National Library of Energy BETA

Sample records for refusegenerated chp upward

  1. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview Waste CHP plants can be used in the electricity market for upward regulation by bypassing the steam turbine. The technical design for this...

  2. Activation of 200 MW refusegenerated CHP upward regulation effect...

    Open Energy Info (EERE)

    regulation effect Country Denmark Headquarters Location Thisted, Denmark Coordinates 56.959167, 8.703492 Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  3. CHP Technical Assistance Partnerships (CHP TAPs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » CHP Technical Assistance Partnerships (CHP TAPs) CHP Technical Assistance Partnerships (CHP TAPs) DOE's CHP Technical Assistance Partnerships (CHP TAPs) promote and assist in transforming the market for CHP, waste heat to power, and district energy technologies/concepts throughout the United States. Key services of the CHP TAPs include: Market Opportunity Analyses - Supporting analyses of CHP market opportunities in diverse markets including industrial,

  4. CHP Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Deployment CHP Deployment DOE Combined Heat and Power Installation Database DOE Combined Heat and Power Installation Database The searchable combined heat and power (CHP) Installation Database Provides information on current CHP installations across the United States. Read more Do You Need Help with CHP? Do You Need Help with CHP? We can give you a hand. Contact CHP@ee.doe.gov to reach Specialists at our regional CHP Technical Assistance Partnerships (CHP TAPs). Read more Waste Heat to Power

  5. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal ...

  6. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing ...

  7. 2015 CHP Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 CHP Conference 2015 CHP Conference September 14, 2015 9:00AM EDT to September 15, 2015 5:00PM EDT 2015 CHP Conference...

  8. CHP Technical Assistance Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the...

  9. 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA CHP Partnership Meeting, October 2002 | Department of Energy rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002 This is an announcement of the 3rd Annual National CHP Roadmap Workshop which was held in conjunction with the CHP and Distributed Energy Resources for Federal Facilities Workshop, October 23-25,

  10. HUD CHP GUIDE #1 - Questions and Answers ON CHP FOR MULTIFAMILIY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 HUD CHP GUIDE 1 - Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005 Questions and ...

  11. 2008 EPA CHP Partnership Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08 EPA CHP Partnership Update 2008 EPA CHP Partnership Update 2008 EPA CHP Partnership Update PDF icon meeting52508ruiz.pdf More Documents & Publications The International CHP...

  12. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions ...

  13. CHP R&D Project Descriptions

    Broader source: Energy.gov [DOE]

    The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

  14. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency ... base. Advance the state-of-the-art of CHP CHP offers great benefits and potential ...

  15. CHP Enabling Resilient Energy Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Facilities * Provides context for CHP in critical infrastructure ... Employees were not even aware of the blackout at first because they saw no interruption in ...

  16. Combined Heat and Power (CHP) Grant Program

    Broader source: Energy.gov [DOE]

    Maryland CHP grant program provides grants for construction of new Combined Heat and Power (CHP) systems in industrial and critical infrastructure facilities in Maryland. Applications for the...

  17. CHP: Enabling Resilient Energy Infrastructure - Presentations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as ...

  18. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  19. Recent Publications in CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Recent Publications in CHP Recent Publications in CHP Learn more about DOE's Combined Heat and Power (CHP) Program and CHP's potential benefits to the nation by downloading these recent publications. Waste Heat to Power Market Assessment, 86 pp, March 2015 District Energy in Cities, 71 pp, March 2015 CHP System at Food Processing Plant in Connecticut Increases Reliability and Reduces Emissions, 4 pp, February 2015 AMO Peer Review Presentations (including

  20. CHP Project Development Handbook (U.S. Environmental Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The ...

  1. Combined Heat and Power (CHP) Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in ...

  2. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for ...

  3. CHP RAC Handout_092415.cdr

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one...

  4. IE CHP | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Product: UK power producer Scottish and Southern Energy (SSE) and UK fuel cell developer Intelligent Energy have formed a joint venture to develop fuel cell-based CHP...

  5. Combined Heat and Power (CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... are not fully aware of the full array of benefits, or are overly sensitive to perceived ... CHP systems at these facilities range from large systems at grain or meat processing ...

  6. Combined Heat and Power (CHP) - CHP Supplies Clean and Reliable Energy

    SciTech Connect (OSTI)

    2008-10-01

    Overview of the CHP benefits, opportunity, barriers to deployment, technology development and validation.

  7. CHP Deployment Program: AMO Technical Assistance Overview

    Office of Environmental Management (EM)

    CHP Deployment Program: AMO Technical Assistance Overview Claudia Tighe This presentation does not contain any proprietary, confidential, or otherwise restricted information. 2 Combined Heat a Power (CHP): History * First developed by Thomas Edison in 1880s and is one of the world's most common form of energy recycling * Since the '70s CHP used mostly by large industrials (PURPA set the stage) * Today there are hundreds of CHP facilities in the U.S. in both industrial, institutional and

  8. 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional and Local Energy Issues, September 2006 | Department of Energy 6-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006 This Action Agenda is intended to provide the situational context in which the annual Combined Heat and Power (CHP) roadmap workshop will set its priorities for the upcoming year

  9. CHP Project Development Handbook (U.S. Environmental Protection Agency CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership) | Department of Energy Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) CHP Project Development Handbook (U.S. Environmental Protection Agency CHP Partnership) The mission of the U.S. Environmental Protection Agency's (EPA's) Combined Heat and Power (CHP) Partnership is to increase the use of cost-effective, environmentally beneficial CHP projects nationwide. To accomplish this mission, the Partnership has developed resources to assist energy

  10. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  11. HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2009 | Department of Energy 2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 The U.S. Department of Housing and Urban Development's (HUD's) 2002 Energy Action Plan includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. This 2009 guide "Feasibility Screening for Combined Heat and Power in Multifamily Housing" describes the U.S.

  12. HUD CHP GUIDE #1- Questions and Answers ON CHP FOR MULTIFAMILIY HOUSING, September 2005

    Broader source: Energy.gov [DOE]

    This guide explains the basics of Combined Heat and Power (CHP) for apartment building owners and managers

  13. DOE CHP Technical Assistance Partnerships Handout

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat and power (CHP) is an efficient and clean approach to generating on-site electric power and useful thermal energy from a single fuel source. Instead of purchasing electricity from the distribution grid and burning fuel in an on- site furnace or boiler to produce thermal energy, CHP provides both energy services to a facility in one energy-efficient step. Highlighting the benefits of CHP as an energy resource, Executive Order 13624 established a national goal of 40 gigawatts of new CHP

  14. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS -...

  15. Yantai Tianli Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianli Biomass CHP Co Ltd Jump to: navigation, search Name: Yantai Tianli Biomass CHP Co Ltd Place: Yantai, Shandong Province, China Zip: 265300 Sector: Biomass Product:...

  16. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  17. Database (Report) of U.S. CHP Installations Incorporating Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations ...

  18. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, ...

  19. CHP: A Technical & Economic Compliance Strategy - SEE Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This ...

  20. CHP Education and Outreach Guide to State and Federal Government...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP ... in the states and the federal government about combined heat and power (CHP). ...

  1. Breakout Session Summary Reports National CHP Workshop - One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary Reports National CHP Workshop - One Year Later, Baltimore, October 2001 Breakout Session Summary Reports National CHP Workshop - One Year Later, Baltimore, ...

  2. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean ...

  3. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  4. U.S. CHP Installations Incorporating Thermal Energy Storage ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Installations Incorporating Thermal Energy Storage (TES) andor Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) ...

  5. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  6. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as ...

  7. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - ...

  8. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  9. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 ... This report provides information on the design and use of CHP for reliability purposes, as ...

  10. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES ... demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. ...

  11. Combined Heat and Power (CHP) Resource Guide for Hospital Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007 guidebook is to ...

  12. Promoting Combined Heat and Power (CHP) for Multifamily Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and ...

  13. CHP in the Midwest - Presentation from the July 2010 Advancing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest ... PDF icon recycledenergymidwestCHP More Documents & Publications QER - Comment of ...

  14. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP with Renewable Portfolio Standards, Draft White Paper, September 2007 Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007 The recent ...

  15. Opportunities for CHP at Wastewater Treatment Facilities: Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October 2011 Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis ...

  16. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made ...

  17. Federal Strategies to Increase the Implementation of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 ...

  18. State Opportunities for Action: Update of States' CHP Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 ...

  19. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, ...

  20. 5th Annual CHP Roadmap Workshop Breakout Group Results, September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from ...

  1. Clean Hydrogen Producers Ltd CHP | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Producers Ltd CHP Jump to: navigation, search Name: Clean Hydrogen Producers Ltd (CHP) Place: Geneva, Switzerland Zip: 1209 Sector: Hydro, Hydrogen, Solar Product: Swiss...

  2. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Wastewater Treatment Plants November 7, 2007 The Opportunity for Alternative CHP Fuels z High natural gas prices have decreased spark spreads and reduced CHP market ...

  3. The Market for CHP in Florida, August 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Market for CHP in Florida, August 2008 The Market for CHP in Florida, August 2008 This 2008 presentation provides information on the benefits of CHP and existing CHP installations in Florida, as well as the total for the United States. Additionally, CHP potential and emerging trends for CHP in Florida are addressed. PDF icon chp_florida_2008.pdf More Documents & Publications 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues,

  4. expanding_chp_in_your_state.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc expanding_chp_in_your_state.doc Microsoft Office document icon expanding_chp_in_your_state.doc More Documents & Publications Combined Heat and Power: Expanding CHP in Your State Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat Pumps

  5. Review of CHP Technologies, October 1999 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Technologies, October 1999 Review of CHP Technologies, October 1999 Combined heat and power (CHP) technologies produce electricity or mechanical power and recover waste heat for process use. This 1999 report describes the leading CHP technologies, their efficiency, size, cost to install, and maintain. PDF icon chp_review.pdf More Documents & Publications The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000 The Market and Technical

  6. California CHP Market Assessment, July 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California CHP Market Assessment, July 2009 California CHP Market Assessment, July 2009 Presentation by ICF International to the Integrated Energy Policy Report Committee at the California Energy Commission's July 2009 Combined Heat and Power Workshop. PDF icon 2009-07-15_ICF_CHP_Market_Assessment.pdf More Documents & Publications CHP Assessment, California Energy Commission, October 2009 2008 CHP Baseline Assessment and Action Plan for the California Market The Impacts of Commercial

  7. CHP R&D Project Descriptions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP R&D Project Descriptions CHP R&D Project Descriptions The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below: Advanced Reciprocating Engine Systems Advanced Reciprocating Engine Systems (ARES) The ARES program is designed to promote separate, but parallel engine development

  8. U.S. Department of Energy CHP Technical Assistance Partnerships |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Department of Energy CHP Technical Assistance Partnerships U.S. Department of Energy CHP Technical Assistance Partnerships This informational brochure on the Combined Heat and Power Technical Assistance Partnerships (CHP TAPs) provides a summary of the key services the CHP TAPs offer as well as contact information for each region. PDF icon CHP TAPs Informational Brochure More Documents & Publications Boiler Maximum Achievable Control Technology (MACT) Technical

  9. CHP Performance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Combined Heat and Power (CHP) systems for summer on-peak demand reduction and electricity generation. Total budget of 36,000,000 is available for the program and is...

  10. Combined Heat and Power (CHP) Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries.

  11. Harrods commissions new CHP station

    SciTech Connect (OSTI)

    Mullins, P.

    1994-04-01

    Three new combined heat and power (CHP) sets have recently been commissioned at Harrods, the world-famous department store in the heart of London's fashionable Knightsbridge district. The sets provide all the electricity needed by the store for lighting, heating and air-conditioning and are powered by Ruston 6RK270 turbocharged, charge-air-cooled diesel engines each producing 1392 kW at 750 r/min. These high power-to-weight ratio units were chosen in view of severe engine room space limitations. Low-grade waste heat is extracted from the engine jacket water to preheat water for three new boilers supplying some 1600 kg/h of steam for process heat to the store. The engines drive Brush BJS HW 10 100/8 alternators and are fully automatic in operation through a Regulateurs Europa control system. Some 600 sensors feed data into a Satchwell Building Management System (BMS). In the event of a breakdown, the engine control system can be switched to manual. 5 figs.

  12. Development of an Advanced Combined Heat and Power (CHP) System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas ...

  13. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  14. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Broader source: Energy.gov [DOE]

    There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell.

  15. Pan China Puyang Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Puyang Biomass CHP Co Ltd Jump to: navigation, search Name: Pan-China(Puyang) Biomass CHP Co., Ltd. Place: Puyang, Henan Province, China Zip: 455000 Sector: Biomass Product:...

  16. CHP: Enabling Resilient Energy Infrastructure - Presentations from April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Webinar | Department of Energy - Presentations from April 2013 Webinar CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Recognizing the benefits of combined heat and power (CHP) and its current underutilization as an energy resource in the United States, the Obama Administration is supporting a National goal to achieve 40 gigawatts (GW) of new, cost-effective CHP by 2020. This set of presentations from an April 2013 webinar discusses the role for CHP

  17. 330 kWe Packaged CHP System with Reduced Emissions

    SciTech Connect (OSTI)

    Plahn, Paul; Keene, Kevin; Pendray, John

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  18. New CHP Technical Assistance Partnerships Launched | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Technical Assistance Partnerships Launched New CHP Technical Assistance Partnerships Launched October 21, 2013 - 12:00am Addthis Since 2003, the Energy Department has supported a set of regional centers to help organizations understand how combined heat and power (CHP) can improve their bottom lines and lower energy bills. Today, the Advanced Manufacturing Office announced the launch of seven regional CHP Technical Assistance Partnerships, the next generation of these centers. Located in

  19. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  20. A Case for Commissioning of CHP Systems- Presentation, April 2008

    Broader source: Energy.gov [DOE]

    This report details four CHP project case studies: San Francisco hotel; Los Angeles casino; Brooklyn laundry; hospital in Austin, Texas.

