Sample records for refrigerators clothes washers

  1. Design options for clothes washers

    SciTech Connect (OSTI)

    Biermayer, Peter J.

    1996-10-01T23:59:59.000Z

    This report discusses possible design options for improving the energy efficiency of standard capacity, residential clothes washers.

  2. Electrolux Gibson Air Conditioner and Equator Clothes Washer...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing...

  3. Energy Department Sets Tougher Standards for Clothes Washers...

    Energy Savers [EERE]

    Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR Label Energy Department Sets Tougher Standards for Clothes Washers to Qualify for the ENERGY STAR...

  4. Preliminary engineering analysis for clothes washers

    SciTech Connect (OSTI)

    Biermayer, Peter J.

    1996-10-01T23:59:59.000Z

    The Engineering Analysis provides information on efficiencies, manufacturer costs, and other characteristics of the appliance class being analyzed. For clothes washers, there are two classes: standard and compact. Since data were not available to analyze the compact class, only clothes washers were analyzed in this report. For this analysis, individual design options were combined and ordered in a manner that resulted in the lowest cumulative cost/savings ratio. The cost/savings ratio is the increase in manufacturer cost for a design option divided by the reduction in operating costs due to fuel and water savings.

  5. Clothes Washers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic Solar JumpWashers Jump to:

  6. 2014-01-31 Issuance: Test Procedures for Commercial Clothes Washers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    01-31 Issuance: Test Procedures for Commercial Clothes Washers; Notice of Proposed Rulemaking 2014-01-31 Issuance: Test Procedures for Commercial Clothes Washers; Notice of...

  7. Clothes Washers, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Performance and purchasing specifications for residential clothes washers under the FEMP-designated product program.

  8. 2014-11-24 Issuance: Test Procedures for Commercial Clothes Washers...

    Office of Environmental Management (EM)

    1-24 Issuance: Test Procedures for Commercial Clothes Washers; Final Rule 2014-11-24 Issuance: Test Procedures for Commercial Clothes Washers; Final Rule This document is a...

  9. New Energy Efficiency Standards for Residential Clothes Washers...

    Office of Environmental Management (EM)

    June 2011 - Residential furnaces and residential central air conditioners and heat pumps September 2011 - Residential refrigerators, freezers, and refrigerator-freezers...

  10. Alliance Laundry Systems to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes Washers

    Broader source: Energy.gov [DOE]

    Letter from Alliance Laundry Systems, LLC to DOE General Counsel, Re: Your (DOE's) request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers. ALS believes that grandfathering all units...

  11. List of Clothes Washers Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) JumpEventBoilersCeilingClothes

  12. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  13. 2014-04-11 Issuance: Test Procedures for Residential Clothes...

    Broader source: Energy.gov (indexed) [DOE]

    Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers; Notice of Proposed Rulemaking...

  14. Design options for clothes washers

    E-Print Network [OSTI]

    Biermayer, Peter J.

    1996-01-01T23:59:59.000Z

    minimum allowable, as specified by updates to the National Appliance Energy Conservation Act (NAECA). Currently, all standard

  15. Design options for clothes washers

    E-Print Network [OSTI]

    Biermayer, Peter J.

    1996-01-01T23:59:59.000Z

    Home Appliance Manufacturers (AHAM). 1995. Comments on theMay 8, U.S. DOE. 1996b. Op cit. AHAM. 1996. Comments on the9, January 20, 1995. AHAM. 1995. Op. cit. Electrolux product

  16. Preliminary engineering analysis for clothes washers

    E-Print Network [OSTI]

    Biermayer, Peter J.

    1996-01-01T23:59:59.000Z

    PROVIDED BY AHAM . . . . . . . . . . . . . . . . . . . .A-1 APPENDIX B. ADJUSTMENTS TO AHAMUse Factors for Proposed AHAM and Future DOE Test

  17. An Exploration of Innovation and Energy Efficiency in an Appliance Industry

    E-Print Network [OSTI]

    Taylor, Margaret

    2013-01-01T23:59:59.000Z

    clothes washers; refrigerators and freezers; dishwashers;and tubes, household refrigerators and freezers, householdhousehold refrigerators and freezers, air conditioning (room

  18. Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances

    SciTech Connect (OSTI)

    Not Available

    1981-12-16T23:59:59.000Z

    The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

  19. Design and evaluation of washers and dryers for the elderly and wheelchair confined people

    E-Print Network [OSTI]

    Sadeh, Rina

    1985-01-01T23:59:59.000Z

    Since tile early seventies t. here has been a downward trend of home appliances sales. The decrease in sales caused several of the appliance companies like Westinghouse Corporation and Frigidaire to sell their consumer products division. Others like... appliance makers. A summary of their findings follows. A. Washers (1) Front Loading ? One out of the nine was a Front Loading. It is a line of clothes washers called "New Generation" made by white- Westinghouse, which are Front Loading and energy saving...

  20. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01T23:59:59.000Z

    Refrigerators, Refrigerator-Freezers, and Freezers,and Updates RESIDENTIAL Refrigerators Freezers Central Aira given year for refrigerators, freezers, clothes washers,

  1. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    of electric or gas water heater EFFIC Average householdfreezers, clothes dryers, water heaters, clothes washers,Freezers Refrigerators Water Heaters Dishwashers Clothes

  2. Residential Clothes Washers (Appendix J1) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReply CommentsNext-GenerationDryer (Appendix

  3. Residential Clothes Washers (Appendix J2) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirements

  4. DOE Seeks Comment on Application of Clothes Washer Test Procedure |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance | Department of Energy ADepartment of

  5. New Energy Efficiency Standards for Residential Clothes Washers and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' Energy Bills and

  6. Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricity Transmissionof EnergyEnergy

  7. 2014-10-06 DOE Certification, Compliance, and Enforcement Overview...

    Broader source: Energy.gov (indexed) [DOE]

    Dehumidifiers, Room Air Conditioners, Clothes Washers, Clothes Dryers, and Dishwashers 2014-10-06 DOE Certification, Compliance, and Enforcement Overview for Refrigerators,...

  8. Tearable Cloth

    E-Print Network [OSTI]

    Phillips, Kurt T.

    2010-01-16T23:59:59.000Z

    resistance to bending and produced one of the first convincing simulations of a cloth-like object. 8 Expanding on this, they simulated a flag blowing in the wind, and a rug faling on rigid objects (Fig. 5). Fig. 5: Results from Terzopolous et al.... The authors were able to produce images of diferent types of draped cloth, including cotton, wool, and cotton/polyester hybrid fabrics. They compared these results to real-world photographs, and found that their method models cloth remarkably wel (Fig. 7...

  9. Washington State Energy-Efficiency Appliance Rebate Program ...

    Energy Savers [EERE]

    ENERGY STAR quali-fied clothes washers, refrigerators, dishwashers, ductless air source heat pumps, and water heaters. Between March and November of 2010, more than 41,000...

  10. City of Lompoc Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities offers rebates to commercial customers for the purchase and installation of energy efficiency lighting, clothes washers, dishwashers, replaced refrigerators, new...

  11. Appliance Standards Resources

    Broader source: Energy.gov [DOE]

    The federal government, and some states, have established minimum efficiency standards for certain appliances and equipment, such as refrigerators and clothes washers.

  12. Residential Energy Star Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers rebates for Energy Star refrigerators, freezers and clothes washers to Oregon residential electric service customers of Portland General Electric (PGE) and Pacific...

  13. Income Tax Deduction for Energy-Efficient Products

    Broader source: Energy.gov [DOE]

    This incentive is available for dishwashers, clothes washers, air conditioners, ceiling fans, compact fluorescent light bulbs, dehumidifiers, programmable thermostats or refrigerators that meet or...

  14. Clark Public Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Clark Public Utilities offers several energy incentives for residential customers to increase the energy efficiency of their homes. Rebates are offered for refrigerators, freezers, clothes washers,...

  15. Central New Mexico Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central New Mexico Electric Cooperative (CNMEC) provides an incentive for its residential members to purchase energy efficient water heaters, clothes washers, dishwashers, refrigerators, and...

  16. Four-County EMC- Residential Energy Efficiency Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Four-County EMC offers its customers $50 rebates for purchasing certain Energy Star appliances. Eligible appliances include refrigerators, dishwashers, clothes washers and freezers. The rebates are...

  17. McMinnville Water and Light- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    McMinnville Water and Light (MWL) offers rebates on energy efficient homes, appliances and equipment to their residential customers. Rebates are valid on refrigerators, freezers, clothes washer,...

  18. Creating and Implementing a Regularized Monitoring and Enforcement System for China's Mandatory Standards and Energy Information Label for Appliances

    E-Print Network [OSTI]

    Lin, Jiang

    2008-01-01T23:59:59.000Z

    consumption for automatic rice cookers The limited value andoven Clothes washers Rice cookers Electro-magnetic stovesRefrigerators Rice cookers Electric thermos Household

  19. Clothes that Click

    E-Print Network [OSTI]

    Smith, Teresa; Howard, Jeff W.

    2000-05-08T23:59:59.000Z

    This comprehensive 4-H curriculum covers creativity in construction, consumerism, clothing choices, clothing care, careers, and other subjects of interest to 4-H members. The Companion Leader's Guide is FCS 2-1. "Clothing Capers....

