facilities to use CHP when life-cycle costs indicate energy reduction goals will be met. FEMP can assist facilities to conduct this analysis. The model developed for this report estimates the magnitude of CHP that could be implemented under various performance and economic assumptions associated with different applications. This model may be useful for other energy technologies. It can be adapted to estimate the market potential in federal buildings for any energy system based on the cost and performance parameters that a user desires to assess. The model already incorporates a standard set of parameters based on available data for federal buildings including total building space, building type, energy use intensity, fuel costs, and the performance of many prime movers commonly used in CHP applications. These and other variables can be adjusted to meet user needs or updated in the future as new data become available.

HADLEY, S.W.

2002-03-11T23:59:59.000Z

53

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech  

E-Print Network [OSTI]

Laboratory-Specific-Documentation-HHN.docx CHP updated 8/21/13 Virginia Tech Chemistry Department Chemical Hygiene Plan This CHP applies to rooms Current worker beginning a new task Reviewing a revised edition of the CHP 1

Crawford, T. Daniel

54

Impact of Integrating Renewables and CHP into the UK Transmission Network  

E-Print Network [OSTI]

Impact of Integrating Renewables and CHP into the UK Transmission Network Xueguang Wu, Nick Jenkins of Integrating Renewables and CHP into the UK Transmission Network Xueguang Wu, Nick Jenkins and Goran Strbac ........................................................................................................3 2.2 SCENARIOS FOR CHP

Watson, Andrew

55

ORNL/TM-2001/280 Analysis of CHP Potential  

E-Print Network [OSTI]

ORNL/TM-2001/280 Analysis of CHP Potential at Federal Sites February 2002 S. W. Hadley K. L. Kline OF CHP POTENTIAL AT FEDERAL SITES S. W. Hadley K. L. Kline S. E. Livengood J. W. Van Dyke February 2002 for the U.S. DEPARTMENT OF ENERGY under contract no. DE-AC05-00OR22725 #12;Federal CHP Potential #12;Federal

Oak Ridge National Laboratory

56

MICRO-CHP System for Residential Applications  

SciTech Connect (OSTI)

This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

Joseph Gerstmann

2009-01-31T23:59:59.000Z

57

expanding_chp_in_your_state.doc | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CHP in Your State Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

58

The International CHP/DHC Collaborative - Advancing Near-Term...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)District Heat and Cooling (DHC) policy efforts that takes into account three...

59

CHP: Connecting the Gap between Markets and Utility Interconnection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the...

60

Barriers to CHP with Renewable Portfolio Standards, Draft White...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

helped spur the growth of renewable energy projects, including solar, wind, and biomass power. This report aims to determine the barriers to CHP that exist within state RPS...

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2005 CHP Action Agenda: Innovating, Advocating, and Delivering...  

Energy Savers [EERE]

Solutions, October 2005 More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which...

62

U.S. CHP Installations Incorporating Thermal Energy Storage ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Company of Lisle, Illinois, for UT-Battelle, Oak Ridge National Laboratory. tictesdatabase.pdf More Documents & Publications Database (Report) of U.S. CHP Installations...

63

CHP Project Development Handbook (U.S. Environmental Protection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership) The mission of the U.S. Environmental Protection Agency's (EPA's) Combined Heat and Power (CHP) Partnership is to increase the use of cost-effective, environmentally...

64

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

policies designed to promote CHP in critical infrastructure applications. Combined Heat and Power: Enabling Resilient Energy Infrastructure for Critical Facilities (March...

65

CHP Research and Development - Presentation by Oak Ridge National...  

Broader source: Energy.gov (indexed) [DOE]

- Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge...

66

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

67

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Broader source: Energy.gov (indexed) [DOE]

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

68

Modular CHP System for Utica College: Design Specification, March...  

Broader source: Energy.gov (indexed) [DOE]

install and interconnect at the College with minimal time and engineering needs. uticachp.pdf More Documents & Publications Commissioning of CHP Systems - White Paper, April...

69

CHP Education and Outreach Guide to State and Federal Government...  

Broader source: Energy.gov (indexed) [DOE]

representatives in the states and the federal government about combined heat and power (CHP). It was compiled in October 2000 and updated October 2005. chpeducationandoutreach...

70

Clean Energy Solutions Large Scale CHP and Fuel Cells Program  

Broader source: Energy.gov [DOE]

The New Jersey Economic Development Authority (EDA) is offering grants for the installation of combined heat and power (CHP) or fuel cell systems to commercial, industrial, and institutional...

71

Optimization Online - Nonlinear Optimisation in CHP-Applications  

E-Print Network [OSTI]

Nov 14, 2002 ... Nonlinear Optimisation in CHP-Applications. Michael Wigbels (wim ***at*** umsicht.fhg.de) Wilhelm Althaus (alt ***at*** umsicht.fhg.de)

Michael Wigbels

2002-11-14T23:59:59.000Z

72

Opportunities for CHP at Wastewater Treatment Facilities: Market...  

Broader source: Energy.gov (indexed) [DOE]

2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

73

Combustion Turbine CHP System for Food Processing Industry -...  

Broader source: Energy.gov (indexed) [DOE]

power grid. The fact sheet contains performance data from the plant after one year of operation. Combustion Turbine CHP System for Food Processing Industry More Documents &...

74

Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in collaboration with Cannon Boiler Works, Integrated CHP...

75

Biomass DHP/ CHP benefits at local and regional level  

E-Print Network [OSTI]

Biomass DHP/ CHP ­ benefits at local and regional level Krzysztof Gierulski EC Baltic RenewableEnergy Workshop, Brussels 01.07.2002 http://www.managenergy.net/conference/ren0702/gierulski.pdf #12;Biomass DHP of conversion to biomass CHP at larger sites in PL", OPET) n Technical assistance (,,Feasibility

76

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

77

Combined Heat & Power (CHP) -A Clean Energy Solution for Industry  

E-Print Network [OSTI]

From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process industries. By 1994, CHP provided 42 GW of electricity generation capacity -about 6 percent of the U.S. total. Three manufacturing industries...

Parks, H.; Hoffman, P.; Kurtovich, M.

78

CHP Deployment Program: AMO Technical Assistance Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJune 28,EnergyDecemberCHP

79

Combined Heat and Power (CHP) Technology Development  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 Documentation and ApprovalThe4,Department ofThisThe CHP John

80

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: EnergyCECG Maine,CHP Emissions

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)  

SciTech Connect (OSTI)

This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

Steward, D.; Penev, M.

2010-03-30T23:59:59.000Z

82

MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA  

E-Print Network [OSTI]

i MODELING THE DIFFUSION OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis submitted OF MICRO-CHP IN A RESIDENTIAL AREA by Christian Chemaly A thesis presented on the diffusion of micro-CHP shows that micro-CHP will not reach 50% of the market in less than 20 years. Furthermore it analyses

83

CHP and CHPsim: A Language and Simulator for Fine-Grain Distributed Computation  

E-Print Network [OSTI]

1 CHP and CHPsim: A Language and Simulator for Fine-Grain Distributed Computation Alain J. Martin Abstract--This paper describes a complete and stable version of CHP and the simulator CHPsim. CHP partial versions of the language are already widely used, but CHP has never been presented as a complete

Martin, Alain

84

CHP Integrated with Burners for Packaged Boilers  

SciTech Connect (OSTI)

The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the projects subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

Castaldini, Carlo; Darby, Eric

2013-09-30T23:59:59.000Z

85

CHP at Post Street in Downtown Seattle  

SciTech Connect (OSTI)

The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steam loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.

Gent, Stan

2012-04-12T23:59:59.000Z

86

The Role of Incentives in Promoting CHP Development  

E-Print Network [OSTI]

implementation than the presence of financial incentives for CHP, which suggests that getting regulatory and market conditions right may be more important than providing incentives. This finding could also apply to many other facets of energy efficiency policy....

Kaufman, N.; Elliot, R. N.

2010-01-01T23:59:59.000Z

87

ITP Industrial Distributed Energy: HUD CHP GUIDE #2 - FEASIBILITY...  

Broader source: Energy.gov (indexed) [DOE]

HUD CHP GUIDE 2: FEASIBILITY SCREENING FOR COMBINED HEAT AND POWER IN MULTIFAMILY HOUSING Prepared for U.S. Department of Housing and Urban Development by U.S. Department of...

88

ITP Industrial Distributed Energy: CHP Market Potential in the...  

Broader source: Energy.gov (indexed) [DOE]

diesel generators that are being converted to CHP. Idaho - There are a large number of potato and beet sugar processing facilities in the state that require large amounts of both...

89

Small Scale CHP and Fuel Cell Incentive Program (New Jersey)  

Broader source: Energy.gov [DOE]

The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and are...

90

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

91

3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5SUMMARIES | Department of10EPA CHP

92

Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35...

93

Data Collection and Analyses of the CHP System at Eastern Maine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical...

94

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network [OSTI]

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

95

The Center for Health Policy (CHP) works with institutional partners at the local, state,  

E-Print Network [OSTI]

Mission The Center for Health Policy (CHP) works with institutional partners at the local, state into effective policies. The CHP sees research as an integral component of its mission. Center faculty engage

Grishok, Alla

96

CHP Fuel Cell Durability Demonstration - Final Report  

SciTech Connect (OSTI)

Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (?-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

Petrecky, James; Ashley, Christopher J

2014-07-21T23:59:59.000Z

97

Monitoring and Commissioning Verification Algorithms for CHP Systems  

SciTech Connect (OSTI)

This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

2008-03-31T23:59:59.000Z

98

chp/pcor center for health policy/ center for primary care  

E-Print Network [OSTI]

chp/pcor center for health policy/ center for primary care and outcomes research center overview historicalhighlights 6 Education 12 research 20 Impact 24 outreach 28 Supportingchp/pcor 30 people chp/pcor mission investigators. outreach Over the past decade, CHP/PCOR has pro- duced 25 newsletters, organized nearly 300

Ford, James

99

Formal Verification of CHP Specifications with CADP Illustration on an Asynchronous Network-on-Chip  

E-Print Network [OSTI]

Formal Verification of CHP Specifications with CADP Illustration on an Asynchronous Network in the high-level language CHP, by using model checking techniques provided by the CADP toolbox. Our proposal is based on an automatic translation from CHP into LOTOS, the process algebra used in CADP. A translator

Joseph Fourier Grenoble-I, Université

100

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential  

E-Print Network [OSTI]