  1. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Environmental Management (EM)

    Tariff Practices, 2006 | Department of Energy CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily,

  2. Sector Profiles of Significant Large CHP Markets, March 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sector Profiles of Significant Large CHP Markets, March 2004 Sector Profiles of Significant Large CHP Markets, March 2004 In this 2004 report, three sectors were identified as promising combined heat and power (CHP) sectors: chemicals, food, and pharmaceuticals. Sector profiles are based on a literature search, review of recent CHP activity in those sectors, and telephone interviews with customer representatives in each sector. PDF icon sector_profiles.pdf More Documents &

  3. Accelerating CHP Deployment, United States Energy Association (USEA), August 2011

    Broader source: Energy.gov [DOE]

    An Industry Consultation by the United States Energy Association (USEA) on Accelerating Combined Heat and Power (CHP) Deployment

  4. Commissioning of CHP Systems - White Paper, April 2008 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Commissioning of CHP Systems - White Paper, April 2008 Commissioning of CHP Systems - White Paper, April 2008 This 2008 white paper explores commissioning practices of Combined Heat and Power (CHP) systems applied within the built environment. CHP systems are more complex involving increased attention to atmospheric emissions and electric grid interconnection and sophisticated control logic. This paper details four example case studies. A San Francisco hotel was retrofitted with a

  5. Breakout Session Summary Reports National CHP Workshop - One Year Later,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baltimore, October 2001 | Department of Energy Breakout Session Summary Reports National CHP Workshop - One Year Later, Baltimore, October 2001 Breakout Session Summary Reports National CHP Workshop - One Year Later, Baltimore, October 2001 One year following the Roadmap, this report from the Baltimore meeting lists additional tasks that have been added to the list under the three main objectives: raising CHP awareness, eliminating regulatory and institutional barriers, and developing CHP

  6. CHP: A Clean Energy Solution, August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and useful thermal energy from a single fuel source. This paper provides a foundation for national discussions on effective ways to reach the 40 GW target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the

  7. Deployment of FlexCHP System

    SciTech Connect (OSTI)

    Cygan, David

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  8. MICRO-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  9. Micro-CHP Systems for Residential Applications

    SciTech Connect (OSTI)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the homeowner. In its proposed embodiment, the system has a 2kW prime mover integrated to a furnace platform. The second version is a Micro-Trigen system with heating, cooling and power. It has the same Micro-Cogen platform integrated with a 14kW thermally activated chiller. A Stirling engine is suggested as a promising path for the prime mover. A LiBr absorption chiller is today's best technology in term of readiness level. Paybacks are acceptable for the Micro-Cogen version. However, there is no clear economically viable path for a Micro-Trigen version with today's available technology. This illustrates the importance of financial incentives to home owners in the initial stage of micro-CHP commercialization. It will help create the necessary conditions of volume demand to start transitioning to mass-production and cost reduction. Incentives to the manufacturers will help improve efficiency, enhance reliability, and lower cost, making micro-CHP products more attractive. Successful development of a micro-CHP system for residential applications has the potential to provide significant benefits to users, customers, manufacturers, and suppliers of such systems and, in general, to the nation as a whole. The benefits to the ultimate user are a comfortable and healthy home environment at an affordable cost, potential utility savings, and a reliable supply of energy. Manufacturers, component suppliers, and system integrators will see growth of a new market segment for integrated energy products. The benefits to the nation include significantly increased energy efficiency, reduced consumption of fossil fuels, pollutant and CO{sub 2} emissions from power generation, enhanced security from power interruptions as well as enhanced economic activity and job creation. An integrated micro-CHP energy system provides advantages over conventional power generation, since the energy is used more efficiently by means of efficient heat recovery. Foreign companies are readily selling products, mostly in Europe, and it is urgent to react promptly to these offerings that will soon emerge on the U.S

  10. Combined Heat and Power (CHP) Technology Development

    Broader source: Energy.gov (indexed) [DOE]

    John Storey Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base.  Advance the

  11. Combined Heat and Power (CHP) Technology Development

    Office of Environmental Management (EM)

    John Storey and Tim Theiss Oak Ridge National Laboratory U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Objective of the ORNL CHP R&D program The project objectives are to improve the efficiency and viability of Combined Heat and Power systems and high-efficiency electrical generation systems, while supporting the U.S. manufacturing base. 

  12. Deployment of FlexCHP System

    Office of Environmental Management (EM)

    Cygan Gas Technology Institute U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Goal  Develop a cost-effective gas turbine based CHP system that improves overall efficiency and meets California Air Resources Board (CARB) 2007 emission standards without catalytic exhaust gas treatment - on target  Objectives  Achieve 84%

  13. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy 5 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 2005 CHP Action Agenda: Innovating, Advocating, and Delivering Solutions, October 2005 More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop will set its priorities for the upcoming year and complete its goals. PDF icon 2005_nyc.pdf More Documents

  14. Increasing the Market Acceptance of Smaller CHP Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Combined Heat and Power System ADVANCED MANUFACTURING OFFICE Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged combined heat and power (CHP) system that produces 330 kilowatts (kW) of electrical power output and 410 kW of thermal output while increasing efficiency and reducing total cost of ownership. Introduction Many CHP systems less than 1 megawatt (MW) use reciprocat- ing internal combustion engines. Unfortunately, reductions in

  15. Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and Urban Development (HUD) and the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) developed preliminary feasibility (Level 1) screening software and enlisted the DOE CHP Regional Application Centers (RACs) to help run utility data and estimate paybacks. This paper

  16. Combustion Turbine CHP System for Food Processing Industry - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-Lay/PepsiCo, in cooperation with the Energy Solutions Center, is demonstrating and evaluating a CHP plant at a large food processing facility in Connecticut. CHP generation is reducing the energy costs and environmental impact of the facility while easing congestion on the constrained Northeast power grid. The fact sheet contains performance data from the plant

  17. Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Dresser Waukesha, June 2011 | Department of Energy Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Presentation on an Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered Combined Heat and Power (CHP) System, given by Jim Zurlo of Dresser Waukesha, at the U.S. DOE Industrial Distributed

  18. CHP Assessment, California Energy Commission, October 2009 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Assessment, California Energy Commission, October 2009 CHP Assessment, California Energy Commission, October 2009 This California Energy Commission report quantifies the long-term market penetration potential for combined heat and power (CHP) and the degree to which CHP can reduce potential greenhouse gas (GHG1) emissions in support of the California Global Warming Solutions Act of 2006 (AB 32) (Assembly Bill 32, Núñez, Chapter 488, Statutes of 2006). The report also examines how

  19. CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 Presentation on CHP Integrated with Packaged Boilers, given by Carlo Castaldini of CMCE, Inc., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon packaged_boilers_castaldini.pdf More Documents & Publications CHP Integrated with Burners for

  20. CHP Research and Development - Presentation by Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory, June 2011 | Department of Energy Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge National Lab, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_rd_edwards.pdf More Documents

  1. State Opportunities for Action: Update of States' CHP Activities (ACEEE),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2003 | Department of Energy Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 State Opportunities for Action: Update of States' CHP Activities (ACEEE), October 2003 This 2003 American Council for an Energy-Efficient Economy (ACEEE) report brings up to date the review of state policies with regard to CHP that ACEEE completed in 2002. The report describes the current activities of states with programs during the initial survey and also reviews new

  2. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  3. Combined Heat and Power (CHP): Essential for a Cost Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April ... This white paper discusses the CES concept. PDF icon chpcleanenergystd.pdf More ...

  4. 2005 CHP Action Agenda: Innovating, Advocating, and Delivering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More than five years since the CHP Challenge and Industry Roadmap was released, this document is intended to provide the situational context in which the annual roadmap workshop ...

  5. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    SciTech Connect (OSTI)

    Tidball, Rick

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  6. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  7. 4th Annual CHP Roadmap Breakout Group Results, September 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pricing strategies and incentives; work to pass legislation at the state level to adopt IEEE interconnection standard; use Midwest CHP Application Center as a guide for RACs around ...

  8. ITP Industrial Distributed Energy: Barriers to CHP with Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for CHP. Conversely, some states with minimal biomass resources may declare that a ... the number of plants capable of ADG projects is minimal compared to the municipal sector. ...

  9. 2008 CHP Baseline Assessment and Action Plan for the California Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Market 2008 CHP Baseline Assessment and Action Plan for the California Market This 2008 report provides an updated baseline assessment and action plan for combined heat and power (CHP) in California and identifies hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_california_2008.pdf More Documents & Publications 2008 CHP Baseline Assessment and Action Plan for the

  10. Consensus Action Items from CHP Roadmap Process, June 2001 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Consensus Action Items from CHP Roadmap Process, June 2001 Consensus Action Items from CHP Roadmap Process, June 2001 This paper discusses three main objectives in the CHP roadmapping process: raising CHP awareness, eliminating regulatory and institutional barriers, and developing CHP markets and technologies. All levels of government are addressed including state, regional, and federal. PDF icon Consensus Action Items from 2001 CHP Roadmap.pdf More Documents & Publications

  11. 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004 This document summarizes results from the 5th Annual Combined Heat and Power (CHP) Workshop from the following breakout groups: CHP Technologies, CHP Markets, Utility and Regulatory Issues, and CHP Education and Outreach PDF icon 2004_austin.pdf More Documents & Publications Metrics for Measuring Progress Toward Implementation

  12. Local Power Empowers: CHP and District Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Power Empowers: CHP and District Energy Local Power Empowers: CHP and District Energy This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy. Transcript PDF icon Presentation More Documents & Publications Effective O&M Policy in Public Buildings Preparing for the Arrival of Electric Vehicle Quality Assurance for Residential Retrofit Programs

  13. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities

    Broader source: Energy.gov [DOE]

    Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

  14. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  15. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  16. 2008 CHP Baseline Assessment and Action Plan for the Nevada Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 08 CHP Baseline Assessment and Action Plan for the Nevada Market 2008 CHP Baseline Assessment and Action Plan for the Nevada Market The purpose of this report is to assess the current status of combined heat and power (CHP) in Nevada and to identify the hurdles that prevent the expanded use of CHP systems. The report summarizes the CHP "landscape" in Nevada, including the current installed base of CHP systems, the potential future CHP market, and the status of

  17. 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hawaii Market 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market The purpose of this 2008 report is to provide an updated baseline assessment and action plan for combined heat and power (CHP) in Hawaii and to identify the hurdles that prevent the expanded use of CHP systems. This report was prepared by the Pacific Region CHP Application Center (RAC). PDF icon chp_hawaii_2008.pdf More Documents & Publications Renewable Power Options for Electricity

  18. The Micro-CHP Technologies Roadmap, December 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Micro-CHP Technologies Roadmap, December 2003 The Micro-CHP Technologies Roadmap, December 2003 On June 11-12, 2003, in Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power (CHP) and residential buildings industries explored solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). This document, The Micro-CHP Technologies Roadmap, is a result of this

  19. Combustion Turbine CHP System for Food Processing Industry - Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Frito-Lay North America, June 2011 | Department of Energy Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_food_chilcoat.pdf

  20. CHP at Post Street in Downtown Seattle

    SciTech Connect (OSTI)

    Gent, Stan

    2012-04-12

    The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steam loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.

  1. Small Scale CHP and Fuel Cell Incentive Program

    Broader source: Energy.gov [DOE]

    The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell systems that have a generating capacity of 1 MW or less and are...

  2. Flexible CHP System with Low NOx, CO and VOC Emissions

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will develop a FlexCHP-65 system that incorporates new burner technology into a 65 kW microturbine and 100 HP heat recovery boiler.

  3. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  4. CHP Industrial Bottoming and Topping Cycle with Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrates the CHP bottoming cycle. 3 In a bottoming cycle, which is also referred to as Waste Heat to Power (WHP), fuel is first used to provide thermal input to a furnace or...

  5. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future-as an: Environmental Solution (significantly reducing CO2 emissions through greater energy efficiency),

  6. Advanced Low Temperature Absorption Chiller Module Integrated with a CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 | Department of Energy Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Presentation on Develop & Demonstrate an Advanced Low Temp Heat

  7. CHP: Enabling Resilient Energy Infrastructure for Critical Facilities -

    Office of Environmental Management (EM)

    Report, March 2013 | Department of Energy CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 CHP: Enabling Resilient Energy Infrastructure for Critical Facilities - Report, March 2013 Critical infrastructure collectively refers to those assets, systems, and networks that, if incapacitated, would have a substantial negative impact on national or regional security, economic operations, or public health and safety. This report provides information on the

  8. CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 | Department of Energy CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This presentation, "Industrial/Commercial/Institutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John Cuttica, Midwest Clean Energy Application Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE

  9. Modular CHP System for Utica College: Design Specification, March 2007 |

    Office of Environmental Management (EM)

    Department of Energy Modular CHP System for Utica College: Design Specification, March 2007 Modular CHP System for Utica College: Design Specification, March 2007 This paper describes Utica College's (Utica, NY) intentions to install an on-site power/cogeneration facility. The energy facility is to be factory pre-assembled, or pre-assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal time and engineering needs. PDF icon

  10. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (?-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  11. Field Scale Test and Verification of CHP System at the Ritz Carlton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, ...

  12. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS- CASE STUDY, 2015

    Broader source: Energy.gov [DOE]

    Frito-Lay North America, Inc., a division of PepsiCo, in cooperation with the Energy Solutions Center, demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. CHP...

  13. New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release -- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States New Release -- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical ...

  14. Flexible CHP System with Low NOx, CO and VOC Emissions - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014 The Gas Technology Institute, in ...

  15. Combined Heat and Power: A Vision for the Future of CHP in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. ...

  16. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011 Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 ...

  17. Data Collection and Analyses of the CHP System at Eastern Maine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical ...

  18. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - ...