  20. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-01-01T23:59:59.000Z

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  1. 2014-01-31 Issuance: Test Procedures for Commercial Clothes Washers; Notice

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 House NuclearDepartmentHydrokineticof Proposed

  2. 2014-04-11 Issuance: Test Procedures for Residential Clothes Washers;

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCovered Consumer Product;Equipment;

  3. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese(Notice ofIssues National Energyand

  4. DOE Solicits Views on the Implementation of Large-Capacity Clothes Washer

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance | DepartmentWaivers | Department of Energy

  5. 2014-11-24 Issuance: Test Procedures for Commercial Clothes Washers; Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps; SupplementalRule | Department of

  6. Energy Department Sets Tougher Standards for Clothes Washers to Qualify for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. | Department of Energy Sends Firstthe

  7. Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration

    E-Print Network [OSTI]

    Zevenhoven, Ron

    RefrigerationRefrigerationRefrigeration coursecourse # 424503.0# 424503.0 v.v. 20122012 8. Heat pumps, heat pipes, cold thermal energy storage Ron on a vapour-compression cycle) /heat_pump.g Heat pumps make use of low- temperature (waste) heat, replacing/vcmfiles/ electricity!) for heating and air conditioning purposes Heat pumps became popular in ://www.bge.c Heat pumps

  8. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G W

    1992-01-01T23:59:59.000Z

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  9. Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration

    E-Print Network [OSTI]

    Zevenhoven, Ron

    at constant p #12;Stirling cycle, Stirling engineStirling cycle, Stirling engine See for principle also http://www.cs.sbcc.net/~physics/flash/heatengines/stirlingRefrigerationRefrigerationRefrigeration coursecourse # 424503.0# 424503.0 v.v. 20122012 5. Low temperatures,p liquefied gases Ron Zevenhoven ??bo Akademi University Thermal and Flow Engineering Laboratory / Värme- och strömningsteknik tel. 3223 ; ron

  10. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-06-01T23:59:59.000Z

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  11. Clothing Quality Standards

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Clothing construction is a creative skill with certain standards for appearance and construction. This publication describes the standards that apply to general construction techniques such as preparing the fabric, creating darts and gathers...

  12. Flexible cloth seal assembly

    DOE Patents [OSTI]

    Bagepalli, B.S.; Taura, J.C.; Aksit, M.F.; Demiroglu, M.; Predmore, D.R.

    1999-06-29T23:59:59.000Z

    A seal assembly is described having a flexible cloth seal which includes a shim assemblage surrounded by a cloth assemblage. A first tubular end portion, such as a gas turbine combustor, includes a longitudinal axis and has smooth and spaced-apart first and second surface portions defining a notch there between which is wider at its top than at its bottom and which extends outward from the axis. The second surface portion is outside curved, and a first edge of the cloth seal is positioned in the bottom of the notch. A second tubular end portion, such as a first stage nozzle, is located near, spaced apart from, and coaxially aligned with, the first tubular end portion. The second tubular end portion has a smooth third surface portion which surrounds at least a portion of the first tubular end portion and which is contacted by the cloth seal. 7 figs.

  13. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    SciTech Connect (OSTI)

    Meyers, Steve; Franco, Victor; Lekov, Alex; Thompson, Lisa; Sturges, Andy

    2010-05-14T23:59:59.000Z

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of real energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.

  14. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect (OSTI)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22T23:59:59.000Z

    Project Abstract for Steam Cycle Washer for Unbleached Pulp When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporations pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: energy is used in process heat and power is required for pumping the large volume of pulp slurries through the pulping phases. Most water used in the pulping process ends up as warm waste water in the mills effluent discharge, which subsequently pollutes receiving waterways and carries an enormous amount of energy with it. Wash water reduction in brown stock washing with the Steam Cycle Washers (SCW) will save energy, up to 1+ million BTUs per ton of pulp in the evaporators alone. Reduction of liquid volume through bleaching stages will save process heat energy in the amount of 2+ million BTUs per ton of pulp, and as much as 80 100 kWhrs of electrical power per ton of pulp due to reduced pumping costs. Currently, the technical barriers to water reduction in chemical pulping are basically as follows: conventional pulp washers wash the pulp at 10 - 14% consistency, conventional pulp washers use 12 16 tons of wash water per ton of pulp, and they leave 30 70 lbs of soda (Na2SO4) per ton of pulp as soda loss into the washed pulp. The amount of wash water in excess of the amount of process liquid in the pulp is called Dilution Factor (DF), even though it is not a factor in the mathematical sense but an addition. Modern pulp washing lines can wash efficiently with a DF of 3 but most pulp mills in the United States are washing with a DF of 5-7. Therefore, at 10% washing consistency 14-16 tons of wash water is required and 14% consistency requires 11-13 tons of wash water.

  15. Energy Department and AHAM Partner to Streamline ENERGY STAR Testing for Washers, Dryers, Refrigerators

    Broader source: Energy.gov [DOE]

    Under a new policy, the Energy Department will work closely with the Association of Home Appliance Manufactures to verify the ENERGY STAR performance of products participating in AHAMs verification program.

  16. GE to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Environmental Management (EM)

    Clothes Washers GE urges the department engage in rulmaking to amend the clothes washer test procedure to reflect efficiency standards of large-capacity residential clothes washer...

  17. Interactive modeler for cloth draping

    E-Print Network [OSTI]

    Thumrugoti, Umakanth

    2012-06-07T23:59:59.000Z

    Cloth modeling is a challenging field in computer graphics, being a typical example of a soft-object. One of the approaches toward modeling cloth is a geometric approach. This thesis develops a conceptual model for modeling cloth drape using a...

  18. Sustainability Bulletin Clothing Collection

    E-Print Network [OSTI]

    Kidd, William S. F.

    Sustainability Bulletin April 2014 #12;Upcoming Clothing Collection March 3-April 14 Hunter Lovins on Wednesday, April 23rd from 11am-2pm brought to you by EAP and the Office of Environmental Sustainability will be in the Campus Center Ballroom to highlight other aspects of well-being such as health, nutrition, sustainability

  19. BTO Partners are Revolutionizing Refrigerators and Clothes Dryers |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015 ProjectAsset|3Business ofDepartment of

  20. BTO Partners are Revolutionizing Refrigerators and Clothes Dryers...

    Energy Savers [EERE]

    Applying ORNL's strengths in additive manufacturing (3-D printing) and high-performance computing allows research teams to assist industry in bringing new concepts to the...

  1. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-11-15T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-07-01T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. Clothes washer standards in China -- The problem of water and energy trade-offs in establishing efficiency standards

    E-Print Network [OSTI]

    Biermayer, Peter J.; Lin, Jiang

    2004-01-01T23:59:59.000Z

    the Problem of Water and Energy Trade-offs in Establishingthe Problem of Water and Energy Trade-offs in Establishinghow do you trade off water versus energy in establishing

  5. Clothes Dryer Automatic Termination Sensor Evaluation

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.

    2014-10-01T23:59:59.000Z

    Volume 1: Characterization of Energy Use in Residential Clothes Dryers. The efficacy and energy efficiency of clothes dryers are studied in this evaluation.

  6. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27T23:59:59.000Z

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  7. Plant Site Refrigeration Upgrade

    E-Print Network [OSTI]

    Zdrojewski, R.; Healy, M.; Ramsey, J.

    Bayer Corporation operates a multi-division manufacturing facility in Bushy Park, South Carolina. Low temperature refrigeration (-4F) is required by many of the chemical manufacturing areas and is provided by a Plant Site Refrigeration System...

  8. Save with Hybrid Refrigeration

    E-Print Network [OSTI]

    Chung, C. W.

    SAVE WITH HYBRID REFRIGERATION Cheng-Wen (Wayne) Chung, P.E. Fluor Engineers, Inc. Irvine, California ABSTRACT Two level demand makes it possible to use two systems for refrigeration and save energy and money. An example of this type... of refrigeration, consisting of an ammonia absorption refrigeration (AAR) unit and a mechanical compression refrigera tion (MCR) unit, is presented in this article. This paper will briefly describe process configur ation, advantages and utility consumption...

  9. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect (OSTI)

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01T23:59:59.000Z

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  10. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)] [Calm (James M.), Great Falls, VA (United States)

    1996-04-15T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates. Citations in this report are divided into the following topics: thermophysical properties; materials compatibility; lubricants and tribology; application data; safety; test and analysis methods; impacts; regulatory actions; substitute refrigerants; identification; absorption and adsorption; research programs; and miscellaneous documents. Information is also presented on ordering instructions for the computerized version.

  11. Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances

    E-Print Network [OSTI]

    Meyers, Stephen P.

    2008-01-01T23:59:59.000Z

    and Heat Pumps Room Air Conditioners Water Heaters Gas Furnaces Clothes Washers Clothes Dryers Dishwashers COMMERCIAL

  12. EA-0386: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Consumer Products: Dishwashers, Clothes Washers, and Clothes Dryers

  13. Energy-efficiency directory of refrigerators and refrigerator-freezers

    SciTech Connect (OSTI)

    Statt, T.G.; Coggins, J.L.

    1981-06-01T23:59:59.000Z

    Information is presented about the energy costs of operating refrigerators and refrigerator-freezers and includes the type of refrigerator or refrigerator-freezer, the fresh food volume, the freezer volume, the total volume, and the yearly energy cost. The directory lists all currently marketed electric refrigerators and refrigerator-freezers that have Energy Guide labels. The Federal Trade Commission requires manufacturers who distribute refrigerators and refrigerator-freezers to attach Energy Guide labels to appliances manufactured on or after May 19, 1980. The data have been measured by manufacturers and/or their agents according to US Government standard test procedures.

  14. China Refrigerator Information Label

    E-Print Network [OSTI]

    LBNL-246E China Refrigerator Information Label: Specification Development and Potential Impact Jianhong Cheng China National Institute of Standardization Tomoyuki Sakamoto The Institute of Energy

  15. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  16. Manufacture of refrigeration oils

    SciTech Connect (OSTI)

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08T23:59:59.000Z

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  17. Small Commercial Refrigeration Incentive

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

  18. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1997-02-01T23:59:59.000Z

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  19. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  20. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23T23:59:59.000Z

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  1. Towards believable cloth motion in computer animation

    E-Print Network [OSTI]

    Segu, Sunil Venkatesh

    2012-06-07T23:59:59.000Z

    This thesis covers the implementation of a cloth modeling algorithm within a computer animation package. The main objective of this thesis is to prove the feasibility of simulating the behavior of cloth using an empirically based model coupled...