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential and Combustion Micro-CHP under Future Residential Energy Demand Scenarios A.D. Hawkes2 and M.A. Leach Centre heat and power (micro-CHP) - a technology to provide heat and some electricity to individual

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network-on-Chip  

E-Print Network [OSTI]

Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network of the Presentation · Introduction · Translation from CHP to LOTOS · CADP toolbox overview · Verification of ANOC Context & Objective process calculus CHP Petri nets process calculus LOTOS (CEA/Leti) translation

Joseph Fourier Grenoble-I, Université

102

CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS  

SciTech Connect (OSTI)

Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

Schweitzer, Martin [ORNL

2010-08-01T23:59:59.000Z

103

Islanded house operation using a micro CHP Albert Molderink, Vincent Bakker, Johann L. Hurink, Gerard J.M. Smit  

E-Print Network [OSTI]

1 Islanded house operation using a micro CHP Albert Molderink, Vincent Bakker, Johann L. Hurink, The Netherlands email: a.molderink@utwente.nl Abstract-- The µCHP is expected as the successor of the conventional. A µCHP appliance saves money and reduces greenhouse gas emission. An additional functionality of the µCHP

Al Hanbali, Ahmad

104

Network Integration of CHP or It's the Network, Stupid! Dr Gareth P. Harrison and Dr A. Robin Wallace  

E-Print Network [OSTI]

Network Integration of CHP or It's the Network, Stupid! Dr Gareth P. Harrison and Dr A. Robin. The European Union CHP Directive requires EU member states to have at least 18% CHP by 2012 and the UK target, CHP is mainly connected to medium or low voltage electrical distribution networks as distributed

Harrison, Gareth

105

Actual trends of decentralized CHP integration -- The Californian investment subsidy system and its implication for the energy efficiency directive (Aktuelle Trends in der dezentralen KWK Technologie Integration -- Das kalifornische Fordermodell und dessen Implikation fur die Endenergieeffizienzrichtlinie)  

E-Print Network [OSTI]

http://www.epa.gov/chp/project_resources/calculator.htmVerbrennungsmotoren. Quelle: Midwest CHP Application Center,Mikroturbinen. Quelle: Midwest CHP Application Center, 2003

Stadler, Michael; Lipman, Tim; Marnay, Chris

2008-01-01T23:59:59.000Z

106

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

107

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

108

CHP Supported with Energy Efficiency Measures -- A Winning and Environmentally Sound Solution in Finland  

E-Print Network [OSTI]

CHP Supported with Energy Efficiency Measures - a Winning and Environmentally Sound Solution in Finland Erkki Hannunkari, IVO Technology Centre In the European Union Energy Progranunes, one of the most significant measures in reducing carbon... dioxides and other emissions is to build additional CHP teclmology. TIris will be implemented with measures to raise the energy efficiency. CHP technology is exceptionally widely used in Finland. At industrial sites, it accounts for more than in any...

Hannunkari, E.

109

Load control in low voltage level of the electricity grid using CHP appliances  

E-Print Network [OSTI]

1 Load control in low voltage level of the electricity grid using µCHP appliances M.G.C. Bosman, V.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed on the transformers and, thus, on the grid. In this work we study the influence of introducing µCHP appliances

Al Hanbali, Ahmad

110

ITP Industrial Distributed Energy: CHP GUIDE #1 - Q & A ON COMBINED...  

Broader source: Energy.gov (indexed) [DOE]

CHP systems can combust propane, fuel oil, hydrogen, landfill or anaerobic digester gas--providing a hedge against rising natural gas costs. * Improved Indoor Air Quality...

111

Field Scale Test and Verification of CHP System at the Ritz Carlton...  

Broader source: Energy.gov (indexed) [DOE]

resulting packaged CHP System which integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that...

112

Thermodynamic Modeling and Analysis of the Ratio of Heat to Power Based on a Conceptual CHP System  

E-Print Network [OSTI]

The CHP system not only produces electrical energy, but also produces thermal energy. An extensive analysis of the CHP market reveals that one of the most important engineering characteristics is flexibility. A variable heat-to-power ratio has...

Liu, Z.; Li, X.; Liu, Z.

2006-01-01T23:59:59.000Z

113

8/29/07BCB 444/544 F07 ISU Dobbs #5 -Dynamic Programming 1 Chp 3-Sequence Alignment  

E-Print Network [OSTI]

8/29/07BCB 444/544 F07 ISU Dobbs #5 - Dynamic Programming 1 #12;Chp 3- Sequence Alignment SECTION II SEQUENCE ALIGNMENT Xiong: Chp 3 Pairwise Sequence Alignmentq g · Evolutionary Basis · Sequence

Schürmann, Michael

114

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

115

Modelling Danish local CHP on market conditions 1 IAEE European Conference: Modelling in Energy Economics and Policy  

E-Print Network [OSTI]

Modelling Danish local CHP on market conditions 1 6th IAEE European Conference: Modelling in Energy Economics and Policy 2 - 3 September, Zürich, Switzerland Modelling Danish local CHP on market conditions, the development of local combined heat and power (CHP) plants has been characterised by large growth throughout

116

Report number ex. Ris-R-1234(EN) 1 Local CHP Plants between the Natural Gas and  

E-Print Network [OSTI]

Report number ex. Risø-R-1234(EN) 1 Local CHP Plants between the Natural Gas and Electricity combined heat and power (CHP) plants in Denmark constitute an important part of the national energy significantly to the electricity production. CHP is, together with the wind power, the almost exclusive

117

Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems  

E-Print Network [OSTI]

Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP://www.iet.aau.dk ­ * Corresponding author: mpn@iet.aau.dk Abstract: Degradation phenomena in HTPEM fuel cells for use in CHP systems monitored during experiments. Introduction Fuel cell based combined heat and power production (CHP) systems

Berning, Torsten

118

Evidence for separate substrate binding sites for hydrogen peroxide and cumene hydroperoxide (CHP) in the oxidation of ethanol by catalase  

SciTech Connect (OSTI)

The oxidation of ethanol by purified bovine liver catalase (Sigma, C-40) can be supported by H/sub 2/O/sub 2/ or by CHP. The time course of the H/sub 2/O/sub 2/ supported reaction (using glucose/glucose oxidase as the H/sub 2/O/sub 2/ source) was linear for at least one hr, whereas the rate of acetaldehyde formation in the CHP (4.2 mM) supported reaction decreased with time. When catalase was exposed o CHP for 5 min before the addition of ethanol, the rate of CHP supported ethanol oxidation was reduced by more than 90% compared to incubations where the addition of ethanol preceded that of CHP. In the CHP inhibited state, the peroxidative activity of catalase was not restored by further addition of CHP or ethanol; however, addition of fresh catalase yielded its expected activity. Significantly, the CHP inhibited enzyme was equally effective as the untreated enzyme in catalyzing (a) the oxidation of ethanol in the presence H/sub 2/O/sub 2/ supported peroxidative activity as well as catalytic activity by CHP inhibited catalase points to separate binding sites for H/sub 2/O/sub 2/ and CHP in this reaction. Alternatively, CHP may bind adjacent to a common peroxide active site, thereby sterically impeding the binding of CHP - but not of H/sub 2/O/sub 2/ - to this active site.

DeMaster, E.G.; Nagasawa,ss H.T.

1986-03-01T23:59:59.000Z

119

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network [OSTI]

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C for a CHP plant based on spark ignition engine running under lean conditions. An overall auto combustion engine. The potential benefits of using H2 in spark ignition (SI) engines may be listed as follows

Paris-Sud XI, Université de

120

Filename: FVB Invo2 Forced 121061.CHP Probe Array Type: MG_U74Av2  

E-Print Network [OSTI]

121061.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8 Controls: Antisense.13 ______________________________________________________________________ ______________________________________________________________________ Filename: FVB Invo2 Forced 121062.CHP Probe Array Type: MG_U74Av2 Algorithm: Statistical Probe Pair Thr: 8

Betz, William J.

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Institute for Renewable Energy Ltd Preparation of a pilot biogas CHP plant integrated with  

E-Print Network [OSTI]

Institute for Renewable Energy Ltd Poland 1 Preparation of a pilot biogas CHP plant integrated on the preparation phase for a pilot investment in Koczala, Northern Poland, relating to an agricultural biogas CHP production and utilisation of agricultural biogas the project focused on BAT obtainable from various European

122

Recent Developments in CHP Policy in the United States  

E-Print Network [OSTI]

28, 2013) 3. Environmental Protection Agency Combined Heat and Power Partnership. 2012. ?Basic Information.? Fact Sheet. http://www.epa.gov/chp/basic/index.html. (March 29, 2013) 4. Oak Ridge National Laboratory. 2008. ?Combined Heat and Power...://www.whitehouse.gov/the- press-office/2012/08/30/executive-order- accelerating-investment-industrial-energy- efficiency. (March 25, 2013) 6. SEE Action. 2013. ?Upcoming Events.? http://www1.eere.energy.gov/seeaction/events.ht ml. (March 28, 2013) 7. Seryak, John. 2012...

Farley, K.; Chittum, A.

2013-01-01T23:59:59.000Z

123

New CHP Technical Assistance Partnerships Launched | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1,Department of Energy BookPhysicsNew CHP

124

Modular CHP System for Utica College: Design Specification, March 2007 |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department of Energy Modular CHP System for Utica College:

125

Clean Hydrogen Producers Ltd CHP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunways JVGroupChoice Electric CoProducers Ltd CHP

126

Review of CHP Technologies, October 1999 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperated inFebruary 26, 2009 Special InquiryCHP

127

2008 EPA CHP Partnership Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartment ofPresentationsEPA CHP

128

Does your facility have CHP potential? Ideal sites will fit the following profile, but sites meeting only a few of these  

E-Print Network [OSTI]

Does your facility have CHP potential? Ideal sites will fit the following profile, but sites meeting only a few of these characteristics may also have a cost-effective CHP opportunity: high upgrades are planned. CHP Potential at Federal Sites Combined heat and power (CHP) systems provide thermal

Oak Ridge National Laboratory

129

A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems  

SciTech Connect (OSTI)

The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

1994-12-31T23:59:59.000Z

130

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

131

A Management Tool for Analyzing CHP Natural Gas Liquids Recovery System  

E-Print Network [OSTI]

The objective of this research is to develop a management tool for analyzing combined heat and power (CHP) natural gas liquids (NGL) recovery systems. The methodology is developed around the central ideas of product recovery, possible recovery...

Olsen, C.; Kozman, T. A.; Lee, J.

