Sample records for refueling stations biodiesel

  1. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    04 Hydrogen Refueling Station Costs in Shanghai Jonathan X.Hydrogen Refueling Station Costs in Shanghai Jonathan X.voltage connections) Capital costs for this equipment must

  2. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D. [ECOGAS Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  3. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression This presentation by Matther Weaver of Pdc...

  4. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,ĒYear 2006 UCDóITSóRRó06ó04 Hydrogen Refueling Station Costs

  5. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

  6. Refueling Stations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) | Open EnergyOpenRefueling

  7. Optimization of compression and storage requirements at hydrogen refueling stations.

    SciTech Connect (OSTI)

    Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

    2008-01-01T23:59:59.000Z

    The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

  8. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Kingdom; 2004. [8] Amos W. Costs of storing and transportingcon- nections). Capital costs for this equipment must bein an analysis of station costs. Total station construction

  9. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

  10. Fact #832: August 4, 2014 Over Half of the Refueling Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada...

  11. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

  12. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    total installed capital cost (TIC) 1% Of TIC 25% Estimate ofcost estimates for six station types SMR 100 a Equipment capital

  13. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

  14. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  15. After the gas station : redevelopment opportunities from rethinking America's vehicle refueling infrastructure

    E-Print Network [OSTI]

    Turco, Andrew

    2014-01-01T23:59:59.000Z

    Gas stations are found throughout the US, but their ubiquity causes them to go largely unnoticed. Because their purpose - refueling vehicles - is so uniform and so integral to the existing automotive transportation system, ...

  16. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  17. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  18. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

  19. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  20. Biodiesel Filling Stations UK | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocar JumpBiodiesel Filling

  1. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    vs. delivered hydrogen, compressor type, storage pressure).pump High-pressure hydrogen compressor Compressed hydrogenpipeline High-pressure hydrogen compressor Pipeline Station:

  2. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    station. H2Genís estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).capital costs of about $250,000. Existing hydrogen station cost analyses tend to under-estimate

  3. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    Installed Capital Figure 4-21: Cost Estimates for 1,000 kg/station. H2Genís estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).

  4. Qualitative Risk Assessment For An LNG Refueling Station And Review Of Relevant Safety Issues, Revision 2

    SciTech Connect (OSTI)

    Siu, Nathan; Herring, J Stephen; Cadwallader, Lee; Reece, Wendy; Byers, James

    2014-06-25T23:59:59.000Z

    This report is a qualitative assessment of the public and worker risk involved with the operation of liquefied natural gas vehicle refueling facility.

  5. Analysis of Cost-Effective Off-Board Hydrogen Storage and Refueling Stations

    SciTech Connect (OSTI)

    Ted Barnes; William Liss

    2008-11-14T23:59:59.000Z

    This report highlights design and component selection considerations for compressed gas hydrogen fueling stations operating at 5000 psig or 350 bar. The primary focus is on options for compression and storage Ė in terms of practical equipment options as well as various system configurations and how they influence delivery performance and station economics.

  6. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 8/2013 BIODIESEL RETAIL STATIONS IN

    E-Print Network [OSTI]

    .ncsc.ncsu.edu | 8/2013 BIODIESEL RETAIL STATIONS IN NORTH CAROLINA Clean Transportation Program | 919-515-3480 | www Mountain Avenue 828-669-9813 Durham Carolina Biodiesel B20 1410 Cross St 919-957-1500 Durham Cruizer's B20 Biodiesel B100 110 N. Chimney Rock Road 336-209-0728 Hillsborough Carolina Biofuels B100/B80 112 Baldwin

  7. Webinar: Hydrogen Refueling Protocols

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

  8. Hydrogen Refueling Protocols Webinar (Text Version) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Protocols Webinar (Text Version) Hydrogen Refueling Protocols Webinar (Text Version) Below is the text version of the webinar titled "Hydrogen Refueling Protocols,"...

  9. The Importance of Interregional Refueling Availability to the Purchase Decision

    E-Print Network [OSTI]

    Nicholas, Michael A

    2009-01-01T23:59:59.000Z

    surveys about refueling availability No experience using aof Interregional Refueling Availability to the Purchasewith refueling availability (pretest only) ? Respondents

  10. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20T23:59:59.000Z

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  11. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, J.E.; Meuschke, R.E.

    1995-05-02T23:59:59.000Z

    A method of refueling a nuclear reactor is disclosed whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced. 2 figs.

  12. Reactor refueling containment system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Meuschke, Robert E. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    A method of refueling a nuclear reactor whereby the drive mechanism is disengaged and removed by activating a jacking mechanism that raises the closure head. The area between the barrier plate and closure head is exhausted through the closure head penetrations. The closure head, upper drive mechanism, and bellows seal are lifted away and transported to a safe area. The barrier plate acts as the primary boundary and each drive and control rod penetration has an elastomer seal preventing excessive tritium gases from escaping. The individual instrumentation plugs are disengaged allowing the corresponding fuel assembly to be sealed and replaced.

  13. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Bradley, Eric Craig [ORNL; Zaharia, Nathaniel M [ORNL; Cooper, Eliott J [ORNL

    2012-07-01T23:59:59.000Z

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  14. AHTR Refueling Systems and Process Description

    SciTech Connect (OSTI)

    Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

    2012-07-15T23:59:59.000Z

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride saltĖcooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energyís Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of maturity of the various SSCs to provide guidance for future technology developments. The conceptual design information presented in this report is very preliminary in nature. Significant uncertainty remains about several aspects of the process and even the radiation and mechanical performance of plate-type coated-particle fuel.

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  16. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  17. Biodiesel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    A 2-page fact sheet discussing general biodiesel blends and the improvement in engine performance and emissions.

  18. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies.10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  19. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    exposure for hydrogen and fuel cell vehicle technologies10 gasoline hybrids or 20 hydrogen fuel cell vehicles (eachwheels analysis of hydrogen based fuel-cell vehicle pathways

  20. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogenapplies to hydrogen storage vessels and compressors. 2.4.4.vehicles. 3. Compressor: compresses hydrogen gas to achieve

  1. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    High-pressure hydrogen compressor Compressed hydrogento hydrogen storage vessels and compressors. Feedstock Costvehicles 3. Compressor: compresses hydrogen gas to achieve

  2. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: 1) the lack ofon the Costs of Hydrogen Infrastructure for Transportstudy. Studies of Hydrogen Infrastructure in China There

  3. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    in planning a new hydrogen infrastructure: (1) the lack of1.3.3. Studies of hydrogen infrastructure in China Thereon the costs of hydrogen Infrastructure for transport

  4. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    identify particularly useful cost data and cost models thatcontaining hydrogen cost data for production, storage,Volume Validates cost data with Industry Operating Costs

  5. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    Elec Del Cali: Del Investment Cost Delivery Cost OperatingCost Feedstock Cost Investment Cost Delivery Cost Operatingcosts Annualized investment cost, 1000$/yr Total annualized

  6. Hydrogen Refueling Station Costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

    2006-01-01T23:59:59.000Z

    systems in China, particularly for the cost of hydrogenthe capital cost for equipment imported to China. Hydrogenestate costs in Shanghai are among the highest in China. $

  7. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    systems in China, particularly for the cost of hydrogento the capital cost for equipment imported to China. 2.4.6.estate costs in Shanghai are among the highest in China and

  8. Hydrogen refueling station costs in Shanghai

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

    2007-01-01T23:59:59.000Z

    storing and transporting hydrogen. Golden, CO: NREL; 1998. [V. Survey of the economics of hydrogen technologies. Golden,liquid or gaseous form. Hydrogen can be produced from a va-

  9. Biodiesel Fuel

    E-Print Network [OSTI]

    unknown authors

    publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

  10. Biodiesel Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01T23:59:59.000Z

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  11. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  12. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  13. Absolute Biodiesel Potential Country Name

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume,234 0% 0% #12;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters

  14. Alternative Fueling Station Locator App Provides Info at Your...

    Broader source: Energy.gov (indexed) [DOE]

    iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station...

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  16. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  17. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing Piece of the Biodiesel Puzzle Project Overview: The Missing Piece of the Biodiesel Puzzle · Began

  18. Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Progress: ASTM Specifications and 2nd Generation Biodiesel Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Presentation given at the 2007 Diesel...

  19. Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Progress: ASTM Specifications and 2 nd Generation Biodiesel Steve Howell Technical Director National Biodiesel Board Detroit, Michigan August 15, 2007 Today's Topics Biodiesel...

  20. EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING

    E-Print Network [OSTI]

    Brown, Michael R.

    EFFICIENCY AND SCALING OF CURRENT DRIVE AND REFUELLING BY SPHEROMAK INJEXTIQN INTO A TOKAMAK M ABSTRACT. The first measurements of current drive (refluxing) and refuelling by spheromak injection injection, and refuelling is attributed to the rapid incorporation of the dense spheromak plasma

  1. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, R.C.; Jones, C.R.

    1998-12-15T23:59:59.000Z

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  2. Biodiesel Buccaneers Brodie Burke Sara

    E-Print Network [OSTI]

    Biodiesel Buccaneers Brodie Burke Sara #12;Questions of the hour Can we make biodiesel at a cheaper cost than buying biodiesel/petroleum diesel at the pump in Olympia? How does methanol compare to ethanol and does it affect the cost and efficiency of biodiesel? http://www.mpgmagazine.com/biodiesel

  3. November 10, 2004: First hydrogen refueling station opens in Washington,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletterEnergySeptemberTechnologies |

  4. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the path for next-generation nuclear

  5. List of Refueling Stations Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergy Information

  6. Biodiesel Safety and Best Management

    E-Print Network [OSTI]

    Lee, Dongwon

    Biodiesel Safety and Best Management Practices for Small-Scale Noncommercial Use and Production you produce biodiesel: · Chemical-resistantgloves(butylrubberisbestfor methanol and lye........................................................................... 1 FuelOptionsfromBiomassOilFeedstocks ......................... 1 UsingBiodiesel

  7. Harmonization of Biodiesel Specifications

    SciTech Connect (OSTI)

    Alleman, T. L.

    2008-02-01T23:59:59.000Z

    Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

  8. Biodiesel Research Update

    Broader source: Energy.gov (indexed) [DOE]

    Office of FreedomCAR and Vehicle Technologies Fuels Technology Subprogram U.S. Biodiesel Feedstock Supply Analysis * 1.7 billion annual gallon existing resource * Additional...

  9. Genomic Prospecting for Microbial Biodiesel Production

    E-Print Network [OSTI]

    Lykidis, Athanasios

    2008-01-01T23:59:59.000Z

    prospecting for microbial biodiesel production AthanasiosAC02-06NA25396. Abstract Biodiesel is defined as fatty acidfor the competitive production of biodiesel. 1. Introduction

  10. H2 Refuel H-Prize Technical Data Collection Requirements

    Broader source: Energy.gov [DOE]

    Download the presentation slides from the Fuel Cell Technologies Office webinar "H2 Refuel H-Prize Technical Data Collection Requirements Webinar Slides" held on May 14, 2015.

  11. An Overview of Automotive Home and Neighborhood Refueling

    E-Print Network [OSTI]

    Li, Xuping; Ogden, Joan M.; Kurani, Kenneth S.

    2009-01-01T23:59:59.000Z

    vehicles : the case of compressed natural gas (CNG) vehicleshome refueling for compressed natural gas vehicles, batteryalso includes compressed natural gas (CNG) vehicles, battery

  12. B-2 Bomber During In-flight Refueling Normal Heart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Bomber During In-flight Refueling Normal Heart Image Technology to Detect Concealed Nuclear Material in Trucks and Cargo Containers Single Abnormality Possible Heart Attack Disc...

  13. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  14. Upcoming Events Upcoming Biodiesel Events

    E-Print Network [OSTI]

    Search Upcoming Events Upcoming Biodiesel Events Sustainable Biodiesel Workshop Ocean State Clean Consortium Soy Biodiesel Workshop Lake Michigan Clean Cities September 15, 2010 Purdue Technology Center.eng.iastate.edu/ Biodiesel Congress F.O. Lichts September 22-24, 2010 Mercure Grant Hotel Sao Paulo, Brazil www.agra

  15. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  16. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  17. Effects of Biodiesel on NOx Emissions

    SciTech Connect (OSTI)

    McCormick, R.

    2005-06-01T23:59:59.000Z

    A presentation about the effects of biodiesel on nitrogen oxide emissions presented at the ARB Biodiesel Workshop June 8, 2005.

  18. Biodiesel R&D at NREL

    SciTech Connect (OSTI)

    McCormick, R.; Alleman, T.; Barnitt, R.; Clark, W.; Hayes, B.; Ireland, J.; Proc, K.; Ratcliff, M.; Thornton, M.; Whitacre, S.; Williams, A.

    2006-02-06T23:59:59.000Z

    Discusses NREL's biodiesel research priorities and some current research results, including those concerning biodiesel quality and stability.

  19. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependenceFuelsas

  20. Coalition Cooperation Defines Roadmap for E85 and Biodiesel

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This Clean Cities success story relates how Colorado's Colorado Biofuels Coalition was formed and provides guidance on forming other such coalitions. This Colorado's coalition sucessfully increase the number of fueling stations providing biofuels and has goals to the number even more. Plans also include assisting with financing infrastructure, making alternative fuels available to more fleets, and educating about E85 and biodiesel use.

  1. Operating experience with a liquid-hydrogen fueled Buick and refueling system

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-01-01T23:59:59.000Z

    An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

  2. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  3. Snohomish County Biodiesel Project

    SciTech Connect (OSTI)

    Terrill Chang; Deanna Carveth

    2010-02-01T23:59:59.000Z

    Snohomish County in western Washington State began converting its vehicle fleet to use a blend of biodiesel and petroleum diesel in 2005. As prices for biodiesel rose due to increased demand for this cleaner-burning fuel, Snohomish County looked to its farmers to √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?grow√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ě this fuel locally. Suitable seed crops that can be crushed to extract oil for use as biodiesel feedstock include canola, mustard, and camelina. The residue, or mash, has high value as an animal feed. County farmers began with 52 acres of canola and mustard crops in 2006, increasing to 250 acres and 356 tons in 2008. In 2009, this number decreased to about 150 acres and 300 tons due to increased price for mustard seed.

  4. Connecting Transitions in Galaxy Properties to Refueling

    E-Print Network [OSTI]

    Kannappan, Sheila J; Eckert, Kathleen D; Moffett, Amanda J; Wei, Lisa H; Pisano, D J; Baker, Andrew J; Vogel, Stuart N; Fabricant, Daniel G; Laine, Seppo; Norris, Mark A; Jogee, Shardha; Lepore, Natasha; Hough, Loren E; Weinberg-Wolf, Jennifer

    2013-01-01T23:59:59.000Z

    We relate transitions in galaxy structure and gas content to refueling, here defined to include both the external gas accretion and the internal gas processing needed to renew reservoirs for star formation. We analyze two z=0 data sets: a high-quality ~200-galaxy sample (the Nearby Field Galaxy Survey, data release herein) and a volume-limited ~3000-galaxy sample with reprocessed archival data. Both reach down to baryonic masses ~10^9Msun and span void-to-cluster environments. Two mass-dependent transitions are evident: (i) below the "gas-richness threshold" scale (V~125km/s), gas-dominated quasi-bulgeless Sd--Im galaxies become numerically dominant, while (ii) above the "bimodality" scale (V~200km/s), gas-starved E/S0s become the norm. Notwithstanding these transitions, galaxy mass (or V as its proxy) is a poor predictor of gas-to-stellar mass ratio M_gas/M_*. Instead, M_gas/M_* correlates well with the ratio of a galaxy's stellar mass formed in the last Gyr to its preexisting stellar mass, such that the two...

  5. Minimizing or eliminating refueling of nuclear reactor

    DOE Patents [OSTI]

    Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

    1989-01-01T23:59:59.000Z

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  6. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? Ēkg/day unit. hybrids or 20 hydrogen fuel cell vehicles (eachand Development of a PEM Fuel Cell, Hydrogen Reformer, and

  7. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    of Reciprocating Hydrogen Compressor Costs: (Industry)Summary of Diaphragm Hydrogen Compressor Costs (Industry)vs. delivered hydrogen, compressor type, storage pressure).

  8. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    a fuel cell or hydrogen combustion engine ďgen-set. Ē ByCell H 2 = hydrogen ICE = internal-combustion engine kg =

  9. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    hydrogen storage Hydrogen pipeline Gas meter Compressedbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

  10. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    hydrogen dispenser Hydrogen pipeline High-pressure hydrogenbuilt near an existing hydrogen pipeline have the advantagetruck delivery. A hydrogen pipeline already exists between

  11. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy

    2006-01-01T23:59:59.000Z

    surrounding the hydrogen infrastructure expansion, includingM. (2003) ďInitiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) identifying

  12. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    S.E. , (1997) ďHydrogen Infrastructure ReportĒ, p. E-5.M. (2003) ďInitiating hydrogen infrastructures: preliminaryin planning new hydrogen infrastructure: 1) the lack of

  13. An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components

    E-Print Network [OSTI]

    Lipman, T E; Weinert, Jonathan X.

    2006-01-01T23:59:59.000Z

    connections) Installation Costs: 1. Engineering and Designstation works properly) 6. Contingency Operating Costs: 1.Feedstock Costs (natural gas, electricity) 2. Equipment

  14. 2004 Biodiesel Handling and Use Guidelines (Revised)

    SciTech Connect (OSTI)

    Not Available

    2004-11-01T23:59:59.000Z

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

  15. Biodiesel from microalgae beats Yusuf Chisti

    E-Print Network [OSTI]

    Biodiesel from microalgae beats bioethanol Yusuf Chisti School of Engineering, Massey University- derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel, biodiesel and bioethanol produced from agricul- tural crops using existing methods cannot sustainably

  16. Costilla County Biodiesel Pilot Project

    SciTech Connect (OSTI)

    Doon, Ben; Quintana, Dan

    2011-08-25T23:59:59.000Z

    The Costilla County Biodiesel Pilot Project has demonstrated the compatibility of biodiesel technology and economics on a local scale. The project has been committed to making homegrown biodiesel a viable form of community economic development. The project has benefited by reducing risks by building the facility gradually and avoiding large initial outlays of money for facilities and technologies. A primary advantage of this type of community-scale biodiesel production is that it allows for a relatively independent, local solution to fuel production. Successfully using locally sourced feedstocks and putting the fuel into local use emphasizes the feasibility of different business models under the biodiesel tent and that there is more than just a one size fits all template for successful biodiesel production.

  17. Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system

    E-Print Network [OSTI]

    Bowers, Roshawn Elizabeth

    2005-11-01T23:59:59.000Z

    A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive...

  18. DPF Performance with Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    DPF Performance with Biodiesel Blends Aaron Williams, Bob McCormick, Bob Hayes, John Ireland National Renewable Energy Laboratory Howard L. Fang Cummins, Inc. Diesel Engine...

  19. Alternative Fuel Tool Kit How to Implement: Biodiesel

    E-Print Network [OSTI]

    1 8/18/2014 Alternative Fuel Tool Kit How to Implement: Biodiesel Contents Introduction to Biodiesel......................................................................................................................................................2 Biodiesel Availability in North Carolina

  20. E85 and Biodiesel Deployment (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2007-09-18T23:59:59.000Z

    Presentation outlines industry trends and statistics revolving around the use and production of ethanol and biodiesel.

  1. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40Monthly Biodiesel

  2. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40Monthly BiodieselU.S.

  3. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40Monthly BiodieselU.S.U.S.