  2. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-04-30T23:59:59.000Z

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  3. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    Programs Equipment Refrigerators and Freezers Mains Pressureclothes washers, refrigerators and freezers, fluorescentYear Updated Refrigerators Freezers Kimchi Refrigerators Air

  4. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare Wastewater Recycling Technology

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14T23:59:59.000Z

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  5. Stirling-cycle refrigerator

    SciTech Connect (OSTI)

    Nakamura, K.

    1985-06-11T23:59:59.000Z

    A Stirling-cycle refrigerator comprises a plurality of Stirling-cycle refrigerator units each having a displacer defining an expansion chamber, a piston defining a compression chamber, and a circuit including a heater and a cooler and interconnecting the expansion chamber and the compression chamber, and a heat exchanger shared by the circuits and disposed between the coolers and the heaters for effecting heat exchange between working gases in the circuits. The heat exchanger may comprise a countercurrent heat exchanger, and the Stirling-cycle refrigerator units are operated in cycles which are 180/sup 0/ out of phase with each other.

  6. Clothes Dryer Automatic Termination Evaluation

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.

    2014-10-01T23:59:59.000Z

    Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this report shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.

  7. Children's Clothes - Size and Selection.

    E-Print Network [OSTI]

    Vanderpoorten, Ann; Kerbel, Claudia

    1980-01-01T23:59:59.000Z

    Tooe ZTA245.7 8-1303 B873 no ? \\'3J~3L-~=============i1 ? ? ? CHILDREN'S CLOTHES, SIZE AND SELECTION ? ~========================~ Texas Agricultural Extension Service. The Texas A&M University System. Daniel C. pfannstiel, Director.... College Station, Texas ," ? (BIaBk Pa,ge in O'rigjaal Bulletinl ' / I' j '. ":SIZE AND SELECTION Ann Vanderpoorten and Claudia Kerbel* Preschool and school-age children have special...

  8. International Refrigeration: Order (2012-CE-1510) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Refrigeration: Order (2012-CE-1510) July 20, 2012 DOE ordered International Refrigeration Products to pay an 8,000 civil penalty after finding International Refrigeration had...

  9. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31T23:59:59.000Z

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  10. Refrigerants in Transition

    E-Print Network [OSTI]

    Stouppe, D. E.

    .E. Senior Engineer The Hartford Steam Boiler Inspection and Insurance Company Hartford,. Connecticut ABSTRACT The massive growth of air conditioning and refrigeration has been a direct result of the development of a class of chemicals called fluorocarbons..., Gordon, "Forty Years Research on Atmospheric Ozone at Oxford: A !Iistory," Applied Optics, March t968, pp. 387-405. 4. Downing, R., "Development of Chloro fluorocarbon Refrigerants," CFCs: Time of Transition, ASHRAE Publication, Atlanta, GA, 1989...

  11. 851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161

    E-Print Network [OSTI]

    of 2011 DOE is scheduled to issue final standards for water heaters, refrigerators, freezers, central air minimum efficiency standards for appliances. NAECA not only establish federal minimum standards for water heaters, clothes washers, refrigerators and other appliances, it set a schedule for the DOE to follow

  12. Teenage Girls' Attitudes and Satisfactions with Clothing.

    E-Print Network [OSTI]

    Drake, Phyllis E.; Standlee, Joe Ann

    1963-01-01T23:59:59.000Z

    TEXAS A&M UNIVERSITY CollegcStation,Texa~ a TEXAS AGRICULTURAL EXPERIMENT STATION, R. E. Patterson, Director I Teenage attitudes, satisfactions and practices regarding clothing were studied by interviewing 471 girls from junior and senior high... to social achievement rather than social contribution. Social achievement reasons were given more frequently by girls in low income groups. Although quantity of clothing was important, these girls showed more in- terest in clothing suitable...

  13. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01T23:59:59.000Z

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  14. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30T23:59:59.000Z

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  15. Proceedings: Commercial Refrigeration Research Workshop

    SciTech Connect (OSTI)

    None

    1984-10-01T23:59:59.000Z

    Improving refrigeration systems for commercial use can enhance both utility load factors and supermarket profits. This workshop has pinpointed research needs in commercial refrigeration and systems integration for a supermarket environment.

  16. Waste Heat Recovery from Refrigeration

    E-Print Network [OSTI]

    Jackson, H. Z.

    1982-01-01T23:59:59.000Z

    heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

  17. Refrigeration monitor and alarm system

    SciTech Connect (OSTI)

    Branz, M.A.; Renaud, P.F.

    1986-09-23T23:59:59.000Z

    A monitor is described for a refrigeration system including a heat reclaiming system coupled therewith, comprising: a sensor positioned to detect the level of liquid state refrigerant in the system and provide an electrical output signal therefrom; a digital display for displaying the refrigerant level; first circuit means coupling the digital display to the sensor for actuating the digital display; and lockout means coupled with the sensor for deactivating the heat reclaiming system when a preselected refrigerant level is reached.

  18. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  19. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-11-09T23:59:59.000Z

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  20. Refrigerator recycling and CFCs

    SciTech Connect (OSTI)

    Shepard, M.; Hawthorne, W.; Wilson, A.

    1994-12-31T23:59:59.000Z

    Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

  1. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26T23:59:59.000Z

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  2. Helium dilution refrigeration

    E-Print Network [OSTI]

    McKee, Thomas Raymond

    2012-06-07T23:59:59.000Z

    . 1875" OD exchanger Qu ID copper cap Fig. 6. Assembled view of 3He - He dilution refrigerator. 26 The joint thru the tubing wall and the joining of the two sizes of capillary were silver soldered (35/ silver content). A 0. 250" OD tube... the inert atmosphere inside the refrigerator. After removal from the nitrogen atmosphere the graphite support, was 'attached to the still and mixing chamber using Stycast 2850 GT with catalyst g9 ). The mass of the graphite 26 support 1s 11. 62 grams...

  3. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect (OSTI)

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R. [Witco Corp., Oakland, NJ (United States); Barbour, C.B. [Americold, Cullman, AL (United States)

    1997-12-31T23:59:59.000Z

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  4. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

  5. Mothers' Attitudes and Satisfactions Concerning Teenage Daughters' Clothing.

    E-Print Network [OSTI]

    Bathke, Carol Sander.; Burson, L. Sharon (Linda Sharon)

    1964-01-01T23:59:59.000Z

    income (P. P. clothing. There was a broad trend for family size to be re- lated...- educational level (P. clothing decision. In the same...

  6. Comparison of Several Eco-Friendly Refrigeration Technologies

    E-Print Network [OSTI]

    Tang, C.; Luo, Q.; Li, X.; Zhu, X.

    2006-01-01T23:59:59.000Z

    In this paper, the operation principles, thermodynamics characteristics, and technical practicability were compared between thermoelectric refrigeration, magnetic refrigeration and adsorption refrigeration. The TE refrigeration is the most well...

  7. Northern Tool + Equipment Find the Right Fitting for Your Pressure Washer at Northern Tool! NorthernTool.com/PressureWashers Pristine Pressure Pressure/power washing in Maryland Vinyl siding cleaned, decks cleaned www.pristinepressure.com

    E-Print Network [OSTI]

    Sóbester, András

    ability to clean while saving on our most important resources, water and energy." In recognition! NorthernTool.com/PressureWashers Pristine Pressure Pressure/power washing in Maryland Vinyl siding cleaned, decks cleaned www.pristinepressure.com Siding Cleaning Bring back the life to your siding! Estimates

  8. LG to DOE General Counsel; Re:Request for Comment on Large Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clothes Washers LG response to DOE's request for information regarding alternative test procedures for large-capacity clothes washer models, December 7, 2010. After DOE...

  9. ISSUANCE 2014-12-05: Energy Conservation Standards for Commercial...

    Energy Savers [EERE]

    ISSUANCE 2014-12-05: Energy Conservation Standards for Commercial Clothes Washers Final Rule ISSUANCE 2014-12-05: Energy Conservation Standards for Commercial Clothes Washers Final...

  10. 2014-02-21 Issuance: Energy Conservation Standards for Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conservation Standards for Commercial Clothes Washers; Notice of Proposed Rulemaking 2014-02-21 Issuance: Energy Conservation Standards for Commercial Clothes Washers;...

  11. DOE Receives Responses on the Implementation of Large-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process Electrolux Gibson Air Conditioner and Equator Clothes Washer Fail DOE Energy Star Testing...

  12. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

  13. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01T23:59:59.000Z

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  14. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22T23:59:59.000Z

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  15. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  16. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  17. Clothes That Care -- Flame Resistant Protection.

    E-Print Network [OSTI]

    Kerbel, Claudia

    1980-01-01T23:59:59.000Z

    .. 8-1272 othes That Care- Flame Resistant Protection" TOoe ZTA245.7 8873 NQ.'2'T2 Texas Agricultural Extension Service . The Texas A&M University System Daniel C. Pfannstiel, Director, College Station, Texas , ? Clothes That Care- Flame... Resistant Protection Claudia Kerbel * Concern for a safer environment has led to changes in many of the everyday products we use , including clothing . In the' past dec ade, flame-resistant (FR) garments and fabrics have become more available than ever...