2008-01-01T23:59:59.000Z

132

Initial Market Assessment for Small-Scale Biomass-Based CHP  

SciTech Connect (OSTI)

The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

Brown, E.; Mann, M.

2008-01-01T23:59:59.000Z

133

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

, including upward shifts in the ver- tical velocities and distributions of cloud water and ice as the seaUpward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations circulation of the atmosphere shift upward in response to warming in simu- lations of climate change with both

O'Gorman, Paul

134

HEATMAPCHP - The International Standard for Modeling Combined Heat and Power Systems  

E-Print Network [OSTI]

-CHP--central controlling program ? HEATMAP/AutoCAD Interface program ? HEATCALC--distribution network analysis program ? RELCOST-economic analysis program ? DOE-2 Plant Module-eentral plant. thermal storage and energy cost simulation program 114 ESL-IE-00... a comprehensive simuJation of proposed and existing combined heat and power (CHP) plant and system applications, The software model provides a fully integrated analysis of central power production plants that are linked to district energy...

Bloomquist, R. G.; O'Brien, R. G.

135

Screening of CHP Potential at Federal Sites in Select Regions of the U.S.  

SciTech Connect (OSTI)

Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of sizing CHP to thermal and electrical estimates. The table below is a summary of findings of CHP potential for those federal facilities that chose to participate in the screening process. The study focused on three U.S. regions: California, Texas, and New York/New England. All federal facilities in these three regions with reported building space greater than 100,000 square feet were initial targets to contact and offer CHP screening services. Ranking criteria were developed to screen sites for near term CHP potential. The potential site list was pared down for a variety of reasons including site- specific and agency wide decisions not to participate, desk audit assessments, and untraceable contact information. The results are based upon the voluntary participation of those sites we were able to contact, so they reflect a fraction of the total potential CHP opportunities at federal government facilities.

Energy Nexus Group, . .

2002-02-25T23:59:59.000Z

136

May 2, 2007 2:20 World Scientific Review Volume -9in x 6in chp2DecentralizedWLANResourceManagementfinal A Framework for Decentralized Wireless LAN  

E-Print Network [OSTI]

May 2, 2007 2:20 World Scientific Review Volume - 9in x 6in chp2Decentralized 6in chp2DecentralizedWLANResourceManagementfinal 2 J. Xie, I. Howitt, and A. Raja 1.1. Introduction

Raja, Anita

137

CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS  

SciTech Connect (OSTI)

Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

Schweitzer, Martin [ORNL

2009-10-01T23:59:59.000Z

138

Kenneth Arrow is the Joan Kenney Professor of Economics and Professor of Operations Research, emeritus; a CHP/PCOR fellow; and an FSI senior  

E-Print Network [OSTI]

, emeritus; a CHP/PCOR fellow; and an FSI senior fellow by courtesy. Arrow's work has been primarily

Klein, Ophir

139

Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation  

SciTech Connect (OSTI)

This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

2010-03-01T23:59:59.000Z

140

http://web.mit.edu/cmse/www/CMSE_CHP2003.pdf I feel it likely that the auditors will return to CMSE in just a couple weeks. Our  

E-Print Network [OSTI]

http://web.mit.edu/cmse/www/CMSE_CHP2003.pdf Colleages, I feel it likely that the auditors of Technology #12;http://web.mit.edu/cmse/www/CMSE_CHP2003.pdf CHEMICAL HYGIENE AND SAFETY PLAN Responsibility, Authority and Resources #12;http://web.mit.edu/cmse/www/CMSE_CHP2003.pdf Center Director (M. F. Rubner

Cohen, Robert E.

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes 750 buildings.  

E-Print Network [OSTI]

RECOVERY ACT CASE STUDY CHP and district energy serve Texas A&M's 5,200-acre campus, which includes in Cost Savings at Large University Recovery Act Funding Supports CHP Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station

142

Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers  

SciTech Connect (OSTI)

Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

2011-11-01T23:59:59.000Z

143

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect (OSTI)

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

144

Determining Optimal Equipment Capacities in Cooling, Heating and Power (CHP) Systems  

SciTech Connect (OSTI)

Evaluation of potential cooling, heating and power (CHP) applications requires an assessment of the operations and economics of a particular system in meeting the electric and thermal demands of a specific end-use facility. A key determinate in whether a candidate system will be economic is the proper selection of equipment capacities. A methodology to determine the optimal capacities for CHP prime movers and absorption chillers using nonlinear optimization algorithms has been coded into a Microsoft Excel spreadsheet tool that performs the capacity optimization and operations simulation. This paper presents details on the use and results of this publicly available tool.

DeVault, Robert C [ORNL; Hudson II, Carl Randy [ORNL

2006-01-01T23:59:59.000Z

145

Upward-facing Lithium Flash Evaporator for NSTX-U  

SciTech Connect (OSTI)

NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

Roquemore, A. L.

2013-07-09T23:59:59.000Z

146

Parallel electric fields in the upward current region of the aurora: Indirect and direct observations  

E-Print Network [OSTI]

Parallel electric fields in the upward current region of the aurora: Indirect and direct In this article we present electric field, magnetic field, and charged particle observations from the upward current region of the aurora focusing on the structure of electric fields at the boundary between

California at Berkeley, University of

147

Chemical Hygiene Plan The purpose of the Chemical Hygiene Plan (CHP) is to outline laboratory work  

E-Print Network [OSTI]

Chemical Hygiene Plan I. Policy The purpose of the Chemical Hygiene Plan (CHP) is to outline community are protected from health hazards associated with chemicals with which they work. II. Authority The Chemical Hygiene Plan, required to comply with provisions of CCR Title 8 §5191 et al: A. Standard Operating

de Lijser, Peter

148

Film boiling of saturated liquid flowing upward through a heated tube : high vapor quality range  

E-Print Network [OSTI]

Film boiling of saturated liquid flowing upward through a uniformly heated tube has been studied for the case in which pure saturated liquid enters the tube and nearly saturated vapor is discharged. Since a previous study ...

Laverty, W. F.

1964-01-01T23:59:59.000Z

149

E-Print Network 3.0 - air-water vertical upward Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: air-water vertical upward Page: << < 1 2 3 4 5 > >> 1 Journal of Colloid and Interface Science...

150

Upward Shift of the Atmospheric General Circulation under Global Warming: Theory and Simulations  

E-Print Network [OSTI]

Many features of the general circulation of the atmosphere shift upward in response to warming in simulations of climate change with both general circulation models (GCMs) and cloud-system-resolving models. The importance ...

Singh, Martin Simran

151

Energy Efficiency in the Pulp and Paper Industry: Simulation of Steam Challenge and CHP Incentives with ITEMS  

E-Print Network [OSTI]

ENERGY EFFICIENCY IN THE PULP AND PAPER INDUSTRY: SIMULATION OF STEAM CHALLENGE AND CHP INCENTIVES WITH ITEMS Joseph M. Roop Staff Scientist Pacific Northwest National Laboratory Richland, Washington ABSTRACT# Two programs being.... This document number is PNNL-SA-29768. ? Referred to as ISTUM in (3). industry (here, we use the newer acronym CHP for" combined heat and power"). Our use of ITEMS demonstrates that such programs can be analyzed, and their effec tiveness assessed using...

Roop, J. M.

152

Upward Gas-Liquid Flow in Concentric and Eccentric Annular Spaces  

E-Print Network [OSTI]

UPWARD GAS-LIQUID FLOW IN CONCENTRIC AND ECCENTRIC ANNULAR SPACES A Thesis by PEDRO CAVALCANTI DE SOUSA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment... Copyright 2013 Pedro Cavalcanti de Sousa ii ABSTRACT A limited amount of work exists on upward gas-liquid flow in annular spaces. This is a common scenario in drilling operations, especially in underbalanced drilling, and in high-production wells...

Cavalcanti de Sousa, Pedro

2013-12-09T23:59:59.000Z

153

Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University  

SciTech Connect (OSTI)

Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

Louay Chamra

2008-09-26T23:59:59.000Z

154

Research, Development and Demonstration of Micro-CHP System for Residential Applications  

SciTech Connect (OSTI)

ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

Karl Mayer

2010-03-31T23:59:59.000Z

155

1540 Alcazar St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323-442-1515 www.usc.edu/pt The comprehensive mission of the Division is to  

E-Print Network [OSTI]

(over) 1540 Alcazar St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323 St., CHP 155, Los Angeles, CA 90089-9006 Tel.: 323-442-2900 Fax: 323-442-1515 www

Valero-Cuevas, Francisco

156

SOUTHERN CALIFORNIA ENVIRONMENTAL HEALTH SCIENCES CENTER Keck School of Medicine of USC 1540 Alcazar Street, CHP Suite 236, Los Angeles, CA 90033 TEL (323) 442-1096 FAX (323) 442-3272  

E-Print Network [OSTI]

Alcazar Street, CHP Suite 236, Los Angeles, CA 90033 TEL (323) 442-1096 FAX (323) 442-3272 University Alcazar Street, CHP 236, Los Angeles, CA 90033, or email to csutton@usc.edu. Please, no paper copies

Zhang, Li I.

157

UPWARD MOVEMENT OF PLUTONIUM TO SURFACE SEDIMENTS DURING AN 11-YEAR FIELD STUDY  

SciTech Connect (OSTI)

An 11-y lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The {sup 240}Pu/{sup 239}Pu and {sup 242}Pu/{sup 239}Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

Kaplan, D.; Beals, D.; Cadieux, J.; Halverson, J.

2010-01-25T23:59:59.000Z

158

Parallel electric fields in the upward current region of the aurora: Numerical solutions  

E-Print Network [OSTI]

Parallel electric fields in the upward current region of the aurora: Numerical solutions R. E Direct observations of the parallel electric field by the Fast Auroral Snapshot satellite and the Polar of the properties of the observed electric fields, electron distributions, and ion distributions. The solutions

California at Berkeley, University of

159

Physical mechanism and numerical simulation of the inception of the lightning upward leader  

SciTech Connect (OSTI)

The upward leader is a key physical process of the leader progression model of lightning shielding. The inception mechanism and criterion of the upward leader need further understanding and clarification. Based on leader discharge theory, this paper proposes the critical electric field intensity of the stable upward leader (CEFISUL) and characterizes it by the valve electric field intensity on the conductor surface, E{sub L}, which is the basis of a new inception criterion for the upward leader. Through numerical simulation under various physical conditions, we verified that E{sub L} is mainly related to the conductor radius, and data fitting yields the mathematical expression of E{sub L}. We further establish a computational model for lightning shielding performance of the transmission lines based on the proposed CEFISUL criterion, which reproduces the shielding failure rate of typical UHV transmission lines. The model-based calculation results agree well with the statistical data from on-site operations, which show the effectiveness and validity of the CEFISUL criterion.