  4. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40MonthlyBiodiesel producers

  5. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40MonthlyBiodiesel

  6. Stability of Biodiesel and Biodiesel Blends: Interim Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Alleman, T. L.; Waynick, J. A.; Westbrook, S. R.; Porter, S.

    2006-04-01T23:59:59.000Z

    This is an interim report for a study of biodiesel oxidative stability. It describes characterization and accelerated stability test results for 19 B100 samples and six diesel fuels.

  7. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Broader source: Energy.gov (indexed) [DOE]

    iPhone users now have access to a free app that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, E85, propane, and hydrogen. The...

  8. Biodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison

    E-Print Network [OSTI]

    Biodiesel: Cost and reactant comparison 1 Biodiesel: Cost and reactant comparison Burke Anderson-2008 Abstract: Alternative fuel resources such as biodiesel are important to combat fossil fuel use reduction. Biodiesel is made through a process of transesterification that can be preformed in a variety

  9. Global Biodiesel Market Trends,Global Biodiesel Market Trends, Outlook and OpportunitiesOutlook and Opportunities

    E-Print Network [OSTI]

    Global Biodiesel Market Trends,Global Biodiesel Market Trends, Outlook and OpportunitiesPresident, Emerging Markets Online http://www.emerginghttp://www.emerging--markets.commarkets.com Author, Biodiesel 2020: A Global Market SurveyAuthor, Biodiesel 2020: A Global Market Survey Columnist

  10. Biodiesel Production and Blending Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

  11. EFFECTS OF BIODIESEL BLENDING ON EXHAUST EMISSIONS

    E-Print Network [OSTI]

    Guo, Jing

    2011-08-31T23:59:59.000Z

    Rising fuel costs and energy demands, combined with growing concern over health related and environmental concerns, have led to increased interest in the use of biodiesel. Biodiesel can be utilized as a direct replacement for conventional petroleum...

  12. Characterization of Biodiesel Oxidation and Oxidation Products

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Features a literature review of 130 technical references pertaining to fatty oil and fatty ester stability chemistry in biodiesel fuels.

  13. Biodiesel Engine Testing MECH-457 Final Report

    E-Print Network [OSTI]

    Biodiesel Engine Testing MECH-457 Final Report Submitted to Jon Mikkelsen April 11, 2005 Darren at UBC has begun producing biodiesel fuel from waste cooking oils acquired from campus kitchens. Using biodiesel in a four-cylinder, 30 hp Kubota engine (V1305). This engine was chosen because it is used

  14. World Biodiesel Markets The Outlook to 2010

    E-Print Network [OSTI]

    World Biodiesel Markets The Outlook to 2010 A special study from F.O. Licht and Agra CEAS This important new study provides a detailed analysis of the global biodiesel market and the outlook for growth, including the regulatory and trade framework, feedstock supply and price developments, biodiesel production

  15. TESC Farmhouse Biodiesel Project Processor Manual

    E-Print Network [OSTI]

    1 TESC Farmhouse Biodiesel Project Processor Manual #12;2 Thank you (in no particular order) to: David Rack, Sam Stout, and Kolby Bray-Hoagland for starting the Evergreen Biodiesel Project; our faculty Sara Keehfuss, Burke Anderson, Brodie Pettit (the Biodiesel Buccaneers) and Andrew York

  16. Hydrogen Vehicles and Refueling Infrastructure in India | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |PanelEnergy Refueling

  17. Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how you can help improve the H-Prize H2 Refuel competition, which involves designing a small-scale hydrogen refueler system for homes, community centers, or businesses.

  18. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E. (Chemical Sciences and Engineering Division)

    2011-05-01T23:59:59.000Z

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  19. Biodiesel Triangulo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodieselBiodiesel Triangulo

  20. IEEE Workshop on Applications of Computer Vision 3-4 December, 2002, Orlando FL Monocular, Vision Based, Autonomous Refueling System

    E-Print Network [OSTI]

    Farag, Aly A.

    Based, Autonomous Refueling System Aly Farag, Emir Dizdarevic, Ahmed Eid, and Allbert LŲrincz of a vision based platform for automated refueling tasks. The platform is an autonomous docking system in principle, with the specific application≠ refueling of vehicles. The system is based on monochromatic

  1. Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations

    E-Print Network [OSTI]

    Wong, Vincent

    initial policy. Simulation results confirm the convergence of the game between EVCSs. The results also assumed that EVs are charged only at home. However, considering that conventional internal combustion engine vehicles refuel at gas stations, EVs might also be charged at other facilities which provide

  2. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

  3. Development and Validation of a Reduced Mechanism for Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of a Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications Development and Validation of a Reduced Mechanism for Biodiesel Surrogates...

  4. Effect of Jatropha based Biodiesel, on Engine Hardware Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jatropha based Biodiesel, on Engine Hardware Reliability, Emission and Performance Effect of Jatropha based Biodiesel, on Engine Hardware Reliability, Emission and Performance...

  5. Impact of Biodiesel on Ash Emissions and Lubricant Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and...

  6. Profitable Biodiesel Potential from Increased Agricultural Yields Country Name

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Profitable Biodiesel Potential from Increased Agricultural Yields Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters) Total Export Profits ($) HDI Rank GDP/ cap Corrupt Rank FDI

  7. Comprehensive Assessment of the Emissions from the Use of Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Comprehensive Assessment of the Emissions from the Use of Biodiesel in California Overview of a...

  8. Quality, Stability, Performance, and Emission Impacts of Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Stability, Performance, and Emission Impacts of Biodiesel Blends Quality, Stability, Performance, and Emission Impacts of Biodiesel Blends Presentation from the U.S. DOE...

  9. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Fractal dimensions of particle...

  10. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  11. Biodiesel Effects on Diesel Particle Filter Performance: Milestone Report

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R.; Ireland, J.

    2006-03-01T23:59:59.000Z

    Research results on the performance of biodiesel and biodiesel blends with ultra-low sulfur diesel (ULSD) and a diesel particle filter (DPF).

  12. Enterprise converting buses to biodiesel | Department of Energy

    Energy Savers [EERE]

    Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel April 1, 2010 - 6:48pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency...

  13. Impact of Biodiesel Metals on the Performance and Durability...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies Impact of Biodiesel Metals on the Performance and Durability of DOC and DPF Technologies...

  14. Hydrogen Station Siting and Refueling Analysis Using Geographic Information Systems: A Case Study of Sacramento County

    E-Print Network [OSTI]

    Nicholas, Michael A

    2004-01-01T23:59:59.000Z

    the Hindenburg disaster. The airship, Hindenburg, was filledpaint on the skin of the airship was extremely flammable,

  15. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    alternative fuels/engines. Energy Policy, 7Ė27. OPIS, 2007.OPIS Homepage [accessed January 16, 2007], available from /organizations, such as MPSI, OPIS, and the Lundberg Survey (

  16. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    vehicles: the case of natural gas vehicles. Energy Policywith compressed natural gas vehicles in New Zealand andin California and natural gas vehicles in New Zealand (

  17. HYAPPROVAL HANDBOOK FOR THE APPROVAL OF HYDROGEN REFUELLING STATIONS FIRST PRELIMINARY ACHIEVEMENTS

    E-Print Network [OSTI]

    . Achievements during the first 15 months: analyses of HRS technology concepts and of equipment and safety levels/ database of Fire Associations & First Responders/ calendar of hydrogen events/ general description of CGH2 interfaces. Introduction Hydrogen already plays a significant role in the world's energy

  18. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    2002. Initiating hydrogen infrastructures: preliminaryAnalysis of the hydrogen infrastructure needed to enableA. , 2006. Hydrogen Infrastructure Transition Analysis:

  19. Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofofChoices for2013 is All

  20. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten Years | Department of Energy

  1. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten Years |Energy 4:ofand Canada

  2. Biodiesel research progress 1992-1997

    SciTech Connect (OSTI)

    Tyson, K.S. [ed.

    1998-04-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  3. Survey of the Quality and Stability of Biodiesel and Biodiesel Blends in the United States in 2004

    SciTech Connect (OSTI)

    McCormick, R. L.; Alleman, T. L.; Ratcliffe, M.; Moens, L.; Lawrence, R.

    2005-10-01T23:59:59.000Z

    Reports results gathered in 2004 from quality and stability surveys in the United States of biodiesel (B100) and 20% biodiesel (B20) in petroleum diesel.

  4. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Discusses reasons and physical significance of cool-flame behavior of biodiesel on improving low temperature diesel combustion deer11jacobs.pdf More Documents &...

  5. Impacts of Biodiesel on Emission Control Devices

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel on Emission Control Devices Todd J. Toops and Bruce G. Bunting Oak Ridge National Laboratory D. William Brookshear and Ke Nguyen University of Tennessee - Knoxville DEER...

  6. Biodiesel Impact on Engine Lubricant Oil Dilution

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Biodiesel Impact on Engine Lubricant Oil Dilution Motivation * Modern diesel engines utilize...

  7. WSF Biodiesel Demonstration Project Final Report

    SciTech Connect (OSTI)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30T23:59:59.000Z

    In 2004, WSF canceled a biodiesel fuel test because of ďproduct quality issuesĒ that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and engines. Each test vessel did experience a microbial growth bloom that produced a build up of material in the fuel purifiers similar to material witnessed in the 2004 fuel test. A biocide was added with each fuel shipment and the problem subsided. In January of 2009, the WSF successfully completed an eleven month biodiesel fuel test using approximately 1,395,000 gallons of biodiesel blended fuels. The project demonstrated that biodiesel can be used successfully in marine vessels and that current ASTM specifications are satisfactory for marine vessels. Microbial growth in biodiesel diesel interface should be monitored. An inspection of the engines showed no signs of being negatively impacted by the test.

  8. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development to someone

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01T23:59:59.000Z

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  10. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20T23:59:59.000Z

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycer

  11. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution

    E-Print Network [OSTI]

    Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M; Huang, Grace L; Beauregard, Marc; Bowie, James U

    2013-01-01T23:59:59.000Z

    J, Campelo JM, Romero AA: Biodiesel as feasible petrol fueltowards ever greener biodiesel production. Biotechnol Adv 3.T, Bielecki S: Enzymatic biodiesel synthesis - key factors

  12. Biodiesel Production and its Emissions and Performance: A Review

    E-Print Network [OSTI]

    Ambarish Datta; Bijan Kumar M

    AbstractóThis paper presents a brief review on the current status of biodiesel production and its performance and emission characteristics as compression ignition engine fuel. This study is based on the reports on biodiesel fuel published in the current literature by different researchers. Biodiesel can be produced from crude vegetable oil, non-edible oil, waste frying oil, animal tallow and also from algae by a chemical process called transesterification. Biodiesel is also called methyl or ethyl ester of the corresponding feedstocks from which it has been produced. Biodiesel is completely miscible with diesel oil, thus allowing the use of blends of petro-diesel and biodiesel in any percentage. Presently, biodiesel is blended with mineral diesel and used as fuel. Biodiesel fueled CI engines perform more or less in the same way as that fueled with the mineral fuel. Exhaust emissions are significantly improved due the use of biodiesel or blends of biodiesel and mineral diesel.

  13. Biodiesel 2014: FAME and Misfortune?

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil andMarketWGasBiodiesel

  14. Taua Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBP Solar IndiaTaua Biodiesel

  15. AZ Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN Power Projects Ltd JumpAZ Biodiesel

  16. Biodiesel Garware | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocar JumpBiodiesel

  17. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect (OSTI)

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01T23:59:59.000Z

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  18. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01T23:59:59.000Z

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  19. Market penetration of biodiesel and ethanol

    E-Print Network [OSTI]

    Szulczyk, Kenneth Ray

    2007-09-17T23:59:59.000Z

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence...

  20. Biodiesel ASTM Update and Future Technical Needs

    Broader source: Energy.gov (indexed) [DOE]

    ASTM Update and Future Technical Needs Steve Howell Technical Director National Biodiesel Board ASTM Current Status ASTM D6751 is the approved standard for B100 for blending up to...

  1. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A. [Univ. of Victoria, British Columbia (Canada)

    1994-12-31T23:59:59.000Z

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  2. REFUEL: an EU road map for biofuels , E. Deurwaarder and S. Lensink, ECN policy Studies, the Netherlands

    E-Print Network [OSTI]

    REFUEL: an EU road map for biofuels M. Londo1 , E. Deurwaarder and S. Lensink, ECN policy Studies), Poland K. KŲnighofer, Joanneum Research, Austria Abstract A successful mid-term development of biofuels calls for a robust road map. REFUEL assesses inter alia least-cost biofuel chain options, their benefits

  3. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

    2006-07-01T23:59:59.000Z

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  4. Physical properties of bio-diesel & Implications for use of bio-diesel in diesel engines

    SciTech Connect (OSTI)

    Chakravarthy, Veerathu K [ORNL; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL; Ra, Youngchul [ORNL; Griffin, Jelani K [ORNL; Reitz, Rolf [University of Wisconsin

    2008-01-01T23:59:59.000Z

    In this study we identify components of a typical biodiesel fuel and estimate both their individual and mixed thermo-physical and transport properties. We then use the estimated mixture properties in computational simulations to gauge the extent to which combustion is modified when biodiesel is substituted for conventional diesel fuel. Our simulation studies included both regular diesel combustion (DI) and premixed charge compression ignition (PCCI). Preliminary results indicate that biodiesel ignition is significantly delayed due to slower liquid evaporation, with the effects being more pronounced for DI than PCCI. The lower vapor pressure and higher liquid heat capacity of biodiesel are two key contributors to this slower rate of evaporation. Other physical properties are more similar between the two fuels, and their impacts are not clearly evident in the present study. Future studies of diesel combustion sensitivity to both physical and chemical properties of biodiesel are suggested.

  5. BioDiesel Content On-board monitoring

    Broader source: Energy.gov (indexed) [DOE]

    2008 - all rights reserved 1 (tm) BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring August 6th, 2008 Copyright SP3H 2007 -- all rights reserved 2 Biofuel...

  6. Impact of Biodiesel Metals on the Performance and Durability...

    Broader source: Energy.gov (indexed) [DOE]

    accelerated test method to expose diesel catalysts - 8 DOCs, 8 DPFs and 4 SCRs * Biodiesel ash did not adversely impact the back pressure of a DPF * Biodiesel ash caused...

  7. Biodiesel Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. biodiesel vehicle and infrastructure projects.

  8. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01T23:59:59.000Z

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  9. Beyond Biodiesel Running on Straight Vegetable Oil (SVO)

    E-Print Network [OSTI]

    Kaye, Jason P.

    20 Beyond Biodiesel ­ Running on Straight Vegetable Oil (SVO) The green tree has many branches in the development and promotion of biodiesel for nearly two decades. Technologies based on the use of hydrogen in a low-percentage mixture with petroleum fuel. Hence the development of biodiesel. Paul Trella, New

  10. Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator

    E-Print Network [OSTI]

    Demirel, Melik C.

    Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

  11. Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide

    E-Print Network [OSTI]

    Collins, Gary S.

    Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide Jessica Whalen, Oscar Marin Flores, Su University INTRODUCTION Energy consumption continues to skyrocket worldwide. Biodiesel is a renewable fuel as potential feedstock in solid oxide fuel cells. Petroleum based fuels become scarcer daily, and biodiesel

  12. THE UNIVERSITY OF BRITISH COLUMBIA Biodiesel Engine Compatibility Study

    E-Print Network [OSTI]

    THE UNIVERSITY OF BRITISH COLUMBIA MECH 456 Biodiesel Engine Compatibility Study Submitted to: Dr 456 Biodiesel Engine Compatibility Study i Executive Summary The objectives of this project were to show the effects of varying U.B.C. biodiesel content in fuel on engine performance, to observe

  13. www.postersession.com Performance Analysis of Cottonseed Biodiesel

    E-Print Network [OSTI]

    Hutcheon, James M.

    printed by www.postersession.com Performance Analysis of Cottonseed Biodiesel Sherwin Davoud1. Making biodiesel from crude cottonseed oil is difficult because transesterification doesn't take place Administration. (2007). Federal and State Ethanol and Biodiesel Requirements. Retrieved from http

  14. Optimal biodiesel production using bioethanol: Towards process integration.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal biodiesel production using bioethanol: Towards process integration. Kristen Severson Ave. Pittsburgh PA 15213 Abstract. In this paper we optimize the production of biodiesel to recover the ethanol, separate the polar and non polar phases and purify the glycerol and biodiesel

  15. Optimization and heat and water integration for biodiesel production

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization and heat and water integration for biodiesel production from cooking oil generation of biodiesel using waste cooking oil and algae oil. We consider 5 different technologies is to simultaneously optimize and heat integrate the production of biodiesel from each of the different oil sources

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel Olivier Herbineta

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate Olivier Herbineta , William of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from

  17. Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Reachability Analysis of Stochastic Hybrid Systems: A Biodiesel Production System Derek Riley problem because it provides a formal framework to analyze complex systems. Biodiesel production is a realistic biochemical process that can be modeled and analyzed using SHS methods. Analysis of a biodiesel

  18. Biosolids for Biodiesel USDA SBIR 2003-000450

    E-Print Network [OSTI]

    Brown, Sally

    Biosolids for Biodiesel USDA SBIR 2003-000450 Phase I Final Report Prepared by Emerald Ranches #12;Biosolids for Biodiesel USDA SBIR 2003-000450 Phase I Final Report Background The goal of this Phase I for the production of biodiesel fuel. It is desirable to use biosolids as a fertilizer for canola for two reasons

  19. Argentinean soy based biodiesel: an introduction to production and impacts

    E-Print Network [OSTI]

    Watson, Andrew

    Argentinean soy based biodiesel: an introduction to production and impacts Julia Tomei and Paul biodiesel: an introduction to production and impacts Julia Tomeia * and Paul Upham b a Department(s) alone and not the Tyndall Centre. #12;Argentinean soy based biodiesel: an introduction to production

  20. GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 GAS TURBINES AND BIODIESEL : A CLARIFICATION OF THE RELATIVE NOX INDICES OF FAME, GASOIL greenhouse gases emissions and the dependence on oil resources. Biodiesels are Fatty Acid Methyl Esters: rapeseed ("RME"), soybean ("SME"), sunflower, palm etc. A fraction of biodiesel has also an animal origin

  1. RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING

    E-Print Network [OSTI]

    RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING P.s. Jensen and V. Andersen Association Euratom - Ris0 National Laboratory Abstract. The use of a guide tube technique to inject pellets in pellet-plasma experiments guide tube on the mass and (v ~ 150 m/s) is negligible. jectories

  2. Optimization of Experimental Conditions for Biodiesel Production

    E-Print Network [OSTI]

    Ayoola Ayodeji A; Hymore Fredrick K; E Mathew A; Udeh Ifeoma N

    Abstract-- This study is based on optimizing the experimental conditions of biodiesel production by base-catalyzed transesterification using waste cooking oil (WCO). In this study, the key parameters varied were methanol (20, 25, 30, 35, and 40%), sodium hydroxide (0.4, 0.6, 0.8, 0.9 and 1.0g), reaction time (40, 60, 90, 100 and 120 minutes) and reaction temperature (50, 52, 55, 58, and 60 o C). Maximum biodiesel yield of 86 % was obtained at optimum conditions of 30 % methanol concentration, 0.4g of NaOH concentration, 60 o C reaction temperature and 90 minutes of operation. Biodiesel produced meets American Standard of Testing and Materials (ASTM) standards of biodiesel fuel: viscosity (4.0564 Ė 4.9824cSt), density (0.8790 Ė 0.8819g/cm 3), flash point (157 Ė 168 o C), pour point (0 to-3 o C) and calculated cetane index (7.45 Ė 8.26). Index Term-- Biodiesel, fossil fuel, methanol, transesterification, waste cooking oil.