  18. Homemakers' Practices and Satisfactions with Clothing.

    E-Print Network [OSTI]

    Bathke, Carol Sander.; Burson, L. Sharon (Linda Sharon)

    1964-01-01T23:59:59.000Z

    ' Practices and Satisfactions with Clothing M OME ECONOMISTS AND SOCIAL SCIENTISTS have long been interested in the manner in which individuals evaluate clothing items. The evaluation is necessarily made in terms of the whole man, that is, his.... BUYING CONSULTANTS Homemakers were asked: "If you needed to m;~kc a choice between 2 or more dresses or other (.lothin; when buying, who would you like to consult before mak- sultation. A homemaker who would consult her husband ing your decision...

  19. Multilayer Thermionic Refrigeration

    SciTech Connect (OSTI)

    Mahan, G.D.

    1999-08-30T23:59:59.000Z

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  20. Vaccine refrigerator testing. Final report

    SciTech Connect (OSTI)

    Ventre, G.G. [Univ. of Central Florida, Orlando, FL (United States); Kilfoyle, D.; Marion, B. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1990-06-01T23:59:59.000Z

    For the Central American Health Clinic Project initiated in 1986, Sandia National Laboratories and the Florida Solar Energy Center recognized the need for a test and evaluation program for vaccine refrigeration systems. At the Florida Solar Energy Center, side-by-side testing of three photovoltaic powered vaccine refrigerators began in 1987. The testing was expanded in 1988 to include a kerosene absorption refrigerator. This report presents observations, conclusions, and recommendations derived from testing the four vaccine refrigeration systems. Information is presented pertaining to the refrigerators, photovoltaic arrays, battery subsystems, charge controllers, and user requirements. This report should be of interest to designers, manufacturers, installers, and users of photovoltaic-powered vaccine refrigeration systems and components.

  1. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    Requirement for Vending Machines, version 2.0. AvailableScheme for Washing Machines. Available at: http://2007. Final Report: Vending Machines Evaluation Standard

  2. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    Appliance Manufacturers (AHAM), and Japans own JIS C 9606The U.S. test procedure (AHAM HWL-1) does not include a washAppliance Manufacturers (AHAM) HWL-1 Cold Water: 60 5?F (

  3. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    top_runner//tr_fluorescent_light_bulb_jul.2009.pdf NiskinSubcommittee Final Report (bulb type fluorescent lamp). Fluorescent Lamps (CFLs) are an efficient lighting alternative to traditional incandescent light bulbs

  4. Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs

    E-Print Network [OSTI]

    Fridley, David

    2010-01-01T23:59:59.000Z

    kWh/yr) ASHRAE Std. 32.1-2004 Solid/Opaque: 90 2?F (32.2 ASHRAE Std. 32.1-2004 Indoor: 75 2?F (23.9 1?C); Outdoor: 90

  5. NICE3: Industrial Refrigeration System

    SciTech Connect (OSTI)

    Simon, P.

    1999-09-29T23:59:59.000Z

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  6. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.; Miller, W.A.

    1989-01-01T23:59:59.000Z

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

  7. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Environmental Management (EM)

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  8. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

  9. Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01T23:59:59.000Z

    predictive clothing insulation models based on outdoor airrange of the clothing insulation calculated for eachbuilding). Figure 8 Clothing insulation versus dress code [

  10. Influence of two dynamic predictive clothing insulation models on building energy performance

    E-Print Network [OSTI]

    Lee, Kwang Ho; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    Predictive Clothing Insulation Models on Building Energyunnecessarily higher clothing insulation and lower heatingthat the constant clothing insulation assumption lead to the

  11. Predictive clothing insulation model based on outdoor air and indoor operative temperatures

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2012-01-01T23:59:59.000Z

    2012) Predictive clothing insulation model based on outdoorPredictive clothing insulation model based on outdoor airpredictive models of clothing insulation have been developed

  12. The refrigerator revolution

    SciTech Connect (OSTI)

    Ayres, E.; French, H.

    1996-09-01T23:59:59.000Z

    This article discusses how a simple, new technology threw the best-laid plans of the chemical and refrigerator industries into disarray-and provided a new perspective on how future environmental agreements can be reached. In recent years, a series of massive business mergers has mesmerized the industrial world. However in the early 1990s a German environmentalist, triggered global reprocussions in the wake of the mandate to phase out the use of ozone depleting substances. The economic and political background of this is explained in detail.

  13. COLD STORAGE DESIGN REFRIGERATION EQUIPMENT

    E-Print Network [OSTI]

    COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

  14. Load Forecasting of Supermarket Refrigeration

    E-Print Network [OSTI]

    energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

  15. Malone cycle refrigerator development

    SciTech Connect (OSTI)

    Shimko, M.A.; Crowley, C.J.

    1999-07-01T23:59:59.000Z

    This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

  16. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  17. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, P.R.; Gray, K.E.

    1988-09-13T23:59:59.000Z

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  18. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare Ozone Based Laundry Systems

    SciTech Connect (OSTI)

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

    2014-08-14T23:59:59.000Z

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, Sout Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

  19. BNL Refrigerant Overview Presentation to the

    E-Print Network [OSTI]

    Homes, Christopher C.

    charge. #12;BNL Refrigeration Management Plan Details how BNL complies with Sections 608 and 609BNL Refrigerant Overview Presentation to the BER and CAC Ed Murphy, PE Chief Engineer / Manager is a heating process. Refrigeration is an engineered "cycle" where the refrigerant is made to evaporate

  20. Synopsis of residential refrigerator/freezer alternative refrigerants evaluation

    SciTech Connect (OSTI)

    Baskin, E. [Environmental Protection Agency, Research Triangle Park, NC (United States)

    1998-12-31T23:59:59.000Z

    The experimental testing on residential refrigerator/freezers (R/Fs) is summarized in this paper. R/F testing focused on two areas: alternative refrigerants and equipment configurations. The refrigerants evaluated consisted of single components, azeotropes, and zeotropes derived from hydrofluorocarbons (HFCs) and hydrocarbons (HCs). These refrigerants were evaluated in conventional and unconventional R/F designs. Major and minor design modifications were studied. Minor modifications consisted of various capillary tube lengths, door insulations, and compressors, while major modifications included two-evaporator and two-cycle R/F systems. Results obtained from testing the two-cycle system will be discussed in a later paper. This paper presents the experimental results of alternative technologies evaluated as replacements for ozone depleting chemicals.

  1. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, James A. (Cambridge, MA)

    1992-01-01T23:59:59.000Z

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  2. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, J.A.

    1992-03-31T23:59:59.000Z

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  3. The Quantum Absorption Refrigerator

    E-Print Network [OSTI]

    Amikam Levy; Ronnie Kosloff

    2011-11-09T23:59:59.000Z

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified, the cooling power J_c vanishes as J_c proportional to T_c^{alpha}, when T_c approach 0, where alpha =d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  4. Design of Industrial Process Refrigeration Systems

    E-Print Network [OSTI]

    Witherell, W. D.

    of the study is discussed in terms of identifying refrigeration intensive processes. Specific and general conclusions are presented to help faci I itate proper industrial refrigeration system design throughout fhe industry. This paper presents the resul ts... custaner's specifications. Most systems fall into two broad categories: Vapor Canpression Refrigeration Cycles - Mechanical or Steam Jet Canpression Systems Absorption Refrigeration Cycles - Heat Operated Cycles As shown in Table I, refrigerations...

  5. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect (OSTI)

    Sand, J.R. (Oak Ridge National Lab., Oak Ridge, TN (US)); Vineyard, E.A.; Sand, J.R.

    1989-01-01T23:59:59.000Z

    As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

  6. STATE OF CALIFORNIA --THE NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    for refrigerators, freezers, clothes washers, dishwashers and room air conditioners closed on December 6, 2010 for the following appliance categories will close on December 31, 2010: · Heating, Ventilating and Air Conditioning Program for #12;California that provides rebates to encourage the replacement of inefficient residential

  7. DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD...

    Broader source: Energy.gov (indexed) [DOE]

    Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011)...

  8. China Refrigerator Information Label: Specification Development and Potential Impact

    E-Print Network [OSTI]

    Fridley, David

    2008-01-01T23:59:59.000Z

    years. About 20% of refrigerators and freezers sold in 2000energy efficiency of refrigerators and freezers, Directiveof Energy, for refrigerators and freezers are base unit

  9. Analysis of simultaneous cooling and heating in supermarket refrigeration systems.

    E-Print Network [OSTI]

    Marigny, Johan

    2011-01-01T23:59:59.000Z

    ?? In this master thesis project, conventional supermarket refrigeration systems using R404A are compared with refrigeration system solutions using natural refrigerants such as carbon dioxide (more)

  10. Energy Efficient, Environmentally Friendly Refrigerants

    E-Print Network [OSTI]

    Nimitz, J.; Glass, S.; Dhooge, P. M.

    This paper describes a new family of safe, environmentally friendly, high performance substitute refrigerants for application in manufacturing and facilities operations. Due to the Montreal Protocol and subsequent environmental regulations, CFC...

  11. ARM - VAP Product - mmcrmode2ci200511041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth404151cloth8121cloth511041cloth

  12. ARM - VAP Product - mmcrmode3ge200608161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data4141cloth6161cloth8161cloth

  13. GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

  14. Analysis of heat recovery in supermarket refrigeration system using carbon dioxide as refrigerant.

    E-Print Network [OSTI]

    Abdi, Amir

    2014-01-01T23:59:59.000Z

    ?? The aim of this study is to investigate the heat recovery potential in supermarket refrigeration systems using CO2 as refrigerants. The theoretical control strategy (more)

  15. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22T23:59:59.000Z

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  16. ARM - VAP Product - mplcmask1cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management

  17. ARM - VAP Product - mplsmask1cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data

  18. ARM - VAP Product - rhbarscl1cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161clothProductsradfluxanalradflux1long Documentation Data

  19. Energy efficiency in the European union

    SciTech Connect (OSTI)

    Lebot, B.; Waide, P.