  19. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  20. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems. PDF icon

  1. Combined Heat and Power: Expanding CHP in Your State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Combined Heat and Power: Expanding CHP in Your State PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications expanding_chp_in_your_state.doc Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for

  2. Enabling More Widespread Use of CHP in Light Industrial, Commercial, and Institutional Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems ADVANCED MANUFACTURING OFFICE Enabling More Widespread Use of CHP in Light Industrial, Commercial, and Institutional Applications This project developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 15 MW. Combined cooling, heating and power (CHP) technologies have successfully entered the market for larger (over 20 MW) applications. Smaller

  3. Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Important Lessons Learned, September 2005 | Department of Energy Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Integrated Energy Systems Multi-Media Webcast: Three CHP Sites Yield Important Lessons Learned, September 2005 Cooling, Heating and Power (CHP) system integration is advancing. The U.S. Department of Energy partnered with industry to accelerate CHP system integration. This is an announcement for a webcast that provided detailed information on

  4. ITP Industrial Distributed Energy: 5th Annual CHP RoadmapWorkshop Breakout Group Results, November 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 th Annual CHP Roadmap Workshop September 20-21, 2004 BREAKOUT GROUP RESULTS November 2004 CHP TECHNOLOGIES SUMMARY Since 1998, many improvements have been made in the efficiency of CHP technologies and the development of packaged- integrated-combined heat and power systems. Integration of CHP products and systems with renewables, biofuels, and a variety of prime movers has improved the market substantially. The need to increase emphasis on "bottoming-cycle" systems remains, as well

  5. Federal Strategies to Increase the Implementation of CHP in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States, June 1999 | Department of Energy Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 Federal Strategies to Increase the Implementation of CHP in the United States, June 1999 The federal government is committed to increasing the penetration of CHP technologies in the United States. This 1999 paper discusses the goal to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for

  6. Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 Challenges Facing CHP: A State-by-State Assessment (ACEEE), 2011 For years, the American Council for an Energy-Efficient Economy (ACEEE) has tracked which U.S. states have implemented policies designed to encourage greater deployment of combined heat and power (CHP). This report reflects conversations with more than 50 individual CHP developers, supporters, state energy officials, public service commission

  7. CHP Opportunities at U.S. Colleges and Universities, November 2003 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities at U.S. Colleges and Universities, November 2003 CHP Opportunities at U.S. Colleges and Universities, November 2003 DOE worked with the International District Energy Association (IDEA) to identify and prioritize combined heat and power (CHP) opportunities at U.S. colleges and universities. PDF icon chp_markets_colleges.pdf More Documents & Publications The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 Guide

  8. The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon

    Energy Savers [EERE]

    Technologies, July 2008 | Department of Energy The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)/District Heat and Cooling (DHC) policy efforts that takes into account three criteria: the effectiveness of past policies in developing the CHP/DHC

  9. The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies, July 2008 | Department of Energy The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International Energy Agency (IEA) has developed a scorecard of national Combined Heat and Power (CHP)/District Heat and Cooling (DHC) policy efforts that takes into account three criteria: the effectiveness of past policies in developing the CHP/DHC

  10. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  11. Barriers to CHP with Renewable Portfolio Standards, Draft White Paper, September 2007

    Broader source: Energy.gov [DOE]

    A draft white paper discussing the barriers to combine heat and power (CHP) with renewable portfolio standards

  12. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2010-08-01

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  13. Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power: Expanding CHP in Your State December 4, 2013 Molly Lunn U.S. DOE's State and Local Technical Assistance Program 1 | Energy Efficiency and Renewable Energy eere.energy.gov DOE's State & Local Technical Assistance Program * Strategic Energy Planning * Program & Policy Design and ImplementaJon * Financing Strategies * Data Management and EM&V * EE & RE Technologies Priority Areas * General EducaOon (e.g., fact sheets, 101s) * Case Studies * Tools for

  14. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 Cummins Power Generation, in collaboration with Cummins Engine Business Unit, is developing a flexible, packaged CHP system that produces 330 kW of electrical power output and 410 kW of thermal output while increasing efficiency and reducing emissions and cost. The project will result in the highest-efficiency and lowest-emissions system

  15. National CHP Roadmap: Doubling Combined Heat and Power Capacity in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States by 2010, March 2001 | Department of Energy CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 The National CHP Roadmap document is the culmination of more than 18 state, regional, national, and international workshops, and numerous discussions, planning studies, and assessments. The origin of these activities was a conference held

  16. Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Gas Technology Institute (GTI), June 2011 | Department of Energy Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Flexible CHP System with Low NOx, CO, and VOC Emissions - Presentation by the Gas Technology Institute (GTI), June 2011 Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio

  17. Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard, April 2011 | Department of Energy : Essential for a Cost Effective Clean Energy Standard, April 2011 Combined Heat and Power (CHP): Essential for a Cost Effective Clean Energy Standard, April 2011 In March 2011, a federal Clean Energy Standard (CES) was put forth as an approach to advancing a new national energy policy. This white paper discusses the CES concept. PDF icon chp_clean_energy_std.pdf More Documents & Publications The International CHP/DHC Collaborative - Advancing

  18. U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Inlet Cooling (TIC), September 2003 | Department of Energy CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003 This 2003 chart of U.S. CHP installations incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC) was prepared by the Cool Solutions Company of Lisle, Illinois, for UT-Battelle,

  19. CHP Education and Outreach Guide to State and Federal Government, Updated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2005 | Department of Energy Education and Outreach Guide to State and Federal Government, Updated October 2005 CHP Education and Outreach Guide to State and Federal Government, Updated October 2005 This toolkit provides information for those who wish to educate their legislative representatives in the states and the federal government about combined heat and power (CHP). It was compiled in October 2000 and updated October 2005. PDF icon chp_education_and_outreach_guide.pdf More

  20. CHP Market Potential in the Western States, September 2005 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Potential in the Western States, September 2005 CHP Market Potential in the Western States, September 2005 This 2005 report summarizes the combined heat and power (CHP) market potential for eight Western States - Alaska, Arizona, California, Hawaii, Idaho, Nevada, Oregon, and Washington. This is the final summary report of a series of reports designed to assist the U.S. Department of Energy in defining the CHP opportunity in the Western United States. PDF icon

  1. Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 Targeted CHP Outreach in Selected Sectors of the Commercial Market, 2004 This report defines the opportunity for CHP in three specific commercial building market segments: smaller educational facilities, smaller healthcare facilities, and data centers/server farms/telecom switching centers. Major issues affecting each of these markets are explored in the report in detail to provide guidance on the

  2. Flexible CHP System with Low NOx, CO and VOC Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flexible CHP System with Low NOx, CO and VOC Emissions Flexible CHP System with Low NOx, CO and VOC Emissions Introduction A combined heat and power (CHP) system can be a financially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country with high electricity rates. However, regions with air quality concerns often have strict limits on criteria pollutants, such as nitrogen oxide (NOx), carbon monoxide (CO), and

  3. 2011 Industrial Distributed Energy and CHP R&D Portfolio Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combined Heat & Power Deployment » 2011 Industrial Distributed Energy and CHP R&D Portfolio Review 2011 Industrial Distributed Energy and CHP R&D Portfolio Review The Advanced Manufacturing Office met with research partners in June 2011 to review the status of projects in the Combined Heat and Power (CHP)/Industrial Distributed Energy portfolio. An agenda, summary report, and the following presentations from the meeting are available as Adobe PDFs. Advanced

  4. Database (Report) of U.S. CHP Installations Incorporating Thermal Energy

    Office of Environmental Management (EM)

    Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 | Department of Energy Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004 The primary objective of this project was to develop a database of combined heat and power (CHP) installations incorporating TES and/or TIC systems, throughout

  5. Harbec Plastics: 750kW CHP Application - Project Profile | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harbec Plastics: 750kW CHP Application - Project Profile Harbec Plastics: 750kW CHP Application - Project Profile This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance. PDF icon Harbec Plastics: 750kW CHP Application - Project Profile (February 2006) More Documents & Publications SEP CASE STUDY WEBINAR: HARBEC SLIDES HARBEC, Inc. Case Study for Superior Energy Performance Harbec: A

  6. SEE Action IEE-CHP Webinar 1: Combined Heat and Power: A Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and oxidation catalysts for CO and organic HAPs control 4 Potential Opportunity for CHP? Compliance with MACT limits will be expensive for many coal and oil units - some...

  7. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP Industrial Distributed ...

  8. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 11 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Agenda Agenda for the CHP/ Industrial Distributed Energy R&D Portfolio Review meeting held in Washington, D.C. on June 1-2, 2011. PDF icon portfolio_review_2011_06_agenda.pdf More Documents & Publications 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Advance Patent Waiver W(A)2010-065 Advanced

  9. QCI Exam Test-Taking Tips from Community Housing Partners (CHP)

    Broader source: Energy.gov [DOE]

    This document contains a list of tips for taking the Quality Control Inspector (QCI) Home Energy Professional Certification Exam, provided by Community Housing Partners (CHP).

  10. Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007

    Broader source: Energy.gov [DOE]

    Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

  11. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHP/Industrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011 CHP/ Industrial Distributed Energy R&D Portfolio Review, held on June 1-2, 2011, in Washington, D.C. This report provides presentation summaries, closing remarks, and the agenda. PDF icon distributedenergy_summaryreport2011.pdf More Documents & Publications CHP Integrated

  12. A.O. Smith: Demonstrate Underutilized Micro-CHP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A.O. Smith: Demonstrate Underutilized Micro-CHP A.O. Smith: Demonstrate Underutilized Micro-CHP The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used. The energy advantage of micro-CHP compared to standard energy building usage. Based on primary source energy combined heat and power has the potential to significantly reduce the amount of energy used.

  13. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  14. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  15. Fort Yukon Gets Fired Up Over Biomass CHP Project

    Office of Environmental Management (EM)

    Gets Fired Up Over Biomass CHP Project In 2005, the Native Village of Fort Yukon sought a less costly fuel than diesel to heat common buildings, as well as a water system that could operate at -60˚F. As village leaders researched the options, they investigated biomass as a potential resource and learned about sustainable forest management practices. DOE funded the Council of Athabascan Tribal Governments (CATG)-a 10-tribe consortium-to study a regional wood energy program in 2007. The following

  16. Gas turbine CHP leads Italy`s energy drive

    SciTech Connect (OSTI)

    Jeffs, E.

    1995-11-01

    When Italy abandoned its nuclear power program, it was the signal for the electricity market to open to industrial CHP and independent power production. This move raised energy efficiency and cut pollution, as a prelude to the privatization of the electric utility system. The Privatization of ENEL, the National Electricity Authority, is expected to happen next year, but not before a significant component of independent power generation is already in place. ENEL itself was only created in 1963 and some of the former power companies have reemerged as the leading IPP`s. Although combined cycle and IPP capacity is only 5000 MW, it is expected to increase to 15,000 MW by the year 2000. In abandoning nuclear power, Italy may have given up on an unquestionably clean thermal energy source, but an intensive drive into private power with combined cycle, repowering, and industrial CHP schemes is achieving some worthwhile improvements in energy efficiency, and a cleaner environment than what went before. 3 figs., 1 tab.

  17. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, June 2011 | Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2,

  18. ITP Distributed Energy: The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 IEA_USA_16pp_A4:IEA_USA_16pp_A4 21/7/08 16:16 Page 1 1 CHP/DHC Country Scorecard: United States The United States has a long history of using Combined Heat and Power (CHP), and 8% of US electricity generation is provided by 85 gigawatts (GWe) of installed CHP capacity at over 3 300 facilities. The large-scale district energy systems are located in many major cities, and 330 university campuses use district energy systems as a low-carbon,

  19. Field Scale Test and Verification of CHP System at the Ritz Carlton, San

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Francisco, August 2007 | Department of Energy Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 DOE, the Gas Technology Institute, Oak Ridge National Laboratory, and UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort® 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton in San Francisco. This National

  20. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP

    Office of Environmental Management (EM)

    Applications, April 2005 | Department of Energy Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 The objective of this paper is to summarize the development status of air-cooled lithium bromide (LiBr)-water absorption chillers to guide future efforts to develop chillers for combined heat and power (CHP) applications in light-commercial buildings. The key

  1. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Environmental Management (EM)

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  2. Development of a Packaged and Integrated Microturbine/ Chiller Combined Heat and Power (CHP) System

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a research project whose goal is to define, develop, integrate, and validate at full scale the technology for a 1 MWe, microturbine-driven CHP packaged system for industrial or large commercial applications.

  3. HUD Combined Heat and Power (CHP) Guide #3, September 2010 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Combined Heat and Power (CHP) Guide #3, September 2010 HUD Combined Heat and Power (CHP) Guide #3, September 2010 This Level 2 analysis tool for multifamily buildings will help an owner determine whether to invite proposals for design of a system and for a financial analysis. This 2010 guide provides an introduction to the software program, with a description of its development and advice on how it can be used. PDF icon chpguide3.pdf More Documents & Publications Promoting

  4. Demonstration of Next Generation PEM CHP Systems for Global Markets Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PBI Membrane Technology | Department of Energy Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7a_plugpwr.pdf More Documents & Publications International Stationary Fuel Cell Demonstration Intergovernmental Stationary Fuel Cell System

  5. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7_intelligent.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  6. Economic Potential of CHP in Detroit Edison Service Area: The Customer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective, June 2003 | Department of Energy Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 For this case study, the Gas Technology Institute analyzed a single 16 MW grid feeder circuit in Ann Arbor, Michigan, to determine whether there are economic incentives to use small distributed power generation systems that would offset the need to increase grid

  7. Development of an Advanced Combined Heat and Power (CHP) System Utilizing

    Office of Environmental Management (EM)

    Off-Gas from Coke Calcination - Fact Sheet, 2014 | Department of Energy an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2014 The Gas Technology Institute-in collaboration with Superior Graphite Company and SCHMIDTSCHE SCHACK, a division of ARVOS Group, Wexford business unit (formerly Alstom Power Energy

  8. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011

    Broader source: Energy.gov [DOE]

    Paper proposing that the Legislature adopt an aggressive goal to stimulate additional development of natural gas fueled combined heat and power (CHP) in industries and buildings across Texas

  9. Lesson Learned from Technical and Economic Performance Assessment and Benefit Evaluation of CHP-FCS

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Brooks, Kriston P.; Srivastava, Viraj; Pilli, Siva Prasad; Foster, Nikolas AF

    2014-08-22

    Recent efforts and interest in combined heat and power (CHP) have increased with the momentum provided by the federal government support for penetration of CHP systems. Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and utilize the heat normally wasted in power generation for useful heating or cooling with lower emissions compared to alternative sources. A recent study investigated the utilization of CHP-FCSs in the range of 5 to 50KWe in various commercial building types and geographic locations. Electricity, heating, and water heating demands were obtained from simulation of the U.S. Department of Energy (DOE) commercial reference building models for various building types. Utility rates, cost of equipment, and system efficiency were used to examine economic payback in different scenarios. As a new technology in the early stages of adoption, CHP-FCSs are more expensive than alternative technologies, and the high capital cost of the CHP-FCSs results in a longer payback period than is typically acceptable for all but early-adopter market segments. However, the installation of these units as on-site power generators also provide several other benefits that make them attractive to building owners and operators. The business case for CHP-FCSs can be made more financially attractive through the provision of government incentives and when installed to support strategic infrastructure, such as military installations or data centers. The results presented in this paper intend to provide policy makers with information to define more customized incentives and tax credits based on a sample of building types and geographic locations in order to attract more business investment in this new technology.

  10. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  11. Supervisory Feed-Forward Control for Real-Time Topping Cycle CHP Operation

    SciTech Connect (OSTI)

    Cho, Heejin; Luck, Rogelio; Chamra, Louay M.