  3. Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles

    SciTech Connect (OSTI)

    Stewart, W.F.

    1982-09-01T23:59:59.000Z

    A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

  4. Study on neutronic of very small Pb - Bi cooled no-onsite refueling nuclear power reactor (VSPINNOR)

    SciTech Connect (OSTI)

    Arianto, Fajar, E-mail: ariantofajar@gmail.com [Laboratory of Nuclear and Biophysics, Department of Physics, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132, Indonesia and Laboratory of Atom and Nuclear, Department of Physics, Diponegoro University, Jl. Prof. Soedarto, S.H., Tembala (Indonesia); Su'ud, Zaki, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Zuhair [Center for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency, Kawasan Puspiptek, Gedung No. 80, Serpong, Tangerang 15310 (Indonesia)

    2014-09-30T23:59:59.000Z

    A conceptual design study on Very Small Pb-Bi No-Onsite Refueling Cooled Nuclear Reactor (VSPINNOR) with Uranium nitride fuel using MCNPX program has been performed. In this design the reactor core is divided into three regions with different enrichment. At the center of the core is laid fuel without enrichment (internal blanket). While for the outer region using fuel enrichment variations. VSPINNOR fast reactor was operated for 10 years without refueling. Neutronic analysis shows optimized result of VSPINNOR has a core of 50 cm radius and 100 cm height with 300 MWth thermal power output at 60% fuel fraction that can be operated 18 years without refueling or fuel shuffling.

  5. Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet Fuel

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet work. The goal was to research and implement biodiesel into their fleet by finding the best biodiesel for the implementation of biodiesel into their fleet. This will include: · Prospective suppliers of biodiesel fuel

  6. Biodiesel Technologies Inc BTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodiesel KyritzBiodiesel

  7. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31T23:59:59.000Z

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  8. SERVICE STATION INFORMATION There are 2 campus service stations for use by University of Michigan vehicles. The Baxter Road Service

    E-Print Network [OSTI]

    Kirschner, Denise

    to alternative fuel by refining our biodiesel fuel to Ultra Low Sulfur B20 biodiesel meeting 2009 diesel fuel

  9. Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen

    E-Print Network [OSTI]

    Joshi, Manoj

    2009-06-09T23:59:59.000Z

    Crude glycerol is the major byproduct from biodiesel industry. In general, for every 100 pounds of biodiesel produced, approximately 10 pounds of crude glycerol are produced as a by-product. As the biodiesel industry rapidly expands in the U...

  10. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

  11. A numerical investigation into the anomalous slight NOx increase when burning biodiesel; A new (old) theory

    E-Print Network [OSTI]

    Ban-Weiss, George A.; Chen, J.Y.; Buchholz, Bruce A.; Dibble, Robert W.

    2007-01-01T23:59:59.000Z

    G. et al, 2005. The Biodiesel Handbook. AOCS Publishing,x Increase When Burning Biodiesel; A New (Old) Theory GeorgeIncrease When Burning Biodiesel; A New (Old) Theory. Fuel

  12. Market penetration of biodiesel and ethanol†

    E-Print Network [OSTI]

    Szulczyk, Kenneth Ray

    2007-09-17T23:59:59.000Z

    that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production...

  13. WI Biodiesel Blending Progream Final Report

    SciTech Connect (OSTI)

    Redmond, Maria E; Levy, Megan M

    2013-04-01T23:59:59.000Z

    The Wisconsin State Energy Office√?¬Ę√?¬?√?¬?s (SEO) primary mission is to implement cost√?¬Ę√?¬?√?¬źeffective, reliable, balanced, and environmentally√?¬Ę√?¬?√?¬źfriendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  14. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01T23:59:59.000Z

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  15. Impact of Biodiesel on the Near-term Performance and Long-term...

    Broader source: Energy.gov (indexed) [DOE]

    Temperature and higher NO 2 :NOx have negligible impact on overall NOx Conversion Biodiesel Near-term Impacts Literature Review "Effect of Biodiesel Blends on Urea...

  16. Production and Application of Biodiesel Ė A Case Study

    E-Print Network [OSTI]

    unknown authors

    AbstractĖĖThe true fact that everyone has to accept for search of alternative fuels apart from petroleum products is biodiesel for many reasons, mainly increasing demand and scarcity of petroleum products and to preserve the wealth of nature to be used for coming generations. The reason of non implementation of biodiesel in day-to-day life is because of few limitations. Many scientists are in progress for a new dimension of research in biodiesel plantation, cultivation and its usage in engines. This paper highlights the importance of biodiesel production techniques such as supercritical methanolysis, ultrasonication method and microwave technique by which maximum biodiesel can be produced. The new approach of using nano particle in biodiesel shows very good results in reducing the level of pollutant gases in the engine exhaust and increased performance without any engine modification is also discussed briefly in this case study. KeywordsĖĖHydrodeoxygeneration, nano particle, ultrasonication, microwave technique I.

  17. Fueling America Through Renewable Resources What Is Biodiesel?

    E-Print Network [OSTI]

    Shawn P. Conley; Department Of Agronomy

    The use of vegetable oil as a fuel source in diesel engines is as old as the diesel engine itself. However, the demand to develop and utilize plant oils and animal fats as biodiesel fuels has been limited until recently. The technical definition of biodiesel is: ďThe mono alkyl esters of long fatty acids derived from renewable lipid feedstock such as vegetable oils or animal fats, for use in compression ignition (diesel) engines Ē (National Biodiesel Board, 1996). In simple terms, biodiesel is a renewable fuel manufactured from methanol and vegetable oil, animal fats, and recycled cooking fats (U.S. Department of Energy, 2006). The term ďbiodiesel Ē itself is often misrepresented and misused. Biodiesel only refers to 100 % pure fuel (B100) that meets the definition above and specific standards given

  18. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire

    E-Print Network [OSTI]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire the hydrogen community and government agencies by increasing awareness of the status of refueling

  19. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect (OSTI)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30T23:59:59.000Z

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  20. Vehicle Technologies Office: Improving Biodiesel and Other Fuels...

    Energy Savers [EERE]

    Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems....

  1. Quality, Stability, Performance, and Emission Impacts of Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Quality, Stability, Performance, and Emission Impacts of Biodiesel Blends Bob McCormick (PI) with Colleen Alexander, Teresa Alleman, Robb Barnitt, Wendy Clark, John Ireland, Keith...

  2. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

  3. Impact of Biodiesel on Modern Diesel Engine Emissions

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel on Modern Diesel Engine Emissions Vehicle Technologies Program Merit Review - Fuels and Lubricants Technologies PI: Bob McCormick Presenter: Aaron Williams May...

  4. Biodiesel Utilization: Update on Recent Analytical Techniques (Presentation)

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; Luecke, J.; Thornton, M.; McAlpin, C.

    2009-05-01T23:59:59.000Z

    To understand and increase the use of biodiesel, analytical methods need to be shared and compared to ensure that accurate data are gathered on this complex fuel.

  5. Biodiesel Handling and Use Guide: Fourth Edition (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

  6. Effect of Biodiesel Blends on Diesel Particulate Filter Performance

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R. L.; Hayes, R. R.; Ireland, J.; Fang, H. L.

    2006-11-01T23:59:59.000Z

    Presents results of tests of ultra-low sulfur diesel blended with soy-biodiesel at 5 percent using a Cummins ISB engine with a diesel particulate filter.

  7. Density dependence of the onset of neoclassical tearing modes in H-mode and pellet refuelled discharges on JET and ASDEX Upgrade

    E-Print Network [OSTI]

    Density dependence of the onset of neoclassical tearing modes in H-mode and pellet refuelled discharges on JET and ASDEX Upgrade

  8. Fast gas chromatographic separation of biodiesel.

    SciTech Connect (OSTI)

    Pauls, R. E. (Chemical Sciences and Engineering Division)

    2011-05-01T23:59:59.000Z

    A high-speed gas chromatographic method has been developed to determine the FAME distribution of B100 biodiesel. The capillary column used in this work has dimensions of 20 m x 0.100 mm and is coated with a polyethylene glycol film. Analysis times are typically on the order of 4-5 min depending upon the composition of the B100. The application of this method to a variety of vegetable and animal derived B100 is demonstrated. Quantitative results obtained with this method were in close agreement with those obtained by a more conventional approach on a 100 m column. The method, coupled with solid-phase extraction, was also found suitable to determine the B100 content of biodiesel-diesel blends.

  9. Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Reachability Analysis of a Biodiesel Production System Using Stochastic Hybrid Systems Derek Riley defines the creation of biodiesel from soybean oil and methanol. Modeling and analyzing the biodiesel. In this paper we model a biodiesel production system as a stochastic hybrid system, and we present

  10. An Intensified Reaction/Product Recovery Process for the Continuous Production of Biodiesel

    E-Print Network [OSTI]

    of Biodiesel Cooperative Research into Biobased Fuels between ORNL and Nu-Energie Biodiesel: This project years. Increased use of domestic biofuels will provide a clean and secure source of energy. Biodiesel. Project Background: Conventional reaction and separations used in biodiesel production are done in time

  11. Supporting Information for: A Global Comparison of National Biodiesel Production Potentials

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Supporting Information for: A Global Comparison of National Biodiesel Production Potentials Matt Biodiesel Potential · Table S.2: Variables Used in Calculating Biodiesel Volumes and Prices · Figure S.3: U) · Table S.5: Well-Managed Vegetable Oil Yields · Table S.6: A Complete List of Absolute Biodiesel

  12. Biodiesel Sim: Crowdsourcing Simulations for Complex Model Analysis Derek Riley, Xiaowei Zhang, Xenofon Koutsoukos

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    Biodiesel Sim: Crowdsourcing Simulations for Complex Model Analysis Derek Riley, Xiaowei Zhang Computation, Biodiesel Abstract Biodiesel is an alternative fuel source that can be easily made by novices of the proces- sor. A biodiesel processor is a complex system that can be modeled and simulated using formal

  13. A First Law Thermodynamic Analysis of Biodiesel Production From Soybean

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    A First Law Thermodynamic Analysis of Biodiesel Production From Soybean Tad W. Patzek Department of Petroleum and Geosystems Engineering The University of Texas at Austin, TX 78712 Email: patzek that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy

  14. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect (OSTI)

    Naik, C V; Westbrook, C K

    2009-04-08T23:59:59.000Z

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  15. Commentary Biodiesel Exhaust: The Need for Health Effects Research

    E-Print Network [OSTI]

    Kimberly J. Swanson; Michael C. Madden; Andrew J. Ghio

    2007-01-01T23:59:59.000Z

    BACKGROUND: Biodiesel is a diesel fuel alternative that has shown potential of becoming a commercially accepted part of the United States í energy infrastructure. In November 2004, the signing of the Jobs Creation Bill HR 4520 marked an important turning point for the future production of biodiesel in the United States because it offers a federal excise tax credit. By the end of 2005, industry production was 75 million gallons, a 300 % increase in 1 year. Current industry capacity, however, stands at just over 300 million gallons/year, and current expansion and new plant construction could double the industryís capacity within a few years. Biodiesel exhaust emission has been extensively characterized under field and laboratory conditions, but there have been limited cytotoxicity and mutagenicity studies on the effects of biodiesel exhaust in biologic systems. OBJECTIVES: We reviewed pertinent medical literature and addressed recommendations on testing specific research needs in the field of biodiesel toxicity. DISCUSSION: Employment of biodiesel fuel is favorably viewed, and there are suggestions that its exhaust emissions are less likely to present any risk to human health relative to petroleum diesel emissions. CONCLUSION: The speculative nature of a reduction in health effects based on chemical composition of biodiesel exhaust needs to be followed up with investigations in biologic systems. KEY WORDS: air pollution, biodiesel, diesel exhaust, diesel fuels, lung diseases, vehicle emissions. Environ Health Perspect 115:496Ė499 (2007). doi:10.1289/ehp.9631 available via

  16. analytical methods biodiesel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods biodiesel First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Biodiesel analytical development and...

  17. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01T23:59:59.000Z

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  18. H2 Refuel H-Prize Overview and Q&A | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 MarchH-Tank FarmRefuel H-Prize Overview

  19. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operatorís garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stationís efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onĖsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  20. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, Gopal [HD Systems

    2013-06-01T23:59:59.000Z

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  1. Refuel Colorado

    Broader source: Energy.gov (indexed) [DOE]

    * 4CORE * State Fleet * West Slope CNG Collaborative * EV Stakeholder Group * Colorado Propane Gas Association * Colorado Hydrogen Coalition Partners Colorado Energy Office |...

  2. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect (OSTI)

    Tom Clemente; Jon Van Gerpen

    2007-11-30T23:59:59.000Z

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

  3. Brownfield Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:BroomeSouthBrownfield Biodiesel

  4. EOP Biodiesel AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOP Biodiesel AG Jump to:

  5. List of Biodiesel Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouse SolarI JumpList ofBiodiesel

  6. San Francisco Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‚Äé |Rippey Jump to:WY)Project Jump to:SamsungSanBiodiesel

  7. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‚Äé |Rippey JumpAirPowerSilcio SA Jump to:Biodiesel Inc Jump to:

  8. Pacific Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorthOlympiaAnalysis) Jump to:PUD No 1PacifiCorpBiodiesel

  9. East Fork Biodiesel LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South,Earlsboro,Canton, Ohio:InformationFork Biodiesel

  10. Biodiesel Coalition of Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouth Carolina:EnergyPark,BioJet CorporationBiocastBiodiesel

  11. Biodiesel Technologies Inc BT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodiesel Kyritz

  12. Biodiesel Technologies India Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodiesel

  13. Emerging Scope for Biodiesel for Energy Security and Environmental Protection

    E-Print Network [OSTI]

    Sukhwinder Singh; Dr. S K Mahla

    Abstract---The global fuel crisis in the recent times has generated awareness amongst many countries of their vulnerability to oil embargoes and shortages. Considerable attention has been focused on the development of alternative fuel sources. The Motor vehicle population has also increased tremendously over the last decade in India. Environmental degradation is another outcome of growth in motor vehicle population. One of the strategies adopted to curb deteriorating environmental quality is the use of alternative fuels like Ethanol and biodiesel. Bio-Diesel is being looked upon as a renewable source of energy, which can partially substitute the diesel fuel. Special interest is being shown in view of the potential of this fuel to provide energy security and environment protection. Biodiesel, alkyl ester of fatty acids derived from vegetable oils, is emerging as a technically feasible, economically competitive and environmentally sustainable alternative to diesel. The base catalyzed continuous transesterification of vegetable oils having low viscosity, low free fatty acids and low saturated oil- glycerides is currently the preferred process for biodiesel production. India, continue to have shortage of petroleum products including diesel. We cannot divert our edible oils for biodiesel production due to their continued shortage and are consciously developing biodiesel based on nonedible oils. The efforts being made to have the prospect of providing India a leadership position in renewable energy. However, massive efforts and active multi-agency participation are required for techno- commercial success of biodiesel in India.

  14. Experimental Investigation of Biodiesel Production from Waste Mustard Oil

    E-Print Network [OSTI]

    Rajat Subhra Samanta; Mukunda Kumar Das

    The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines.

  15. Formation Kinetics of Nitric Oxide of Biodiesel Relative to Petroleum Diesel under Comparable Oxygen Equivalence Ratio in a Homogeneous Reactor

    E-Print Network [OSTI]

    Rathore, Gurlovleen K.

    2011-10-21T23:59:59.000Z

    Interest in biodiesel has piqued with advent of stringent emissions regulations. Biodiesel is a viable substitute for petroleum diesel because biodiesel produces significantly lower particulate and soot emissions relative to petroleum diesel. Higher...

  16. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling

    SciTech Connect (OSTI)

    Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-07-01T23:59:59.000Z

    In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

  17. Genomic Prospecting for Microbial Biodiesel Production

    SciTech Connect (OSTI)

    Lykidis, Athanasios; Lykidis, Athanasios; Ivanova, Natalia

    2008-03-20T23:59:59.000Z

    Biodiesel is defined as fatty acid mono-alkylesters and is produced from triacylglycerols. In the current article we provide an overview of the structure, diversity and regulation of the metabolic pathways leading to intracellular fatty acid and triacylglycerol accumulation in three types of organisms (bacteria, algae and fungi) of potential biotechnological interest and discuss possible intervention points to increase the cellular lipid content. The key steps that regulate carbon allocation and distribution in lipids include the formation of malonyl-CoA, the synthesis of fatty acids and their attachment onto the glycerol backbone, and the formation of triacylglycerols. The lipid biosynthetic genes and pathways are largely known for select model organisms. Comparative genomics allows the examination of these pathways in organisms of biotechnological interest and reveals the evolution of divergent and yet uncharacterized regulatory mechanisms. Utilization of microbial systems for triacylglycerol and fatty acid production is in its infancy; however, genomic information and technologies combined with synthetic biology concepts provide the opportunity to further exploit microbes for the competitive production of biodiesel.

  18. Biodiesel production using waste frying oil

    SciTech Connect (OSTI)

    Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

    2011-01-15T23:59:59.000Z

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  19. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31T23:59:59.000Z

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  20. Modeling & analysis of criticality-induced severe accidents during refueling for the Advanced Neutron Source Reactor

    SciTech Connect (OSTI)

    Georgevich, V.; Kim, S.H.; Taleyarkhan, R.P.; Jackson, S.

    1992-10-01T23:59:59.000Z

    This paper describes work done at the Oak Ridge National Laboratory (ORNL) for evaluating the potential and resulting consequences of a hypothetical criticality accident during refueling of the 330-MW Advanced Neutron Source (ANS) research reactor. The development of an analytical capability is described. Modeling and problem formulation were conducted using concepts of reactor neutronic theory for determining power level escalation, coupled with ORIGEN and MELCOR code simulations for radionuclide buildup and containment transport Gaussian plume transport modeling was done for determining off-site radiological consequences. Nuances associated with modeling this blast-type scenario are described. Analysis results for ANS containment response under a variety of postulated scenarios and containment failure modes are presented. It is demonstrated that individuals at the reactor site boundary will not receive doses beyond regulatory limits for any of the containment configurations studied.

  1. Quality, Performance, and Emission Impacts of Biodiesel Blends

    Broader source: Energy.gov (indexed) [DOE]

    Impacts of Biodiesel Blends Bob McCormick (PI) With Teresa Alleman, Wendy Clark, Lisa Fouts, John Ireland, Mike Lammert, Jon Luecke, Dan Pedersen, Ken Proc, Matt Ratcliff, Matt...

  2. Algal Harvesting for Biodiesel Production: Comparing Centrifugation and Electrocoagulation

    E-Print Network [OSTI]

    Kovalcik, Derek John

    2013-08-09T23:59:59.000Z

    Electrocoagulation was compared to centrifugation at pilot scale for harvesting Nannochloris oculata and Nannochloropsis salina for biodiesel production. The pilot scale testing is a proof of concept and no optimization was conducted. Testing used...

  3. Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...

    Broader source: Energy.gov (indexed) [DOE]

    Rail Pressure and Biodiesel Composition on Soot Nanostructure P-20 Ye, P 1 ; Sun, C-X 1 ; Lapuerta, M 2 ; Agudelo, J 3 ; Vander Wal, R 1 ; Boehman, AL 1 , Toops, TJ 4 ; Daw, CS 4...

  4. Process analysis and optimization of biodiesel production from vegetable oils

    E-Print Network [OSTI]

    Myint, Lay L.

    2009-05-15T23:59:59.000Z

    The dwindling resources of fossil fuels coupled with the steady increase in energy consumption have spurred research interest in alternative and renewable energy sources. Biodiesel is one of the most promising alternatives for fossil fuels. It can...