    1998-01-01T23:59:59.000Z

    Encouraged by the European Union labeling scheme for energy-efficient appliances, manufacturers in Europe are bring out lines of more efficient products that showcase new technologies. This article provides an overview both to the history of energy efficient appliances in the EU and highlights of the Domotechnica 1997 marketing show, including details of major energy efficiency improvements in refrigerators, clothes washers, clothes dryers, freezers, and dishwashers. 2 figs.

  20. Superinsulation in refrigerators and freezers

    SciTech Connect (OSTI)

    Vineyard, E.; Stovall, T.K.; Wilkes, K.E.; Childs, K.W.

    1998-02-01T23:59:59.000Z

    The results presented here were obtained during Phase 4 of the first CRADA, which had the specific objective of determining the lifetime of superinsulations when installed in simulated refrigerator doors. The second CRADA was established to evaluate and test design concepts proposed to significantly reduce energy consumption in a refrigerator-freezer that is representative of approximately 60% of the US market. The stated goal of this CRADA is to demonstrate advanced technologies which reduce, by 50%, the 1993 National Appliance Energy Conservation Act (NAECA) standard energy consumption for a 20 ft{sup 3} (570 L) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction of efficient appliances by demonstrating design changes that can be effectively incorporated into new products. In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy consumption of 1.413 kWh/d [Vineyard, et al., 1995]. Following discussions with an advisory group comprised of all the major refrigerator-freezer manufacturers, several options were considered for the Phase 2 effort, one of which was cabinet heat load reductions.

  1. Loveland Water and Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water and Power is providing an incentive for its customers to recycle their old refrigerators. Interested customers can call the utility to arrange a time to pick up the old refrigerator...

  2. Cospolich Refrigerator: Order (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE ordered Cospolich Refrigerator Co, Inc. to pay a $8,000 civil penalty after finding Cospolich Refrigerator had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  3. International Refrigeration: Order (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  4. Energy Saving with Absorption Refrigeration Technologies

    E-Print Network [OSTI]

    Davis, R. C.

    1984-01-01T23:59:59.000Z

    Absorption refrigeration technology can be an economical and cost effective means of reducing energy cost and/or improving the efficiency and output of your process. We believe the potential benefits of absorption refrigeration technology have...

  5. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Method and apparatus for desuperheating refrigerant

    DOE Patents [OSTI]

    Zess, James A. (Kelso, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Richland, WA)

    1997-01-01T23:59:59.000Z

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  7. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25T23:59:59.000Z

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  8. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

    1995-07-25T23:59:59.000Z

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  9. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11T23:59:59.000Z

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  10. ARM - VAP Product - mmcrmode1bl200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth Documentationbl200804181cloth

  11. ARM - VAP Product - mmcrmode2ci200309091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth404151cloth Documentation

  12. ARM - VAP Product - mmcrmode2ci200404141cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth404151cloth

  13. ARM - VAP Product - mmcrmode3ge200511041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data4141cloth

  14. Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho

    2013-01-01T23:59:59.000Z

    Predictive Clothing Insulation Models based on Outdoor AirPREDICTIVE CLOTHING INSULATION MODELS ON BUILDING ENERGYthat the clothing insulation is equal to a constant value of

  15. ARM - VAP Product - mmcrmode02v0041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth11cloth31cloth41cloth

  16. ARM - VAP Product - mmcrmode04v0041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management91cloth31cloth41cloth

  17. ARM - VAP Product - mmcrmode2ci200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth404151cloth8121cloth

  18. ARM - VAP Product - mmcrmode3ge200606161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data4141cloth6161cloth

  19. California State University, Fullerton University Police Campus Fire Safety Right-to-Know Act

    E-Print Network [OSTI]

    de Lijser, Peter

    caused by the earthquake. Page 9, Navigating Your New Space: Washers, dryers, freezers, refrigerators

  20. High Efficiency, High Performance Clothes Dryer

    SciTech Connect (OSTI)

    Peter Pescatore; Phil Carbone

    2005-03-31T23:59:59.000Z

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.

  1. Optimization of Industrial Refrigeration Systems

    E-Print Network [OSTI]

    Flack, P. J.; Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L.

    A computer program designed to optimize the size of an evaporative condenser in a two-stage industrial refrigeration plant was created. The program sizes both the high-stage and low-stage compressors and an evaporative condenser. Once the initial...

  2. Direct condensation refrigerant recovery and restoration system

    SciTech Connect (OSTI)

    Grant, D.C.H.

    1992-03-10T23:59:59.000Z

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  3. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

  4. HFC supermarket refrigeration demonstration. Phases 1 and 2

    SciTech Connect (OSTI)

    Borhanian, H.; Rafuse, L.

    1996-04-01T23:59:59.000Z

    The HFC Supermarket Refrigeration Demonstration tested and evaluated HFC refrigerants in a new Shop `n Save supermarket in Glens Falls, New York. This project included laboratory testing of HFC refrigerants for medium- and low-temperature application, the design of a supermarket refrigeration system to accommodate the new refrigerants, installation, start-up, and field monitoring.

  5. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, R.T.; Middleton, M.G.

    1983-01-25T23:59:59.000Z

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  6. Solid-Vapor Sorption Refrigeration Systems

    E-Print Network [OSTI]

    Graebel, W.; Rockenfeller, U.; Kirol, L.

    adsorbents in heat pump cycles: 1. A high usable refrigerant mass per unit mass of adsorbent. 2. A high energy of adsorption and desorption. 3. Heat flows and composition changes occur at constant temperature. The advantages of complex compounds... 2. Useable refrigerant densities. Summarizing, complex compound exhibit inherent characteristics which make them ideal adsorbents in heat pump cycles: 1. A high usable refrigerant mass per unit mass of adsorbent. 2. A high energy of adsorption...

  7. IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P. Leblay

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3rd IIR Workshop on Refrigerant Charge Reduction in Refrigerating Systems Corresponding author: P on the refrigerant side and louver fins on the air side. The flat tubes are grouped within a header, to use the heat exchangers with round tubes, such as charge reduction and higher heat transfer efficiency. But a reduced

  8. Covered Product Category: Commercial Refrigerators and Freezers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program.

  9. Natural Refrigerant (R-729) Heat Pump

    Energy Savers [EERE]

    Manufactured in the U.S. 2 Problem Statement * Current commercial and industrial heat pumps - Poor coefficient of performance (COP) at low temperatures * HFC refrigerant...

  10. Covered Product Category: Refrigerated Beverage Vending Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vending machines are equipped with controls or software that put the lighting andor refrigeration systems into a low power state at night, on weekends, or other periods of...

  11. Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures

    E-Print Network [OSTI]

    Requirements for Determining Refrigerant Charge Residential Air Conditioning Measures Improved Refrigerant Charge Purpose Component packages require in some climate zones that split system air refrigerant charge. For the performance method, the proposed design is modeled with less efficiency

  12. Layer of protection analysis applied to ammonia refrigeration systems

    E-Print Network [OSTI]

    Zuniga, Gerald Alexander

    2009-05-15T23:59:59.000Z

    Ammonia refrigeration systems are widely used in industry. Demand of these systems is expected to increase due to the advantages of ammonia as refrigerant and because ammonia is considered a green refrigerant. Therefore, it is important to evaluate...

  13. ARM - VAP Product - mmcrmode02v0031cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth11cloth31cloth

  14. ARM - VAP Product - mmcrmode03v0051cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility41cloth51cloth

  15. ARM - VAP Product - mmcrmode04v0031cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management91cloth31cloth

  16. ARM - VAP Product - mmcrmode1bl200608121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth Documentation Data8121cloth

  17. ARM - VAP Product - mmcrmode1st200404151cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth404151cloth Documentation Data

  18. ARM - VAP Product - mmcrmode3ge200404141cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data4141cloth Documentation Data

  19. ARM - VAP Product - mmcrmode3ge200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data4141cloth Documentation

  20. ARM - VAP Product - mmcrmode4pr200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161clothProductsmmcrmodemmcrmode4pr200408121cloth

  1. ARM - VAP Product - mmcrmode5p0200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots712011cloth408121cloth

  2. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  3. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate...

  4. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm...

  5. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

    Energy Savers [EERE]

    11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

  6. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration...

    Broader source: Energy.gov (indexed) [DOE]

    0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document...

  7. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Energy Savers [EERE]

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies...

  8. Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmentally harmful refrigerants and foam and enables the recycling of the plastic, metal, and wiring components. 1 Secondary refrigerators are units not located in the...

  9. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Energy Savers [EERE]

    Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These...

  10. Corrosion aspects in indirect systems with secondary refrigerants.

    E-Print Network [OSTI]

    Ignatowicz, Monika

    2008-01-01T23:59:59.000Z

    ?? Aqueous solutions of organic or inorganic salts are used as secondary refrigerants in indirect refrigeration systems to transport and transfer heat. Water is known (more)

  11. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Low-Global-Warming-Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Next Generation Low-Global...

  12. Working Fluids Low Global Warming Potential Refrigerants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center. Life Cycle Climate Performance of supermarket refrigeration.
    Credit: Oak Ridge National Lab Life Cycle Climate Performance of supermarket refrigeration....

  13. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...

    Broader source: Energy.gov (indexed) [DOE]

    Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of...