Li Qingmin [Beijing Key Lab of High Voltage and EMC, School of Electric and Electronic Engineering, North China Electric Power University, Beijing 102206 (China) and State Key Lab of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Lu Xinchang; Shi Wei; Zhang Li; Zou Liang; Lou Jie [Shandong Provincial Key Lab of UHV Technology and Gas Discharge, School of Electrical Engineering, Shandong University, Jinan 250061 (China)

2012-12-15T23:59:59.000Z

160

SciTech Connect: Micro-CHP Systems for Residential Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2) CuFuture U.S. Corn andLorenz:Micro-CHP Systems

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Study of a Diesel Engine Based Micro-CHP System  

SciTech Connect (OSTI)

This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the powe

Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

2010-08-31T23:59:59.000Z

162

Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I  

SciTech Connect (OSTI)

The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

Robert A. Zogg

2011-03-14T23:59:59.000Z

163

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network [OSTI]

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

Paris-Sud XI, Université de

164

Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications  

E-Print Network [OSTI]

Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

Stefanopoulou, Anna

165

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

166

Comparative Performance Analysis of IADR Operating in Natural Gas-Fired and Waste-Heat CHP Modes  

SciTech Connect (OSTI)

Fuel utilization can be dramatically improved through effective recycle of 'waste' heat produced as a by-product of on-site or near-site power generation technologies. Development of modular compact cooling, heating, and power (CHP) systems for end-use applications in commercial and institutional buildings is a key part of the Department of Energy's (DOE) energy policy. To effectively use the thermal energy from a wide variety of sources which is normally discarded to the ambient, many components such as heat exchangers, boilers, absorption chillers, and desiccant dehumidification systems must be further developed. Recently a compact, cost-effective, and energy-efficient integrated active-desiccant vapor-compression hybrid rooftop (IADR) unit has been introduced in the market. It combines the advantages of an advanced direct-expansion cooling system with the dehumidification capability of an active desiccant wheel. The aim of this study is to compare the efficiency of the IADR operation in baseline mode, when desiccant wheel regeneration is driven by a natural gas burner, and in CHP mode, when the waste heat recovered from microturbine exhaust gas is used for desiccant regeneration. Comparative analysis shows an excellent potential for more efficient use of the desiccant dehumidification as part of a CHP system and the importance of proper sizing of the CHP components. The most crucial factor in exploiting the efficiency of this application is the maximum use of thermal energy recovered for heating of regeneration air.

Petrov, Andrei Y [ORNL; Sand, James R [ORNL; Zaltash, Abdolreza [ORNL

2006-01-01T23:59:59.000Z

167

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

168

LCV-Gas utilization in CHP plants with dual-fuel engines  

SciTech Connect (OSTI)

The utilization of LCV-gases has been increased during the last years, especially in decentralized CHP plants from local power and heat distributors or industry works. Compared with the standard natural gas delivered by the main grid LCV gases are cheaper, wherefore it is possible to decrease energy costs. LCV gases are coming from local natural gas fields or a wide range of technical origins (e. g. steel production, gasification processes, biological processes). Therefore the composition of LCV gases could differ. The basis of this gases are normally methane or combinations of hydrogen and carbon monoxide together with quite large quantities of inert gases. The utilization of LCV gases in internal combustion engines requires high demands on the engine technique and the engine control system. A lot of items must to be considered when designing engines for every special purpose, especially in comparison to utilization of standard natural gas. The combustion system of dual-fuel engines as developed by B+V Industrietechnik GmbH (formerly Blohm + Voss Industrie GmbH) offers a lot of advantages for the utilization of LCV gases. There are two basic possibilities to supply the gases to the engine, one on low pressure level and the other one on high pressure level. The energy content of the pilot fuel injection is much higher than the corresponding value of a spark ignition system. Thus, gases with very low lower heating values and high contents of inert gases can be inflamed stable without problems. This engine type allows a LCV gas utilization with high electrical and thermal efficiencies. As an example for the utilization of a LCV gas the CHP engine plant for Hoogovens Ijmuiden in Holland, one of the largest European steel production companies, is presented.

Mohr, H.

1998-07-01T23:59:59.000Z

169

Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities  

E-Print Network [OSTI]

Flow regimes, local heat transfer coefficients, and temperature distributions along the wall have been studied for film boiling inside a vertical tube with upward flow of a saturated liquid. The area of interest has been ...

Dougall, R. S.

1963-01-01T23:59:59.000Z

170

Study of liquid retention in fixed-bed reactors with upward flow of gas and liquid  

SciTech Connect (OSTI)

A literature survey of the measurement techniques for the determination of liquid retention in cocurrent upward gas and liquid flow in fixed-bed reactors is presented. A number of these techniques were used in this work in columns of different diameters (Dc = 0.05 m, 0.10 m, and 0.15 m). Porous alumina particles of two different diameters (dp = 0.002 m and 0.0028 m) with both nonfoaming (water, cyclohexane, heptane, and propanol) and foaming liquids (kerosene, LCO, and diesel fuel) have been investigated. The gas used was either air or N[sub 2]. The methods investigated include volumetry, gravimetry, gammametry, and determination of residence-time distribution by tracer technique. A simple correlation for the prediction of total gas and liquid retention for bubble and pulsed flow is proposed and verified.

Yang, X.L.; Euzen, J.P. (Inst. Francais du Petrole, Vernaison (France)); Wild, G. (Lab. des Sciences du Genie Chimique, Nancy (France))

1993-01-01T23:59:59.000Z

171

Similarity solutions and applications to turbulent upward flame spread on noncharring materials  

SciTech Connect (OSTI)

The primary achievement in this work has been the discovery that turbulent upward flame spread on noncharring materials (for pyrolysis lengths less than 1.8m) can be directly predicted by using measurable flammability parameters. These parameters are: a characteristic length scale which is proportional to a turbulent combustion and mixing related length scale parameter ({dot q}{double_prime}{sub net}({Delta}H{sub c}/{Delta}H{sub v})){sup 2}, a pyrolysis or ignition time {tau}{sub p}, and a parameter which determines the transient pyrolysis history of a non-charring material: {lambda} = L/c{Delta}T{sub p} = ratio of the latent heat to the sensible heat of the pyrolysis temperature of the material. In the length scale parameter, {dot q}{double_prime}{sub net} is the total net heat flux from the flames to the wall (i.e., total heat flux minus reradiation losses), {Delta}H{sub c} is the heat of combustion and {Delta}H{sub v} is an effective heat of gasification for the material. The pyrolysis or ignition time depends (for thermally thick conditions) on the material thermal inertia, the pyrolysis temperature, and the total heat flux from the flames to the wall, {dot q}{double_prime}{sub fw}. The present discovery was made possible by using both a numerical simulation, developed earlier, and exact similarity solutions, which are developed in this work. The predictions of the analysis have been validated by comparison with upward flame spread experiments on PMMA.

Delichatsios, M.A.; Delichatsios, M.; Chen, Y. [Factory Mutual Research Corporation, Norwood, MA (United States)] [Factory Mutual Research Corporation, Norwood, MA (United States); Hasemi, Y. [Ministry of Construction, Tsukuba (Japan). Building Research Inst.] [Ministry of Construction, Tsukuba (Japan). Building Research Inst.

1995-08-01T23:59:59.000Z

172

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

SciTech Connect (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

173

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

174

Ultra High Energy Cosmic Rays, Z-Shower and Neutrino Astronomy by Horizontal-Upward Tau Air-Showers  

E-Print Network [OSTI]

Ultra High Cosmic Rays (UHECR) Astronomy may be correlated to a primary parental Neutrino Astronomy: indeed any far BL Lac Jet or GRB, sources of UHECR, located at cosmic edges, may send its signal, overcoming the severe GZK cut-off, by help of UHE ZeV energetic neutrino primary. These UHE neutrino scattering on relic light ones (spread on wide Hot Local Groups Halos) maybe fine-tuned : E_(nu) =(M_Z)^2/m_(nu) = 4 10^(22) eV *((0.1eV)/m_(nu)), to combine at once the observed light neutrino masses and the UHECR spectra, leading to a relativistic Z-Shower in Hot Dark Halos (e few tens Mpc wide) whose final nuclear component traces the UHECR event on Earth. Therefore UHECR (with no longer volme GZK constrains) may point to far BL Lac sources. This Z-Burst (Z-Shower) model calls for large neutrino fluxes. Even if Nature do not follow the present Z-model, UHECR while being cut-off by Big Bang Radiation, must produce a minimal UHE neutrino flux, the GZK neutrino secondaries. For both reasons such UHE Neutrino Astronomy must be tested on Earth. Lowest High Energy Astronomy is searched by AMANDA, ANTARES underground deterctors by muons tracks. We suggest a complementary higher energy Neutrino Tau Astronomy inducing Horizontal and Upward Tau AirShowers. Possible early evidence of such a New Neutrino UPTAUs (Upward Tau Showers at PeVs energies) Astronomy may be in BATSE records of Upward Terrestrial Gamma Flashes. Future signals must be found in detectors as EUSO, seeking Upward-Horizontal events: indeed even minimal, guaranteed, GZK neutrino fluxes may be better observed if EUSO threshold reaches 10^(19) eV by enlarging its telescope size.