    2010-03-01

    This paper presents an energy dispatch algorithm for real-time topping cycle Cooling, Heating, and Power (CHP) operation for buildings with the objective of minimizing the operational cost, primary energy consumption (PEC), or carbon dioxide emission (CDE). The algorithm features a supervisory feed-forward control for real-time CHP operation using short-term weather forecasting. The advantages of the proposed control scheme for CHP operation are (a) relatively simple and efficient implementation allowing realistic real-time operation , (b) optimized CHP operation with respect to operational cost, PEC, or CDE, and (c) increased site-energy consumption (SEC) resulting in less dependence on the electric grid. In the feed-forward portion of the control scheme, short-term electric, cooling, and heating loads are predicted using the U.S. Department of Energy (DOE) benchmark small office building model. The results are encouraging regarding the potential saving of operational cost, PEC, and CDE from using the control system for a CHP system with electric and thermal energy storages.

  12. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  13. Combined Heat and Power: A Vision for the Future of CHP in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States in 2020, June 1999 | Department of Energy Vision for the Future of CHP in the United States in 2020, June 1999 Combined Heat and Power: A Vision for the Future of CHP in the United States in 2020, June 1999 The U.S. Combined Heat and Power Association (USCHPA) was formed in December 1998 with the purpose of promoting the use of clean and efficient industrial combined heat and power and buildings cooling, heating and power technologies in the United States. This report is a summary

  14. Data Collection and Analyses of the CHP System at Eastern Maine Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center - Final Report, June 2008 | Department of Energy Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 Data Collection and Analyses of the CHP System at Eastern Maine Medical Center - Final Report, June 2008 This 2008 report describes the Eastern Maine Medical Center's installation of a Centaur 50 gas turbine and performance data for one year from December 2006 to November 2007. The turbine has a nameplate rating of 4,570 kW and can

  15. ITP Industrial Distributed Energy: Database of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC)

    Office of Environmental Management (EM)

    Database of U.S. CHP Installations Incorporating Prepared for: UT-Battelle, Oak Ridge National Laboratory sheet 1 of 5 Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC) U.S. Department of Energy Updated: 9/4/03 Prepared by: The Cool Solutions Company - Lisle, Illinois CoolSolutionsCo@aol.com CHP Year Complementary Power Generation from Total On-site System Capacity Case CHP Facility Name and Location CHP Technologies Type(s) of Building Applications Served by System CHP Prime

  16. Effects of Increased Upward Flux of Saline Water Caused by CO2 Storage or Other Factors

    SciTech Connect (OSTI)

    Murdoch, Lawrence; Xie, Shuang; Falta, Ronald W.; Yonkofski, Catherine MR

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would likely be minor if the upward flux was smaller than a few tenths of the magnitude of recharge, according to the 2D analyses. The 3D analyses also show that upward flux could occur without a significant increase in the risk categories. The major contribution of this work is that it shows how a large increase in diffuse upward flux from a basin could cause significant problems, but a small increase in upward flux may occur without significantly affecting risks to the shallow freshwater flow system. This heightens the importance of understanding interactions between shallow and deep hydrologic systems when characterizing CO2 storage projects.

  17. New Release-- U.S. DOE Analysis: Combined Heat and Power (CHP) Technical Potential in the United States

    Broader source: Energy.gov [DOE]

    The “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report provides data on the technical potential in industrial facilities and commercial buildings for ...

  18. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  19. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    SciTech Connect (OSTI)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical challenge to the development of a long life LIC system is the development of a reliable and efficient steam generator. The steam generator and support equipment development is described in Section 7. Just one year ago, ECR International announced through its joint venture company, Climate Energy, that it was introducing to the USA market a new class of Micro-CHP product using the state-of-the-art Honda MCHP gas fired internal combustion (IC) engine platform. We now have installed Climate Energy Micro-CHP systems in 20 pilot demonstration sites for the 2005/2006 heating season. This breakthrough success with IC engine based systems paves the way for future advanced steam cycle Micro-CHP systems to be introduced.

  20. CHP in the Midwest - Presentation from the July 2010 Advancing Renewables

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Midwest Conference | Department of Energy in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference CHP in the Midwest - Presentation from the July 2010 Advancing Renewables in the Midwest Conference This presentation by Recycled Enegy Development (RED) from the "Advancing Renewables in the Midwest Conference" held on July 15, 2010, proposes policy changes that could make the Midwest and the United States a world leader in reducing

  1. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  2. A Study of a Diesel Engine Based Micro-CHP System

    SciTech Connect (OSTI)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP systems instead of the conventional heating system, and analyze system approaches for interaction with the local electric utility. The primary energy savings between the space heating provided by a conventional space heating system with all the required electrical energy supplied by the grid and the micro-CHP system supplemented when needed by a conventional space heating and the grid supplied electricity. were calculated for two locations namely Long Island and Albany. The key results from the experimental work are summarized first and the results from the analytical work next. Experimental results: (1) The engine could be operated successfully in the normal and HCCI modes using both diesel and biodiesel blends. (2) The smoke levels are lower with biodiesel than with diesel in both modes of operation. (3) The NOx levels are lower with the HCCI mode of operation than with the normal mode for both fuels. (4) The engine efficiency in these tests is lower in the HCCI mode of operation. However, the system parameters were not optimized for such operation within the scope of this project. However, for an engine designed with such operation in mind, the efficiency would possibly be not lower. Analytical results: (1) The internal combustion engine (diesel engine in this case) is the only proven technology as a prime mover at present. However, as noted above, no U.S. engine is available at present. (2) For both locations, the use of a micro-CHP system results in primary energy savings. This is true whether the CHP system is used only to supply domestic hot water or to supply both hot water and space heat and even for a low efficiency system especially for the latter case. The size of the thermal storage (as long as it above a certain minimum) did not affect this. (3) For example, for a 2 kW CHP electrical efficiency of 25%, a typical house on Long Island will save about 30MBtu of energy per year for a combined space heat and domestic hot water system. This corresponds to annual energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the power capacity of the prime-mover, but flattened out at around 2 kW power output suggesting that a low power engine like the one tested is a good choice. (5) Reverse metering, that is, power returned to the electric grid when produced in excess of the local load, increased the primary energy savings significantly when using a 3kW to 5kW system with high fuel-to-electric efficiency. (6) In view of the current interest in plug-in electric or hybrid vehicles, the impact of night-time recharging on the micro-CHP operation was considered. Obviously, it will reduce the amount reverse metered and without reverse-metering, the primary energy savings were increased significantly. (7) The micro-CHP systems can contribute to the decrease of the carbon emissions of the local utility even with the use of diesel fuel and much more so with biodiesel use.

  3. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    SciTech Connect (OSTI)

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  4. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of μCHP in Light Commercial Hot Water !pplications 2015 Building Technologies Office Peer Review Kris L. Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation Project Summary Timeline: Start date: October 1, 2014 Planned end date: September 30, 2017 Key Milestones: 1. T2M Plan - draft: 02/28/15 2. Identification of Potential Sites: 03/31/15 3. EPA Certification: 09/30/15 Budget: Total DOE $ to date: $45,241 Total future DOE $: $629,759 Target Market/Audience: Domestic Hot

  5. Transcript for the U.S. Department of Energy TAP Webinar - Combined Heat and Power: Expanding CHP in Your State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amy Hollander: I'd like to welcome you to today's webinar, titled "Combined Heat and Power: Expanding CHP in Your State." This webinar is sponsored by the US Department of Energy Weatherization and Intergovernmental Program. We have an excellent webinar on CHP today, with four speakers from around the nation. We'll give folks a few more minutes to call in and log on, so while we wait, I will go over some logistics, and then we'll get going on today's webinar. Please note, this webinar

  6. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    SciTech Connect (OSTI)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net metering will be available in the U.S. is unclear. Third, these products are typically not designed for use in households having forced hot-air heating, which is the dominant heating system in the U.S. The U.S. market will also require a major manufacturer that has the reputation and brand recognition, low-cost manufacturing capability, distribution, sales, and service infrastructure, and marketing power to achieve significant market size with a previously unknown and unproven product. History has proven time and time again that small-to-medium-size manufacturers do not have the resources and capabilities to achieve significant markets with such products. During the Phase I effort, the Team developed a conceptual design for a Micro-CHP system that addresses key DOE and U.S. market needs: (1) Provides emergency power adequate for critical household loads, with none of the key drawbacks associated with typical, low-cost emergency generators, such as liquid fuel storage, inability to power ''hard-wired'' loads, need to run temporary extension cords for plug loads, manual set up required, susceptibility to overload, and risk of failure due to lack of maintenance and infrequent operation; (2) Requires no special skills to install--plumbers, electricians and HVAC technicians will typically have all necessary skills; (3) Can be used with the major residential fuels in the U.S., including natural gas and propane, and can be easily adapted to fuel oil as well as emerging fuels as they become available; and (4) Significantly reduces household energy consumption and energy costs.

  7. Effect of ignition conditions on upward flame spread on a composite material in a corner configuration

    SciTech Connect (OSTI)

    Ohlemiller, T.; Cleary, T.; Shields, J.

    1996-12-31

    This paper focuses on the issue of fire growth on composite materials beyond the region immediately subjected to an ignition source. Suppression of this growth is one of the key issues in realizing the safe usage of composite structural materials. A vinyl ester/glass composite was tested in the form of a 90{degrees} comer configuration with an inert ceiling segment 2.44 m above the top of the fire source. The igniter was a propane burner, either 23 or 38 cm in width with power output varied from 30 to 150 Kw. Upward flame spread rate and heat release rate were measured mainly for a brominated vinyl ester resin but limited results were also obtained for a non-flame retarded vinyl ester and a similar composite coated with an intumescent paint. Rapid fire growth beyond the igniter region was seen for the largest igniter power case; the intumescent coating successfully prevented fire growth for this case.

  8. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdlyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 0.5 km s{sup 1} and a minimum vertical velocity of 42 21 km s{sup 1}. The estimated energy of the waves is around 150 W m{sup 2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  9. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect (OSTI)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  10. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  11. Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum

    DOE Patents [OSTI]

    Vail, III, William Banning (Bothell, WA); Momii, Steven Thomas (Seattle, WA)

    1998-01-01

    Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the "slip" portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical "station-to-station logging tool" may be modified to be a "continuous logging tool", where "continuous" means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool.

  12. Methods and apparatus to produce stick-slip motion of logging tool attached to a wireline drawn upward by a continuously rotating wireline drum

    DOE Patents [OSTI]

    Vail, W.B. III; Momii, S.T.

    1998-02-10

    Methods and apparatus are described to produce stick-slip motion of a logging tool within a cased well attached to a wireline that is drawn upward by a continuously rotating wireline drum. The stick-slip motion results in the periodic upward movement of the tool in the cased well described in terms of a dwell time during which time the tool is stationary, the move time during which time the tool moves, and the stroke that is upward distance that the tool translates during the ``slip`` portion of the stick-slip motion. This method of measurement is used to log the well at different vertical positions of the tool. Therefore, any typical ``station-to-station logging tool`` may be modified to be a ``continuous logging tool,`` where ``continuous`` means that the wireline drum continually rotates while the tool undergoes stick-slip motion downhole and measurements are performed during the dwell times when the tool is momentarily stationary. The stick-slip methods of operation and the related apparatus are particularly described in terms of making measurements of formation resistivity from within a cased well during the dwell times when the tool is momentarily stationary during the periodic stick-slip motion of the logging tool. 12 figs.

  13. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  14. CHP Awards Announced

    SciTech Connect (OSTI)

    2010-05-01

    The U.S. Department of Energy Industrial Technologies Program has selected six projects for financial awards under the "Combined Heat and Power Systems Technology Development and Demonstration" solicitation (DE-FOA-0000016).

  15. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  16. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an opportunity fuel for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an opportunity fuel for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administrations National Goal to Reduce Emissions Intensity. 8

  17. AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE

    SciTech Connect (OSTI)

    Tanaka, T.; Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Kouzuma, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Ueno, K.; Ueshima, K.; Yamada, S.; Collaboration: Super-Kamiokande Collaboration; and others

    2011-12-01

    We present the result of an indirect search for high energy neutrinos from Weakly Interacting Massive Particle (WIMP) annihilation in the Sun using upward-going muon (upmu) events at Super-Kamiokande. Data sets from SKI-SKIII (3109.6 days) were used for the analysis. We looked for an excess of neutrino signal from the Sun as compared with the expected atmospheric neutrino background in three upmu categories: stopping, non-showering, and showering. No significant excess was observed. The 90% C.L. upper limits of upmu flux induced by WIMPs of 100 GeV c{sup -2} were 6.4 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} and 4.0 Multiplication-Sign 10{sup -15} cm{sup -2} s{sup -1} for the soft and hard annihilation channels, respectively. These limits correspond to upper limits of 4.5 Multiplication-Sign 10{sup -39} cm{sup -2} and 2.7 Multiplication-Sign 10{sup -40} cm{sup -2} for spin-dependent WIMP-nucleon scattering cross sections in the soft and hard annihilation channels, respectively.

  18. PSADEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Definitions of Petroleum Products and Other Terms Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a hydrocarbon plus a hydroxyl group; CH 3 - (CH 2 )n-OH (e.g., methanol, ethanol, and tertiary butyl alcohol). Alkylate. The product of an alkylation reaction. It usu- ally refers to the high octane product from alkylation units. This alkylate is used in blending high octane

  19. PSADEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ASTM. The acronym for the American Society for Test- ing and Materials. Atmospheric Crude ... Example: (1) Unextracted paraffinic oils that would not meet the Viscosity Index test. ...

  20. APPENDXD.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Report The Form EIA-819, "Monthly Oxygenate Report" provides production data for fuel ethanol and methyl tertiary butyl ether (MTBE). End-of-month stock data held at ethanol...

  1. PSMSUMRY.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    inventory" on the stock graphs are the lower end of the demonstrated operational inventory range updated for known and definable changes in the petroleum delivery system....

  2. PSMDEFS.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alcohol. The family name of a group of organic chemical compounds composed of carbon, hydrogen, and oxygen. The series of molecules vary in chain length and are composed of a...

  3. APPEND.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    106 Energy Information AdministrationPetroleum Supply Monthly 107 Energy Information AdministrationPetroleum Supply Monthly...