  5. Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol

    E-Print Network [OSTI]

    Silvey, Luke

    2012-05-31T23:59:59.000Z

    Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol By Copyright 2011 Luke Grantham Silvey Submitted to the graduate degree program in the Chemical and Petroleum Program, School of Engineering and the Graduate Faculty...D ________________________________ Christopher Depcik , PhD Date Defended: December 15, 2011 ii The Thesis Committee for Luke Grantham Silvey certifies that this is the approved version of the following thesis: Hydrogen and Syngas Production from Biodiesel Derived Crude...

  6. Design and Analysis of Flexible Biodiesel Processes with Multiple Feedstocks

    E-Print Network [OSTI]

    Pokoo-Aikins, Grace Amarachukwu

    2011-10-21T23:59:59.000Z

    DESIGN AND ANALYSIS OF FLEXIBLE BIODIESEL PROCESSES WITH MULTIPLE FEEDSTOCKS A Dissertation by GRACE AMARACHUKWU POKOO-AIKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Chemical Engineering DESIGN AND ANALYSIS OF FLEXIBLE BIODIESEL PROCESSES WITH MULTIPLE FEEDSTOCKS A Dissertation by GRACE AMARACHUKWU POKOO...

  7. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect (OSTI)

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01T23:59:59.000Z

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  8. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    00,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER...

  9. Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel and EGR for Low-Temperature NOx and PM Reductions Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Poster presentation at the 2007 Diesel...

  10. System-Response Issues Imposed by Biodiesel in a Medium-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine The objective of the current...

  11. Investigation of Bio-Diesel Fueled Engines under Low-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

  12. Investigating the Use of Ion Exchange Resins for Processing Biodiesel Feedstocks†

    E-Print Network [OSTI]

    Jamal, Yousuf 1973-

    2012-11-27T23:59:59.000Z

    Ion exchange resins, commonly used in water treatment, demonstrate promise for the production of biodiesel from biomass feedstocks. The goal of this presented PhD research is to investigate novel uses of ion exchange resins for processing biodiesel...

  13. Demonstration of the feasibility of milking lipids from algae for biodiesel production

    E-Print Network [OSTI]

    Coiner, Ryan Lee

    2011-12-31T23:59:59.000Z

    A major challenge to the development of industrial-scale biodiesel production from cultured algae is the identification of energy efficient and cost effective methods of harvesting/dewatering algal cells. Producing 1 gallon of biodiesel from algae...

  14. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using...

  15. Applications of Highly Cross Linked Mixed Bed Ion Exchange Resins in Biodiesel Processing

    E-Print Network [OSTI]

    Jamal, Yousuf

    2010-10-12T23:59:59.000Z

    Biofuels are a promising solution to society's quest for sustainable energy. In the transportation sector, biodiesel is the leading alternative diesel fuel currently in use today. However, the current global and domestic production of biodiesel...

  16. Impact of Biodiesel on the Near-term Performance and Long-term...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel on the Near-term Performance and Long-term Durability of Advanced Aftertreatment Systems Impact of Biodiesel on the Near-term Performance and Long-term...

  17. Pollutant Emissions from Biodiesels in Diesel Engine Tests and On-road Tests

    E-Print Network [OSTI]

    Zhong, Yue

    2012-08-31T23:59:59.000Z

    Interest in biodiesel use is increasing due to concerns over the availability and environmental impact of petroleum fuels. In this study, we analyzed biodiesels prepared from seven different feedstocks: waste cooking oil, rapeseed oil, olive oil...

  18. Would You Consider Driving a Vehicle that Can Run on Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Driving a Vehicle that Can Run on Biodiesel? September 16, 2010 - 7:30am Addthis On Monday,...

  19. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light Duty Tier 2 Engine and...

  20. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and Aftertreatment Systems Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2 Engine and...

  1. Investigating the Use of Ion Exchange Resins for Processing Biodiesel Feedstocks

    E-Print Network [OSTI]

    Jamal, Yousuf 1973-

    2012-11-27T23:59:59.000Z

    Ion exchange resins, commonly used in water treatment, demonstrate promise for the production of biodiesel from biomass feedstocks. The goal of this presented PhD research is to investigate novel uses of ion exchange resins for processing biodiesel...

  2. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel.

  3. Evaluation and Comparison of Test Methods to Measure the Oxidation Stability of Neat Biodiesel

    SciTech Connect (OSTI)

    Westbrook, S. R.

    2005-11-01T23:59:59.000Z

    The purpose of this project was to compare and evaluate several candidate test methods for evaluating oxidation stability of biodiesel.

  4. Matrix Optimization for the MALDI-TOF-MS Analysis of Trace Biodiesel Components (Poster)

    SciTech Connect (OSTI)

    McAlpin, C. R.; Voorhees, K. J.; Alleman, T. L.; McCormick, R. L.

    2009-01-01T23:59:59.000Z

    Trace biodiesel components that could reduce the fuel's operability in cold weather are analyzed using MALDI-TOF mass spectrometry.

  5. Ris Energy Report 2 Biodiesel is produced from vegetable oils that have been

    E-Print Network [OSTI]

    6.2 Ris√ł Energy Report 2 Biodiesel is produced from vegetable oils that have been chemically (canola) oil with methanol. Biodiesel can be burned directly in diesel engines. Robert Diesel himself, but it was not until the oil crisis of the 1970s that biofuels attracted serious interest. Biodiesel is reported

  6. Mass Production of Biodiesel From Algae UROP Summer 2008 Project Proposal

    E-Print Network [OSTI]

    Minnesota, University of

    1 Mass Production of Biodiesel From Algae UROP Summer 2008 Project Proposal Steven A. Biorn Faculty at the University of Minnesota Twin Cities campus. The project involves the mass production of biodiesel and other to make biodiesel is well understood, this project offers an alternative to current methods by using

  7. Sustainable distributed biodiesel manufacturing under uncertainty: An interval-parameter-programming-based approach

    E-Print Network [OSTI]

    Huang, Yinlun

    Sustainable distributed biodiesel manufacturing under uncertainty: An interval A sophisticated biodiesel manufacturing study demonstrated methodological efficacy. a r t i c l e i n f o Article Simulation Uncertainty a b s t r a c t Biodiesel, a clean-burning alternative fuel, can be produced using

  8. Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels Mohammed of the oxidation of two blend surrogates for diesel and biodiesel fuels, n-decane/n-hexadecane and n-alkanes and methyl esters. Keywords: Oxidation; Diesel; Biodiesel; Methyl esters; n-Decane; n-Hexadecane; Methyl

  9. Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.

    E-Print Network [OSTI]

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

  10. Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl oleate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Detailed chemical kinetic reaction mechanism for biodiesel components methyl stearate and methyl are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate renewable sources, can reduce net emissions of greenhouse gases. An important class of biodiesel fuels

  11. Sustainability Analysis of African Palm Biodiesel in Ecuador: An Environmental, Socio-cultural, and Artistic Perspective

    E-Print Network [OSTI]

    Sustainability Analysis of African Palm Biodiesel in Ecuador: An Environmental, Socio Analysis of African Palm Biodiesel in Ecuador: An Environmental, Socio-cultural, and Artistic Perspective-based biodiesel, which is currently imported by the Unites States. An analysis of this specific interaction

  12. Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel Production

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production, Monte-Carlo Simulations, Enzymatic Biodiesel 1. INTRODUCTION In order to determine the optimal

  13. Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil

  14. Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Evaluating the Potential for Large-Scale Biodiesel Deployments in a Global Context by Matthew Johnston. All rights reserved. #12;#12;Evaluating the Potential for Large-Scale Biodiesel Deployments on the subject of biodiesel, but I can only hope she takes comfort knowing now much I appreciate everything she

  15. Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production

    E-Print Network [OSTI]

    Tomberlin, Jeff

    Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar (BSFL) are consid- ered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel

  16. Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters transportation fuel dedicated to the diesel engine, biodiesel, with an emphasis on ethyl esters because of biodiesel and related components, the main gaps in the field are highlighted to facilitate the convergence

  17. Factors Affecting the Stability of Biodiesel Sold in the United States

    SciTech Connect (OSTI)

    McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R.

    2006-01-01T23:59:59.000Z

    As part of a survey of biodiesel quality and stability in the United States, 27 biodiesel (B100) samples were collected from blenders and distributor nationwide. For this sample set, 85% met all of the requirements of the industry standard for biodiesel, ASTM D6751.

  18. Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels C.K. Westbrooka chemical kinetic reaction mechanism is developed for the five major components of soy biodiesel and rapeseed biodiesel fuels. These components, methyl stearate, methyl oleate, methyl linoleate, methyl

  19. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping [Principal Investigator] [Principal Investigator; Cao, Yan [Co-Principal Investigator] [Co-Principal Investigator

    2013-03-15T23:59:59.000Z

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less ai

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Rapidly Renewable Materials Soy and Bio-Diesel

    E-Print Network [OSTI]

    Materials ≠ Soy and Bio-Diesel Navin Abeysundara Brian Lee Aramazd Gharapetian University of British RENEWABLE MATERIALS ≠ SOY AND BIO-DIESEL SUBMITTED TO Florence Luo By: Navin Abeysundara Brian Lee Aramazd based spray foam and bio-diesel furnaces. Soy based spray foam and biodiesel furnaces were considered

  1. Design of a Small-Scale Biodiesel Production System Jeffrey Anderson, Jessica Caceres, Ali Khazaei, Jedidiah Shirey

    E-Print Network [OSTI]

    Design of a Small-Scale Biodiesel Production System Jeffrey Anderson, Jessica Caceres, Ali Khazaei acreage and biodiesel output. Monte Carlo Simulation Objective: 1) Biodiesel Production Simulation: Determines biodiesel yield and Net Energy Ration of each crop alternative 1) Business Simulation: Determines

  2. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    E-Print Network [OSTI]

    Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  3. Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS

    E-Print Network [OSTI]

    Md. Nurun Nabi; S. M. Najmul Hoque

    Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as ďthe mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. Ē Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

  4. Effects of Canola Biodiesel on a DI Diesel Engine Performance and Emissions

    E-Print Network [OSTI]

    Murari Mohon Roy; Majed Alawi; Wilson Wang

    Abstract- A direct injection (DI) diesel engine is tested with different biodiesel-diesel blends, such as B0 (neat diesel), B5 (i.e., 5 vol. % biodiesel and 95 vol. % diesel), B10 (10 vol. % biodiesel), B20 (20 vol. % biodiesel), B50 (50 vol. % biodiesel), and B100 (neat biodiesel) for performance and emissions under different load conditions. Engine performance is examined by measuring brake specific fuel consumption (bsfc) and fuel conversion efficiency (? f). The emission of carbon monoxide (CO), hydrocarbon (HC), nitric oxide (NO), nitrogen dioxide (NO 2), nitrogen oxides (NOx), carbon dioxide (CO 2) and others are measured. Biodiesel shows a significant CO and HC reduction compared to diesel under low load operation; under high load operation, however, CO with biodiesel is increased a little and HC emissions are very similar to that with diesel. On the other hand, under low load operation, NOx emission with biodiesel is significantly increased than diesel; however, under high load operation, there is almost no change in NOx emissions with biodiesel and diesel. Index Term- Canola biodiesel, diesel engine, engine performance, exhaust emissions.

  5. Los Alamos National Laboratory considers the use of biodiesel.

    SciTech Connect (OSTI)

    Matlin, M. K. (Marla K.)

    2002-01-01T23:59:59.000Z

    A new EPA-approved alternative fuel, called biodiesel, may soon be used at Los Alamos National Laboratory in everything from diesel trucks to laboratory equipment. Biodiesel transforms vegetable oils into a renewable, cleaner energy source that can be used in any machinery that uses diesel fuel. For the past couple years, the Laboratory has been exploring the possibility of switching over to soybean-based biodiesel. This change could lead to many health and environmental benefits, as well as help reduce the nation's dependence on foreign oil. Biodiesel is a clean, renewable diesel fuel substitute made from soybean and other vegetable oil crops, as well as from recycled cooking oils. A chemical process breaks down the vegetable oil into a usable form. Vegetable oil has a chain of about 18 carbons and ordinary diesel has about 12 or 13 carbons. The process breaks the carbon chains of the vegetable oil and separates out the glycerin (a fatty substance used in creams and soaps). The co-product of glycerin can be used by pharmaceutical and cosmetic companies, as well as many other markets. Once the chains are shortened and the glycerin is removed from the oil, the remaining liquid is similar to petroleum diesel fuel. It can be burned in pure form or in a blend of any proportion with petroleum diesel. To be considered an alternative fuel source by the EPA, the blend must be at least 20 percent biodiesel (B20). According to the U.S. Department of Energy (DOE), biodiesel is America's fastest growing alternative fuel.

  6. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Training Office Contact Administrative nav background Materials Test Station dotline Testing New Reactor Fuels that Reduce Radioactive Waste Mission Used...

  7. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28T23:59:59.000Z

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  8. Biodiesel Handling and Use Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocar JumpBiodieselBiodiesel

  9. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01T23:59:59.000Z

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  10. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

    2013-07-01T23:59:59.000Z

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  11. Non-Edible Plant Oils as New Sources for Biodiesel Production

    E-Print Network [OSTI]

    Arjun B. Chhetri; Martin S. Tango; Suzanne M. Budge; K. Chris Watts

    Abstract: Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1 % free FA, 84.43 % triglycerides, 4.88 % sterol and 1.59 % others. Jatropha oil contains approximately 14 % free FA, approximately 5 % higher than soapnut oil. Soapnut oil biodiesel contains approximately 85 % unsaturated FA while jatropha oil biodiesel was found to have approximately 80 % unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97 % conversion to FAME was achieved for both soapnut and jatropha oil.

  12. Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom

    E-Print Network [OSTI]

    Fay, Noah

    Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom Advisor: Dr. Scott Whiteford Center, the world is looking to alternative fuels to eradicate its reliance upon petroleum. While biofuels may represent a fundamental component in the panacea to this global dilemma, their production and application

  13. Engineering for sustainable development for bio-diesel production†

    E-Print Network [OSTI]

    Narayanan, Divya

    2009-05-15T23:59:59.000Z

    on their performance. The SD indicator priority score and each individual alternativeís performance score together are used to determine the most sustainable alternative. The proposed methodology for ESD is applied for bio-diesel production in this thesis. The results...

  14. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    E-Print Network [OSTI]

    Kudela, Raphael M.

    Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk fuels make up a much larger share of the global energy demand (66%). Biofuels are therefore rapidly for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food

  15. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  16. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  17. algal biodiesel utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    algal biodiesel utilization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Original article...

  18. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL] [ORNL; Birdwell Jr, Joseph F [ORNL] [ORNL; Tsouris, Costas [ORNL] [ORNL; Jennings, Hal L [ORNL] [ORNL

    2008-01-01T23:59:59.000Z

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  19. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2008-08-15T23:59:59.000Z

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  20. argentine biodiesel exports: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argentine biodiesel exports First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Considerations for...

  1. High-Efficiency Plasma Refuelling by Pellet Injection from the Magnetic High-Field Side into ASDEX Upgrade

    SciTech Connect (OSTI)

    Lang, P.T.; Buechl, K.; Kaufmann, M.; Lang, R.S.; Mertens, V.; Mueller, H.W.; Neuhauser, J. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)] [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany); ASDEX Upgrade% NI Teams

    1997-08-01T23:59:59.000Z

    High-efficiency refuelling of ELMy {ital H}-mode tokamak discharges with solid deuterium pellets injected from the magnetic high-field side is demonstrated. Compared to standard low-field side injection, the fuelling efficiency was enhanced by a factor of 4, the pellet penetration more than 2 times. This experimental result can be qualitatively explained by the magnetic force pushing a diamagnetic plasma cloud towards lower magnetic field, causing rapid particle loss for shallow low-field side injection, but enhancing fuelling efficiency and pellet penetration for high-field side injection. {copyright} {ital 1997} {ital The American Physical Society}

  2. Webinar June 25: H2 Refuel H-Prize Overview and Q&A | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe WaterWeatherization|BrowseH2 Refuel

  3. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOE Patents [OSTI]

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13T23:59:59.000Z

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  4. Analysis of Smoke of Diesel Engine by Using Biodiesel as Fuel

    E-Print Network [OSTI]

    Gayatri Kushwah; Methanol

    Abstract- This study represents the analysis of smoke of biodiesel by using smoke tester. In this article biodiesel is taken as a fuel instead of diesel and quantity of emitted pollutants HC and CO is evaluated by taking different quantity of biodiesel at different load. This work shows how use of biodiesel will affect the emission of pollutants. Diesel Engine is compression ignition engine and use diesel as fuel, in this engine alternative fuel can be used. One alternate fuel is biodiesel. Biodiesel can be used in pure form or may be blended with petroleum diesel at any concentration in most injection pump diesel engines and also can be used in Vehicle, Railway, and Aircraft as heating oil.

  5. Vehicles and E85 Stations Needed to Achieve Ethanol Goals

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

  6. Biodiesel Effects on the Operation of U.S. Light-Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    NOx Adsorber SCR System Summary and Conclusions Overview Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  7. Biodiesel Effects on the Operation of U.S. Light Duty Tier 2...

    Broader source: Energy.gov (indexed) [DOE]

    Test Results Summary and Conclusions Project Goals Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty...

  8. Analysis Of Exhaust Emission Of Internal Combustion Engine Using Biodiesel Blend

    E-Print Network [OSTI]

    Suvendu Mohanty; Dr. Om Prakash; Reasearch Scholar

    Abstract-The main purpose of this research is to study the effect of various blends of an environmental friendly alternative fuel such as biodiesel on the performance of diesel engine. In the Present investigation experimental work has been carried out to analyze the performance and exhaust emission characteristics of a single cylinder internal combustion engine fuelled with biodiesel blend at the different load. In this experiment the biodiesel which is use as a waste cooking oil (WCO) biodiesel.To investigation of the emission characteristics of the engine loads, which is supplied from the alternator. The experiment was carried out different load i.e. (NO LOAD, 100W 200W, 500W, 1000W, 1500W, 2000W, 2500W & 3000Watt) at engine speed 1500 rpm/min. A test was applied in which an engine was fuel with diesel and seven different blends of diesel. Biodiesel (B5, B10, B20, B40, B60, B80, B100) made from waste cooking oil and the results were analyzed.The emission of were measured carbon monoxide (CO), hydrocarbon carbon(HC), Oxides of nitrogen (NOX) and oxygen ().The experimental results will be compared with biodiesel blends and diesel. The biodiesel results of (WCO) in lower emission of hydro carbon (HC) and (CO) and increase emission of (NO2). This study showed that the results of exhaust emission of biodiesel blends were lower than the diesel fuel. Keyword- Biodiesel (WCO), diesel engine, gas analyzer, Exhaust emission. I.