  14. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1989-05-09T23:59:59.000Z

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  15. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

    1989-01-01T23:59:59.000Z

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  16. Natural Refrigerant, Geothermal Heating & Cooling Solutions

    E-Print Network [OSTI]

    , January 2013, www.danfoss.com/co2 DIRECT Refrigerant Leakage (GWP) INDIRECT Energy Consumption (COP Geothermal's Direct Exchange System Advantage: · All Natural, Safe & Non-toxic Refrigerant · Highly Efficient Equivalent Warming Impact Commercial Food and Retail Application: Direct Leakage > Energy Consumption Brown

  17. Modeling supermarket refrigeration energy use and demand

    SciTech Connect (OSTI)

    Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

    1991-07-01T23:59:59.000Z

    A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

  18. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  19. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  20. North Star Refrigerator: Order (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE ordered North Star Refrigerator Co., Inc. to pay a $8,000 civil penalty after finding North Star Refrigerator had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. ARM - VAP Product - mmcrmode01v0091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth Documentation91cloth

  2. ARM - VAP Product - mmcrmode02v0011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth11cloth Documentation

  3. ARM - VAP Product - mmcrmode02v0021cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth11cloth

  4. ARM - VAP Product - mmcrmode03v0041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility41cloth

  5. ARM - VAP Product - mmcrmode04v0011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management91cloth Documentation

  6. ARM - VAP Product - mmcrmode04v0021cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management91cloth

  7. ARM - VAP Product - mmcrmode1bl200511041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth Documentation Data Management

  8. ARM - VAP Product - mmcrmode1bl200606161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth Documentation Data

  9. ARM - VAP Product - mmcrmode1bl200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth Documentation

  10. ARM - VAP Product - mmcrmode1st200309091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation511041cloth

  11. ARM - VAP Product - mmcrmode2ci200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data Management Facility

  12. ARM - VAP Product - mmcrmode2ci200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data Management

  13. ARM - VAP Product - mmcrmode3ge200309091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data

  14. ARM - VAP Product - mmcrmode3ge200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation

  15. ARM - VAP Product - mmcrmode3ge200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth

  16. ARM - VAP Product - mmcrmode4ro200712011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots712011cloth

  17. ARM - VAP Product - mmcrmode6p1200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility408121cloth Documentation

  18. Dynamic simulation of a reverse Brayton refrigerator

    SciTech Connect (OSTI)

    Peng, N.; Xiong, L. Y.; Dong, B.; Liu, L. Q. [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 (China); Lei, L. L.; Tang, J. C. [State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190 China and Graduate University of Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29T23:59:59.000Z

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  19. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  20. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  1. G429 Clothing/Equipment/Supply List Field clothes, field boots, and field equipment, including geologic hammer and hand lens, will be needed on

    E-Print Network [OSTI]

    Polly, David

    G429 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) for use in G429e and/or recreation o Flip flops (optional

  2. G433 Clothing/Equipment/Supply List Field clothes, field boots, and field equipment, including geologic hammer and hand lens, will be needed on

    E-Print Network [OSTI]

    Polly, David

    G433 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors

  3. G429 Clothing/Equipment/Supply List Field clothes, field boots, and field equipment, including geologic hammer and hand lens, will be needed on

    E-Print Network [OSTI]

    Polly, David

    G429 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors

  4. G433 Clothing/Equipment/Supply List Field clothes, field boots, and field equipment, including geologic hammer and hand lens, will be needed on the

    E-Print Network [OSTI]

    Polly, David

    G433 Clothing/Equipment/Supply List Clothing Field clothes, field boots, and field equipment field day, a windbreaker over a sweater or sweatshirt is a more versatile field dress than a heavy Water shoes (tevas or old tennis shoes) o Flip flops (optional) for shower area o Scree Gaitors

  5. Refrigerator/freezer energy use: Measured values vs. simulation results

    SciTech Connect (OSTI)

    Hakim, S.H.; Turiel, I. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1997-12-31T23:59:59.000Z

    The EPA Refrigerator Analysis (ERA) program was utilized in the engineering analysis performed to support the proposed refrigerator/freezer standards in the United States. In this paper the accuracy of the ERA program for predicting the energy consumption of domestic refrigerators, freezers, and refrigerator-freezers is studied by comparing the predicted energy consumption with the measured energy consumption.

  6. Dual-circuit, multiple-effect refrigeration system and method

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  7. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24T23:59:59.000Z

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  8. PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant

    E-Print Network [OSTI]

    Kazachkov, Ivan

    the use of carbon dioxide as refrigerant in supermarket refrigeration systems. The work includes fieldPhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 a PhD student in Energy Technology, specifically Commercial refrigeration systems with CO2

  9. Proceedings: commercial refrigeration research workshop. Summary

    SciTech Connect (OSTI)

    Blatt, M.H.

    1984-10-01T23:59:59.000Z

    The purpose of this workshop was to identify the state-of-the-art and determine research needs for improving energy use and demand in commercial refrigeration applications. Workshop attendees included research and development, technical operations and marketing people from manufacturers of supermarket refrigeration, space conditioning, and energy management systems equipment, and from supermarket chains and electric utilities. Presentations were given on best current practice and research needs from the perspective of each of these industry segments. Working groups identified ten important research, development and equipment demonstration projects to improve the efficiency of refrigerating equipment, heating, ventilating and air-conditioning (HVAC) equipment, and other energy-using systems in supermarkets.

  10. Performance of a two-cycle refrigerator/freezer using HFC refrigerants

    SciTech Connect (OSTI)

    Baskin, E.; Delafield, F.R.

    1999-07-01T23:59:59.000Z

    A two-cycle 18 ft{sup 3} (0.51 m{sup 3}) refrigerator/freezer was tested utilizing American National Standards Institute/Association of Home Appliance Manufacturers (ANSI/AHAM) standards for energy consumption testing. A 34.9% energy consumption reduction was realized for a 1984 model refrigerator/freezer (1020 kWh original energy use). This paper presents a proven method of reducing the current Department of Energy (DOE) minimum energy-efficiency standards for refrigerator/freezers to the proposed year 2001 standards utilizing existing technology. For a top-mount, frost-free refrigerator/freezer having the above volume, the current DOE minimum energy standard is 770 kWh/year, and the proposed DOE year 2001 standard is 530 kWh/year (a 31% reduction). Therefore, some significant reductions may be obtained by implementing the modifications discussed in this paper into newer refrigerator/freezer models. The paper gives an overview of the modifications implemented by a Danish university on a US refrigerator/freezer and presents experimental performance testing results of the refrigerator/freezer. The modifications will cause the refrigerator/freezer to be more expensive, but the performance enhancements should offset cost. No cost analysis is presented in this paper, but a detailed cost analysis of a two-cycle refrigerator/freezer is contained in a 1993 US Environmental Protection Agency (EPA) report (EPA 1993). The refrigerator/freezer was tested using four refrigerants and compressors. Two compressors and refrigerants were tested in the freezer cycle, and four were tested in the fresh food cycle.

  11. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  12. E-Print Network 3.0 - absorption-recompression refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REFRIGERATION CYCLE ACTUAL VAPOR-COMPRESSION REFRIGERATION CYCLE VAPOR-COMPRESSION HEAT PUMPS THE EXERGY... and Engineering Center CARNOT REFRIGERATION CYCLE Practical...

  13. E-Print Network 3.0 - amr refrigeration cycle Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COPs, pressure ratios, outlet temperatures of the refrigerants... , Ltd. KEY WORDS: refrigeration; refrigerants; water; comparison; compressor; cycle; heat pump; air... be...

  14. Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics

    E-Print Network [OSTI]

    Greenblatt, Jeffery

    2013-01-01T23:59:59.000Z

    residential refrigerators and freezers: function derivationsecond most-used) refrigerators, and freezers, and residualfor more efficient refrigerators and freezers, as well as

  15. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    E-Print Network [OSTI]

    Greenblatt, Jeffery B.

    2013-01-01T23:59:59.000Z

    vapor compression refrigerators and freezers), along withthe number of refrigerators and freezers in a home alongcompression refrigerators and freezers) in U.S. households.

  16. Energy use of icemaking in domestic refrigerators

    SciTech Connect (OSTI)

    Meier, A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Martinez, M.S. [ENVEST-SCE, Irwindale, CA (United States)

    1996-02-01T23:59:59.000Z

    This study was designed to develop and test a procedure to measure the electrical consumption of ice making in domestic refrigerators. The Department of Energy (DOE) test procedure was modified to include the energy used for icemaking in conventional refrigerators and those equipped with automatic icemakers. The procedure assumed that 500 grams of ice would be produced daily. Using the new test procedure and the existing DOE test (as a benchmark), four refrigerators equipped with automatic icemakers were tested for ice-making energy use. With the revised test, gross electricity consumption increased about 10% (100 kWh/yr) due to automatic icemaking but about 5% (55 kWh/yr) could be attributed to the special features of the automatic icemaker. The test also confirmed the feasibility of establishing procedures for measuring energy use of specific loads and other activities related to domestic refrigerators. Field testing and subsequent retesting revealed a 14% increase in energy use.

  17. Of Refrigerators & Regulations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Regulations Of Refrigerators & Regulations February 8, 2011 - 9:29am Addthis Jesse Lee White House Director of Online Affairs Editor's Note: This entry has been cross-posted from...

  18. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01T23:59:59.000Z

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  19. Residential Refrigerator Recycling Ninth Year Retention Study

    E-Print Network [OSTI]

    Residential Refrigerator Recycling Ninth Year Retention Study Study ID Nos. 546B, 563 Prepared RECYCLING PROGRAMS Study ID Nos. 546B and 563 Prepared for Southern California Edison Rosemead, California

  20. Defrost Temperature Termination in Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01T23:59:59.000Z

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  1. International Refrigeration: Proposed Penalty (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that International Refrigeration Products failed to certify a various room air conditioners as compliant with the applicable energy conservation standards.