  4. PSMNOTES.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7....

  5. NYSERDA's CHP Program Guide, 2010

    Broader source: Energy.gov [DOE]

    Guidebook outlining five categories of projects that the New York State Energy Research and Development Authority (NYSERDA) currently supports

  6. HEATRESV.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Terminal Woodbridge, NJ 1,000 Williams Energy Services New Haven, CT 500 Motiva Enterprises LLC New Haven, CT 250 Motiva Enterprises LLC Providence, RI 250 Total 2,000 Source:...

  7. TABLE52.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Selected Petroleum Products by PAD a Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. W Withheld to avoid...

  8. TABLES5.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    a Stocks are totals as of end of period. Distillate stocks located in the "Northeast Heating Oil Reserve" are not included. For details see Appendix E. b A negative number...

  9. table07.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  10. table01.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Energy Information Administration (EIA), Monthly Petroleum Supply Reporting System. Domestic crude oil production estimates based on historical statistics from State conservation ...

  11. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  12. table09.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  13. table10.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  14. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  15. table04.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  16. table02.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  17. table06.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  18. table08.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  19. TABLE13.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  20. table05.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  1. table03.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Note: Totals may not equal sum of components due to independent rounding. Sources: Energy ... Domestic crude oil production from State conservation agencies and the Minerals Management ...

  2. TABLE46.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    6. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, a Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of...

  3. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  4. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  5. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  6. VOL2NOTE.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... For purposes of this report, custody is defined as physical possession of crude oil or ... catego- ries to meet Environmental Protection Agency require- ments effective in ...

  7. Solar and CHP Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    This exemption was originally set to expire July 1, 2002, but it was extended for three more three years. In May 2005, the exemption was made permanent upon the enactment of H.B. 805.

  8. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids...

  9. TABLE56.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2,153 0 2,153 1,884 1,514 370 Normal ButaneButylene ... 0 0 0 527 415 112 IsobutaneIsobutylene...

  10. TABLE01.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    residual fuel oil, jet fuel, and liquefied petroleum gases. e Crude oil stocks in the Strategic Petroleum Reserve include non-U.S. stocks held under foreign or commercial...

  11. CHP/Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    Gas turbines also have very low emissions compared to other fossil-fuel based systems. Fuel Cell - these plants primarily produce power using Oil, Distillate Fuel Oil, Jet Fuel,...

  12. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. PAD District IV-Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ........................................... 356 - 204 52 -131 -1 0 483 0 0 Natural Gas Liquids and LRGs ........ 131 (s) 17 - -93 (s) - 19 (s) 35 Pentanes Plus .................................. 25 - 4 - -11 (s) - 5 (s) 12 Liquefied Petroleum Gases .............. 106 (s) 14 - -82 (s) - 14 (s) 23 Ethane/Ethylene ........................... 31 0 0 - -41 0 - 0 0 -10

  13. TABLE12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. PAD District V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................ 67,121 - 13,641 4,786 -2,251 3,132 0 74,187 5,978 0 63,808 Natural Gas Liquids and LRGs ........ 2,884 1,346 5 - 0 -1,591 - 3,038 451 2,337 3,315 Pentanes Plus ................................... 1,572 - 0 - 0 -1 - 1,293 (s) 280 23 Liquefied Petroleum Gases .............. 1,312 1,346 5 - 0 -1,590 - 1,745 450 2,058 3,292 Ethane/Ethylene

  14. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. PAD District V - Daily Average Supply and Disposition of Crude Oil and Petroleum (Thousand Barrels per Day) January 1998 Crude Oil ............................................ 2,165 - 440 154 -73 101 0 2,393 193 0 Natural Gas Liquids and LRGs ........ 93 43 (s) - 0 -51 - 98 15 75 Pentanes Plus ................................... 51 - 0 - 0 (s) - 42 (s) 9 Liquefied Petroleum Gases .............. 42 43 (s) - 0 -51 - 56 15 66 Ethane/Ethylene ............................ (s) 0 0 - 0 0 - 0 0 (s)

  15. TABLE14.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I .......................................................................................... 824 27 Florida ................................................................................................. 523 17 New York ............................................................................................. 19 1 Pennsylvania

  16. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining PAD District I PAD District II Commodity East Appalachian Minn., Wis., Okla., Kans., Coast No. 1 Total Ind., Ill., Ky. N. Dak., S. Dak. Mo. Total Net Production Net Production Stocks Stocks Districts, (Thousand Barrels) PAD District III PAD Dist. PAD Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids

  17. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6. Refinery Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil ................................................................... 44,047 2,783 46,830 70,320 12,891 21,794 105,005 Natural Gas Liquids ................................................. 252 0 252 2,613 131 1,076 3,820 Pentanes Plus ....................................................... 0 0 0 202 45 522 769 Liquefied Petroleum Gases ................................... 252 0 252 2,411 86

  18. TABLE17.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ........................................... 576 -7 569 2,415 -51 392 2,756 Ethane/Ethylene ..................................................... 0 0 0 0 0 0 0 Ethane ............................................................... W W W W W W W Ethylene ............................................................ W W W W W W W Propane/Propylene

  19. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Refinery Stocks of Crude Oil and Petroleum Products by PAD and Refining Districts, January 1998 Crude Oil .................................................................... 14,835 511 15,346 8,591 1,779 2,386 12,756 Petroleum Products .................................................. 53,526 2,604 56,130 37,545 10,689 14,376 62,610 Pentanes Plus .......................................................... 0 0 0 4 209 225 438 Liquefied Petroleum Gases ......................................

  20. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9. Percent Refinery Yield of Petroleum Products by PAD and Refining Districts, a January 1998 Liquefied Refinery Gases ............................................ 1.2 -0.3 1.1 3.4 -0.4 1.9 2.6 Finished Motor Gasoline b ............................................ 49.1 39.8 48.6 51.6 54.9 50.0 51.7 Finished Aviation Gasoline c ........................................ 0.1 0.0 0.1 0.0 0.1 0.1 0.0 Naphtha-Type Jet Fuel ................................................ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

  1. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Imports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a,b ................................................................... 53,357 48,515 139,013 3,980 13,641 258,506 8,339 Natural Gas Liquids ...................................................... 1,233 3,599 2,005 536 5 7,378 238 Pentanes Plus ............................................................ 0 42 1,031 112 0 1,185 38 Liquefied Petroleum Gases ........................................ 1,233 3,557 974

  2. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, a January 1998 Arab OPEC .................................. 53,500 1,139 2,258 115 625 0 0 1,267 0 0 Algeria ...................................... 0 1,139 1,174 115 0 0 0 824 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 7,822 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 44,568 0 1,084 0 625 0 0 443 0 0 Other

  3. TABLE22.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. PAD District I-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,171 845 0 115 625 0 0 824 0 0 Algeria ....................................... 0 845 0 115 0 0 0 824 0 0 Saudi Arabia .............................. 6,171 0 0 0 625 0 0 0 0 0 Other OPEC .................................. 13,975 0 280 588 1,644 776 715 2,024 3 0 Nigeria ....................................... 8,825 0 0 0 0 0 0 166 0 0 Venezuela

  4. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. PAD District II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 6,219 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,253 0 0 0 0 0 0 0 0 0 Saudi Arabia ............................. 4,966 0 0 0 0 0 0 0 0 0 Other OPEC .................................. 4,136 0 0 0 0 0 0 0 0 0 Nigeria ...................................... 540 0 0 0 0 0 0 0 0 0 Venezuela ................................. 3,596 0 0

  5. TABLE24.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. PAD District III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ................................... 38,701 294 2,258 0 0 0 0 443 0 0 Algeria ....................................... 0 294 1,174 0 0 0 0 0 0 0 Kuwait ........................................ 5,270 0 0 0 0 0 0 0 0 0 Saudi Arabia .............................. 33,431 0 1,084 0 0 0 0 443 0 0 Other OPEC .................................. 41,555 0 1,652 0 0 0 0 0 0 0 Nigeria

  6. TABLE25A.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    PAD District V PAD District IV January 1998 Non OPEC .................................... 3,980 424 0 0 13 0 140 0 0 0 Canada ..................................... 3,980 424 0 0 13 0 140 0 0 0 Total .............................................. 3,980 424 0 0 13 0 140 0 0 0 Arab OPEC .................................. 2,409 0 0 0 0 0 0 0 0 0 Iraq ........................................... 1,110 0 0 0 0 0 0 0 0 0 Kuwait ....................................... 1,299 0 0 0 0 0 0 0 0 0 Saudi Arabia

  7. TABLE26.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6. Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ............................................................................................... 1,481 1,458 4,361 7,300 Delaware .................................................................................................. 0 0 305 305 Florida ...................................................................................................... 0 0 635 635 Maine

  8. TABLE27.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. Exports of Crude Oil and Petroleum Products by PAD District, January 1998 Crude Oil a ....................................................................... 0 1,168 0 0 5,978 7,146 231 Natural Gas Liquids ...................................................... 24 752 885 6 451 2,118 68 Pentanes Plus ............................................................. 1 455 0 5 (s) 461 15 Liquefied Petroleum Gases ......................................... 24 297 885 (s) 450 1,657 53 Ethane/Ethylene

  9. TABLE28.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Exports of Crude Oil and Petroleum Products by Destination, (Thousand Barrels) Destination Liquefied Finished Crude Pentanes Petroleum Motor Distillate Fuel Residual Oil a Plus Gases Gasoline Jet Fuel Kerosene Oil Fuel Oil January 1998 Argentina .............................................. 0 0 0 1 0 0 1 1 Australia ............................................... 0 0 (s) (s) 0 0 1 0 Bahama Islands ................................... 0 0 21 1 1 (s) 54 (s) Bahrain

  10. TABLE29.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9. Net Imports of Crude Oil and Petroleum Products into the United States by Country, (Thousand Barrels per Day) January 1998 Arab OPEC .................................. 1,726 37 20 0 (s) 41 -3 (s) 296 391 2,116 Algeria ...................................... 0 37 0 0 0 27 0 0 252 316 316 Iraq ........................................... 36 0 0 0 0 0 0 0 0 0 36 Kuwait ....................................... 252 0 0 0 0 0 0 (s) (s) (s) 252 Qatar ........................................ 0 0 0 0 0 0

  11. TABLE30.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ............. 16,235 70,132 717,193 12,816 63,808 880,184 Refinery ......................................................................... 15,346 12,756 45,731 2,186 21,772 97,791 Tank Farms and Pipelines ............................................. 869 56,269 94,262 9,834 29,940 191,174 Leases ........................................................................... 20 1,107 13,770 796 961 16,654 Strategic Petroleum Reserve *a ...................................... 0 0 563,430 0 0 563,430

  12. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD January 1998 PAD District I ........................................ 39,875 16,226 269 23,380 3,520 46,977 15,022 31,955 15,736 2,460 Connecticut ....................................... 1,625 1,625 0 0 131 4,252 999 3,253 70 W Delaware, D.C., Maryland ................. 2,413 1,906 0 507 169 2,677 869 1,808 2,331 W Florida ............................................... 6,051 0 0 6,051 115 2,063 1,131

  13. TABLE32.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ........................................................ 0 433 0 344 978 772 0 0 58,118 Petroleum Products ...................................... 8,045 76 0 3,328 6,928 2,885 0 100,331 23,625 Pentanes Plus ............................................ 0 0 0 0 159 0 0 0 549 Liquefied Petroleum Gases ........................ 0 0 0 1,093 5,010 262 0 3,644 4,920 Unfinished Oils

  14. TABLE33.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ........................................................ 0 433 157 978 772 0 58,118 Petroleum Products ...................................... 7,922 0 1,760 5,765 2,885 73,877 20,560 Pentanes Plus ............................................ 0 0 0 159 0 0 549 Liquefied Petroleum Gases ........................ 0 0 1,093 5,010 262 3,310 4,920 Motor Gasoline Blending Components ...... 0 0 1 0 0

  15. TABLE34.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 187 0 0 0 0 Petroleum Products ................................................ 123 76 0 1,568 1,163 0 26,454 414 Liquefied Petroleum Gases ................................... 0 0 0 0 0 0 334 0 Unfinished Oils ...................................................... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ................. 0 32 0 0 0 0 381 0 Finished Motor Gasoline ....................................... 0 0 0 808 38 0 15,816 255 Reformulated

  16. TABLE35.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Thousand Barrels) January 1998 Crude Oil .................................................................. 344 433 -89 62,087 2,094 59,993 Petroleum Products ................................................ 103,659 8,121 95,538 34,597 13,141 21,456 Pentanes Plus ....................................................... 0 0 0 678 159 519 Liquefied Petroleum Gases ................................... 4,737 0 4,737 6,111 6,365 -254 Ethane/Ethylene ............................................... 0 0 0

  17. VOL2NOTE.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    B Explanatory Notes The following Explanatory Notes are provided to assist in understanding and interpreting the data presented in this publication. * Note 1. Petroleum Supply Reporting System * Note 2. Monthly Petroleum Supply Reporting System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7. Frames Maintenance * Note 8. Descriptive Monthly Statistics * Note 9. Practical

  18. table01.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Field Production (1) Alaska .......................................................................................................... 38,097 1,229 (2) Lower 48 States ........................................................................................... 164,660 5,312 (3) Total U.S. ................................................................................................ 202,756 6,541 Net Imports (4) Imports (Gross Excluding Strategic Petroleum Reserve (SPR)) .................