  9. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04T23:59:59.000Z

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  10. Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use and Emissions of 15 Construction Vehiclesand Emissions of 15 Construction Vehicles

    E-Print Network [OSTI]

    Frey, H. Christopher

    Effect of SoyEffect of Soy--Based B20 Biodiesel on Fuel UseBased B20 Biodiesel on Fuel Use Tests with B20 Biodiesel ­ Based on Regular NCDOT Duty Schedule Overview of Study Design for Field for Other Pollutants B20 Biodiesel Tier 0Tier 0 VehicleVehicle Tier 1Tier 1 Tier 2Tier 2 Tier 3Tier 3 0 40

  11. Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominate. Montana State University researchers have developed a

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Technology Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominate. Montana State University researchers have plants used for biodiesel. Seed oil content increases are induced by puroindoline genes which promote

  12. Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominates. Montana State University and USDA researchers have

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Technology Biodiesel is produced from a wide variety of oilseed crops. In Europe, canola is the major biodiesel crop while in the U.S. soybeans dominates. Montana State University and USDA researchers to work for a broad range of oilseed plants including biodiesel and cereal crops. Increased oil

  13. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    SciTech Connect (OSTI)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01T23:59:59.000Z

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  14. Biodiesel Safety and Best Management Practices for Small-Scale

    E-Print Network [OSTI]

    Noncommercial Use

    The following gear should be on hand each time you produce biodiesel: ē Chemical-resistant gloves (butyl rubber is best for methanol and lye) ē Chemistry goggles (indirect vented) and face shield ē Dust mask or cartridge respirator ē Eyewash bottle with saline solution ē Small spray bottle with vinegar for neutralizing lye spills ē Access to running water ē Telephone in case of emergency and emergency telephone numbers ē Fire extinguishers (ABC or CO) 2

  15. Effect of Biodiesel Blends on NOx Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction systemParticulate Filters |Biodiesel

  16. Biodiesel as an Alternative Energy Resource in Southwest Nigeria

    E-Print Network [OSTI]

    Ajide O. O

    The Nigerian state faces unique issues that may provide an opportunity for rural economic growth. One of such is that major urban areas in the southwest of the country are beginning to have population increase and hence air quality problems that will require actions to reduce sources of pollution. One major pollution source is from exhaust emissions from cars and trucks. The use of alternative fuel sources such as biodiesel can make a significant reduction in certain exhaust emissions thus reducing pollution and improving air quality. The opportunity for economic growth in a single product economy like ours could lie in the processing of soybean oil and other suitable feedstocks produced within the country into biodiesel. The new fuel can be used by vehicles traversing the country thus reduce air pollution and providing another market for agricultural feedstocks while creating a value added market for animal fats and spent oils from industrial facilities. The benefits of biodiesel go far beyond the clean burning nature of the product. Bio diesel is a renewable resource helping to reduce the dependence of the economy on limited resources and imports, create a market for farmers and reduce the amount of waste oil, fat and grease being dumped into landfills and sewers.

  17. PERFORMANCE OF THE CAPSTONE C30 MICROTURBINE ON BIODIESEL BENDS.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2007-01-01T23:59:59.000Z

    This report will describe the tests of biodiesel blends as a fuel in a Capstone oil fired microturbine (C30) with a nominal rating of 30 kW. The blends, in ASTM No. 2 heating oil, ranged from 0% to 100% biodiesel. No changes were made to the microturbine system for operation on the blends. Apart from the data that the control computer acquires on various turbine parameters, measurements were made in the hot gas exhaust from the turbine. The results from this performance testing and from the atomization tests reported previously provide some insight into the use of biodiesel blends in microturbines of this type. The routine use of such blends would need more tests to establish that the life of the critical components of the microturbine are not diminished from what they are on the baseline diesel or heating fuel. Of course, the extension to 'widespread' use of such blends in generating systems based on the microturbine is also determined by economic and other considerations.

  18. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Development of sulfonated carbon catalysts for integrated biodiesel production

    E-Print Network [OSTI]

    carbon catalysts for integrated biodiesel production Jidon Adrian Bin Janaun University of British of sulfonated carbon catalysts for integrated biodiesel production by Jidon Adrian Bin Janaun M.Sc. in Chemical security, climate change, and environmental protection attract the use of biodiesel as an alternative fuel

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Investigation of Solid Acid Catalyst Functionalization for the Production of Biodiesel

    E-Print Network [OSTI]

    Acid Catalyst Functionalization for the Production of Biodiesel Elliot James Nash University of British Functionalization for the Production of Biodiesel By Elliot James Nash Thesis CHBE 493/494 4 April 2013 The Faculty;ii Abstract The adoption of biodiesel as an alternative fuel is gaining momentum despite its large

  20. Comparative Analysis of the Effect of Different Alkaline Catalysts on Biodiesel Yield

    E-Print Network [OSTI]

    Cynthia Ofori-boateng; Ebenezer M. Kwofie; Moses Y. Mensah

    Abstract: A major challenge in the biodiesel industry is the comparatively high cost of raw materials for production. A cost build-up analysis of biodiesel production from J. curcas oil shows that catalyst alone contributes about 50.9 % of the total production cost. This paper aims at highlighting the effects of two different commonly used catalysts on the yield of biodiesel. Samples of biodiesel were produced by three different methods namely single stage transesterification (SST), double stage transesterification (DST) and foolproof (FP) processes in which sodium hydroxide (NaOH) and potassium hydroxide (KOH) were used. The effects of each catalyst on the production yield were analyzed and compared. NaOH gave production yields of 79%, 81% and 84 % for the SST, DST and FP processes respectively. KOH produced comparatively lower yields of 68%, 71 % and 75 % for SST, DST and fool proof processes respectively. Although the use of KOH slightly raises the cost of biodiesel production as compared to NaOH, the local production of KOH from cocoa husks could minimize the production cost. Abbreviations: BDF = Biodiesel fuel; PDF = Petroleum diesel fuel; DF = Diesel fuel Key words: Transesterification Alkaline catalysts Biodiesel yield Biodiesel KOH NaOH

  1. Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

  2. Skate Station UF Services

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    friends, practice your English, and try new activities! Where: Skate Station Funworks We will be meeting and more orderly manner. Everyone will be served eventually. Fire Drills/Alarms: Whenever you hear a fire should park your bike in well-lighted areas and lock it up when you park it. The best lock is a U

  3. System Dynamics Sustainability Model of Palm-Oil Based Biodiesel Production Chain in Indonesia

    E-Print Network [OSTI]

    Akhmad Hidayatno; Aziiz Sutrisno; Yuri M. Zagloel; Widodo W. Purwanto

    The nature of biodiesel production itself is complex with multisectors and multi-actors conditions, and with addition of sustainability issues from various stakeholder, created a complex challenges for developing the biodiesel industry. In order to understand of the complexity, this research developed a comprehensive sustainability model to draw the relationships and analyze the effects of government policy for stimulating biodiesel industry using the combination methods of process mapping, financial modeling, life cycle analysis (LCA) and business sustainability strategy. The model combines its output translated into a complete sustainability index of financial, social and environment. The model simulation results show that accomplishment of a sustainable biodiesel production within the target and timeframe is impossible without releasing the subsidized price of diesel fuel and further directions from the government. I Index Terms ó biodiesel, system dynamics, sustainability

  4. Synthesis, droplet combustion, and sooting characteristics of biodiesel produced from waste vegetable oils

    SciTech Connect (OSTI)

    Li, T. X.; Zhu, D. L.; Akafuah, N.; Saito, K.; Law, C. K.

    2011-01-01T23:59:59.000Z

    In light of the potential of fatty acid methyl ester (FAME, i.e. biodiesel) as a renewable energy source, an innovative acid catalyzed process was developed for the synthesis of biodiesel from waste vegetable oils. The synthesized biodiesels were analytically characterized for their major components, molar fraction and molecular weight of each component, the average molecular weight, and the heat of combustion. Their droplet combustion characteristics in terms of the burning rate, flame size, and sooting tendency were subsequently determined in a high-temperature, freely-falling droplet apparatus. Results show that the biodiesel droplet has higher burning rate, and that biodiesel in general has a lower propensity to soot because its molecular oxygen content promotes the oxidation of the soot precursors.

  5. Production of Biodiesel from Jatropha Oil (Jatropha curcas) in Pilot Plant

    E-Print Network [OSTI]

    Tint Tint Kywe; Mya Mya Oo

    AbstractóIn this research, among the chemical properties, free fatty acid value of jatropha oil was determined to be 22.6%, 5.23% and 8.8 % respectively. Total, free and combined glycerol percent of raw jatropha oil were 8.27 %, 0.58 % and 7.69 % respectively. Yield of biodiesel from jatropha oil at optimal sodium hydroxide catalyst concentration 1%, reaction temperature 65įC, reaction time one hour and molar ratio of methanol to oil 6:1 was 92 % from lab scale. Yield of biodiesel from jatropha oil at optimal potassium hydroxide catalyst concentration 1%, reaction temperature Ė room temperature, reaction time 5 hours and molar ratio of ethanol to oil 8:1 was 90% from the lab scale. Biodiesel was also produced from pilot plant at optimum transesterification process condition as stated above. The yield of biodiesel (methyl ester) and ethyl ester were 92 % and 90% on the basis of refined jatropha oil in the pilot plant scale. The capacity of biodiesel pilot plant is 30 gal / day. The fuel properties of biodiesel, namely cetane index, flash point, pour point, kinematic viscosity, specific gravity, color, copper strip corrosion, acid value, water and sediment and distillation at 90 % recovery, were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel. The fuel consumption of the engine which used biodiesel produced from free fatty acid content 5.23 % in raw jatropha oil is more than the fuel consumption of the engine which used biodiesel produced from free fatty acid content 1 % in refined raw jatropha oil. Keywordsórenewable energy, biodiesel, transesterification, methyl ester, ethyl ester, pilot plant. I.

  6. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24T23:59:59.000Z

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districtís land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  7. The Village Base Station Kurtis Heimerl

    E-Print Network [OSTI]

    California at Irvine, University of

    removes the need for diesel generators, as well as the implied diesel, roads, and refueling trips. The key deployment due to low power requirements that enable local generation via solar or wind; ∑ explicit support. At around 20W, its power consumption is low enough to avoid diesel genera- tors and the corresponding

  8. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  9. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  10. GHP Biodiesel GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey) Jump to:GGAMGHP Biodiesel

  11. Table 2. U.S. Biodiesel production, sales, and stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential EnergyTotalU.S. Biodiesel

  12. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | BlandineNatural GasBiodiesel Printable

  13. Biodiesel Offers a Renewable Alternative | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplicationCommittee | DepartmentDesignBiodiesel Fuel

  14. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development toBiodiesel

  15. Alternative Fuels Data Center: Biodiesel Laws and Incentives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependenceFuelsasBiodiesel

  16. Biodiesel Revs Up Its Applications | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs Up Its Applications Biodiesel Revs Up Its

  17. Biodiesel Kyritz GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodiesel Kyritz GmbH Jump

  18. Biodiesel Sued GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbonof Alternative SourcesBiocarBiodiesel Kyritz GmbH

  19. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect (OSTI)

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01T23:59:59.000Z

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  20. A comparison of injector flow and spray characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K. (Energy Systems)

    2010-12-01T23:59:59.000Z

    Performance and emission characteristics of compression ignition engines depend strongly on inner nozzle flow and spray behavior. These processes control the fuel air mixing, which in turn is critical for the combustion process. The differences in the physical properties of petrodiesel and biodiesel are expected to significantly alter the inner nozzle flow and spray structure and, thus, the performance and emission characteristics of the engine. In this study, the inner nozzle flow dynamics of these fuels are characterized by using the mixture-based cavitation model in FLUENT v6.3. Because of its lower vapor pressure, biodiesel was observed to cavitate less than petrodiesel. Higher viscosity of biodiesel resulted in loss of flow efficiency and reduction in injection velocity. Turbulence levels at the nozzle orifice exit were also lower for biodiesel. Using the recently developed KH-ACT model, which incorporates the effects of cavitation and turbulence in addition to aerodynamic breakup, the inner nozzle flow simulations are coupled with the spray simulations in a 'quasi-dynamic' fashion. Thus, the influence of inner nozzle flow differences on spray development of these fuels could be captured, in addition to the effects of their physical properties. Spray penetration was marginally higher for biodiesel, while cone angle was lower, which was attributed to its poor atomization characteristics. The computed liquid lengths of petrodiesel and biodiesel were compared with data from Sandia National Laboratories. Liquid lengths were higher for biodiesel due to its higher boiling temperature and heat of vaporization. Though the simulations captured this trend well, the liquid lengths were underpredicted, which was attributed to uncertainty about the properties of biodiesel used in the experiments. Parametric studies were performed to determine a single parameter that could be used to account for the observed differences in the fuel injection and spray behavior of petrodiesel and biodiesel; fuel temperature seems to be the best parameter to tune.

  1. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  2. Effects of Biodiesel and Engine Load on Some Emission Characteristics of a Direct Injection Diesel Engine

    E-Print Network [OSTI]

    Alireza Shirneshan; Morteza Almassi; Barat Ghobadian; Ali Mohammad Borghei; Gholam Hassan Najafi

    2012-01-01T23:59:59.000Z

    In this research, experiments were conducted on a 4-cylinder direct-injection diesel engine using biodiesel as an alternative fuel and their blends to investigate the emission characteristics of the engine under four engine loads (25%, 40%, 65 % and 80%) at an engine speed of 1800 rev/min. A test was applied in which an engine was fueled with diesel and four different blends of diesel/ biodiesel (B20, B40, B60 and B80) made from waste frying oil and the results were analyzed. The use of biodiesel resulted in lower emissions of hydrocarbon (HC) and CO and increased emissions

  3. Idaho_SheepStation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104Sheep Station Site

  4. Transit Infrastructure Finance Through Station Location Auctions

    E-Print Network [OSTI]

    Ian Carlton

    2009-01-01T23:59:59.000Z

    Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

  5. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    SciTech Connect (OSTI)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  6. Investigation and Optimization of Biodiesel Chemistry for HCCI Combustion

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL] [ORNL; Bunce, Michael [ORNL] [ORNL; Joyce, Blake [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

    2011-01-01T23:59:59.000Z

    Over the past 5 years, ORNL has run 95 diesel range fuels in homogene-ous charge compression ignition (HCCI), including 40 bio-diesels and associated diesel fuels in their blending. The bio-diesel blends varied in oxygen content, iodine number, cetane, boiling point distribution, chemical composition, and some contained nitrogen. All fuels were run in an HCCI engine at 1800 rpm, in the power range of 2.5 to 4.5 bar IMEP, using intake air heating for combustion phasing control, and at a compression ratio of 10.6. The engine response to fuel variables has been analyzed statistically. Generally, the engine responded well to fuels with lower nitrogen and oxygen, lower cetane, and lower aromatics. Because of the wide range of fuels combined in the model, it provides only a broad overview of the engine response. It is recommended that data be truncated and re-modeled to obtain finer resolution of engine response to particular fuel variables.

  7. Investigation and Optimization of Biodiesel Chemistry for HCCI Combustion

    SciTech Connect (OSTI)

    Bunting, Bruce G. [ORNL; Bunce, Michael [ORNL; Joyce, Blake [ORNL; Crawford, Robert W. [Rincon Ranch Consulting

    2014-06-23T23:59:59.000Z

    Over the past 5 years, ORNL has run 95 diesel range fuels in homogene-ous charge compression ignition (HCCI), including 40 bio-diesels and associated diesel fuels in their blending. The bio-diesel blends varied in oxygen content, iodine number, cetane, boiling point distribution, chemical composition, and some contained nitrogen. All fuels were run in an HCCI engine at 1800 rpm, in the power range of 2.5 to 4.5 bar IMEP, using intake air heating for combustion phasing control, and at a compression ratio of 10.6. The engine response to fuel variables has been analyzed statistically. Generally, the engine responded well to fuels with lower nitrogen and oxygen, lower cetane, and lower aromatics. Because of the wide range of fuels combined in the model, it provides only a broad overview of the engine response. It is recommended that data be truncated and re-modeled to obtain finer resolution of engine response to particular fuel variables.

  8. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01T23:59:59.000Z

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  9. Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine†

    E-Print Network [OSTI]

    Zheng, Junnian

    2010-01-14T23:59:59.000Z

    Based on the GT-Power software, an engine cycle simulation for a biodiesel fueled direct injection compression ignition engine was developed and used to study its performance and emission characteristics. The major objectives ...

  10. A Holistic Approach to Safety Assessment in the Life Cycle of Biodiesel Industry

    E-Print Network [OSTI]

    El-Said, Marwa H

    2014-12-02T23:59:59.000Z

    , biodiesel, bio-oil, biohydrogen, syngas, etc. The Secondary biofuels are often categorized into first, second, and third generations based on the type of raw materials involved and the applied conversion mechanisms or process technologies (Nigam and Singh...

  11. Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine

    E-Print Network [OSTI]

    Zheng, Junnian

    2010-01-14T23:59:59.000Z

    Based on the GT-Power software, an engine cycle simulation for a biodiesel fueled direct injection compression ignition engine was developed and used to study its performance and emission characteristics. The major objectives were to establish...

  12. Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel

    E-Print Network [OSTI]

    Oguntola J Alamu; Ezra A Adeleke; Nurudeen O. Adekunle; Salam O; Oguntola J Alamu; Ezra A Adeleke; Nurudeen O Adekunle; Salam O Ismaila

    Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO) biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0 % ethanol (wt%), 1.0 % potassium hydroxide catalyst at 60įC reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

  13. Process simulation, integration and optimization of blending of petrodiesel with biodiesel

    E-Print Network [OSTI]

    Wang, Ting

    2009-05-15T23:59:59.000Z

    strategies to meet these requirements. The primary objective of this work is to analyze alternatives for producing ULSD. In addition to the conventional approach of revamping existing hydrotreating facilities, the option of blending petrodiesel with biodiesel...

  14. Study of Performance Characteristics of Diesel Engine Fuelled with Diesel, Yellow Grease Biodiesel and its Blends

    E-Print Network [OSTI]

    Virender Singh; Shubham Saxena; Shibayan Ghosh; Ankit Agrawal

    Abstract ó The feedstock used in our experiment for the production of biodiesel was Yellow Grease. The whole experiment was divided into two parts: Production and Testing. Production involves Transesterification of free fatty acids in yellow grease to form yellow grease alkyl esters. The process of testing involved calculation of the physio Ė chemical properties, acid value, density, kinematics viscosity and various performance characteristics. The properties obtained were similar to the standards of biodiesel set by ASTM D6751. The conclusions derived from the experiments conducted were that the break thermal efficiency with biodiesel blends was little lower than that of diesel. The break specific energy consumption for B20, B40, B60, B80 and B100 is slightly higher than neat diesel. At all loads, diesel was found to have the lowet exhaust tempearture and the temperature for the different blends showed the upward trend with increasing concentration of biodiesel in the blends.

  15. Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

    SciTech Connect (OSTI)

    Eseller, Kemal E.; Yueh, Fang Y.; Singh, Jagdish P

    2008-11-01T23:59:59.000Z

    Laser-induced breakdown spectroscopy (LIBS) has been applied to measure the equivalence ratio of CH4/air flames using gated detection. In this work, we have developed an ungated, miniature LIBS-based sensor for studying CH4/air and biodiesel flames. We have used this sensor to characterize the biodiesel flame. LIBS spectra of biodiesel flames were recorded with different ethanol concentrations in the biodiesel and also at different axial locations within the flame. The sensor performance was evaluated with a CH4/air flame. LIBS signals of N, O, and H from a CH4/air flame were used to determine the equivalence ratio. A linear relationship between the intensity ratio of H and O lines and the calculated equivalence ratio were obtained with this sensor.

  16. Application of Real Options Analysis in the Valuation of Investment in Biodiesel Production

    E-Print Network [OSTI]

    Yeboah, F. E.; Shahbazi, A.; Yeboah, O.A.; Singh, H.; Holcomb, F. H.

    2011-01-01T23:59:59.000Z

    to value investment projects that have flexibility in them tend to underestimate the values of the projects, because they fail to capture the value of the flexibility embedded in such projects. For biodiesel production, such flexibility may include...