  2. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  3. Improving Industrial Refrigeration System Efficiency - Actual Applications

    E-Print Network [OSTI]

    White, T. L.

    1980-01-01T23:59:59.000Z

    cycle cooling during winter operation, compressor intercooling, direct refrigeration vs. brine cooling, insulation of cold piping to reduce heat gain, multiple screw compressors for improved part load operation, evaporative condensers for reduced system...

  4. Cospolich Refrigerator: Proposed Penalty (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Cospolich Refrigerator Co, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  5. ARI delegation to Japan on Alternative Refrigerants

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    Researchers from ARI member companies spoke at the International Conference on Alternative Refrigerants in Tokyo and visited several Japanese organizations for the purpose of exchanging information on alternative refrigerants. The specific purpose of the meetings was to review the methods being utilized to screen alternatives to CFCs and HCFCs: materials compatibility screening methods, lubricant testing techniques, as well as flammability studies. A list of papers presented at the conference is included.

  6. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  7. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01T23:59:59.000Z

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  8. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect (OSTI)

    Mohammed, Abdul Qayyum [University of Dayton, Ohio] [University of Dayton, Ohio; Wenning, Thomas J [ORNL] [ORNL; Sever, Franc [University of Dayton, Ohio] [University of Dayton, Ohio; Kissock, Professor Kelly [University of Dayton, Ohio] [University of Dayton, Ohio

    2013-01-01T23:59:59.000Z

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  9. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01T23:59:59.000Z

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  10. ARM - VAP Product - mmcrmode01v0041cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi2 Documentation31cloth41cloth

  11. ARM - VAP Product - mmcrmode03v0021cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility Plots21cloth

  12. ARM - VAP Product - mmcrmode03v0091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management91cloth Documentation Data

  13. ARM - VAP Product - mmcrmode05v0011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation DataProductsmmcrmodemmcrmode05v0011cloth

  14. ARM - VAP Product - mmcrmode2ci200608161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth8161cloth Documentation Data Management Facility Plots

  15. ARM - VAP Product - mmcrmode4ro200309091cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots (Quickro200309091cloth

  16. ARM - VAP Product - mmcrmode6p1200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility408121cloth Documentation Data

  17. Resolution independent curved seams in clothing animation using a regular particle grid

    E-Print Network [OSTI]

    Foshee, Jacob Wesley

    2004-11-15T23:59:59.000Z

    We present a method for representing seams in clothing animation, and its application in simulation level of detail. Specifically we consider cloth represented as a regular grid of particles connected by spring-dampers, and a seam specified by a...

  18. Development and implementation of energy efficiency standards and labeling programs in China: Progress and challenges

    E-Print Network [OSTI]

    Zhou, Nan

    2014-01-01T23:59:59.000Z

    clothes washers, rice cookers and televisions. In 1995, theGas Water Heater Rice Cookers Household Cooktops Computer

  19. Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems

    E-Print Network [OSTI]

    Zuo, Z.; Hu, W.

    2006-01-01T23:59:59.000Z

    With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam...

  20. Skill Mastery Accomplished with Resources for Teaching Clothing & Textiles

    E-Print Network [OSTI]

    or fewer). Clothing Construction Smart Kit Inventory: · ***5 Beginning Sewing Kits · Storage tub · 2 irons · Fashion Forward · Refine Design · Helper's Guide · Let's Sew by Nancy Zieman Optional Inventory Items: · Fray check · Knit Repair Tool · Fuzz remover · Craft scissors (for paper) · Light machine oil

  1. Mapping and dimensionality of a cloth-based sound instrument

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    of a stretched elastic cloth with an integrated sensor array called the "Blanket". Keywords-- pliable interface model of textile motion has been created for musical control [3], however the user interface emer- gent play behaviour with pliable materials. This particular account documents the interactivation

  2. An Evaluation on Woven Cloth Rendering Wallace Yuen

    E-Print Network [OSTI]

    Sun, Jing

    technologies for cloth rendering. However, it is not clear what technology is suitable for what types far no research exists comparing digital representations of fabric rendering techniques. This paper, and weaving patterns. Several existing methods are discussed and we analyze their advantages and disadvan

  3. E-Print Network 3.0 - active magnetic refrigerator Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: : The Perspectives of Patient and Public Health Organizations Aerosols Air Conditioning and Refrigeration... : Refrigerant Alternatives for Chillers Koichi Watanabe,...

  4. SPATIAL DATA ON ENERGY, ENVIRONMENTAL, SOCIOECONOMIC, HEALTH AND DEMOGRAPHIC THEMES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY

    E-Print Network [OSTI]

    Burkhart Ed., B.R.

    2012-01-01T23:59:59.000Z

    house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-house heating fuel, water heating fuel, clothes washer and dryer, dishwasher, home freezer, television sets, battery-

  5. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect (OSTI)

    Starke, M.R.

    2005-10-24T23:59:59.000Z

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  6. Quantum heat engines and refrigerators: Continuous devices

    E-Print Network [OSTI]

    Ronnie Kosloff; Amikam Levy

    2013-10-02T23:59:59.000Z

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to the level of a single few level system coupled to the environment. Once the environment is split into three;a hot, cold and work reservoirs a heat engine can operate. The device converts the positive gain into power;where the gain is obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principle. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimisation of the devices leads to a balanced set of parameters where the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analysing refrigerators special attention is devoted to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when approaching the absolute zero are obtained by optimising the cooling current. At low temperature all refrigerators show universal behavior. Restrictions on the system imposed by the dynamical version of the third law are studied.

  7. Fully portable, highly flexible dilution refrigerator systems for neutron scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    775 Fully portable, highly flexible dilution refrigerator systems for neutron scattering P. A systems developed specifically for neutron scattering environ- ments. The refrigerators are completely relatively recently however, the lowest temperatures available in almost all neutron scattering laboratories

  8. adiabatic demagnetization refrigerator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refrigeration, steam... Zuo, Z.; Hu, W. 2006-01-01 287 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

  9. Could You Save Money on Your Refrigerator? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy...

  10. Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)

    SciTech Connect (OSTI)

    Deru, M.

    2011-02-01T23:59:59.000Z

    This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

  11. Microcomputer Software for Refrigerant Property and Cycle Analysis Calculations

    E-Print Network [OSTI]

    Bierschenk, J. L.; Strohl, S. T.; Schmidt, P. S.

    the thermodynamic properties of ten fluorocarbon refrigerants, (Rll, R12, R13, R14, R22, R23, Rl13, Rl14, R500, R502) and ammonia in the sub-cooled, saturation, 2-phase, and superheat regions. In the sec tions which follow, the theoretical basis... for each fluorocarbon refrigerant, represent curve fits to existing tabular property data. For both ammonia and the fluorocarbon refrigerants, the equations for the following four basic properties of refrigerants are used. - Liquid density as a...

  12. Optimal performance of endoreversible quantum refrigerators

    E-Print Network [OSTI]

    Luis A. Correa; Jos P. Palao; Gerardo Adesso; Daniel Alonso

    2014-11-24T23:59:59.000Z

    The derivation of general performance benchmarks is important in the design of highly optimized heat engines and refrigerators. To obtain them, one may model phenomenologically the leading sources of irreversibility ending up with results which are model-independent, but limited in scope. Alternatively, one can take a simple physical system realizing a thermodynamic cycle and assess its optimal operation from a complete microscopic description. We follow this approach in order to derive the coefficient of performance at maximum cooling rate for \\textit{any} endoreversible quantum refrigerator. At striking variance with the \\textit{universality} of the optimal efficiency of heat engines, we find that the cooling performance at maximum power is crucially determined by the details of the specific system-bath interaction mechanism. A closed analytical benchmark is found for endoreversible refrigerators weakly coupled to unstructured bosonic heat baths: an ubiquitous case study in quantum thermodynamics.

  13. Basics of Low-temperature Refrigeration

    E-Print Network [OSTI]

    Alekseev, A

    2014-01-01T23:59:59.000Z

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  14. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect (OSTI)

    Calm, James M.

    2000-09-30T23:59:59.000Z

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  15. Simulation results of single refrigerants for use in a dual-circuit refrigerator/freezer

    SciTech Connect (OSTI)

    Bare, J.C. (Environmental Protection Agency, Research Triangle Park, NC (United States))

    1992-02-01T23:59:59.000Z

    Dual-circuit RFs have been shown to have a theoretical advantage over single-evaporator RFs if the compressor efficiencies of the separate loops are equivalent to the compressor efficiency of the combined system. Single refrigerants were analyzed to determine the optimum pure refrigerant in each of the two separate freezer and fresh food loops. R-152a and R-142b were determined to be the optimum single refrigerants in the dual-circuit system. With the assumptions made, theoretical energy savings of up to 23% of compressor power are possible.

  16. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  17. Method and apparatus for de-superheating refrigerant

    DOE Patents [OSTI]

    Zess, J.A.; Drost, M.K.; Call, C.J.