  19. table02.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 202,756 - 258,506 1,851 12,065 0 443,902 7,146 0 880,184 Natural Gas Liquids and LRGs ............ 55,963 15,419 7,378 - -15,412 - 14,810 2,118 77,244 79,784 Pentanes Plus .................................... 9,388 - 1,185 - 1,137 - 4,282 461 4,693 6,852 Liquefied Petroleum Gases ................ 46,575 15,419 6,193 - -16,549 - 10,528 1,657

  20. table03.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 1998 Crude Oil ............................................... 6,541 - 8,339 60 389 0 14,319 231 0 Natural Gas Liquids and LRGs ........... 1,805 497 238 - -497 - 478 68 2,492 Pentanes Plus .................................... 303 - 38 - 37 - 138 15 151 Liquefied Petroleum Gases ................ 1,502 497 200 - -534 - 340 53 2,340 Ethane/Ethylene ............................ 636 24 18 - -55 - 0 0 734

  1. table04.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. PAD District I-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 1998 Crude Oil ........................................... 824 - 53,357 -2,000 -89 5,262 0 46,830 0 0 16,235 Natural Gas Liquids and LRGs ........ 829 569 1,233 - 4,737 -869 - 252 24 7,961 5,223 Pentanes Plus ................................ 79 - 0 - 0 7 - 0 1 71 19 Liquefied Petroleum Gases ............ 750 569 1,233 - 4,737 -876 - 252 24 7,889 5,204 Ethane/Ethylene ........................ 262

  2. table05.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    27 - 1,721 -65 -3 170 0 1,511 0 0 Natural Gas Liquids and LRGs ....... 27 18 40 - 153 -28 - 8 1 257 Pentanes Plus .................................. 3 - 0 - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases .............. 24 18 40 - 153 -28 - 8 1 254 Ethane/Ethylene ............................ 8 0 0 - 0 0 - 0 0 8 Propane/Propylene ........................ 11 54 39 - 149 -8 - 0 1 261 Normal Butane/Butylene ............... 4 -27 1 - 3 -18 - 5 (s) -7 Isobutane/Isobutylene ................... 1 -9 0 - 0 -2

  3. table06.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7,308 - 27,686 -2,263 59,993 -3,449 0 105,005 1,168 0 70,132 Natural Gas Liquids and LRGs ......... 8,763 2,756 3,599 - 265 -6,499 - 3,820 752 17,310 23,020 Pentanes Plus ................................... 1,146 - 42 - 519 214 - 769 455 269 1,988 Liquefied Petroleum Gases ............... 7,617 2,756 3,557 - -254 -6,713 - 3,051 297 17,041 21,032 Ethane/Ethylene ............................ 2,909 0 12 - -2,215 -110 - 0 0 816 2,868 Propane/Propylene ....................... 3,095 3,602 2,661 - 968

  4. table07.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    558 - 893 -73 1,935 -111 0 3,387 38 0 Natural Gas Liquids and LRGs ....... 283 89 116 - 9 -210 - 123 24 558 Pentanes Plus .................................. 37 - 1 - 17 7 - 25 15 9 Liquefied Petroleum Gases .............. 246 89 115 - -8 -217 - 98 10 550 Ethane/Ethylene ........................... 94 0 (s) - -71 -4 - 0 0 26 Propane/Propylene ....................... 100 116 86 - 31 -155 - 0 3 485 Normal Butane/Butylene .............. 37 -27 16 - 18 -48 - 74 6 12 Isobutane/Isobutylene

  5. table08.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    106,453 - 157,490 -279 -53,603 7,143 0 202,918 0 0 717,193 Natural Gas Liquids and LRGs ........ 39,438 10,759 2,005 - -2,109 -6,438 - 7,105 885 48,541 46,872 Pentanes Plus .................................. 5,820 - 1,031 - -167 925 - 2,057 0 3,702 4,603 Liquefied Petroleum Gases .............. 33,618 10,759 974 - -1,942 -7,363 - 5,048 885 44,839 42,269 Ethane/Ethylene ........................... 15,603 751 544 - 3,485 -1,605 - 0 0 21,988 14,111 Propane/Propylene ....................... 11,268

  6. table09.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,434 - 5,080 -9 -1,729 230 0 6,546 0 0 Natural Gas Liquids and LRGs ....... 1,272 347 65 - -68 -208 - 229 29 1,566 Pentanes Plus .................................. 188 - 33 - -5 30 - 66 0 119 Liquefied Petroleum Gases .............. 1,084 347 31 - -63 -238 - 163 29 1,446 Ethane/Ethylene ........................... 503 24 18 - 112 -52 - 0 0 709 Propane/Propylene ....................... 363 301 4 - -158 -120 - 0 21 610 Normal Butane/Butylene .............. 76 3 6 - -11 -89 - 100 8 54

  7. table10.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,049 - 6,332 1,608 -4,050 -23 0 14,962 0 0 12,816 Natural Gas Liquids and LRGs ......... 4,049 -11 536 - -2,893 -15 - 595 6 1,095 1,354 Pentanes Plus ................................... 771 - 112 - -352 -8 - 163 5 371 219 Liquefied Petroleum Gases ............... 3,278 -11 424 - -2,541 -7 - 432 (s) 725 1,135 Ethane/Ethylene ............................ 950 0 0 - -1,270 0 - 0 0 -320 213 Propane/Propylene ....................... 1,473 284 233 - -705 -50 - 0 (s) 1,335 439 Normal Butane/Butylene

  8. vol2app.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A District Descriptions and Maps The following are the Refining Districts which make up the Petroleum Administration for Defense (PAD) Dis- tricts. PAD District I East Coast: District of Columbia and the States of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New Jersey, Delaware, Maryland, Virginia, North Carolina, South Carolina, Georgia, Florida, and the following counties of the State of New York: Cayuga, Tompkins, Chemung, and all counties east and north thereof.

  9. vol2fron.chp:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

  10. TABLES8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S8. PropanePropylene Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  11. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, Source: Energy Information Administration (EIA) Form EIA-814, "Monthly Imports Report." July...

  12. TABLES10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0.Other Petroleum Products Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive...

  13. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  14. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Note: Refer to Appendix A for Refining District descriptions. Source: Energy Information...

  15. TABLES6.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S6. Residual Fuel Oil Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  16. TABLE55.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Source: Energy Information Administration (EIA) Form EIA-817, "Monthly Tanker and Barge Movement Report." July 2004 Crude Oil ......

  17. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  18. TABLE33.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  19. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ethers intended for motor gasoline blending...

  20. TABLE02.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Report," EIA-811, "Monthly Bulk Terminal Report," EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," EIA-814, "Monthly Imports Report,"...

  1. TABLE35.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sources: Energy Information Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," EIA-813, "Monthly Crude Oil Report," and EIA-817, "Monthly Tanker and...

  2. TABLE19.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    a January 1998 Liquefied Refinery Gases ... 1.2 -0.3 1.1 3.4 -0.4 1.9 2.6 Finished Motor Gasoline b ......

  3. TABLES2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    understated final values by approximately 50 thousand barrels per day. This causes the preliminary values of unaccounted for crude oil to overstate the final values by...

  4. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Imports of Crude Oil and Petroleum Products into the United States by Country of Origin, a January 1998 Arab OPEC ... 53,500 1,139 2,258 115 625 0 0...

  5. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Net Imports of Crude Oil and Petroleum Products into the United States by Country, (Thousand Barrels per Day) January 1998 Arab OPEC ... 1,726 37...

  6. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    III-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ... 38,701 294 2,258 0 0 0 0 443 0 0 Algeria...

  7. TABLE23.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    II-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ... 6,219 0 0 0 0 0 0 0 0 0 Kuwait...

  8. TABLE32.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between January 1998 Crude Oil ... 0 433 0 344 978...

  9. TABLE33.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, January 1998 Crude Oil ... 0 433 157 978 772 0...

  10. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    I-Imports of Crude Oil and Petroleum Products by Country of Origin, a January 1998 Arab OPEC ... 6,171 845 0 115 625 0 0 824 0 0 Algeria...

  11. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons and oxygenates. c Based on finished aviation gasoline output minus net input of...

  12. TABLE51.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 14,487 13,929 47,253 1,928 21,142 98,739 Tank Farms and Pipelines ... 1,116 47,924 95,765 8,448 22,759...

  13. TABLE28.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Slope crude oil; (3) certain domestically produced crude oil destined for Canada; and (4) shipments to U.S. territories; and (5) California crude oil to Pacific Rim countries. ...

  14. TABLE27.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... Slope crude oil; (3) certain domestically produced crude oil destined for Canada; and (4) shipments to U.S. territories; and (5) California crude oil to Pacific Rim countries. ...

  15. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... barrels): Alaska: State - 6,171; California: State - 1,870; Louisiana: State - ... Division estimates based on Form EIA-182, "Domestic Crude Oil First Purchase Report" data. ...

  16. TABLES3.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 265 0 988 988 213 207 0 0 February ... 248 0 709 709 290 279 0 0 March ... 347 75 813 813 184 179 0 0 April...

  17. TABLE38.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    OPEC ... 72,086 1,138 9,203 1,472 417 19 404 571 0 74 Angola ... 1,474 0 80 0 0 0 0 0 0 0 Argentina...

  18. TABLE43.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 484,763 6,867 55,661 7,548 1,560 117 3,523 6,432 0 1,005 Angola ... 20,829 285 1,577 0 0 0 0 0 0 0 Argentina...

  19. TABLE35.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 160,260 4,335 13,631 15,344 16,656 2,431 7,861 9,379 5 217 Angola ... 11,020 0 80 0 0 0 0 383 0 0 Argentina...

  20. TABLE41.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 182,217 6,992 9,071 75,369 86,125 7,090 53,663 46,617 402 911 Angola ... 33,919 0 0 0 0 0 0 443 0 0 Argentina...

  1. TABLE44.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 89,852 349 4,995 9,344 4,244 10,635 2,403 6,068 0 0 Angola ... 2,803 0 0 0 0 0 0 0 0 0 Argentina...

  2. TABLE36.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 25,055 559 3,328 12,017 15,173 1,142 6,883 7,565 5 117 Angola ... 5,371 0 0 0 0 0 0 383 0 0 Argentina...

  3. TABLE40.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,064,030 35,714 70,087 92,261 92,427 18,179 62,792 59,916 402 1,986 Angola ... 63,341 285 1,577 0 0 0 0 443 0 0 Argentina...

  4. TABLE22.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, a Represents the PAD District in which the material entered the United States and not necessarily...

  5. TABLE23.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily...

  6. TABLE24.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    V - Daily Average Supply and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the...

  7. CHP Emissions Reduction Estimator | Open Energy Information

    Open Energy Info (EERE)

    Agency Sector: Energy Focus Area: Buildings, Transportation, Industry Topics: GHG inventory, Co-benefits assessment Resource Type: Softwaremodeling tools User Interface:...

  8. TABLE50.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (s) 8 Ecuador ... 201 (s) 0 0 -8 14 0 (s) (s) 6 207 Egypt ... 0 (s) (s) 0 0 0 -3 (s) 6 4 4 France...

  9. TABLE49.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 10 Ecuador ... 249 0 0 0 -14 22 0 (s) -2 6 256 Egypt ... 0 0 0 0 0 0 0 (s) 0 (s) (s) France...

  10. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Supply Monthly, September 2004 2 Table S1. Crude Oil and Petroleum Products Overview, 1988 - Present (Continued) (Thousand Barrels...

  11. TABLE25.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  12. TABLE20.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  13. TABLE21.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Disposition of Crude Oil and Petroleum a Represents the PAD District in which the material entered the United States and not necessarily where the crude oil or product is...

  14. TABLE45.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and the U.S. Bureau of the Census. July 2004 Crude Oil a ......

  15. TABLE30.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 315 4 319 202 52 301 555 Other HydrocarbonsHydrogenOxygenates ... 769 0 769 18 29 0 47 Other HydrocarbonsHydrogen...

  16. TABLE18.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 334 2 336 278 87 108 473 Other HydrocarbonsHydrogenOxygenates ... 2,044 7 2,051 335 174 66 575 Other HydrocarbonsHydrogen...

  17. TABLE20.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 5,668 0 6,903 0 2,197 14,768 476 Other HydrocarbonsHydrogenOxygenates ... 693 0 22 0 862 1,577 51 Other HydrocarbonsHydrogen...

  18. TABLE16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 7,290 -22 7,268 2,311 219 -1,101 1,429 Other HydrocarbonsHydrogenOxygenates ... 2,445 0 2,445 848 215 81 1,144 Other HydrocarbonsHydrogen...

  19. TABLE28.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    ... 12,842 139 12,981 2,033 -1,275 513 1,271 Other HydrocarbonsHydrogenOxygenates ... 2,590 120 2,710 1,976 686 438 3,100 Other HydrocarbonsHydrogen...

  20. TABLE30.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Plant ... 4 109 412 13 19 557 Other HydrocarbonsHydrogenOxygenates ... 2,440 2,175 5,217 230 3,441 13,503 Refinery...

  1. vol2app.chp:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 557 Energy Information AdministrationPetroleum Supply Annual 1998, Volume 2 558...

  2. TABLE26.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Imports of Residual Fuel Oil by Sulfur Content and by PAD District and State of Entry, January 1998 PAD District I ......

  3. Combined Heat and Power (CHP) Technology Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... estimates IGATE-E IAC, ESA,and MNI Databases Database Schema** 45 tables-MySQL ... system (DBMS) and refers to the organization of data as a blueprint of how a database is ...

  4. TABLE04.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 111 Liquefied Petroleum Gases ... 1,522 833 304 - 515 - 179 48 1,916 EthaneEthylene ... 676 19 (s) - 58 - 0 0 637 PropanePropylene...

  5. TABLE16.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 87 Liquefied Petroleum Gases ... 1,024 520 188 - 118 326 - 103 13 1,408 EthaneEthylene ... 470 19 0 - 149 41 - 0 0 597 PropanePropylene...

  6. TABLE10.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Gases ... 8,283 4,453 2,498 - -812 4,359 - 982 273 8,808 33,507 EthaneEthylene ... 3,675 0 10 - -1,947 532 - 0 0 1,206 2,198...

  7. TABLE12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    19 8 - 41 1 3 Liquefied Petroleum Gases ... 267 144 81 - -26 141 - 32 9 284 EthaneEthylene ... 119 0 (s) - -63 17 - 0 0 39 PropanePropylene...

  8. TABLE05.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    177 2 134 Liquefied Petroleum Gases ... 1,519 711 246 - 78 - 216 46 2,137 EthaneEthylene ... 672 22 (s) - 6 - 0 0 688 PropanePropylene...

  9. TABLE18.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Petroleum Gases ... 5,600 259 136 - -4,993 59 - 289 37 617 1,387 EthaneEthylene ... 2,663 0 0 - -2,659 -1 - 0 0 5 324 Propane...

  10. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 31,742 16,128 5,819 - 3,652 10,099 - 3,198 394 43,650 64,754 EthaneEthylene ... 14,583 586 0 - 4,606 1,266 - 0 0 18,509 17,206...

  11. TABLE03.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Gases ... 323,489 151,432 52,487 - 16,623 - 45,943 9,726 455,116 111,040 EthaneEthylene ... 143,173 4,697 93 - 1,314 - 0 0 146,649 19,729...

  12. TABLE13.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    17 2 - 43 1 4 Liquefied Petroleum Gases ... 269 112 94 - (s) 14 - 43 6 412 EthaneEthylene ... 117 0 (s) - -51 -1 - 0 0 68 PropanePropylene...

  13. TABLES9.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Explanatory Note 4. - Not Applicable. Notes: * Liquefied petroleum gases includes ethaneethylene, propanepropylene, normal butanebutylene, and isobutaneisobutylene. *...