  17. Life-Cycle Assessment of the Use of Jatropha Biodiesel in Indian Locomotives (Revised)

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2009-03-01T23:59:59.000Z

    With India's transportation sector relying heavily on imported petroleum-based fuels, the Planning Commission of India and the Indian government recommended the increased use of blended biodiesel in transportation fleets, identifying Jatropha as a potentially important biomass feedstock. The Indian Oil Corporation and Indian Railways are collaborating to increase the use of biodiesel blends in Indian locomotives with blends of up to B20, aiming to reduce GHG emissions and decrease petroleum consumption. To help evaluate the potential for Jatropha-based biodiesel in achieving sustainability and energy security goals, this study examines the life cycle, net GHG emission, net energy ratio, and petroleum displacement impacts of integrating Jatropha-based biodiesel into locomotive operations in India. In addition, this study identifies the parameters that have the greatest impact on the sustainability of the system.

  18. Effects of Biodiesel Operation on Light-Duty Tier 2 Engine and Emission Control Systems: Preprint

    SciTech Connect (OSTI)

    Tatur, M.; Nanjundaswamy, H.; Tomazic, D.; Thornton, M.

    2008-08-01T23:59:59.000Z

    This paper documents the impact of biodiesel blends on engine-out emissions as well as overall system performance in terms of emissions control system calibration and overall system efficiency.

  19. Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel

    E-Print Network [OSTI]

    Foucault, Lucas Jose

    2011-10-21T23:59:59.000Z

    The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors...

  20. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NO x Using Cu-zeolite D. William Brookshear 1 , Todd J. Toops 2 , William Rohr 1 , Ke Nguyen 1 , and Bruce G....

  1. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01T23:59:59.000Z

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  2. Novel Solid Base Catalysts for the Production of Biodiesel from Lipids

    E-Print Network [OSTI]

    Zhao, Lina

    2010-12-17T23:59:59.000Z

    The primary commercial biodiesel production processes use homogeneous base catalysts which cause separation and wastewater discharge problems. Solid base catalysts can overcome these drawbacks. However, a solid base catalyst with high activity...

  3. Galib, ďBiodiesel from jatropha oil as an alternative fuel for diesel engine

    E-Print Network [OSTI]

    Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

    Abstract ó The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

  4. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22T23:59:59.000Z

    Increasing fuel prices, stricter government policies, and technological developments made it possible to seek for renewable alternatives, called biofuels, to petroleum fuel. Biodiesel, a biofuel that is produced from chemically mixing animal fat...

  5. A numerical study comparing the combustion and emission characteristics of biodiesel with petrodiesel.

    SciTech Connect (OSTI)

    Som, S.; Longman, D. (Energy Systems)

    2011-04-01T23:59:59.000Z

    Combustion and emission characteristics of compression ignition engines strongly depend upon inner-nozzle flow and spray behavior. These processes control the fuel-air mixing, which in turn is critical for the combustion process. Previous studies by us highlighted the differences in the physical and chemical properties of petrodiesel and biodiesel, which significantly altered the inner-nozzle flow and spray structure. The current study is another step in this direction to gain a fundamental understanding on the influence of fuel properties on the combustion and emission characteristics of the compression ignition engine. n-Heptane and methyl butanoate were selected as surrogates for diesel and biodiesel fuels, respectively, because the chemical kinetic pathways were well-understood. Liquid length and flame lift-off length for diesel and biodiesel fuels were validated against data available in the literature. Liquid lengths were always higher for biodiesel because of its higher heat of vaporization, which resulted in increased interplay between spray and combustion processes under all conditions investigated. Ambient air entrainment was also lower for biodiesel mainly because of slower atomization and breakup. The mechanism for flame stabilization is further analyzed by estimating the turbulent burning velocity for both of the fuels. This analysis revealed that neither flame propagation nor isolated ignition kernels upstream and detached from high-temperature regions can be the mechanism for flame stabilization. Flame propagation speeds were observed to be similar for both fuels. Biodiesel predicted lower soot concentrations, which were also reflected in reduced C{sub 2}H{sub 2} mole fractions. Although prompt NO{sub x} was higher for biodiesel, total NO{sub x} was lower because of reduced thermal NO{sub x}. The ignition delay and NO{sub x} emissions predicted by these simulations do not agree with trends reported in the literature; hence, this study highlights the need for better fuel surrogates for diesel and biodiesel fuels.

  6. Wachs Cutter Tooling Station (4495)

    Broader source: Energy.gov (indexed) [DOE]

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  7. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01T23:59:59.000Z

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  8. Exploration of Novel Fuels for Gas Turbine (ENV-406) Modeling of T60 Test Rig with Diesel & Biodiesel Fuels

    E-Print Network [OSTI]

    & Biodiesel Fuels M√©moire Mina Youssef Ma√ģtrise en g√©nie m√©canique Ma√ģtre √®s sciences (M.Sc.) Qu√©bec, Canada de biodiesel B20. La matrice de test num√©rique constitue de quatre cas d'√©coulement r√©actifs c to simulate the liquid combustion of conventional and non- conventional biodiesel fuels, in particularly the B

  9. Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel

    E-Print Network [OSTI]

    Frey, H. Christopher

    06-1078 Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel was tested for one day on B20 biodiesel and for one day on petroleum diesel. On average, there were 4.5 duty

  10. A Numerical Investigation into the Anomalous Slight NOx Increase when Burning Biodiesel: A New (Old) Theory

    SciTech Connect (OSTI)

    Ban-Weiss, G A; Chen, J Y; Buchholz, B A; Dibble, R W

    2007-01-30T23:59:59.000Z

    Biodiesel is a notable alternative to petroleum derived diesel fuel because it comes from natural domestic sources and thus reduces dependence on diminishing petroleum fuel from foreign sources, it likely lowers lifecycle greenhouse gas emissions, and it lowers an engine's emission of most pollutants as compared to petroleum derived diesel. However, the use of biodiesel often slightly increases a diesel engine's emission of smog forming nitrogen oxides (NO{sub x}) relative to petroleum diesel. In this paper, previously proposed theories for this slight NOx increase are reviewed, including theories based on biodiesel's cetane number, which leads to differing amounts of charge preheating, and theories based on the fuel's bulk modulus, which affects injection timing. This paper proposes an additional theory for the slight NO{sub x} increase of biodiesel. Biodiesel typically contains more double bonded molecules than petroleum derived diesel. These double bonded molecules have a slightly higher adiabatic flame temperature, which leads to the increase in NOx production for biodiesel. Our theory was verified using numerical simulations to show a NOx increase, due to the double bonded molecules, that is consistent with observation. Further, the details of these numerical simulations show that NOx is predominantly due to the Zeldovich mechanism.

  11. Continuous Production of Biodiesel Via an Intensified Reactive/Extractive Process

    SciTech Connect (OSTI)

    Tsouris, Costas [ORNL] [ORNL; McFarlane, Joanna [ORNL] [ORNL; Birdwell Jr, Joseph F [ORNL] [ORNL; Jennings, Hal L [ORNL] [ORNL

    2008-01-01T23:59:59.000Z

    Biodiesel is considered as a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. For a number of reasons ranging from production issues to end use, biodiesel represents only a small fraction of the transportation fuel used worldwide. This work addresses the aspect of biodiesel production that limits it to a slow batch process. Conventional production methods are batch in nature, based on the assumption that the rates of the key chemical reactions are slow. The hypothesis motivating this work is that the reaction kinetics for the transesterification of the reagent triglyceride is sufficiently fast, particularly in an excess of catalyst, and that interfacial mass transfer and phase separation control the process. If this is the case, an intensified two-phase reactor adapted from solvent extraction equipment may be utilized to greatly increase biodiesel production rates by increasing interphase transport and phase separation. To prove this idea, we are investigating two aspects: (1) determining the rate-limiting step in biodiesel production by evaluating the reaction kinetics, and (2) enhancing biodiesel production rates by using an intensified reactor. A centrifugal contactor combining interphase mass transfer, chemical reaction, and phase separation is employed for process intensification.

  12. alternative fueling station: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 5, 1206712102, 2005 Alternative fuel...

  13. Fuel Station Procedure Applicability All

    E-Print Network [OSTI]

    Moore, Paul A.

    Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

  14. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  15. Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper Science and Technology; Georgia Institute of Technology, Atlanta, GA.

    E-Print Network [OSTI]

    Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper lignocellulosics to biodiesel fuel Feedstocks ABSTRACT This poster examines the potential of utilizing waste paper CelluloseHemicelluloseLigninResource Cracking and Refining of Polysaccharides Bio-Diesel Substitutes

  16. Biodiesel: a case study of the impact of new rules regarding the classification and labelling of physical and chemical properties of chemicals

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Biodiesel: a case study of the impact of new rules regarding the classification and labelling.janes@ineris.fr, guy.marlair@ineris.fr, patricia.rotureau@ineris.fr 1. Introduction Biodiesel and any co-products or intermediate chemicals produced and used from the biodiesel industry fall under the scope of the regulation

  17. future science group 479ISSN 1759-726910.4155/BFS.12.35 2012 Future Science Ltd Biodiesel production involves the transesterification of

    E-Print Network [OSTI]

    He, Brian

    future science group 479ISSN 1759-726910.4155/BFS.12.35 © 2012 Future Science Ltd Biodiesel the mass transfer Application of ultrasonication in transesterification processes for biodiesel production Brian He* & Jon H Van Gerpen In biodiesel production, adequate mixing is required to create sufficient

  18. Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network

    E-Print Network [OSTI]

    Nicholas, Michael A; Ogden, Joan M

    2007-01-01T23:59:59.000Z

    of a Fossil Fuel-Based Hydrogen Infrastructure with Carbonexpensive, then a hydrogen infrastructure would be postponedto the future hydrogen infrastructure. People will refuel at

  19. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect (OSTI)

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03T23:59:59.000Z

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  20. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  1. Stations; A Multimedia Performance for Eight Players

    E-Print Network [OSTI]

    Giracello, Robert Francis

    2010-01-01T23:59:59.000Z

    RIVERSIDE Stations; A Multimedia Performance for EightDISSERTATION Stations; A Multimedia Performance for Eightthe tragic drama in a multimedia theater environment. Table

  2. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  3. 95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    E-Print Network [OSTI]

    Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65įC reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  4. BIODIESEL AS AN ALTERNATE FUEL FOR POLLUTION CONTROL IN DIESEL ENGINE

    E-Print Network [OSTI]

    Mr. Paresh K. Kasundra; Prof Ashish; V. Gohil

    Diesel vehicles are the major source for air pollution; there is great potential for global warming due to discharge of greenhouse gases like CO2 from vehicles. Many lung problems are connected with particulate matter emitted by diesel vehicle including dust, soot and smoke. People are exposed to pollution even as they talk or when stir up the dust when they walk. Biodiesel is a non-toxic, biodegradable and renewable fuel. Compared to diesel fuel, biodiesel produces no sulfur, no net carbon dioxide, less carbon monoxide and more oxygen. More free oxygen leads to the complete combustion and reduced emission. Overall biodiesel emissions are very less compared to diesel fuel emissions which is promising pollution free environment. Abundant source of vegetable oil in India and its ease of conversion to biodiesel help to save large expenditure done on import of petroleum products and economic growth of country. Biodiesel also generates huge rural employment and degraded lands can be restored due to plantation of oil plants which help in reducing pollution. Extensive research is going on in different countries on different types of vegetable oils like sunflower oil, karanj oil, linseed oil, soya been oil, palm oil, and many more, which can be used in those countries as per availability, our research is in progress on CNSL and its blend with diesel, research is going on in right direction and likely to get surprising

  5. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect (OSTI)

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua [Department of Mechanical Engineering, National Taiwan University, Taipei 10617 (China)

    2009-10-15T23:59:59.000Z

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  6. Celilo Converter Station - October 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asbestos has been removed from the station. Old, noisy, maintenance-in- tensive air-cooling has been replaced with an effi - cient, closed loop water-cooled system. Chemical...

  7. Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine

    E-Print Network [OSTI]

    Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

    Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

  8. Biodiesel Production From Animal Fats And Its Impact On The Diesel Engine With Ethanol-Diesel Blends: A Review

    E-Print Network [OSTI]

    Darunde Dhiraj S; Prof Deshmukh Mangesh M

    Abstract ó Mainly animal fats and vegetable oils are used for the production of biodiesel. Several types of fuels can be derived from triacylglycerol-containing feedstock. Biodiesel which is defined as the mono-alkyl esters of vegetable oils or animal fats. Biodiesel is produced by transesterifying the oil or fat with an alcohol (methanol/ethanol) under mild conditions in the presence of a base catalyst. This paper discuses fuel production, fuel properties, environmental effects including exhaust emissions and co-products. This also describes the use of glycerol which is the by-product in esterification process along with biodiesel. The impact of blending of biodiesel with ethanol and diesel on the diesel engine has described.

  9. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect (OSTI)

    Toulson, Dr. Elisa [Michigan State University, East Lansing; Allen, Casey M [Michigan State University, East Lansing; Miller, Dennis J [Michigan State University, East Lansing; McFarlane, Joanna [ORNL; Schock, Harold [Michigan State University, East Lansing; Lee, Tonghun [Michigan State University, East Lansing

    2011-01-01T23:59:59.000Z

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  10. The Hydrogen Infrastructure Transition Model (HIT) & Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, J; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  11. The Hydrogen Infrastructure Transition (HIT) Model and Its Application in Optimizing a 50-year Hydrogen Infrastructure for Urban Beijing

    E-Print Network [OSTI]

    Lin, Zhenhong; Ogden, Joan M; Fan, Yueyue; Sperling, Dan

    2006-01-01T23:59:59.000Z

    gas steam reformers located at refueling stations) to centralized production of hydrogen with pipeline distribution.

  12. imulation und Optimierung der Standort- und Kapazit®atsauswahl in der Planung von Ladeinfrastruktur fur batterieelektrische Fahrzeug?otten

    E-Print Network [OSTI]

    Siefen, Kostja

    2012-01-01T23:59:59.000Z

    design of refueling station infrastructure for alternative fuel vehicles. Computers & Chemical Engineering,

  13. Biodiesel from aquatic species. Project report: FY 1993

    SciTech Connect (OSTI)

    Brown, L.M.; Sprague, S.; Jarvis, E.E.; Dunahay, T.G.; Roessler, P.G.; Zeiler, K.G.

    1994-01-01T23:59:59.000Z

    Researchers in the Biodiesel/Aquatic Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. It is estimated that 150 to 400 barrels of oil per acre per year (0.06 to 0.16 million liters/hectar) could be produced with microalgal oil technology. Initial commercialization of this technology is envisioned for the desert Southwest because this area provides high solar radiation and offers flat land that has few competing uses (hence low land costs). Similarly, there are large saline aquifers with few competing uses in the region. This water source could provide a suitable, low-cost medium for the growth of many microalgae. The primary area of research during FY 1993 was the effort to genetically improve microalgae in order to control the timing and magnitude of lipid accumulation. Increased lipid content will have a direct effect on fuel price, and the control of lipid content is a major project goal. The paper describes progress on the following: culture collection; molecular biology of lipid biosynthesis; microalgal transformation; and environmental, safety, and health and quality assurance.

  14. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Lewis Sr, Samuel Arthur [ORNL; Lee, Doh-Won [ORNL; Huff, Shean P [ORNL; Storey, John Morse [ORNL; Swartz, Matthew M [ORNL; Wagner, Robert M [ORNL

    2009-01-01T23:59:59.000Z

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  15. ALKALI Ė CATALYSED PRODUCTION OF BIODIESEL FUEL FROM NIGERIAN CITRUS SEEDS OIL

    E-Print Network [OSTI]

    unknown authors

    The potential of oil extracted from the seeds of three different Nigerian citrus fruits for biodiesel production was investigated. Fatty acid alkyl esters were produced from orange seed oil, grape seed oil and tangerine seed oil by transesterification of the oils with ethanol using potassium hydroxide as a catalyst. In the conversion of the citrus seed oils to alkyl esters (biodiesel), the grape seed oil gave the highest yield of 90.6%, while the tangerine seed oil and orange seed oil gave a yield of 83.1 % and 78.5%, respectively. Fuel properties of the seed oil and its biodiesel were determined. The results showed that orange seed oil had a density of 730 Kg/m 3, a viscosity of 36.5 mm 2 /s, and a pour point of- 14 o C; while its biodiesel fuel had a density of 892 Kg/m 3, a viscosity of 5.60 mm 2 /s, and a pour point of- 25 o C. Grape seed oil had a density of 675 Kg/m 3, a viscosity of 39.5 mm 2 /s, and a pour point of- 12 o C, while its biodiesel fuel had a density of 890 Kg/m 3, a viscosity of 4.80 mm 2 /s, and a pour point of- 22 o C. Tangerine seed oil had an acid value of 1.40 mg/g, a density of 568 Kg/m 3, a viscosity of 37.3 mm 2 /s, and a pour point of- 15 o C, while its biodiesel fuel had an acid value of 0.22 mg/g, a density of 895 Kg/m 3, a viscosity of 5.30 mm 2 /s, and a pour point of- 24 o C.

  16. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01T23:59:59.000Z

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  17. STUDY OF BIODIESEL AS A FUEL FOR CI ENGINES AND ITS ENVIRONMENTAL EFFECTS: A RESEARCH REVIEW Mukesh Kumar 1

    E-Print Network [OSTI]

    Onkar Singh

    Biodiesel will play an increasing role in fulfilling the worldís energy requirement. The world has experienced negative effect from the fossil fuel such as global warming and acid rain etc. With the increase in consumption of biodiesel, its impact on environment has raised a discussion around the world. Energy requirement of the world will increase in coming future and is projected to increase by 50 % from 2005 to 2030. The paper presents the results of biodiesel combustion emission on the environment. A review of literature available in the field of vegetable oil usage has identified many advantages. Vegetable oil is produced domestically which helps to reduce costly petroleum imports, it is biodegradable, nontoxic, contains low aromatics and sulphur and hence, is environment friendly. The biodiesel shows no obvious NOx emission difference from the pure diesel fuel at low and medium engine loads. Biodiesel blend ratios have little effect on the NO/NOx ratio at medium and high engine loads. The CO emission of biodiesel increases at low engine loads. The HC emissions show a continuous reduction with increasing biodiesel blend ratios. There is a good correlation between smoke reduction and the ratio of the biodiesel blends. The addition of biodiesel fuel increases formaldehyde emission. A series of engine tests, with and without preheating have been conducted using each of the above fuel blends for comparative performance evaluation. The results of the experiment in each case were compared with baseline data of diesel fuel. Significant improvements have been observed in the performance parameters of the engine as well as exhaust emissions, when lower blends of karanja oil were used with preheating and also without preheating. Karanja oil blends with diesel (up to K50) without preheating as well as with preheating, can replace diesel for operating the CI engines.

  18. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  19. LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station

    E-Print Network [OSTI]

    Ohta, Shigemi

    Beamline CapabilitiesBeamline Capabilities Sector 12-ID. Poster updated March 2014. #12;LIQUIDSLIQUIDS GISAXSGISAXSGISAXS/WAXS station: * Energy range: 2.1 to 24 keV * Low divergence mode: * Energy range: 6.5 to 24 keV * Beam focus:

  20. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    SciTech Connect (OSTI)

    Kerry L. Nisson

    2012-10-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, ďTechnical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.Ē

  1. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock†

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22T23:59:59.000Z

    , vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean...

  2. Advantages of Biofuels B100 biodiesel has many benefits over traditional, petroleum-based

    E-Print Network [OSTI]

    Advantages of Biofuels B100 biodiesel has many benefits over traditional, petroleum-based diesel-produced biofuels. Environmental & Social Benefits Decreases emissions of fossil fuels that contribute to climate-powered vessel fleet to biofuels and bio-lubricants. This effort produced the first federal vessel to run

  3. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

    E-Print Network [OSTI]

    Minnesota, University of

    Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels Jason for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain inputs and more efficient conversion of feed- stocks to fuel. Neither biofuel can replace much petroleum

  4. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01T23:59:59.000Z

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  5. Emissions comparison between petroleum diesel and biodiesel in a medium-duty diesel engine

    E-Print Network [OSTI]

    Tompkins, Brandon T.