D. Fargion

2003-06-24T23:59:59.000Z

175

Economic Potential of CHP in Detroit Edison Service Area: the Customer Perspective  

SciTech Connect (OSTI)

DOE's mission under the Distributed Energy and Electricity Reliability (DEER) Program is to strengthen America's electric energy infrastructure and provide utilities and consumers with a greater array of energy-efficient technology choices for generating, transmitting, distributing, storing, and managing demand for electric power and thermal energy. DOE recognizes that distributed energy technologies can help accomplish this mission. Distributed energy (DE) technologies have received much attention for the potential energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention has been the desire to reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and other potential impacts on the distribution system. It is important to assess the costs and benefits of DE to consumers and distribution system companies. DOE commissioned this study to assess the costs and benefits of DE technologies to consumers and to better understand the effect of DE on the grid. Current central power generation units vent more waste heat (energy) than the entire transportation sector consumes and this wasted thermal energy is projected to grow by 45% within the next 20 years. Consumer investment in technologies that increase power generation efficiency is a key element of the DOE Energy Efficiency program. The program aims to increase overall cycle efficiency from 30% to 70% within 20 years as well. DOE wants to determine the impact of DE in several small areas within cities across the U.S. Ann Arbor, Michigan, was chosen as the city for this case study. Ann Arbor has electric and gas rates that can substantially affect the market penetration of DE. This case study analysis was intended to: (1) Determine what DE market penetration can realistically be expected, based on consumer investment in combined heat and power systems (CHP) and the effect of utility applied demand response (DR). (2) Evaluate and quantify the impact on the distribution utility feeder from the perspective of customer ownership of the DE equipment. (3) Determine the distribution feeder limits and the impact DE may have on future growth. For the case study, the Gas Technology Institute analyzed a single 16-megawatt grid feeder circuit in Ann Arbor, Michigan to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid circuit capacity. Increasing circuit capacity would enable the circuit to meet consumer's energy demands at all times, but it would not improve the circuit's utilization factor. The analysis spans 12 years, to a planning horizon of 2015. By 2015, the demand for power is expected to exceed the grid circuit capacity for a significant portion of the year. The analysis was to determine whether economically acceptable implementation of customer-owned DE systems would reduce the peak power demands enough to forestall the need to upgrade the capacity of the grid circuit. The analysis was based on economics and gave no financial credit for improved power reliability or mitigation of environmental impacts. Before this study was completed, the utility expanded the capacity of the circuit to 22 MW. Although this expansion will enable the circuit to meet foreseeable increases in peak demand, it also will significantly decrease the circuit's overall utilization factor. The study revealed that DE penetration on the selected feeder is not expected to forestall the need to upgrade the grid circuit capacity unless interconnection barriers are removed. Currently, a variety of technical, business practice, and regulatory barriers discourage DE interconnection in the US market.

Kelly, J.

2003-10-10T23:59:59.000Z

176

Neutrino Induced Upward Going Muons from a Gamma Ray Burst in a Neutrino Telescope of Km^2 Area  

E-Print Network [OSTI]

The number of neutrino induced upward going muons from a single Gamma Ray Burst (GRB) expected to be detected by the proposed kilometer scale IceCube detector at the South Pole location has been calculated. The effects of the Lorentz factor, total energy of the GRB emitted in neutrinos and its distance from the observer (red shift) on the number of neutrino events from the GRB have been examined. The present investigation reveals that there is possibility of exploring the early Universe with the proposed kilometer scale IceCube neutrino telescope.

Nayantara Gupta

2002-04-17T23:59:59.000Z

177

An Experimental Study of Upward and Downward Flow of Supercritical Carbon Dioxide in a Straight Pipe Heat Exchanger with Constant Wall Heat Flux  

E-Print Network [OSTI]

An experimental analysis was conducted on a single circular tube heat exchanger using supercritical carbon dioxide as the working fluid. The heat exchanger was operated in two different orientations: vertically upward and downward. The experimental...

Umrigar, Eric Dara

2014-05-01T23:59:59.000Z

178

$B_s \\to ?^+ ?^-$ and the upward-going muon flux from the WIMP annihilation in the sun or the earth  

E-Print Network [OSTI]

We consider the upward-going muon flux due to the WIMP annihilations in the cores of the sun and the earth, including the upper bound on the branching ratio for $B_s \\to \\mu^+ \\mu^-$ decay. We find that the constraint from $B_s \\to \\mu^+ \\mu^-$ is very strong in most parameter space, and exclude the supergravity parameter space regions where the expected upward-going muon fluxes are within the expected reach of AMANDA II.

Seungwon Baek; Yeong Gyun Kim; P. Ko

2005-06-13T23:59:59.000Z

179

Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler  

SciTech Connect (OSTI)

Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China); Zhou, Chenn Q. [Department of Mechanical Engineering, Purdue University Calumet, Hammond, IN 46323 (United States)

2011-02-15T23:59:59.000Z

180

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect (OSTI)

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum  

DOE Patents [OSTI]

Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the ``slip`` portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical ``station-to-station logging tool`` may be modified to be a ``continuous logging tool,`` where ``continuous`` means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool. 12 figs.

Vail, W.B. III; Momii, S.T.

1998-02-10T23:59:59.000Z

182

Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum  

DOE Patents [OSTI]

Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the "slip" portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical "station-to-station logging tool" may be modified to be a "continuous logging tool", where "continuous" means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool.

Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

1998-01-01T23:59:59.000Z

183

Hexion CHP Project  

E-Print Network [OSTI]

the exothermic reaction through a heat transfer fluid jacket around the reactor vessel that controls reaction temperature and transfers heat to a secondary water/steam loop. Until 2004, most of the heat entrained in the steam was vented to the atmosphere via a...

Bullock, B.

2008-01-01T23:59:59.000Z

184

CHP for Food Processing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011 | Department

185

Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile  

SciTech Connect (OSTI)

The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

Habibi, M., E-mail: habibi.physics@gmail.com [Young Researchers and Elite Club, Shirvan Branch, Islamic Azad University, Shirvan (Iran, Islamic Republic of); Ghamari, F. [Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

2014-05-15T23:59:59.000Z

186

Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed  

SciTech Connect (OSTI)

Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an opportunity fuel for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an opportunity fuel for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administrations National Goal to Reduce Emissions Intensity. 8

Chudnovsky, Yaroslav; Kozlov, Aleksandr

2013-08-15T23:59:59.000Z

187

Studies on upward flame spread  

E-Print Network [OSTI]

transfer coefficient heat of combustion per unit mass ofwidth, m ? and the heat of combustion per unit mass of fuelthe sample, and the heat of combustion ?H c was assigned the

Gollner, Michael J.

2012-01-01T23:59:59.000Z

188

CHP Integrated with Packaged Boilers  

Broader source: Energy.gov (indexed) [DOE]

Carlo Castaldini, President, CMCE, Inc. carlo@cmc-engineering.com 408-314-0382 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 ALTEX...

189

PSMSUMRY.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Note 4. Frames Maintenance In January 1981 and 1983, numerous respondents were added to bulk terminal and pipeline surveys affecting subsequent stocks reported and stock change...

190

APPENDXD.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

191

HEATRESV.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

such as the ones experienced in December 1996 and January-February 2000. Maximum inventory of heating oil in the reserve will be two million barrels. The Department of Energy...

192

APPEND.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas) (MillionOperators106 Energy

193

APPENDXD.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas) (MillionOperators106EIA-819

194

PSMDEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

such production for a given period is measured as volumes delivered from lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media for...

195

PSADEFS.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

such production for a given period is measured as volumes delivered from lease storage tanks (i.e., the point of custody transfer) to pipelines, trucks, or other media for...

196

CHP NOTEBOOK Table of Contents  

E-Print Network [OSTI]

-Specific Standard Operating Procedures (SOPs) Section 8 Employee Training Section 9 Inspections and Exposure Contact Information Section 3 Emergency Procedures Section 4 Lab and Building-Specific Evacuation Monitoring Records Section 10 Housekeeping and Maintenance Inspections Section 11 Incidents, Injuries

Braun, Paul

197

Waste to Energy: Biogas CHP  

E-Print Network [OSTI]

Southside Wastewater Treatment Plant Biogas Cogeneration Project November 9, 2011 2011 Clean Air Through Energy Efficiency Conference ?Turning Waste Into Energy? What to Expect ? ? Southside Overview ? Wastewater Treatment Process... gallons per day ? Processes and disposes over 150 tons of solids/day from both of the City?s wastewater treatment plants What is Biogas? ? Biogas is the methane (CH4) produced as a by-product of the anaerobic digestion process at the Southside...

Wagner, R.

2011-01-01T23:59:59.000Z

198

2008 EPA CHP Partnership Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryof Energy

199

HEATRESV.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,435 2012-2013Northeast

200

PSADEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of Crude

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PSMDEFS.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of CrudeDegrees API = -

202

PSMFRONT.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of CrudeDegrees API = -

203

PSMNOTES.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of CrudeDegrees API = -*

204

PSMSUMRY.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of CrudeDegrees API =

205

CHP Enabling Resilient Energy Infrastructure  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones | DepartmentCEEComponentsExponent, Welcome to

206

PSMNOTES.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Beginning and end-of-month stocks, receipts, inputs, production, ship- ments, and plant fuel use and losses during the month are collected from operators of natural gas processing...

207

Mother and Daughter Reports about Upward Transfers  

E-Print Network [OSTI]

I-Fen Lin Bowling Green State University Department ofResearch at Bowling Green State University and by the

Lin, I-Fen

2008-01-01T23:59:59.000Z

208

TABLE42.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 0 0 0 0 0 0 0 Norway ... 4,258 0 360 0 0 0 0 0 0 0 Russia ... 515 0 0 0 0 0 0 0 0 0 United Kingdom...

209

TABLES3.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

members of the Organization of Petroleum Exporting Countries (OPEC) primarily from Caribbean and West European areas as petroleum products that were refined from crude oil...

210

TABLE45.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) certain domestically produced crude oil destined for Canada; (4)...

211

TABLE46.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) certain domestically produced crude oil destined for Canada; (4)...

212

TABLE27.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Note: Refer to Appendix A for Refining District descriptions. Source: Energy Information...

213

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast...

214

TABLE18.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ......

215

TABLE17.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ... 576 -7...

216

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9. Percent Refinery Yield of Petroleum Products by PAD and Refining Districts, a January 1998 Liquefied Refinery Gases ... 1.2 -0.3 1.1 3.4...

217

TABLE31.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD January 1998 PAD District I ... 39,875 16,226 269...

218

TABLE29.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, July 2004 Liquefied Refinery Gases ... 2,082 70...

219

TABLE16.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ......

220

TABLE25A.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Districts IV and V-Imports of Crude Oil and Petroleum Products by Country of Origin, a Gasoline Country of Origin Liquefied Blending Finished Crude Petroleum Unfinished Compo-...

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TABLE31.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

unfinished oils. b Based on total finished motor gasoline output minus net input of motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons...

222

TABLE20.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ... 53,357 48,515 139,013...

223

TABLE27.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ... 0 1,168 0 0 5,978...

224

TABLE32.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ... 0 433 0 344 978...

225

TABLE50.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

37 34 34 Gabon ... 137 0 0 0 0 0 0 (s) (s) (s) 137 Germany, FR ... 0 (s) (s) 0 (s) (s) -3 (s) (s) -3 -3 Greece...

226

TABLE21.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

296 250 0 0 0 0 0 Gabon ... 8,597 0 0 0 0 0 0 0 0 0 Germany, FR ... 0 0 0 0 0 0 0 440 0 0 Guatemala...