  14. TABLE08.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    - 0 (s) - 0 (s) 2 Liquefied Petroleum Gases ... 15 69 31 - 69 37 - 5 3 140 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  15. TABLE09.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - 0 - 0 (s) - 0 2 1 Liquefied Petroleum Gases ... 15 56 45 - 98 5 - 4 3 201 EthaneEthylene ... 1 (s) 0 - 0 0 - 0 0 1 PropanePropylene...

  16. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    99 0 110 Liquefied Petroleum Gases ... 1,015 462 99 - 52 61 - 120 21 1,426 EthaneEthylene ... 471 22 (s) - 129 8 - 0 0 614 PropanePropylene...

  17. TABLE06.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Gases ... 467 2,152 958 - 2,153 1,136 - 162 97 4,335 7,396 EthaneEthylene ... 17 11 0 - 0 0 - 0 0 28 0 PropanePropylene...

  18. TABLE07.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gases ... 3,152 11,938 9,601 - 20,805 1,160 - 858 563 42,915 7,396 EthaneEthylene ... 161 52 0 - 0 0 - 0 0 213 0 PropanePropylene...

  19. TABLE29.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    9. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, July 2004 Liquefied Refinery Gases ... 2,082 70...

  20. TABLE17.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. Refinery Net Production of Finished Petroleum Products by PAD and Refining Districts, January 1998 Liquefied Refinery Gases ... 576 -7...

  1. TABLE31.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD January 1998 PAD District I ... 39,875 16,226 269...

  2. TABLES7.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S7. Jet Fuel Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b A negative number indicates a decrease...

  3. Advanced CHP Control Algorithms: Scope Specification

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  4. TABLES4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S4. Finished Motor Gasoline Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. b Beginning in 1993,...

  5. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

  6. TABLE37.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  7. TABLE42.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Zaire. e Includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. (s) Less than 500 barrels per day. Note: Totals may not equal sum of components...

  8. TABLE47.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    240 1,264 Chile ... 0 0 0 (s) 0 0 1 0 China, People's Republic of ... 0 (s) 511 (s) 0 0 0 (s) China, Taiwan...

  9. TABLE48.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Chile ... 0 0 0 1 148 0 1,543 280 China, People's Republic of ... 805 5 1,488 15 0 0 7 113 China, Taiwan...

  10. TABLE39.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    0 0 0 0 0 0 0 0 0 Ecuador ... 4,535 0 0 0 0 0 0 540 0 0 Japan ... 0 0 0 0 0 825 0 0 0 0 Korea, Republic of...

  11. TABLE25A.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 0 0 0 0 0 0 0 0 Ecuador ... 1,520 0 0 0 0 0 0 0 0 0 Japan ... 0 0 0 0 0 149 0 0 0 0 Korea, Republic of...

  12. Upward-facing Lithium Flash Evaporator for NSTX-U

    Office of Scientific and Technical Information (OSTI)

    ... The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the ...

  13. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  14. FIG-9&10.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S9. Residual Fuel Oil Supply and Disposition, Figure S10. Residual Fuel Oil Ending Stocks, 0 300 600 900 1,200 1,500 0 300 600 900 1,200 1,500 Jul Aug Sep Oct Nov Dec Jan Feb Mar...

  15. FIGS-3&4.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    S3. Crude Oil Supply and Disposition, Figure S4. Crude Oil Ending Stocks, 1 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 Jul Aug...

  16. FIGS-7&8.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S7. Distillate Fuel Oil Supply and Disposition, Figure S8. Distillate Fuel Oil Ending Stocks, 0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000 Jul Aug Sep Oct Nov...

  17. FIG15&16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    5. Liquefied Petroleum Gases Supply and Disposition, Figure S16. Liquefied Petroleum Gases Ending Stocks, Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2003 2004 Months 0...

  18. The International CHP/DHC Collaborative - Advancing Near-Term...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The International CHPDHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 The International CHPDHC Collaborative - Advancing Near-Term Low Carbon ...

  19. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 61F289.261 K 16.111 C 520.67 R NOx Emissions Data Available Yes CO Emissions Data Available Yes 12-Month Run Hours...

  20. List of CHP/Cogeneration Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  1. Integrated CHP/Advanced Reciprocating Internal Combustion Engine...

    Office of Environmental Management (EM)

    to meet local air quality authority emissions restrictions. Integrated Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to...

  2. FIG13&14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    3. PropanePropylene Supply and Disposition, Figure S14. PropanePropylene Ending Stocks, Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 2003 2004 Months 0 25 50 75 100 0...

  3. FIGS-1&2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Jet Fuel Source: Energy Information Administration, Petroleum Supply Monthly, Table S1. See Summary Statistics Table and Figure Sources. Source: Energy Information...

  4. Clean Energy Solutions Large Scale CHP and Fuel Cells Program...

    Broader source: Energy.gov (indexed) [DOE]

    the program has been managed by the NJ Board of Public Utilities (BPU) as a part of its Clean Energy Program. Applications should be directed to NJ BPU instead of NJ Economic...

  5. FIG11&12.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. Jet Fuel Supply and Disposition, Figure S12. Jet Fuel Ending Stocks, 0 20 40 60 80 0 20 40 60 80 Average Stock Range Lower Operational Inventory Jul Aug Sep Oct Nov Dec Jan Feb...

  6. FIGS-5&6.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S5. Finished Motor Gasoline Supply and Disposition, Figure S6. Motor Gasoline Ending Stocks, 0 2,000 4,000 6,000 8,000 10,000 0 2,000 4,000 6,000 8,000 10,000 Jul Aug Sep Oct Nov...

  7. Modular CHP System for Utica College: Design Specification, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The energy facility is to be factory pre-assembled, or pre-assembled in modules, to the fullest extent possible, and ready to install and interconnect at the College with minimal ...

  8. 330 kWe Packaged CHP System with Reduced Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keene - Cummins Power Generation Kevin.Keene@cummins.com 763-574-5966 U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Increase the adoption rate for high-efficiency small- scale Combined Heat and Power systems via development of a flexible, containerized 330 kWe unit.  Simplifies installation  Reduces total cost of ownership

  9. Menominee Tribal Enterprises (MTE) Biomass CHP District Energy System

    Office of Environmental Management (EM)

    The Menominee Nation once occupied 9.5 million acres of land * The present Menominee Reservation was established in 1854 with 234,000 acres. * The Menominee hunted, fished and harvested wild rice on their reservation. MTE Menominee Tribal Enterprises The Menominee Nation * The Menominee retained their island of timber & community by perseverance of their own tenacity, federal protection and fortuitous circumstance. MTE Menominee Tribal Enterprises The Menominee Nation * 95% of the

  10. Conditions for establishing quasistable double layers in the Earth's auroral upward current region

    SciTech Connect (OSTI)

    Main, D. S.; Newman, D. L.; Ergun, R. E.

    2010-12-15

    The strength and stability of simulated double layers at the ionosphere-auroral cavity boundary have been studied as a function of cold ionospheric electron temperature and density. The simulations are performed with an open boundary one-dimensional particle-in- cell (PIC) simulation and are initialized by imposing a density cavity within the simulation domain. The PIC simulation includes H{sup +} and O{sup +} ion beams, a hot H{sup +} background population, cold ionospheric electrons, and a hot electron population. It is shown that a double layer remains quasistable for a variety of initial conditions and plasma parameters. The average potential drop of the double layer is found to increase as the cold electron temperature decreases. However, in terms of cold electron density, the average potential drop of the double layer is found to increase up to some critical cold electron density and decreases above this value. Comparisons with FAST observations are made and agreement is found between simulation results and observations in the shape and width of the double layer. This study helps put a constraint on the plasma conditions in which a DL can be expected to form and remain quasistable.

  11. Energy conversion system involving change in the density of an upwardly moving liquid

    DOE Patents [OSTI]

    Petrick, Michael (Jolliet, IL)

    1989-01-01

    A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.

  12. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect (OSTI)

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  13. Upward-facing Lithium Flash Evaporator for NSTX-U (Conference...

    Office of Scientific and Technical Information (OSTI)

    The minimal time interval between the evaporation andmore the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the ...

  14. Northeast Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  15. Pacific Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  16. Mid-Atlantic Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  17. Northwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

  18. Flexible CHP System with Low NOx, CO and VOC Emissions- Fact Sheet, 2014

    Broader source: Energy.gov [DOE]

    Utilizing Supplemental Ultra-Low-NOx Burner Technology to Meet Emissions Standards and Improve System Efficiency

  19. 2011 CHP/Industrial Distributed Energy R&D Portfolio Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Summary report of the 2011 ...

  20. ITP Industrial Distributed Energy: CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants November 7, 2007 Denver, Colorado Paul Lemar Jr., President pll@rdcnet.com www.rdcnet.com www.distributed-generation.com Reciprocating Engines for ADG and LFG z Reciprocating engines are either Otto (spark ignition) or Diesel (compression ignition) cycle systems z Natural gas engines, as well as those powered by ADG or LFG, are typically spark ignition systems z Some dual fuel engines have been developed using ADG/LFG with a portion of diesel

  1. Combined Heat and Power (CHP): Is It Right For Your Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Data Major Component Costs Tax and Finance Conceptual Financial STOP No ... Information packets to assist in determining if an analysis is worth while Does ...

  2. Specification of Selected Performance Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas

    2006-10-06

    Pacific Northwest National Laboratory (PNNL) is assisting the U.S. Department of Energy (DOE) Distributed Energy (DE) Program by developing advanced control algorithms that would lead to development of tools to enhance performance and reliability, and reduce emissions of distributed energy technologies, including combined heat and power technologies. This report documents phase 2 of the program, providing a detailed functional specification for algorithms for performance monitoring and commissioning verification, scheduled for development in FY 2006. The report identifies the systems for which algorithms will be developed, the specific functions of each algorithm, metrics which the algorithms will output, and inputs required by each algorithm.

  3. Microsoft Word - NonProprietary DOE MicroCHP Final Report.doc

    Office of Scientific and Technical Information (OSTI)

    ... Center 6 2.2 Report Organization Chapter 3 provides a ... Energy Conversion & Management, 45 (2004): 263-275. 112. ... ASHRAE Journal Sep. 2003: 36-43. 117. Mohan, N., T.M. ...

  4. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    Broader source: Energy.gov [DOE]

    Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

  5. CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript

    Broader source: Energy.gov [DOE]

    Kurmit Rockwell:Welcome.  I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program.  In this presentation we will introduce you to the basics of combined heat and...

  6. Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to reduce the energy and carbon intensity of the calcined coke production process.

  7. Opportunities for CHP at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field, U.S. EPA, October 2011

    Broader source: Energy.gov [DOE]

    Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

  8. Midwest Region Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. 

  9. Infinia Corporation formerly Stirling Technology Company | Open...

    Open Energy Info (EERE)

    CHP systems, residential gas-fired CHP systems and for parabolic dish solar thermal electricity generation systems (STEGS). Coordinates: 46.20804, -119.116984 Show Map...

  10. From Volvo to a Career in Virginia's Weatherization Industry...

    Broader source: Energy.gov (indexed) [DOE]

    more than two months of uncertainty, McMillen was hired by Community Housing Partners (CHP), a nonprofit housing development organization based in Christiansburg, Va. CHP...

  11. Microsoft PowerPoint - Overview of Biomass Energy and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP ... CHP's energy fit to biomass products * Economic development & the rural economy * Fuel ...

  12. Energy Department Announces $5 Million to Develop Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development of combined heat and power (CHP) and renewable energy technologies at ... funding announced today will support two main technology areas: CHP and renewable energy. ...

  13. State of Washington Clean Energy Opportunity: Technical Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Potential for CHP, August 2010 State of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 The State of Washington has ...

  14. Combined Heat and Power - A Decade of Progress, A Vision for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2009 Combined heat and power (CHP) technology holds enormous potential to ... This paper describes DOE's success in building a solid foundation for a robust CHP ...

  15. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance of combined heat and power (CHP) systems in power interruption intolerant ... black-out ride through capability with the CHP systems and the resulting ability to avoid ...

  16. Ultra Clean and Efficient Natural Gas Reciprocating Engine for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP ...

  17. Balance of Plant Needs and Integration of Stack Components for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP ...

  18. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    savings from: - Incentives to support CHP installation in buildings * Recent ... to the Successful Implementation of State CHP Policies - Assessment of the Technical ...

  19. The Market and Technical Potential for Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and power (CHP) in the commercialinstitutional market. As part of this effort, in this report, OSEC has characterized typical technologies used in commercial CHP, analyzed ...

  20. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future Overview of CHP, DOE's CHP program, accomplishments, progress, technology ...

  1. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Combined Heat and Power Activities u CHP Table......the United States, primarily combined heat and power (CHP), has increased significantly. ...

  2. Utilizing Supplemental Ultra-Low-NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction A combined heat and power (CHP) system can be a fnancially attractive energy ... control systems often need to be incorporated into CHP systems that are installed. ...

  3. Guide to Using Combined Heat and Power for Enhancing Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports ...

  4. Energy Portfolio Standards and the Promotion of Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White ...

  5. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 ...

  6. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  7. One Market Plaza

    SciTech Connect (OSTI)

    2010-04-01

    This is a combined heat and power (CHP) project profile on a 1.5 MW CHP system at One Market Plaza in San Francisco, California.

  8. SC Johnson Waxdale Plant

    SciTech Connect (OSTI)

    2010-01-01

    This is a combined heat and power (CHP) project profile on a 6.4 MW CHP application at SC Johnson Waxdale Plant in Racine, Wisconsin.

  9. East Kansas Agri-Energy, LLC

    SciTech Connect (OSTI)

    2007-12-01

    This is a combined heat and power (CHP) project profile on a 1.6 MW CHP application at East Kansas Agri-Energy, LLC in Garnett, Kansas.

  10. Combined Heat and Power. Enabling Resilient Energy Infrastructure for Critical Facilities

    SciTech Connect (OSTI)

    Hampson, Anne; Bourgeois, Tom; Dillingham, Gavin; Panzarella, Isaac

    2013-03-01

    This report provides context for combined heat and power (CHP) in critical infrastructure applications, as well as case studies and policies promoting CHP in critical infrastructure.

  11. U.S. and Brazil Bilateral Collaboration on Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EtOHe+ w CCS EtOHe+ EtOHe+sugar EtOHe+ EtOH corn stover CHP w CCS corn stover BIGCC corn stover CHP corn stover CHP Natural Gas CHP US AVG US AVG GHG Emission Savings (Mg CO ...