    2009-05-15T23:59:59.000Z

    Biofuels have become very important topics over the past decade due to the rise in crude oil prices, fear of running out of crude oil, and environmental impact of emissions. Biodiesel is a biofuel that is made from plant seed oils, waste cooking...

  6. Analysis of Biodiesel Blends Samples Collected in the United States in 2008 (Revised)

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; McCormick, R. L.

    2010-12-01T23:59:59.000Z

    NREL sampled and tested the quality of U.S. B20 (20% biodiesel, 80% petroleum diesel) in 2008; 32 samples from retail locations and fleets were tested against a proposed ASTM D7467 B6-B20 specification, now in effect.

  7. Optimum Requirements for the Synthesis of Biodiesel Using Fatty Acid Distillates

    E-Print Network [OSTI]

    Akunna E. Ejele

    The optimum requirements of temperature, retention time, mole ratio of reactants and catalyst for the direct synthesis of biodiesel from fatty acid distillates of palm kernel oil using tetraoxosulphate (VI) acid as catalyst was studied. The following parameters were used for the efficient and economic production of biodiesel: eight (8) moles of methanol per mole of fatty acid, 0.06 mole of tetraoxosulphate (VI) acid per mole of fatty acid, a retention time of sixty (60) minutes and reaction temperature of 65 OC. And this gave a maximum percentage yield of 98.4. Other parameters obtained include: an acid value of 0.1683 mg KOH/g, iodine value of 15.3549, flash point of 209 OC, viscosity of 3.7957 mm2s-1, density of 0.8776 g cm-3, water content of 400.05 mg kg-1, soap content of 2.30 mg/kg, and ester content of 98.804 %. From the obtained parameters, the biodiesel produced from fatty acid distillates of palm kernel oil reaches prescribed international standards for biodiesel production.

  8. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01T23:59:59.000Z

    The National Energy Technology Laboratoryís Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, inĖhouse patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

  9. Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

    SciTech Connect (OSTI)

    Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

    2008-01-01T23:59:59.000Z

    This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

  10. Comparison of Simulated and Experimental Combustion of Biodiesel Blends in a Single Cylinder Diesel HCCI Engine

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; McFarlane, Joanna [ORNL; Bunting, Bruce G [ORNL

    2007-01-01T23:59:59.000Z

    The effect of biodiesel content on homogeneous charge compression ignition (HCCI) engine performance has been investigated both experimentally and by computer simulation. Combustion experiments were performed in a single cylinder HCCI engine using blends of soy biodiesel in ultra low sulfur diesel, with concentrations ranging from 0 to 50 vol% and equivalence ratios ( ) from 0.38 to 0.48. Data from the engine tests included combustion analysis and exhaust composition analysis with standard gaseous emissions equipment. The engine utilized a custom port fuel injection strategy to provide highly premixed charges of fuel and air, making it possible to compare the results with single zone chemical kinetics simulations that were performed using CHEMKIN III, with a reaction set including 670 species and over 3000 reactions. The reaction mechanism incorporated equations for the combustion of a paraffinic fuel, n-heptane, and an oxygenated component, methyl butanoate, as well as reactions for the formation of NOx. The zero-dimensional model did a reasonably good job of predicting the HCCI combustion event, correctly predicting intake temperature effects on the phasing of both low temperature heat release (LTHR) and the main combustion event. It also did a good job of predicting the magnitude of LTHR. Differences between the simulation and experimental data included the dependence on biodiesel concentration and the duration of both LTHR and the main combustion event. The probable reasons for these differences are the changing derived cetane number (DCN) of the model fuel blend with biodiesel concentration, and the inability of the model to account for stratification of temperature and . The simulation also showed that concentrations of intermediate species produced during LTHR are dependent on the magnitude of LTHR, but otherwise the addition of biodiesel has no discernable effect.

  11. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine†

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  12. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels†

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes...

  13. Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel Engine

    E-Print Network [OSTI]

    Song, Hoseok

    2012-07-16T23:59:59.000Z

    Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth...

  14. Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations- SAE 2008-01-1378

    SciTech Connect (OSTI)

    Brakora, Jessica L [ORNL; Ra, Youngchul [ORNL; Reitz, Rolf [University of Wisconsin; McFarlane, Joanna [ORNL; Daw, C Stuart [ORNL

    2008-01-01T23:59:59.000Z

    In the present study a skeletal chemical reaction mechanism for biodiesel surrogate fuel was developed and validated for multi-dimensional engine combustion simulations. The reduced mechanism was generated from an existing detailed methyl butanoate oxidation mechanism containing 264 species and 1219 reactions. The reduction process included flux analysis, ignition sensitivity analysis, and optimization of reaction rate constants under constant volume conditions. The current reduced mechanism consists of 41 species and 150 reactions and gives predictions in excellent agreement with those of the comprehensive mechanism. In order to validate the mechanism under biodiesel-fueled engine conditions, it was combined with another skeletal mechanism for n-heptane oxidation. This combined reaction mechanism, ERC-Bio, contains 53 species and 156 reactions, which can be used for diesel/biodiesel blend engine simulations. Biodiesel-fueled engine operation was successfully simulated using the ERC-Bio mechanism.

  15. Operational and policy implications of managing uncertainty in quality and emissions of multi-feedstock biodiesel systems

    E-Print Network [OSTI]

    GŁl?en, Ece

    2012-01-01T23:59:59.000Z

    As an alternative transportation fuel to petrodiesel, biodiesel has been widely promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of ...

  16. Investigation of the Difference in Cool Flame Characteristics between Petroleum Diesel and Soybean Biodiesel Operating in Low Temperature Combustion Mode

    E-Print Network [OSTI]

    Muthu Narayanan, Aditya

    2014-01-16T23:59:59.000Z

    . The focus of this study is to investigate the difference in the cool flame combustion characteristics between petroleum diesel and soybean biodiesel, when operating in low temperature combustion mode. Previous studies have attributed the absence of the cool...

  17. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  18. 7.1.1. Fernbahnhof / Rail Station

    E-Print Network [OSTI]

    Berlin,Technische Universitšt

    Fernbahnhofs 7.1.1.4.5 Kšlteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

  19. Technical data HMS 760 X -36 stations

    E-Print Network [OSTI]

    Shoubridge, Eric

    water/rinse stations - 2 dry stations / or 2 pressure controlled DI stations - 60 slides per basket - 1. - Simultaneous multiple program execution for several programs. - Carriers for up to 2 slide baskets with 30 downwards ventilation flow and active charcoal filter. - Permanent program memory for more than 50 different

  20. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect (OSTI)

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N. (Nu-Energie, LLC); Hullette, J.N. (Nu-Energie, LLC)

    2009-09-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate ports. Results from laboratory operations showed that the ASTM specification for bound acylglycerides was achieved only at extended reaction times ({approx}25 min) using a single-stage batch contact at elevated temperature and pressure. In the single-pass configuration, the time required gives no throughput advantage over the current batch reaction process. The limitation seems to be the presence of glycerine, which hinders complete conversion because of reversible reactions. Significant improvement in quality was indicated after a second and third passes, where product from the first stage was collected and separated from the glycerine, and further reacted with a minor addition of methanol. Chemical kinetics calculations suggest that five consecutive stages of 2 min residence time would produce better than ASTM specification fuel with no addition of methanol past the first stage. Additional stages may increase the capital investment, but the increase should be offset by reduced operating costs and a factor of 3 higher throughput. Biodiesel, a mixture of methyl esters, is made commercially from the transesterification of oil, often soy oil (see Reaction 1). The kinetics of the transesterification process is rapid; however, multiphase separations after the synthesis of the fuel can be problematic. Therefore, the process is typically run in batch mode. The biodiesel fuel and the glycerine product take several hours to separate. In addition, to push yields to completion, an excess of methoxide catalyst is typically used, which has to be removed from both the biodiesel and the glycerine phase after reaction. Washing steps are often employed to remove free fatty acids, which can lead to undesirable saponification. Standards for biodiesel purity are based either on the removal of contaminants before the oil feedstock is esterified or on the separation of unwanted by-products. Various methods have been examined to enhance either the pretreatment of biodiesel feedstocks or the posttreatment of reaction products, including the use of a cavitation reactor in the process i

  1. Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStation Locations to someone

  2. Methods and catalysts for making biodiesel from the transesterification and esterification of unrefined oils

    SciTech Connect (OSTI)

    Yan, Shuli (Detroit, MI); Salley, Steven O. (Grosse Pointe Park, MI); Ng, K. Y. Simon (West Bloomfield, MI)

    2012-04-24T23:59:59.000Z

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system according to one aspect of the present disclosure represents a class of zinc and lanthanum oxide heterogeneous catalysts that include different ratios of zinc oxide to lanthanum oxides (Zn:La ratio) ranging from about 10:0 to 0:10. The Zn:La ratio in the catalyst is believed to have an effect on the number and reactivity of Lewis acid and base sites, as well as the transesterification of glycerides, the esterification of fatty acids, and the hydrolysis of glycerides and biodiesel.

  3. Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

    SciTech Connect (OSTI)

    He, X.; Williams, A.; Christensen, E.; Burton, J.; McCormick, R.

    2011-12-01T23:59:59.000Z

    Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.

  4. Dubuque generation station, Dubuque, Iowa

    SciTech Connect (OSTI)

    Peltier, R.

    2008-10-15T23:59:59.000Z

    Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

  5. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged In You|DidYouKnowStation Hanford

  6. State Energy Alternatives: Alternative Energy Resources by State

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This U.S. map provides state by state information on incentives and laws related to alternative fuels and advanced vehicles. Discover what's available in each state for innovation grants, infrastructure grants, and production grants and who to contact. Find out how many alternative refueling stations are available in each state and where they are. Tennessee, for example, in 2009, has 114 alternative refueling stations: 36 biodiesel, 1 electrical, 29 ethanol, 4 natural gas, and 44 propane. There are also 5 Truck Stop Electrification (TSE) sites in Tennessee. Users can also find out from this map interface the contacts for Clean Cities in a state, information about renewable energy projects and activities in each state, fuel prices across a state, and biomass potential resources and current production in each state.

  7. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect (OSTI)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01T23:59:59.000Z

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  8. A Holistic Approach to Safety Assessment in the Life Cycle of Biodiesel Industry†

    E-Print Network [OSTI]

    El-Said, Marwa H

    2014-12-02T23:59:59.000Z

    , biodiesel, bio-oil, biohydrogen, syngas, etc. The Secondary biofuels are often categorized into first, second, and third generations based on the type of raw materials involved and the applied conversion mechanisms or process technologies (Nigam and Singh... dramatically engine exhaust emissions when combusted as carbon monoxide (CO) emissions by 46.7%, particulate matter emissions by 66.7% and unburned hydrocarbons by 45.2% compared to petro-diesel. It is non-toxic which makes it beneficial for transportation...

  9. St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report

    SciTech Connect (OSTI)

    Barnitt, R.; McCormick, R. L.; Lammert, M.

    2008-07-01T23:59:59.000Z

    The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

  10. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01T23:59:59.000Z

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  11. Research Article In Situ Biodiesel Production from Fast-Growing and High Oil

    E-Print Network [OSTI]

    Content Chlorella; Rice Straw Hydrolysate; Penglin Li; Xiaoling Miao; Rongxiu Li; Jianjiang Zhong

    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Rice straw hydrolysate was used as lignocellulose-based carbon source for Chlorella pyrenoidosa cultivation and the feasibility of in situ biodiesel production was investigated. 13.7 g/L sugar was obtained by enzymatic hydrolyzation of rice straw. Chlorella pyrenoidosa showed a rapid growth in the rice straw hydrolysate medium, the maximum biomass concentration of 2.83 g/L was obtained in only 48 hours. The lipid content of the cells reached as high as 56.3%. In situ transesterification was performed for biodiesel production. The optimized condition was 1 g algal powder, 6 mL n-hexane, and 4 mL methanol with 0.5 M sulfuric acid at the temperature of 90 ? C in 2-hour reaction time, under which over 99 % methyl ester content and about 95 % biodiesel yield were obtained. The results suggested that the method has great potential in the production of biofuels with lignocellulose as an alternative carbon source for microalgae cultivation. 1.

  12. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect (OSTI)

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01T23:59:59.000Z

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  13. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30T23:59:59.000Z

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  14. Quality Parameters and Chemical Analysis for Biodiesel Produced in the United States in 2011

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; Chupka, G.

    2013-03-01T23:59:59.000Z

    Samples of biodiesel (B100) from producers and terminals in 2011were tested for critical properties: free and total glycerin, flash point, cloud point, oxidation stability, cold soak filterability, and metals. Failure rates for cold soak filterability and oxidation stability were below 5%. One sample failed flash point due to excess methanol. One sample failed oxidation stability and metal content. Overall, 95% of the samples from this survey met biodiesel quality specification ASTM D6751. In 2007, a sampling of B100 from production facilities showed that nearly 90% met D6751. In samples meeting D6751, calcium was found above the method detection limit in nearly half the samples. Feedstock analysis revealed half the biodiesel was produced from soy and half was from mixed feedstocks. The saturated fatty acid methyl ester concentration of the B100 was compared to the saturated monoglyceride concentration as a percent of total monoglyceride. The real-world correlation of these properties was very good. The results of liquid chromatograph measurement of monoglycerides were compared to ASTM D6751. Agreement between the two methods was good, particularly for total monoglycerides and unsaturated monoglycerides. Because only very low levels of saturated monoglycerides measured, the two methods had more variability, but the correlation was still acceptable.

  15. Final report on LDRD project : biodiesel production from vegetable oils using slit-channel reactors.

    SciTech Connect (OSTI)

    Kalu, E. Eric (FAMU-FSU College of Engineering, Tallahassee, FL); Chen, Ken Shuang

    2008-01-01T23:59:59.000Z

    This report documents work done for a late-start LDRD project, which was carried out during the last quarter of FY07. The objective of this project was to experimentally explore the feasibility of converting vegetable (e.g., soybean) oils to biodiesel by employing slit-channel reactors and solid catalysts. We first designed and fabricated several slit-channel reactors with varying channel depths, and employed them to investigate the improved performance of slit-channel reactors over traditional batch reactors using a NaOH liquid catalyst. We then evaluated the effectiveness of several solid catalysts, including CaO, ZnO, MgO, ZrO{sub 2}, calcium gluconate, and heteropolyacid or HPA (Cs{sub 2.5}H{sub 0.5}PW{sub 12}O{sub 40}), for catalyzing the soybean oil-to-biodiesel transesterification reaction. We found that the slit-channel reactor performance improves as channel depth decreases, as expected; and the conversion efficiency of a slit-channel reactor is significantly higher when its channel is very shallow. We further confirmed CaO as having the highest catalytic activity among the solid catalysts tested, and we demonstrated for the first time calcium gluconate as a promising solid catalyst for converting soybean oil to biodiesel, based on our preliminary batch-mode conversion experiments.

  16. Cooking Up More Uses for the Leftovers of Biofuel Production -N... http://www.nytimes.com/2007/08/08/business/08biodiesel.html?ei=... 1 of 3 8/8/07 10:49 AM

    E-Print Network [OSTI]

    Kimbrough, Steven Orla

    /08/08/business/08biodiesel.html?ei=... 1 of 3 8/8/07 10:49 AM August 8, 2007 THE ENERGY CHALLENGE Cooking Up More grass. They will have found innovative uses for a byproduct of the production of biodiesel fuel, glycerol. This, in turn, could help transform the biodiesel industry into something that more closely

  17. Performance Evaluation and Analysis Consortium End Station |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    highlighting the "bucket" algorithm from UIUC. Credit: Leonid Oliker, Lawrence Berkeley National Laboratory Performance Evaluation and Analysis Consortium End Station PI Name:...

  18. Computational Optimization of Gas Compressor Stations: MINLP ...

    E-Print Network [OSTI]

    Daniel Rose

    2015-02-26T23:59:59.000Z

    Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper†...

  19. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  20. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  1. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  2. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  5. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  6. Sandia National Laboratories: Reference Station Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  7. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    station Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  8. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  9. (Hydrogen) Service Stations 101 Steven M. Schlasner

    E-Print Network [OSTI]

    (Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 #12;2 DISCLAIMER Opinions · Comparison of Conventional with Hydrogen Fueling Stations · Hydrogen Fueling Life Cycle · Practical Design,000 retail outlets (350 company-owned) in 44 states · Brands: Conoco, Phillips 66, 76 · 32,800 miles pipeline

  10. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect (OSTI)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24T23:59:59.000Z

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0√?¬?√?¬į BTDC to 10√?¬?√?¬į BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  11. Study of a transaugmented two-stage small circular-bore railgun for injection of hypervelocity hydrogen pellets as a fusion reactor refueling mechanism

    SciTech Connect (OSTI)

    Tompkins, M.W.; Anderson, M.A.; Feng, Q.; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States)] [Univ. of Illinois, Urbana, IL (United States)

    1997-01-01T23:59:59.000Z

    Injection of hypervelocity hydrogen pellets has become widely accepted as the most effective means of refueling magnetically confined fusion reactors. Pellet velocities on the order of 10 km/s are desired and hydrogen pellet erosion during acceleration must be minimized. It is important to maintain uniform bore surfaces during repetitive shots, implying that, if a railgun is to be used to accelerate the pellets, damage to the sidewalls and rails of the railgun due to local heating must be limited. In order to reduce the amount of power dissipated within the bore and increase the propulsive force generated by the plasma-arc armature while minimizing losses due to pellet, rail, and sidewall ablation, the authors have employed a magnetic field transaugmentation mechanism consisting of a two-turn pulsed electromagnet. The two-stage gun consists of a light-gas gun which accelerates a 4- to 5-mg pellet to a speed around 1.2 km/s and injects it into the plasma-arc armature railgun. Currently, they have achieved a final output velocity for a hydrogen pellet of 2.11 km/s with a time-averaged acceleration of 4,850 km/s{sup 2} using a 58-cm railgun pulsed with a peak rail current of 9.2 kA and 28.0 kA of transaugmentation current. This paper will present a description of the hydrogen-pellet-injector railgun system, a discussion of the data on hydrogen pellet acceleration, and projections for future systems.

  12. Air pollution study of Laredo Customs Station

    E-Print Network [OSTI]

    Welling, Vidyadhar Yeshwant

    1972-01-01T23:59:59.000Z

    to the General Services Admin1stration for improv1ng the air quality at the Laredo Customs Station. The study includes investigation conducted on the site at the Station and at the Environmental Wind Tunnel Facilities located on the main campus of Texas A... the accuracy of the scaled model with that of the actual station a complete survey of veloc1ty, pressure, temperature and video tape recordings were taken in Laredo. These results were then compared with those simulated in the wind tunnel. Good correlation...

  13. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    SciTech Connect (OSTI)

    Budnitz, R.J. [Future Resources Associates, Inc., Berkeley, CA (United States); Davis, P.R. [PRD Consulting (United States); Ravindra, M.K.; Tong, W.H. [EQE International, Inc., Irvine, CA (United States)

    1994-08-01T23:59:59.000Z

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.

  14. Sandia National Laboratories: More California Gas Stations Can...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More California Gas Stations Can Provide...

  15. air station north: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality monitoring station. Application to Physics Websites Summary: considered in the area of representativeness of differs from the station measurement by more than the given...