227

TABLE29.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

(s) 17 14 14 Gabon ... 277 0 0 0 0 0 0 0 0 0 277 Germany, FR ... 0 0 0 0 (s) 14 (s) (s) (s) 13 13 Greece...

228

TABLE49.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

29 23 23 Gabon ... 117 0 0 0 0 0 0 (s) 0 (s) 117 Germany, FR ... 0 (s) (s) 0 0 (s) (s) (s) (s) (s) (s) Greece...

229

TABLE48.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 1 0 1 1,403 (s) French Pacific Islands ... 0 0 0 0 0 0 0 0 Germany, FR ... 0 0 3 (s) 0 0 2 2 Ghana...

230

TABLE28.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 0 (s) 0 0 0 0 0 French Pacific Islands ... 0 0 0 0 0 0 1 0 Germany, FR ... 0 0 0 0 0 0 2 0 Ghana...

231

TABLE24.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

69 0 0 0 0 0 0 0 Gabon ... 3,025 0 0 0 0 0 0 0 0 0 Germany, FR ... 0 0 0 0 0 0 0 440 0 0 Guatemala...

232

TABLE14.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I ......

233

TABLE23.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 0 0 Mexico ... 4,232 0 0 0 0 0 0 0 0 0 Norway ... 1,124 0 0 0 0 0 0 0 0 0 United Kingdom...

234

TABLE37.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 61 28 251 99 0 26 Colombia ... 180 0 0 0 0 0 0 0 0 0 Norway ... 1,036 0 0 0 0 0 0 0 0 0 United Kingdom...

235

TABLE47.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Fuel Residual Oil a Plus Gases Gasoline Jet Fuel Kerosene Oil Fuel Oil July 2004 Argentina ... 0 0 (s) 0 0 0 0 0 Australia...

236

Combined Heat and Power (CHP) Technology Development  

Broader source: Energy.gov (indexed) [DOE]

for June 30 Results: High Efficiency through Advanced Thermodynamics High-performance computing model operational for advanced combustion reciprocating engine ...

237

TABLE26.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ......

238

TABLE33.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

processed; all other products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary...

239

TABLE34.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

processed; all other products are reported by the PAD District of entry. b Includes crude oil imported for storage in the Strategic Petroleum Reserve. c Includes ethyl tertiary...

240

TABLE52.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. W Withheld to avoid...

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

TABLES5.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. b A negative number indicates a...

242

TABLE34.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

243

TABLES4.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

S4. Finished Motor Gasoline Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b Beginning in 1993,...

244

TABLE33.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

549 Liquefied Petroleum Gases ... 0 0 1,093 5,010 262 3,310 4,920 Motor Gasoline Blending Components ...... 0 0 1 0 0 0 1,310 Finished Motor Gasoline...

245

TABLES1.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

ethanol blended into finished motor gasoline and oxygenate production from merchant MTBE plants are also included. d Includes stocks located in the Strategic Petroleum Reserve....

246

Solar and CHP Sales Tax Exemption (Florida)  

Broader source: Energy.gov [DOE]

Solar energy systems have been exempt from Florida's sales and use tax since July 1, 1997. The term "solar energy system" means the equipment and requisite hardware that provide and are used for...

247

TABLE56.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Gases ... 8,443 4,791 3,652 0 4,993 -4,993 0 0 0 EthaneEthylene ... 5,103 497 4,606 0 2,659 -2,659 0 0 0 Propane...

248

TABLE02.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Refinery Report," EIA-811, "Monthly Bulk Terminal Report," EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," EIA-814, "Monthly Imports Report,"...

249

TABLE35.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Sources: Energy Information Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," and EIA-817, "Monthly Tanker and...

250

TABLE41.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 Mexico ... 9,438 0 0 0 0 0 752 0 0 0 Netherlands ... 0 260 454 7,767 7,720 0 491 1,529 0 52 Netherlands...

251

TABLE43.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Mexico ... 318,699 249 700 150 0 115 300 227 0 0 Netherlands ... 0 0 3,055 530 0 0 0 0 0 0 Netherlands Antilles...

252

TABLE44.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 Mexico ... 9,126 0 0 0 0 1,421 221 917 0 0 Netherlands ... 0 0 0 227 242 0 0 0 0 0 Netherlands Antilles...

253

TABLE36.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0 0 0 0 0 0 0 Mexico ... 2,186 0 0 0 0 0 0 0 0 0 Netherlands ... 0 0 0 1,330 1,768 0 0 259 0 0 Netherlands Antilles...

254

TABLE35.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 Mexico ... 49,688 38 700 0 0 19 0 0 0 0 Netherlands ... 0 0 50 1,330 1,768 0 0 259 0 0 Netherlands Antilles...

255

TABLE40.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

... 339,696 249 700 150 0 1,536 1,273 1,144 0 0 Netherlands ... 0 260 3,509 8,524 7,962 0 491 1,529 0 52 Netherlands...

256

TABLE22.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2,161 0 0 0 0 0 0 0 0 0 Congo (Kinshasa) d ... 672 0 0 0 0 0 0 0 0 0 Egypt ... 705 0 0 0 0 0 0 0 0 0 France...

257

table01.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.

258

table02.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.2. U.S.

259

table03.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.2.

260

table04.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.2.4. PAD

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

table05.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.2.4.

262

table06.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond FormA.1.2.4.7,308

263

table07.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond

264

table08.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond106,453 - 157,490

265

table09.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond106,453 -

266

table10.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trilliond106,453 -2.2

267

TABLE01.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8. U.S. Petroleum

268

TABLE02.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8. U.S.

269

TABLE03.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.

270

TABLE04.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4. U.S. Daily

271

TABLE05.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4. U.S. Daily5.

272

TABLE06.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4. U.S.

273

TABLE07.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4. U.S.7. PAD

274

TABLE08.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4. U.S.7.

275

TABLE09.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.

276

TABLE10.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July 2004

277

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July 20041.

278

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July

279

TABLE12.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July2. PAD

280

TABLE12.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July2.

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TABLE13.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July2.3. PAD

282

TABLE13.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July2.3.

283

TABLE14.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8.4.July2.3.4.

284

TABLE14.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)

285

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net Production

286

TABLE15.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net

287

TABLE16.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6. Refinery

288

TABLE16.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.

289

TABLE17.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.7. Refinery

290

TABLE17.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.7.

291

TABLE18.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.7.8.

292

TABLE18.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.7.8.July

293

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant Net6.7.8.July9.

294

TABLE19.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas Plant

295

TABLE20.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas PlantImports of Crude

296

TABLE20.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas PlantImports of

297

TABLE21.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas PlantImports ofImports

298

TABLE21.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas PlantImports

299

TABLE22.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas PlantImportsI-Imports

300

TABLE22.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural Gas

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

TABLE23.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports of Crude Oil

302

TABLE23.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports of Crude

303

TABLE24.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports of

304

TABLE24.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofV - Daily

305

TABLE25.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofV - Daily5.

306

TABLE25A.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofV -

307

TABLE26.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofV -Imports

308

TABLE26.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofV

309

TABLE27.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofVExports of

310

TABLE27.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofVExports

311

TABLE28.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports ofVExports8.

312

TABLE28.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports

313

TABLE29.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9. Net Imports

314

TABLE29.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9. Net

315

TABLE30.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9.

316

TABLE30.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9.30. Refinery

317

TABLE31.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9.30.

318

TABLE31.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural GasII-Imports9.30.Percent

319

TABLE32.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. Natural

320

TABLE32.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual Fuel Oil

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TABLE33.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual Fuel

322

TABLE33.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual

323

TABLE34.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0 0 0

324

TABLE34.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0 0 04.

325

TABLE35.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0 0

326

TABLE35.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0 05.

327

TABLE36.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0 05.6.

328

TABLE37.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 0

329

TABLE38.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 08. PAD

330

TABLE39.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 08.

331

TABLE40.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual 08.0.

332

TABLE41.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual

333

TABLE42.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2. PAD

334

TABLE43.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2. PAD3.

335

TABLE44.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2.

336

TABLE45.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2.5.

337

TABLE46.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2.5.6.

338

TABLE47.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of Residual2.5.6.7.

339

TABLE48.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of

340

TABLE49.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. Net Imports of

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TABLE50.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. Net Imports

342

TABLE51.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. Net Imports51.

343

TABLE52.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. Net

344

TABLE53.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTable 53.

345

TABLE54.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTable

346

TABLE55.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9. NetTableSource:

347

TABLE56.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.

348

TABLES1.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. Crude Oil and

349

TABLES10.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. Crude Oil

350

TABLES2.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. Crude OilS2.

351

TABLES3.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. Crude

352

TABLES4.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. CrudeS4.

353

TABLES5.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. CrudeS4.S5.

354

TABLES6.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9.. CrudeS4.S5.S6.

355

TABLES7.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9..

356

TABLES8.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9..S8.

357

TABLES9.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5. NaturalImports of9..S8.S9.

358

TABLE11.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

1,341 88,595 35,946 Pentanes Plus ... 6,987 - 26 - 3,647 450 - 9,230 113 867 2,439 Liquefied Petroleum Gases ... 57,268 23,768 19,928 -...

359

TABLE39.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 696 0 0 Indonesia ... 2,227 0 0 0 0 0 0 0 0 0 Venezuela ... 0 0 0 0 0 0 0 696 0 0 Non OPEC...

360

TABLE38.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 Nigeria ... 12,322 2,095 0 0 0 0 0 0 0 0 Venezuela ... 33,173 0 611 60 252 0 0 0 0 0 Non OPEC...

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

table04.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

362

table07.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

363

TABLE12.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

364

TABLE20.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

365

TABLE21.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

366

TABLE11.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

367

TABLE03.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

45,799 80,402 0 3,544,717 218,037 4,334,378 1,647,337 (Thousand Barrels) a Unaccounted for crude oil represents the difference between the supply and disposition of crude...

368

table10.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

369

TABLE22.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

370

TABLE25.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

371

table09.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

372

table05.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

373

table03.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

c Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 a Unaccounted for crude oil represents the difference between the supply and disposition of crude...

374

TABLES2.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Unaccounted for crude oil represents the difference between the supply and disposition of crude...

375

table02.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 a Unaccounted for crude oil represents the difference between the supply and disposition of crude...

376

table06.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

377

TABLE23.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

378

TABLE24.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

379

TABLE13.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

380

table08.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and not necessarily where the crude oil or product is processed andor consumed. b Unaccounted for crude oil represents the difference between the supply and disposition of crude...