  12. ITP Industrial Distributed Energy: Boa Vista Apartments: New Bedford Housing Authority/ New Bedford, MA

    Broader source: Energy.gov [DOE]

    Overview of Boa Vista Apartments housing development, with CHP system to provide electricity and hot water.

  13. Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002

    Broader source: Energy.gov [DOE]

    An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

  14. Vision and Roadmap Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision and Roadmap Documents Vision and Roadmap Documents The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a challenge by the CHP industry, DOE established an active program of CHP research, development, and deployment. The creation of various technology roadmaps ensued. Accelerating Combined Heat & Power Deployment, 28 pp, Aug. 2011 Consensus Items from the National CHP Roadmap Process, 5 pp, June 2001 Annual Workshop Results

  15. Technical White Papers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White Papers Technical White Papers The following technical white papers explore potential options to increase widespread deployment of distributed generation (DG) and combined heat and power (CHP). Issues such as the treatment of CHP in renewable portfolio standards and CHP commissioning are discussed. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, 15 pp, Aug. 2011 Barriers to CHP with Renewable Portfolio Standards, 13 pp, Sept. 2007 A Case for CHP Commissioning, 57

  16. Microsoft PowerPoint - Overview of Biomass Energy and Economic Development Opportunities

    Office of Environmental Management (EM)

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP Technical Assistance Partnership Tribal Leader Forum Series Biomass Renewable Energy Opportunities and Strategies July 9, 2014 Bonneville Power Administration, Portland, Oregon 1 President's Executive Order 13624: 40GW of new CHP by 2020 * CHP TAPs are critical components of achieving the goal: - Regional CHP experts - Provide fact-based, un-biased information on CHP * Technologies * Project development *

  17. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  18. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  19. State Energy Program 2013 Competitive Awards Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon de-foa-0000839.pdf More Documents & Publications 2006-2007 CHP Action Plan, Positioning CHP Value: Solutions for National, Regional and Local Energy Issues, September 2006...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Small Scale CHP and Fuel Cell Incentive Program The New Jersey Clean Energy Program (NJCEP) offers incentives for several types of small combined heat and power (CHP) and fuel cell...

  1. Combined Heat and Power System Enables 100% Reliability at Leading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECO installed a new high-efficiency natural gas-fired CHP system capable of producing 48 ... The CHP system can operate as a baseload system to serve 100% of the TECO plant peak ...

  2. Integrated Assessment of the Energy Savings and Emissions-Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Integrated Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 ...

  3. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, ...

  4. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell award ...

  5. AMO Weekly Announcements 3/25

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office Releases the “Combined Heat and Power (CHP) Technical Potential in the United States” Study The Department of Energy’s (DOE) Advanced Manufacturing Office (AMO) has released the “Combined Heat and Power (CHP) Technical Potential in the United States” market analysis report. This study provides data on the technical potential in industrial facilities and commercial buildings for “topping cycle” CHP, waste heat to power CHP (WHP CHP), and district energy CHP in the U.S. The report provides valuable data on the technical potential for CHP in strategic energy planning and energy efficiency program design. The study shows that within the U.S. there is estimated to be more than 240GW of technical potential at over 291,000 sites. Data is provided nationally by CHP system size range, facility type, and state.

  6. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP...

  7. Guide to the Successful Implementation of State Combined Heat and Power Policies

    SciTech Connect (OSTI)

    Industrial Energy Efficiency and Combined Heat and Power Working Group

    2013-03-11

    Provides utility regulators and other policymakers with actionable information based on effective state strategies for implementing CHP policies

  8. Databases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Databases Databases DOE has supported the development of several combined heat and power (CHP) and distributed energy databases that have proven to be "go-to" resources for end users. These resources include an installation database that tracks CHP projects in all end-use sectors for all 50 states, as well as a database of regulatory requirements for small electric generators. A searchable database of CHP project profiles compiled by the DOE CHP

  9. Integrated Assessment of the Energy Savings and Emissions-Reduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of CHP, June 1999 | Department of Energy Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Integrated Assessment of the Energy Savings and Emissions-Reduction Potential of CHP, June 1999 Generating electricity on or near the point of use avoids transmission and distribution losses and defers expansion of the electricity transmission grid. This 1999 paper discusses developments that make dramatic expansion of CHP a cost-effective possibility over

  10. Combined Heat and Power: A Decade of Progress, A Vision for the Future

    SciTech Connect (OSTI)

    none,

    2009-08-01

    Over the past 10 years, DOE has built a solid foundation for a robust CHP marketplace. We have aligned with key partners to produce innovative technologies and spearhead market-transforming projects. Our commercialization activities and Clean Energy Regional Application Centers have expanded CHP across the nation. More must be done to tap CHPs full potential. Read more about DOEs CHP Program in Combined Heat and Power: A Decade of Progress, A Vision for the Future.

  11. Technical Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Technical Reports A wide range of resources addressing the many benefits of combined heat and power (CHP) is available, including the technical reports below. For example, Assessing the Benefits of On-Site Combined Heat and Power (CHP) During the August 14, 2003, Blackout highlights facilities that were able to remain operational during the 2003 blackout due to backup generators or distributed generation (DG) resources, including CHP. Assessing the Benefits of On-Site CHP During the

  12. Balance of Plant Needs and Integration of Stack Components for Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and CHP Applications | Department of Energy Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Presentation on Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications for Fuel Cell Pre-solicitation Workshop March 10, 2010 PDF icon fuelcell_pre-solicitation_wkshop_mar10_ainscough.pdf More Documents &

  13. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 | Department of Energy Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 The purpose of this 1999 paper is to estimate the remaining CHP potential in the chemicals and pulp/paper industries by capacity size, and estimate energy savings and

  14. State of Washington Clean Energy Opportunity: Technical Market Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP, August 2010 | Department of Energy of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 State of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 The State of Washington has significant clean energy technical market potential including clean heat and power (CHP)/cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy Application Center (NW

  15. Energy Portfolio Standards and the Promotion of Combined Heat and Power

    Office of Environmental Management (EM)

    (CHP) White Paper, April 2009 | Department of Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 This 2009 U.S. Environmental Protection Agency (EPA) Combined Heat and Power (CHP) Partnership paper covers Energy Portfolio Standards (EPS) which are becoming a widely applied method of encouraging the development of renewable and efficient

  16. Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (CHP) Systems - Fact Sheet, 2015 | Department of Energy Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 University of California, Irvine, in collaboration with Siemens Corporate Research, developed and demonstrated novel algorithms and dynamic control technology for optimal economic use of CHP systems under 5 MW. The control

  17. Industrial Assistance and Projects Databases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assistance and Projects Databases Industrial Assistance and Projects Databases AMO's databases provide information on energy assessments and recommendations, results and paybacks, and lessons learned by manufacturers who implement projects to save energy. Also review case studies from manufacturers. Combined Heat and Power (CHP) Project Profiles Database Arrow DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. The documents

  18. Combined Heat and Power Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Webinar Combined Heat and Power Webinar PDF icon 06092010_CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Enabling Resilient Energy Infrastructure - Presentations from April 2013 Webinar Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009

  19. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined heat and power (CHP) market and near-term opportunities for a fixed set of CHP technologies. This size range has been the biggest contributor to the traditional inside-the-fence CHP market to date. PDF icon chp_large.pdf More Documents & Publications CHP Assessment, California Energy Commission, October

  20. Combined Heat and Power: Is It Right For Your Facility? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs. PDF icon Combined Heat and Power: Is It Right For Your Facility? (May 14, 2009) More Documents & Publications HUD CHP GUIDE #2 - FEASIBILITY SCREENING FOR CHP IN MULTIFAMILY HOUSING, May 2009 New and Emerging

  1. International Energy Agency

    Broader source: Energy.gov [DOE]

    DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide.

  2. ITP Industrial Distributed Energy: Combined Heat and Power: Effective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future PDF icon chp_report_12-08.pdf More Documents & Publications CHP: A Clean Energy Solution,

  3. Market Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Market Analyses Market Analyses Need information on the market potential for combined heat and power (CHP) in the U.S.? These assessments and analyses cover a wide range of markets including commercial and institutional buildings and facilities, district energy, and industrial sites. The market potential for CHP at federal sites and in selected states/regions is also examined. Commercial CHP and Bioenergy Systems for Landfills and Wastewater Treatment

  4. Industry Profile

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  5. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. PDF icon

  6. The Market and Technical Potential for Combined Heat and Power in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Sector, January 2000 | Department of Energy Industrial Sector, January 2000 The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000 This January 2000 ONSITE SYCOM Energy Corporation (OSEC) report provides information on the potential for cogeneration or combined heat and power (CHP) in the industrial market. As part of this effort, OSEC has characterized typical technologies used in industrial CHP, analyzed existing CHP capacity in

  7. Boiler MACT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power Deployment » Boiler MACT Boiler MACT DOE currently provides technical assistance on combined heat and power (CHP) technologies to commercial and industrial facilities through its seven regional CHP Technical Assistance Partnerships (CHP TAPs). Starting in January 2013, DOE supplemented this effort by providing site-specific technical and cost assistance to the major source facilities affected by the Boiler Maximum Achievable Control Technology (Boiler MACT) rule.

  8. ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of

    Office of Environmental Management (EM)

    Progress, A Vision for the Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals PDF icon chp_accomplishments_booklet.pdf More Documents & Publications

  9. Low-Cost Packaged Combined Heat and Power System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged combined heat and power (CHP) system that produces 330 kilowatts (kW) of electrical power output and 410 kW of thermal output while increasing efficiency and reducing total cost of ownership. Introduction Many CHP systems less than 1 megawatt (MW) use reciprocating internal combustion engines.

  10. Webcasts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    End users interested in combined heat and power (CHP) can participate in free webcasts made available to them through various resources, including those listed below. View presentations and documents from previous webinars and webcasts "Combined Heat and Power: Expanding CHP in Your State" was held on December 4, 2013. View the archived webinar. "CHP: Enabling Resilient Energy Infrastructure" was held on April 3, 2013. Access the presentations. View the report. ITP Tuesday

  11. Turbo Power Systems Inc formerly Turbo Genset Inc | Open Energy...

    Open Energy Info (EERE)

    products for power generation and power conditioning - specifically solutions for the Distributed Generation, Combined Heat and Power (CHP) and Power Quality markets....

  12. ITP Industrial Distributed Energy: Combined Heat and Power: Effective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future PDF icon...

  13. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  14. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Broader source: Energy.gov [DOE]

    Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

  15. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  16. The Greenhouse Gas Protocol Initiative: Allocation of Emissions...

    Open Energy Info (EERE)

    for allocation of GHG emissions from a combined heat and power (CHP) plant is a free Excel spreadsheet calculator designed to determine the GHG emissions attributable to the...

  17. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  18. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from taxation by the state, and any type of renewable energy system and most energy efficiency measures, including energy recovery and combined heat and power (CHP)...

  20. combined heat power | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy within the DOE Advanced Manufacturing Office. CHP - sometimes referred to as cogeneration - provides a cost-effective, near-term opportunity to improve our nation's energy,...

  1. Petbow Cogeneration Ltd | Open Energy Information

    Open Energy Info (EERE)

    Petbow Cogeneration Ltd Jump to: navigation, search Name: Petbow Cogeneration Ltd Place: United Kingdom Product: CHP systems. References: Petbow Cogeneration Ltd1 This article is...

  2. Characterization of the Installed Costs of Prime Movers Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as fuels for power generating equipment as distributed energy resources (DER) or combined heat and power (CHP) applications. PDF icon characterizationinstalledcosts.pdf More...

  3. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  4. Personal Tax Credit | Open Energy Information

    Open Energy Info (EERE)

    Institutional Residential Rural Electric Cooperative Schools Anaerobic Digestion Biomass Hydrogen Landfill Gas Photovoltaics Solar Thermal Electric Wind Municipal Solid Waste CHP...

  5. Personal Tax Incentives | Open Energy Information

    Open Energy Info (EERE)

    Institutional Residential Rural Electric Cooperative Schools Anaerobic Digestion Biomass Hydrogen Landfill Gas Photovoltaics Solar Thermal Electric Wind Municipal Solid Waste CHP...

  6. RealEnergy Inc | Open Energy Information

    Open Energy Info (EERE)

    and manager of distributed energy capacity. Helps companies with office or light manufacturing premises apply for grants and then implement CHP solutions. Coordinates:...

  7. Biomass | Open Energy Information

    Open Energy Info (EERE)

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  8. PowerPoint Presentation

    Office of Environmental Management (EM)

    Ground Water Issues Presentation for DOE Tritium Focus Group May 5-6, 2015 Steven M. Garry, CHP US Nuclear Regulatory Commission NRRDRAARCB Tritium Leaks * Approximately 70% of...

  9. Quality Control Inspector: Different Programs, Different Responsibilit...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications QCI Exam Test-Taking Tips from Community Housing Partners (CHP) Assorted QCI Tips and Standards Review Quality Control Inspector (QCI) Pre-Exam Quiz...

  10. Lontra Ltd | Open Energy Information

    Open Energy Info (EERE)

    commercialising the Lindsey Engine, whose low heat to power ratio makes it suitable for CHP generation. Coordinates: 51.506325, -0.127144 Show Map Loading map......

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    most energy efficiency measures, including energy recovery and combined heat and power (CHP) systems,... Eligibility: Schools, State Government Savings Category: Solar - Passive,...

  12. Econergy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: Bedfordshire, United Kingdom Zip: SG19 3SH Product: Econergy provides heating and CHP solutions. Coordinates: 52.06403, -0.42284 Show Map Loading map......

  13. Yixing Union | Open Energy Information

    Open Energy Info (EERE)

    Jiangsu Province, China Zip: 214203 Sector: Biomass Product: Yixing-based biomass CHP project developer. Coordinates: 31.36261, 119.816643 Show Map Loading map......

  14. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  15. Peninsula Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Crediton, United Kingdom Zip: EX17 6AE Sector: Renewable Energy Product: CHP renewable power project developer. References: Peninsula Power Company Ltd1 This...

  16. Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...itationwkshopmar10bessette.pdf More Documents & Publications The Micro-CHP Technologies Roadmap, December 2003 High Temperature BOP and Fuel Processing Ceramic Fuel Cells (SOFC)

  17. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power ...

  18. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  19. Word Pro - S2

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...

  20. Word Pro - S2.lwp

    Gasoline and Diesel Fuel Update (EIA)

    Btu of coal coke net imports. 4 Conventional hydroelectric power, geothermal, solarphotovoltaic, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP)...