  16. Solution Methods for the Periodic Petrol Station Replenishment ...

    E-Print Network [OSTI]

    chefi

    2013-03-11T23:59:59.000Z

    The problem of planning petrol delivery to the distribution stations is well recognized in the Operations Research literature under the name of Petrol Station†...

  17. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  18. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  19. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATIONCann Please use the following citation for this report: Klein, Joel. 2009. Comparative Costs of California............................................................................................................................1 Changes in the Cost of Generation Model

  20. CASE CRITICAL The Navajo Generating Station

    E-Print Network [OSTI]

    Hall, Sharon J.

    Republic The Navajo Generating Station, the largest coal-fired power plant in the West, provides electrical-old plant, Arizona's largest single source of carbon pollution, needs to update its pollution controls. Join

  1. The College Station Residential Energy Compliance Code

    E-Print Network [OSTI]

    Claridge, D. E.; Schrock, D.

    1988-01-01T23:59:59.000Z

    The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

  2. Repowering of the Midland Nuclear Station

    E-Print Network [OSTI]

    Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

    1988-01-01T23:59:59.000Z

    The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility...

  3. CHARGING STATION FOR ELECTRIC VEHICLES GREEN PARKING

    E-Print Network [OSTI]

    Vellend, Mark

    CHARGING STATION FOR ELECTRIC VEHICLES P 3 P 3 P 6 GREEN PARKING UNIVERSIT… DE SHERBROOKE YELLOW (CAR-POOLING) PERMITS HOSPITAL PARKING PARKING-PERMIT DISPENSERS RESERVED DISABLED PARKING PLACES ONE

  4. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  5. ICCBT 2008 -F -(07) pp79-94 Palm Biodiesel an Alternative Green Renewable Energy for the

    E-Print Network [OSTI]

    Ducatelle, Frederick

    ICCBT 2008 - F - (07) ≠ pp79-94 ICCBT2008 Palm Biodiesel an Alternative Green Renewable Energy increased the interest on alternative energy sources. Clean and renewable biofuels have been touted as an alternative source of green renewable energy through a survey conducted from previously researched findings

  6. Process Simulation and Evaluation of Alternative Solvents for Jatropha Curcas L. Seed Oil Extraction in Biodiesel Production†

    E-Print Network [OSTI]

    Chiou, Ming-Hao

    2012-10-19T23:59:59.000Z

    Jatropha curcas L. is a drought-resistant plant which can be grown in poor soil and marginal lands. The use of Jatropha seed oil to produce biodiesel has been widely studied in recent years. Results showed that it is one of the most promising...

  7. Biodiesel Drives Florida Power & Light's EPAct Alternative Compliance Strategy; EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This success story highlights how Florida Power & Light Company has successfully complied with the Energy Policy Act of 1992 (EPAct) through Alternative Compliance using biodiesel technologies and how it has become a biofuel leader, reducing petroleum use and pollutant emissions throughout Florida.

  8. Process Simulation and Evaluation of Alternative Solvents for Jatropha Curcas L. Seed Oil Extraction in Biodiesel Production

    E-Print Network [OSTI]

    Chiou, Ming-Hao

    2012-10-19T23:59:59.000Z

    Jatropha curcas L. is a drought-resistant plant which can be grown in poor soil and marginal lands. The use of Jatropha seed oil to produce biodiesel has been widely studied in recent years. Results showed that it is one of the most promising...

  9. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-01-01T23:59:59.000Z

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C{sub 1}?C{sub 4} oxidation and NO{sub x} formation kinetics.

  10. Enhancement of CO2 and H2 Uptake for the Production of Biodiesel in Cupriavidus Necator

    SciTech Connect (OSTI)

    Sullivan, R. P.; Eckert, C. A.; Balzer, G. J.; Yu, J.; Maness, P. C.

    2012-01-01T23:59:59.000Z

    Cupriavidus necator fixes CO{sub 2} through the Calvin-Benson-Bassham (CBB) cycle using electrons and energy obtained from the oxidation of H{sub 2}. Producing biodiesel-equivalent electrofuel from renewable CO{sub 2} and H{sub 2} has immense potential, especially if the fuel is compatible with the existing fuel infrastructure. This research addressed enhanced substrate utilization by focusing on two strategies: (1) optimizing transcriptional regulations to afford over-expression of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme responsible for assimilation of CO{sub 2} into the CBB cycle; and (2) hydrogenase over-expression by introduction of additional copies of genes encoding a membrane-bound hydrogenase (MBH), a soluble hydrogenase (SH), and their maturation machinery to enhance oxidation of H{sub 2} to generate NAD(P)H and ATP required for CO{sub 2} fixation. Incorporation of these strategies into a single production strain resulted in 6-fold CO{sub 2} and 3-fold H{sub 2} uptake improvement, in vitro, with the overarching goal of providing abundant reducing equivalents towards the economic production of biodiesel in C. necator.

  11. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01T23:59:59.000Z

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: ē Direct normal shortwave (solar beam) ē Diffuse horizontal shortwave (sky) ē Global horizontal shortwave (total hemispheric) ē Upwelling shortwave (reflected) ē Downwelling longwave (atmospheric infrared) ē Upwelling longwave (surface infrared)

  12. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    SciTech Connect (OSTI)

    Hatcher, Patrick [Old Dominion University

    2012-03-29T23:59:59.000Z

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga speciesí ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.

  13. International Journal of Mechanical & Mechatronics IJMME-IJENS Vol: 10 No: 03 1 BIODIESEL FROM JATROPHA OIL AS AN ALTERNATIVE FUEL FOR DIESEL ENGINE

    E-Print Network [OSTI]

    Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

    AbstractóThe world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

  14. Biodiesel Emissions Testing with a Modern Diesel Engine - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-399

    SciTech Connect (OSTI)

    Williams, A.

    2013-06-01T23:59:59.000Z

    To evaluate the emissions and performance impact of biodiesel in a modern diesel engine equipped with a diesel particulate filter. This testing is in support of the Non-Petroleum Based Fuels (NPBF) 2010 Annual Operating Plan (AOP).

  15. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  16. Station Processing for a Low Frequency Array in WA

    E-Print Network [OSTI]

    Ellingson, Steven W.

    for the remote station, minus 2 kW for cooling (considered "infrastructure"). #12;Station Processing Requirements stations (regardless of role as remote or core) (yes; remote stations can be "less" not "different") 2 (yes: 2-3 for core, 1 for remote) 6. Cost: TBD. (Prorated cost of ~US$500 per dual-pol element

  17. The Normal/Bloomington Amtrak passenger station

    SciTech Connect (OSTI)

    Francis, C.E. [Illinois State Univ., Normal, IL (United States)

    1995-11-01T23:59:59.000Z

    The new Normal/Bloomington, Illinois Amtrak railroad passenger station was completed in 1990. A number of energy conservation technologies have been combined to provide for efficient railroad operations, passenger comfort, and a pleasing atmosphere. Passive solar heating, shading, and the building`s thermal efficiency have substantially reduced the amount of energy required for space conditions. The use of daylighting high efficiency fluorescent and high pressure sodium lighting as well as electronic load management have reduced energy requirements for lighting more than 70%. A stand-alone PV system provides energy for a portion of the building`s electrical requirement. An average monthly output of 147 kWh accounts for approximately 7.5% of the total electrical load. Overall, this station requires less than 25% of the energy required by a recently built `typical` station of similar size in a similar climate.

  18. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  19. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

  20. ZnO nanoparticle catalysts for use in biodiesel production and method of making

    DOE Patents [OSTI]

    Yan, Shuli; Salley, Steven O; Ng, K. Y. Simon

    2014-11-25T23:59:59.000Z

    A method of forming a biodiesel product and a heterogeneous catalyst system used to form said product that has a high tolerance for the presence of water and free fatty acids (FFA) in the oil feedstock is disclosed. This catalyst system may simultaneously catalyze both the esterification of FAA and the transesterification of triglycerides present in the oil feedstock. The catalyst system is comprised of a mixture of zinc oxide and a second metal oxide. The zinc oxide includes a mixture of amorphous zinc oxide and zinc oxide nanocrystals, the zinc nanocrystals having a mean grain size between about 20 and 80 nanometers with at least one of the nanocrystals including a mesopore having a diameter of about 5 to 15 nanometers. Preferably, the second metal oxide is a lanthanum oxide, the lanthanum oxide being selected as one from the group of La.sub.2CO.sub.5, LaOOH, and combinations or mixtures thereof.

  1. Detailed Chemical Kinetic Reaction Mechanism for Biodiesel Components Methyl Stearate and Methyl Oleate

    SciTech Connect (OSTI)

    Naik, C; Westbrook, C K; Herbinet, O; Pitz, W J; Mehl, M

    2010-01-22T23:59:59.000Z

    New chemical kinetic reaction mechanisms are developed for two of the five major components of biodiesel fuel, methyl stearate and methyl oleate. The mechanisms are produced using existing reaction classes and rules for reaction rates, with additional reaction classes to describe other reactions unique to methyl ester species. Mechanism capabilities were examined by computing fuel/air autoignition delay times and comparing the results with more conventional hydrocarbon fuels for which experimental results are available. Additional comparisons were carried out with measured results taken from jet-stirred reactor experiments for rapeseed methyl ester fuels. In both sets of computational tests, methyl oleate was found to be slightly less reactive than methyl stearate, and an explanation of this observation is made showing that the double bond in methyl oleate inhibits certain low temperature chain branching reaction pathways important in methyl stearate. The resulting detailed chemical kinetic reaction mechanism includes more approximately 3500 chemical species and more than 17,000 chemical reactions.

  2. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21T23:59:59.000Z

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  3. Effect of Storage on Stability of Biodiesel Produced from Selected Seed Oils

    E-Print Network [OSTI]

    M. Ndana; B. Garba; L. G. Hassan; U. Z. Faruk

    Abstract: This work reports the results of the study of the effect of storage on the physico-chemical properties of biodiesel produced from Ricinus communis (Castor), Heavea brasiliensis (Rubber), Gossypium hirsutum (Cotton), Azadirachta indica (Neem), Glycin max (Soya bean), and Jatropha curcas (Jatropha oils) stored in an open air environment for a period of ten months. At the end of this test period, peroxide value of JME increased to (126.60meq/Kg),CME(71.75meq/Kg),SME(77.80meq/Kg),NME(111.65meq/K g), COME (59.65meq/Kg), RME (162.55meq/Kg), kinematic viscosity JME

  4. Federal and State Ethanol and Biodiesel Requirements (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    The Energy Policy Act 2005 requires that the use of renewable motor fuels be increased from the 2004 level of just over 4 billion gallons to a minimum of 7.5 billion gallons in 2012, after which the requirement grows at a rate equal to the growth of the gasoline pool. The law does not require that every gallon of gasoline or diesel fuel be blended with renewable fuels. Refiners are free to use renewable fuels, such as ethanol and biodiesel, in geographic regions and fuel formulations that make the most sense, as long as they meet the overall standard. Conventional gasoline and diesel can be blended with renewables without any change to the petroleum components, although fuels used in areas with air quality problems are likely to require adjustment to the base gasoline or diesel fuel if they are to be blended with renewables.

  5. Impact of Biodiesel on the Oxidation Kinetics and Morphology of Diesel Particulate

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    We compare the oxidation characteristics of four different diesel particulates generated with a modern light-duty engine. The four particulates represent engine fueling with conventional ultra-low sulfur diesel (ULSD), biodiesel, and two intermediate blends of these fuels. The comparisons discussed here are based on complementary measurements implemented in a laboratory micro-reactor, including temperature programmed desorption and oxidation, pulsed isothermal oxidation, and BET surface area. From these measurements we have derived models that are consistent with the observed oxidation reactivity differences. When accessible surface area effects are properly accounted for, the oxidation kinetics of the fixed carbon components were found to consistently exhibit an Arrhenius activation energy of 113 6 kJ/mol. Release of volatile carbon from the as-collected particulate appears to follow a temperaturedependent rate law.

  6. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18T23:59:59.000Z

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  7. Design of a photovoltaic central power station

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    Photovoltaic central power station designs have been developed for both high-efficiency flat-panel arrays and two-axis tracking concentrator arrays. Both designs are based on a site adjacent to the Saguaro Power Station of Arizona Public Service. The plants are 100 MW each, made of 5 MW subfields. The site specific designs allow detailed cost estimate for site preparation, installation, and engineering. These designs are summarized and cost estimates analyzed. Provided also are recommendations for future work to reduce system cost for each plant design.

  8. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    SciTech Connect (OSTI)

    Brookshear, D. William [University of Tennessee, Knoxville (UTK); Nguyen, Ke [University of Tennessee, Knoxville (UTK); Toops, Todd J [ORNL; Bunting, Bruce G [ORNL; Howe, Janet E [ORNL

    2012-01-01T23:59:59.000Z

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

  9. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage. Volume 2, Part 3: Internal Events Appendices I and J

    SciTech Connect (OSTI)

    Yakle, J. [Science Applications International Corp., Albuquerque, NM (United States); Darby, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Whitehead, D.; Staple, B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-06-01T23:59:59.000Z

    This report provides supporting documentation for various tasks associated with the performance of the probablistic risk assessment for Plant Operational State 5 during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143.

  10. Natural Gas Utilities Options Analysis for the Hydrogen

    E-Print Network [OSTI]

    stations ∑ Alt fuel stations (CNG, LNG, E-85, biodiesel) ∑ H2, CNG, LNG storage #12;5 Future Concerns

  11. Tethered nuclear power for the Space Station

    SciTech Connect (OSTI)

    Bents, D.J.

    1985-01-01T23:59:59.000Z

    A nuclear space power system the SP-100 is being developed for future missions where large amounts of electrical power will be required. Although it is primarily intended for unmanned spacecraft, it can be adapted to a manned space platform by tethering it above the station through an electrical transmission line which isolates the reactor far away from the inhabited platform and conveys its power back to where it is needed. The transmission line, used in conjunction with an instrument rate shield, attenuates reactor radiation in the vicinity of the space station to less than one-one hundredth of the natural background which is already there. This combination of shielding and distance attenuation is less than one-tenth the mass of boom-mounted or onboard man-rated shields that are required when the reactor is mounted nearby. This paper describes how connection is made to the platform (configuration, operational requirements) and introduces a new element the coaxial transmission tube which enables efficient transmission of electrical power through long tethers in space. Design methodology for transmission tubes and tube arrays is discussed. An example conceptual design is presented that shows SP-100 at three power levels 100 kWe, 300 kWe, and 1000 kWe connected to space station via a 2 km HVDC transmission line/tether. Power system performance, mass, and radiation hazard are estimated with impacts on space station architecture and operation.

  12. City of College Station's Thermographic Mobile Scan

    E-Print Network [OSTI]

    Shear, C. K.

    1986-01-01T23:59:59.000Z

    During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

  13. TechnicalDesign Report, Second Target Station

    SciTech Connect (OSTI)

    Galambos, John D [ORNL; Anderson, David E [ORNL; Bechtol, D [HDR, Inc.; Bethea, Katie L [ORNL; Brown, N [Barge Waggoner Sumner & Cannon, Inc.; Carden, W. F. [Oak Ridge National Laboratory (ORNL); Chae, Steven M [ORNL; Clark, A. [Barge Waggoner Sumner & Cannon, Inc.; Counce, Deborah M [ORNL; Craft, K [Barge Waggoner Sumner & Cannon, Inc.; Crofford, Mark T [ORNL; Collins, Richard M [ORNL; Cousineau, Sarah M [ORNL; Curry, Douglas E [ORNL; Cutler, Roy I [ORNL; Dayton, Michael J [ORNL; Dean, Robert A [ORNL; Deibele, Craig E [ORNL; Doleans, Marc [ORNL; Dye, T. [HDR, Inc.; Eason, Bob H [ORNL; Eckroth, James A [ORNL; Fincrock, C [HDR, Inc.; Fritts, S. [Barge Waggoner Sumner & Cannon, Inc.; Gallmeier, Franz X [ORNL; Gawne, Ken R [ORNL; Hartman, Steven M [ORNL; Herwig, Kenneth W [ORNL; Hess, S. [HDR, Inc.; Holmes, Jeffrey A [ORNL; Horak, Charlie M [ORNL; Howell, Matthew P [ORNL; Iverson, Erik B [ORNL; Jacobs, Lorelei L [ORNL; Jones, Larry C [ORNL; Johnson, B. [HDR, Inc.; Johnson, S. [HDR, Inc.; Kasemir, Kay [ORNL; Kim, Sang-Ho [ORNL; Laughon, Gregory J [ORNL; Lu, W. [Oak Ridge National Laboratory (ORNL); Mahoney, Kelly L [ORNL; Mammosser, John [ORNL; McManamy, T. [McManamy Consulting, Inc.; Michilini, M. [HDR, Inc.; Middendorf, Mark E [ORNL; O'Neal, Ed [Oak Ridge National Laboratory (ORNL); Nemec, B. [Barge Waggoner Sumner & Cannon, Inc.; Peters, Roy Cecil [ORNL; Plum, Michael A [ORNL; Reagan, G. [Barge Waggoner Sumner & Cannon, Inc.; Remec, Igor [ORNL; Rennich, Mark J [ORNL; Riemer, Bernie [ORNL; Saethre, Robert B [ORNL; Schubert, James Phillip [ORNL; Shishlo, Andrei P [ORNL; Smith, C Craig [ORNL; Strong, William Herb [ORNL; Tallant, Kathie M [ORNL; Tennant, David Alan [ORNL; Thibadeau, Barbara M [ORNL; Trumble, S. [HDR, Inc.; Trotter, Steven M [ORNL; Wang, Z. [Institute of Modern Physics (IMP), Chinese Academy of Sciences; Webb, Steven B [ORNL; Williams, Derrick C [ORNL; White, Karen S [ORNL; Zhao, Jinkui [ORNL

    2015-01-01T23:59:59.000Z

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will recieve a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  14. Michigan State University Agricultural Experiment Station

    E-Print Network [OSTI]

    Douches, David S.

    Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato Industry Commission Michigan Potato Research Report 2005 Volume 37 #12;Funding: Fed. Grant/MPIC 2005 POTATO. Hammerschmidt and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University

  15. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 Michigan Potato Research Report Volume 36 Left to Right: Ben Kudwa, MPIC; Caryn of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase, Ray

  16. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION MICHIGAN POTATO RESEARCH REPORT 2003 Volume 35 Click Here to Open the 2003 Potato Sciences and Plant Pathology Michigan State University East Lansing, MI 48824 INTRODUCTION Each year we

  17. Michigan State University Agricultural Experiment Station

    E-Print Network [OSTI]

    Douches, David S.

    Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato Industry Commission Michigan Potato Research Report 2005 Volume 37 #12;2005 POTATO BREEDING AND GENETICS Department of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase

  18. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION MICHIGAN POTATO RESEARCH REPORT 2003 Volume 35 Click Here to Open the 2003 Potato, S. Cooper, L. Frank, J. Driscoll, and E. Estelle Department of Crop and Soil Sciences Michigan State

  19. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 Michigan Potato Research Report Volume 36 Left to Right: Ben Kudwa, MPIC; Caryn and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University East

  20. TARGET STATION INFRASTRUCTURE THE CNGS EXPERIENCE

    E-Print Network [OSTI]

    McDonald, Kirk

    of Aluminum Water cooled Current: 150kA (horn) ­ 180 kA (reflector) Pulse duration 7ms #12;Key elements Remote handling Remote station for radiation survey in the target chamber #12;CNGS Target Area I per cooling circuit 2007 run radiation effects on ventilation system electronics broken flexible stripline