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TABLE01.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

. U.S. Petroleum Balance, a Unaccounted for crude oil represents the difference between the supply and disposition of crude oil. Refinery processing gain represents the volumetric...

382

table01.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Balance, Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 a Unaccounted for crude oil represents the difference between the supply and disposition of...

383

Advanced CHP Control Algorithms: Scope Specification  

SciTech Connect (OSTI)

The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

Katipamula, Srinivas; Brambley, Michael R.

2006-04-28T23:59:59.000Z

384

VOL2NOTE.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 235 25711,554

385

Deployment of FlexCHP System  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit ReportNextConditionalDepartment Federaland PaducahDavid

386

vol2app.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005 (Thousand Barrels, Except Where Noted)December 2005 (ThousandEnergy

387

vol2fron.chp:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005 (Thousand Barrels, Except Where Noted)December 2005 (ThousandEnergy

388

Recent Publications in CHP | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy Data ReportingReal PropertyMarch 5, 201519, 2014Combined

389

CHP/Cogeneration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline Rock - BasementCEPIS JumpCETC

390

VOL2NOTE.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Beginning and end-of-month stocks, receipts, inputs, production, ship- ments, and plant fuel use and losses during the month are collected from operators of natural gas processing...

391

TABLE28.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

... 12,842 139 12,981 2,033 -1,275 513 1,271 Other HydrocarbonsHydrogenOxygenates ... 2,590 120 2,710 1,976 686 438 3,100 Other HydrocarbonsHydrogen...

392

TABLE30.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Plant ... 4 109 412 13 19 557 Other HydrocarbonsHydrogenOxygenates ... 2,440 2,175 5,217 230 3,441 13,503 Refinery...

393

TABLE30.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 315 4 319 202 52 301 555 Other HydrocarbonsHydrogenOxygenates ... 769 0 769 18 29 0 47 Other HydrocarbonsHydrogen...

394

2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule 4 module51:11| Department of

395

CHP Project Development Handbook (U.S. Environmental Protection Agency CHP  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |

396

HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED HotSeptember 2005 | Department of

397

HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED HotSeptember 2005 | Department ofMay

398

Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

399

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

400

Limitations of the Upward Separation Technique Eric Allender  

E-Print Network [OSTI]

is the construction of an oracle relative to which there are extremely sparse sets in NP-P, but NEE = EE that Wilson's construction gives rise to an oracle relative to which P = NP, but NP-P contains no tally sets. In [20], Kurtz presented a seemingly stronger oracle construction, relative to which P = NP and NP-P

Allender, Eric

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Study of Neutrino Oscillation using Upward Throughgoing Muons  

E-Print Network [OSTI]

Purification System and Radon Free Air System . . . . . . . . . . . . . . 24 2.3 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 20 inch­diameter PMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3 Water

Tokyo, University of

402

ORNL technology transfer continues strong upward trend | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help utilities achieve deeper and broader energy savings from their energy efficiency and demand-response programs. Dry Surface Technologies of Guthrie, Okla, licensed Barrian, a...

403

On the Flame Height Definition for Upward Flame Spread  

E-Print Network [OSTI]

Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from ...

Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

2007-01-01T23:59:59.000Z

404

ORNL technology transfer continues strong upward trend | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclearNuclearCamilaOakmaterial |ORNLand

405

Local Power Empowers: CHP and District Energy (Text Version)...  

Broader source: Energy.gov (indexed) [DOE]

technical assistance program presentation. Today we're going to talk about the combined heat and power and district energy possibilities for your local organization. What we're...

406

ITP Industrial Distributed Energy: 2005 CHP Action Agenda: Innovating...  

Broader source: Energy.gov (indexed) [DOE]

of a number of helpful provisions. These include requirements that states consider upgrading interconnection policies, a federal study of the benefits of CHPDG that can...

407

CHP in the Midwest - Presentation from the July 2010 Advancing...  

Broader source: Energy.gov (indexed) [DOE]

Renewables in the Midwest Conference This presentation by Recycled Enegy Development (RED) from the "Advancing Renewables in the Midwest Conference" held on July 15, 2010,...

408

Job 4459300 Ref.No. Prepd. CHP/GEA  

E-Print Network [OSTI]

Auditing of Buildings and Inspection of Boilers and Air- conditioning Systems Final report Institutional in large buildings 5 2.2 Article 8, Inspection of boilers 6 2.3 Article 9, Inspection of air-conditioning, responsibility for buildings, boilers and air-con systems in Latvia is divided as illustrated below

409

Economic Potential of CHP in Detroit Edison Service Area: The...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a single 16 MW grid feeder circuit in Ann Arbor, Michigan, to determine whether there are economic incentives to use small distributed power generation systems that would offset...

410

FIGS-5&6.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

S5. Finished Motor Gasoline Supply and Disposition, Figure S6. Motor Gasoline Ending Stocks, 0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000 Jul Aug Sep Oct Nov...

411

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications,...

412

ITP Industrial Distributed Energy: Combined Heat & Power (CHP...  

Broader source: Energy.gov (indexed) [DOE]

City OpYear Prime Mover Capacity (kW) Fuel Class 1 Sparks Regional Medical Center AR Fort Smith 1986 ERENG 8,500 NG 2 Tucson Medical Center Heating & Cooling AZ Tucson 1989 CT 750...

413

Local Power Empowers: CHP and District Energy | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Buildings Preparing for the Arrival of Electric Vehicle Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Weatherization & Intergovernmental Programs Office Home...

414

FIG-9&10.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2003 2004 Months 0 20 40 60 80 0 20 40 60 80 Average Stock Range Lower Operational Inventory Source: Energy Information Administration, Petroleum Supply Monthly, Table S6. See...

415

FIGS-3&4.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

450 200 250 300 350 400 450 Average Stock Range (excludes SPR) 0 Lower Operational Inventory Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 2003 2004 Months Source:...

416

FIG11&12.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

Fuel Ending Stocks, 0 20 40 60 80 0 20 40 60 80 Average Stock Range Lower Operational Inventory Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 2003 2004 Months 0 300 600...

417

FIG13&14.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2003 2004 Months 0 25 50 75 100 0 25 50 75 100 Average Stock Range Lower Operational Inventory 0 300 600 900 1,200 1,500 1,800 0 300 600 900 1,200 1,500 1,800 Jun Jul Aug Sep Oct...

418

FIGS-7&8.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

2004 Months 0 50 100 150 200 0 50 100 150 200 Average Stock Range Lower Operational Inventory Source: Energy Information Administration, Petroleum Supply Monthly, Table S5. See...

419

Combined Heat and Power (CHP) Resource Guide for Hospital Applications,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment of Energy 0Department2007 |

420

Commissioning of CHP Systems - White Paper, April 2008 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codesthe NaturalCommercial| DepartmentEnergy

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) JumpEventBoilers Incentives

422

Barriers to CHP with Renewable Portfolio Standards, Draft White Paper,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21FAQs BEDES| Department

423

Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines |OpenEnergy 8Operations U.S.forand

424

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor,Discount PowerEmerling FarmMatlink FarmBiogas |

425

330 kWe Packaged CHP System with Reduced Emissions  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014Department of Energy 3Keene - Cummins Power

426

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItemsHiTekPROJECTS FUNDED BYDepartment

427

Development of Next Generation micro-CHP System  

E-Print Network [OSTI]

Technology Alexandros Arsalis © 2011 All rights reserved. No part of the material protected by this copyright-family household in Denmark. A complete fuel processing subsystem, with all necessary BOP (balance

Berning, Torsten

428

Combined Heat and Power: Expanding CHP in Your State  

Broader source: Energy.gov (indexed) [DOE]

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

429

Distributed Generation Study/Patterson Farms CHP System Using...  

Open Energy Info (EERE)

Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion...

430

2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE ENERGY3 CommercialOctober 2005

431

A Case for Commissioning of CHP Systems - Presentation, April 2008 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5SUMMARIES8/14Practices intoAby

432

CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment of Energy

433

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment of

434

CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary 2012 |

435

CHP: Connecting the Gap between Markets and Utility Interconnection and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary 2012

436

CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary

437

CHP: Enabling Resilient Energy Infrastructure - Presentations from April  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary2013

438

CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of Energy BuildingsBuriedJuneDepartment ofJanuary2013Report,

439

Combustion Turbine CHP System for Food Processing Industry - Presentation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrieof Energyby Frito-Lay North America, June 2011 |

440

FIG-9&10.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011 2012S9.

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

FIG11&12.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011 2012S9.1. Jet

442

FIG13&14.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011 2012S9.1.

443

FIG15&16.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011 2012S9.1.5.

444

FIGS-1&2.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011 2012S9.1.5..

445

FIGS-3&4.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011

446

FIGS-5&6.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011S5. Finished

447

FIGS-7&8.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy2009 2010 2011S5.

448

Integrated CHP/Advanced Reciprocating Internal Combustion Engine System for  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 InspectionDepartmentInt'l Smart GridLandfill

449

Combined Heat and Power (CHP) Systems | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPointChristinaClayCoal toEnergyOffice of

450

Combustion Turbine CHP System for Food Processing Industry - Fact Sheet,  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office ofScience|i Combined

451

State Opportunities for Action: Update of States' CHP Activities (ACEEE),  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview *Agency RecoveryOctober 2003 |

452

CHP: A Clean Energy Solution, August 2012 | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimateCCHICAGO HOUSE CHPA

453

Accelerating CHP Deployment, United States Energy Association (USEA),  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department

454

Advanced Low Temperature Absorption Chiller Module Integrated with a CHP  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE2011 DOE Hydrogen and1 DOESystem at a

455

Sector Profiles of Significant Large CHP Markets, March 2004 | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of Energy Moniz: WhatM-1 Section J Appendix Mof

456

CHP R&D Project Descriptions | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden SaysEnergy Office FY144 1.DOE FCHPCHP R&D Project

457

Yantai Tianli Biomass CHP Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty is a countyYancey

458

CHP Assessment, California Energy Commission, October 2009 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones | DepartmentCEEComponentsExponent, Inc.

459

CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones | DepartmentCEEComponentsExponent, Welcome

460

CHP Research and Development - Presentation by Oak Ridge National  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011 | Department of

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

California CHP Market Assessment, July 2009 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartment ofDepartment

462

Pan China Puyang Biomass CHP Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPPSolar Jump to:Pamukoren Geothermal Area JumpPan

463

U.S. Department of Energy CHP Technical Assistance Partnerships |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1TeleworkAgriculture U.S. Department of

464

Increasing the Market Acceptance of Smaller CHP Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan SystemIna ShawHeat Transfer LossesPackaged

465

Breakout Session Summary Reports National CHP Workshop - One Year Later,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, DOE/SC-0095 Breakng

466

NYSERDA's CHP Program Guide, 2010 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA C T S H E E T ThisNYSERDA

467

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |

468

Integrating Renewables and CHP into the UK Electricity System  

E-Print Network [OSTI]

of network faults on the stability of large offshore wind farms Xueguang Wu, Lee Holdsworth, Nick Jenkins on the stability of large offshore wind farms Xueguang Wu Lee Holdsworth Nick Jenkins Goran Strbac The Manchester of the large offshore wind farms. The voltage drop investigations show that for a 100% voltage drop at a 400 k

Watson, Andrew

469

COE 449: Network Security Engineering Dr. Ahmad Almulhem  

E-Print Network [OSTI]

Textbook Topics Website Grading Topics Overview (chp 1) Foundations (chp 2, 3) Security Policies (Chp 4, 5, 6, 7) Cryptography (Chp 8) Authentication (chp 11) Secure Design Principles (Chp 12) Access Control

Almulhem, Ahmad

470

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network [OSTI]

Agency], 2007. Catalogue of CHP Technologies. US-EPATim Lipman (Pacific Regional CHP Application Center), and68 CHP E

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

471

ANL/ESD/08-4 Fuel Cycle Comparison of Distributed  

E-Print Network [OSTI]

for Capacities CHP....................................................................... 5 1bW, without CHP....................................................................... 5 2. Electricity

472

Flora &Taxonomy (3100:342). Fall 2008 Lecture T TH 1:10-2:00, Lab Th 2-3:30, Room G01 ASEC.  

E-Print Network [OSTI]

Special dates Topic Reading 8/26 Introduction, Collecting Chp 1 (skim), Chp 6 (skim), Chp 17 9/2 Reproductive terminology; Keys & Keying Chp 6, Chp 9 (pg 364- 389), Chp 15 9/9 Vegetative Terminology Chp 9 (pg 347-364) 9/16 More Terminology 9/23 Nomenclature / Classification Chp 16 9/30 Exam Tues Classification

Mitchell, Randall J.

473

Bachelor of Science in Health Sciences Ophthalmic Technology Track NAME:___________________________________  

E-Print Network [OSTI]

___________________________ Spring CHP 450 Public and Community Health Administration _____3___________________________ CHP 415W, 430

474

n , n , : ,  

E-Print Network [OSTI]

................................916-734-9784 CHP, North Sac.............................................916-338-6710 CHP, South Sac .............................................916-681-2300 CHP, Downtown Sac, Capitol ..........................916-322-3337 CHP, Valley Division Department.....................916-617-4600 CHP, Newcastle ............................................916

Nguyen, Danh

475

VIRGINIA COMMONWEALTH UNIVERSITY Department of Mathematics  

E-Print Network [OSTI]

Material: Chp. 1: I, II.1,III, Chp.2: I,II,III.1-3, Chp. 3: I-V, Chp. 4: I.1-3,II, Chp.5: I,II Important

Larson, Craig E.

476

CONSERVATION BIOLOGY GBIO 485 SPRING 2012 Lecture: M W 11-12:15 Lab: W 1:00-3:50 4 Credit Hours  

E-Print Network [OSTI]

/What is Conservation Biology Chp 1 Jan 23 History of ConBio/Biodiversity Pattern & Process Chp 1/Chp 2 Jan 25 Biodiversity Pattern & Process Chp 2 Jan 30 Biodiversity Pattern & Process Chp 2 Feb 1 Value of Biodiversity ­ Ecological & Evolutionary Considerations Chp. 2 pp 53-60; Chp. 11 pp 375-385 Feb 6 Biodiversity Loss

Bossart, Janice L.

477

General Education Coursework: Credit Hours: General Education Coursework: Credit Hours: *ENGL 110C English Composition I 3 *ENGL 231C English Comp II 3  

E-Print Network [OSTI]

English Composition I 3 *ENGL 231C English Comp II 3 ECON 202S Macroeconomics 3 **CHP 328 3 **CHP 200 Principles of Public Health 3 **CHP 335 3 Human Creativity 3 **CHP 390 STAT 130M 3 Information Literacy Health Economics 3 CHP Required Course 3 CHP Required Course 3 CHP Required Course 3 The Nature

478

arXiv:math.AG/9903204v11Mar1999 Annals of Mathematics, 149 (1999), 451473  

E-Print Network [OSTI]

filtration on Chow groups CHp (X)Q = F0 CHp (X)Q F1 CHp (X)Q = CHp (X)hom Q . . . Fp+1 CHp (X)Q = 0, so that a corre- spondence X ? Y should induce : Fk CHp (X)Q Fk CHp (Y )Q, where p = p + dim Y - dim , and ii) the induced map Grk : Grk F CHp (X)Q Grk F CHp (Y )Q should vanish when is homologous

Voisin, Claire

479

Affordable housing and upward mobility : bridging the divide at The Community Builders, Inc.  

E-Print Network [OSTI]

An increasing austerity at all levels of government has propelled a heightened focus on more efficient models of housing delivery, human service delivery and community development. One area of increased attention, with ...

Yadegar, Daniel Aziz

2012-01-01T23:59:59.000Z

480

"To Feel the Drumming Earth Come Upward": Indigenizing the American Studies Discipline, Field, Movement  

E-Print Network [OSTI]

two of whom (Rob ert K. Thomas and Shirley Hill Witt) identified as American Indians (Oklahoma Cherokee and Akwesasne Mohawk, Wolf Clan, respectively).17 Finally, the issue's contemporary focus contrasted with the emphasis on the past in most...

Clark, D. Anthony Tyeeme; Yetman, Norman R.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "refusegenerated chp upward" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Conditions for establishing quasistable double layers in the Earth's auroral upward current region  

SciTech Connect (OSTI)

The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

Main, D. S. [Department of Physics, John Brown University, Siloam Springs, Arkansas 72761 (United States); Newman, D. L. [Center for Integrated Plasma Studies, University of Colorado, Boulder, Colorado 80309 (United States); Ergun, R. E. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303 (United States)

2010-12-15T23:59:59.000Z

482

Neutrinoinduced upward stopping muons in SuperKamiokande (September 25, 1999)  

E-Print Network [OSTI]

­8502, Japan l Physics Division, P­23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA m Department, University of Maryland, College Park, MD 20742, USA o Department of Physics and Astronomy, State University

Tokyo, University of

483

Some hydrodynamic characteristics of bubbly mixtures flowing vertically upward in tubes  

E-Print Network [OSTI]

An investigation of bubbly flow has been conducted in vertical plexiglass tubes using air and water at atmospheric pressure. The bubbly flow pattern is an entrance condition or a non-fully developed flow. A spontaneous ...

Rose, Sewell C.

1964-01-01T23:59:59.000Z

484

Psychophysiological Reactivity to Self and Model Images in an Upward Social Comparison Manipulation  

E-Print Network [OSTI]

Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Antonio Cepeda-Benito Committee Members, Marisol Perez Brandon Schmeichel... chair, Dr. Antonio Cepeda-Benito, and my committee members, Drs. Marisol Perez, Brandon Schmeichel, and Louis Tassinary, for their invaluable guidance, time, and support throughout the course of this project. I would also like to extend my deepest...

Tamez, Jeannine

2012-02-14T23:59:59.000Z

485

Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?  

SciTech Connect (OSTI)

The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

2013-01-17T23:59:59.000Z

486

E-Print Network 3.0 - applications annual technical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHP team offers technical assistance with CHP... of proposed systems based on TRNSYS CHP system application economic evaluations Utility service rate Source: Pint, Bruce A....

487

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

makes CHP system generally not attractive in residentialresidential flat tariffs are generally not attractive for CHP and5 Residential Building DER Technologies Selection City CHP (

Feng, Wei

2013-01-01T23:59:59.000Z

488

Spatial Disaggregation of CO2 Emissions for the State of California  

E-Print Network [OSTI]

Electricity Generation/CHP Residential Commercial IndustrialElectricity Generation/CHP Residential Commercial IndustrialElectricity Plants CHP Residential Industry Mining Refinery

de la Rue du Can, Stephane

2008-01-01T23:59:59.000Z

489

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

equivalent) Other 65 Mt/a Residential CHP 57 Mt/a Applicablefor GHG abatement. Residential CHP has been pursued inobvious challenges, residential scale CHP shows considerable

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

490

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

fired district residential heating makes CHP systems notfired district residential heating makes CHP systems notmakes CHP generally not attractive in Chinese residential

Feng, Wei

2014-01-01T23:59:59.000Z

491

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors  

E-Print Network [OSTI]

of which: CHP ele generation Residential Nonspecified (OtherOther Services (CHP heat Fuel use) Residential End Use (non-Residential Nonspecified (Other Sector) NEW Office (CHP heat

de la Rue du Can, Stephane

2014-01-01T23:59:59.000Z

492

Midwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

493

Northwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

494

Pacific Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

495

Northeast Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

496

Mid-Atlantic Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

497

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

such as combined heat and power (CHP), photovoltaics (PV),Generation, Combined Heat and Power (CHP), DER-CAMfuel cells, combined heat and power (CHP), and electrical

Feng, Wei

2013-01-01T23:59:59.000Z

498

Optimal Technology Selection and Operation of Microgrids in Commercial Buildings  

E-Print Network [OSTI]

emissions credits) of combined heat and power (CHP), plus 2)efficiency investments, and combined heat and power (CHP)to evaluating combined heat and power (CHP) opportunities

Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

2008-01-01T23:59:59.000Z

499

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network [OSTI]

HVAC Meaures Combined heat and power (CHP) Energy managementet al. 2003). Combined heat and power (CHP) or cogeneration.requirements, the combined heat and power (CHP) systems may

Worrell, Ernst

2008-01-01T23:59:59.000Z

500

Lateral Snow Transport, Fire and Changing Treelines in Mount San Gorgonio, California, U.S.A.  

E-Print Network [OSTI]

Ridge (TFR), Charlton Peak (CHP) and San Gorgonio Summit (JST). B. Charlton Peak (CHP). C. Ten Thousand Foot Ridge (JST), Charlton Peak (CHP), San Gorgonio (SGR), and Ten

Burton, Charles Dustin

2012-01-01T23:59:59.000Z