    1997-11-25T23:59:59.000Z

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

  18. Control method for mixed refrigerant based natural gas liquefier

    DOE Patents [OSTI]

    Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

    2003-01-01T23:59:59.000Z

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  19. DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;DEVELOPMENT OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER Richard F. Topping-efficient refrigerator- freezer prototype involving the Department of Energy's Oak Ridge National Laboratory, Arthur D refrigerator-freezers. The resulting 16 cubic foot prototype uses significantly less energy than the most

  20. Fast Nonconvex Model Predictive Control for Commercial Refrigeration

    E-Print Network [OSTI]

    its capabil- ity to minimize the total cost of energy for a commercial refrigeration system while multi-zone refrigeration system, consisting of several cooling units that share a common compressor. This corresponds roughly to 2% of the entire electricity consumption in the country. Refrigerated goods constitute

  1. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01T23:59:59.000Z

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  2. Form Date 4/4/01 Refrigerant Service Order Form

    E-Print Network [OSTI]

    Russell, Lynn

    Recovery Unit ID # : Added Lbs oz Lbs oz Lbs oz Startup Charge Net Refrigerant Added: Lbs oz Parts UsedForm Date 4/4/01 Refrigerant Service Order Form Service ID: Owner: Work Order #: Building: Date: Issued: Completed: Equipment ID: Technicians: Location: Model: Manufact: Serial #: Refrigerant Type

  3. Feasibility of Solar-Assisted Refrigerated Transport in Australia

    E-Print Network [OSTI]

    systems. Keywords: refrigeration, transport, photovoltaics, economics. 1 #12;B. Elliston, M. Dennis) modules to minimise the use of diesel generation in refrigerated transport. Sub- sequently, UK supermarket. This report investigates the merit of retrofitting a PV system to assist refrigerated trailers in Australian

  4. Helium refrigeration considerations for cryomodule design

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States)

    2014-01-29T23:59:59.000Z

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  5. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07T23:59:59.000Z

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  6. 2014-04-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding test procedures for residential refrigerators and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014.

  7. ARM - VAP Product - mmcrmode01v0011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi2 Documentation Data11cloth

  8. ARM - VAP Product - mmcrmode01v0031cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi2 Documentation31cloth

  9. ARM - VAP Product - mmcrmode01v0061cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth Documentation Data

  10. ARM - VAP Product - mmcrmode01v0071cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth Documentation

  11. ARM - VAP Product - mmcrmode01v0101cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation DataProductsmicrobasemicrobasepi261cloth

  12. ARM - VAP Product - mmcrmode02v0071cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility Plots (Quick

  13. ARM - VAP Product - mmcrmode03v0011cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility Plots

  14. ARM - VAP Product - mmcrmode03v0031cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management Facility

  15. ARM - VAP Product - mmcrmode03v0081cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data Management

  16. ARM - VAP Product - mmcrmode04v0061cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation Data

  17. ARM - VAP Product - mmcrmode1bl200408121cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth Documentation

  18. ARM - VAP Product - mmcrmode2ci200606161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation71cloth

  19. ARM - VAP Product - mmcrmode4pr200608161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots (Quick Looks)

  20. ARM - VAP Product - mmcrmode4pr200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots (Quick

  1. ARM - VAP Product - mmcrmode4ro200404141cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots

  2. ARM - VAP Product - mmcrmode5p0200804181cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility

  3. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL

    2011-11-01T23:59:59.000Z

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  4. Covered Product Category: Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. Alternative Refrigerants for Building Air Conditioning

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

  6. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  7. Retail refrigeration systems -- The use of ammonia and two-level secondary refrigeration

    SciTech Connect (OSTI)

    Thomas, A.S. [Westward Refrigeration, Gloucester (United Kingdom)

    1998-10-01T23:59:59.000Z

    The concept of a secondary refrigeration system for high-temperature use as investigated in 1991, and a design for a full high-temperature system was completed the following year. In late 1992, a supermarket chain commissioned a study of the feasibility of turning the design into a practical application and assisted the project in 1993 by commissioning a test facility for single-temperature secondary refrigeration at one of the company`s factory sites. Results and conclusions from this trial work pointed toward the need for a total secondary refrigeration system, including a low-temperature system for frozen food display cases, and the possibility of utilizing environmentally friendly ammonia as the primary refrigerant. Therefore, in late 1993/early 1994, a low-temperature system was developed and commissioned at the test facility. Full collaboration between the supermarket company and the contractor resulted in the funding of practical trial work and feasibility studies for both secondary refrigeration and a fully detailed proposal for the use of ammonia in a public retail environment. In May 1995, the first UK ammonia and two-level secondary refrigeration system began operation in a supermarket in Horsham, Sussex England.

  8. Dilution cycle control for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  9. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19T23:59:59.000Z

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  10. The effects of temperature, clothing and task on job performance and worker satisfaction

    E-Print Network [OSTI]

    Vickroy, Stephen Christopher

    1980-01-01T23:59:59.000Z

    Manipulation Checks . Hypothesis I: Temperature x Clothing Interaction for Job Performance . V111 1X 10 10 12 16 16 16 16 17 17 18 20 20 21 Hypothesis II: Temperature x Task x Clothing Interaction for Job Performance. Hypothes1s III... research has been performed in order to determine the effects of task complexity under differing temperature and clothing conditions. For the most part, it has been assumed that performance on complex tasks would be affected most greatly by unfavorable...

  11. Differences in Mexican-American and Anglo-American Women's Response to a Modified Clothing TAT.

    E-Print Network [OSTI]

    Bathke, Carol Sander

    1968-01-01T23:59:59.000Z

    precise conclusions in the statistical sense, could be drawn. For the Mexican-American women studied, there was a direct relationship between cloth- ing awareness and social status scores (P. = 75-90 per- ' cent), occupational rating (no statistical....5 percent). Area of ma jnr socialization did not affect Mexican-American ~z-omen'( cognizance of clothing. Anglo-Americans were more likely to have Iliqher clothing awareness scores (P. = 95 percent) than werr the Mexico-born women. Although...

  12. Electricity savings from residential appliance standards in Sweden

    SciTech Connect (OSTI)

    Turiel, I. [Lawrence Berkeley Lab., CA (United States); Lebot, B. [Agence Francaise pour la Maitrise de l`Energie, 75 - Paris (France)

    1993-04-01T23:59:59.000Z

    This paper discusses the energy savings that could be obtained in Sweden by instituting specific standards for five appliances: Refrigerators, freezers, dishwashers, clothes washers, and clothes dryers. At the present time, Sweden has no minimum energy efficiency standards for residential appliances. This paper discusses the energy savings that could be obtained by instituting specific standards for five product types (refrigerators, freezers, dishwashers, clothes washers, and dryers) starting in 1995. A methodology similar to that used in analyses for the European Community was employed in this study. In the Swedish study, we used appliance test data developed by the Swedish consumer agency, Konsument Verket, to estimate new unit energy consumption for each product type. Shipments, saturations, energy use, and demographic data were input to a spreadsheet model that sums energy consumption for each product type over the period 1990--2010. Both a base case and a standards case scenario are simulated for each of the five appliance types. It was found that electricity use for these five products can be reduced by 12% over the time period from 1990--2010. Most of the energy savings come from instituting efficiency standards for refrigerators and freezers. For each product class type, the impact on manufacturer offerings is discussed. For example, for simple refrigerators, eleven 1990 models meet the 1995 standard and six models meet the 2000 standard out of a total of 63 models.

  13. Versatile Indian sari: Clothing insulation with different drapes of typical sari ensembles

    E-Print Network [OSTI]

    Indraganti, Madhavi; Lee, Juyoun; Zhang, Hui; Arens, Edward

    2014-01-01T23:59:59.000Z

    Extension of the Clothing Insulation Database for Standardand air movement on that insulation. , s.l. : s.n. Havenith,Estimation of the thermal insulation and evaporative

  14. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    E-Print Network [OSTI]

    Meyers, Steve

    2011-01-01T23:59:59.000Z

    Association of Home Appliance Manufacturers (AHAM).2008a. AHAM Data on Room Air Conditioners and ClothesDryers. Washington, DC. AHAM. 2008b. Trends in Energy

  15. E-Print Network 3.0 - activated carbon cloth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxide-Carbon Supercapacitors Summary: on synthesizing various activated carbons, aerogels, activated carbon fibers, and cloths with large surface areas... are also the same.10...

  16. The alternative refrigerant dilemma for refrigerator-freezers: Truth or consequences

    SciTech Connect (OSTI)

    Vineyard, E.A.

    1991-01-01T23:59:59.000Z

    In an effort to select a refrigerant that has minimal impact on energy consumption and the environment, a screening analysis of potential refrigerants was performed that resulted in the selection of six candidates. The screening results show that R-134a, R-134, R-152a, R-134a/R-152a, R-22/R-152a/R-124, and R-134a/R-152a/R-124 are the most promising refrigerants based on the following criteria: ozone depletion potential, greenhouse warming potential, coefficient of performance, and safety. Energy consumption tests were performed for the three pure refrigerants in accordance with the Association of Home Appliance Manufacturers standard for household refrigerators and household freezers. The results indicate an increased energy consumption of 6.8%, 7.3%, and 7.3%, respectively for R-134, R-152a, and R-134a in the most efficient oil. However, when the effects of compressor efficiency are taken into account, the normalized energy consumption results in an increase of only 2.7% for R-152a and 5.5% for both R-134a and R-134. 14 refs., 5 tabs.

  17. The application of Stirling cooler to refrigeration

    SciTech Connect (OSTI)

    Kim, S.Y.; Chung, W.S.; Shin, D.K.; Cho, K.S. [LG Electronics Inc., Seoul (Korea, Republic of). Living System Lab.

    1997-12-31T23:59:59.000Z

    The application field of the free-piston Stirling Cooler, Model 100A of Global Cooling BV in the refrigeration has been studied. The cooling effectiveness of the free-piston Stirling Cooler which means small capacity with better efficiency, large range of temperature and capacity modulated operation is of much use to cool a space insulated well. One practicable application is suggested here, in which FPSC and secondary heat transfer fluid are used to the single temperature refrigerator (60 liter) instead of conventional vapor compression machines. In the freezer operation at {minus}20 C inside cabinet, the steady-state test results show 25% improvement in energy consumption over original one. The application of free-piston Stirling Cooler to a freezer at lower temperature shows great potentials also.

  18. Performance bound for quantum absorption refrigerators

    E-Print Network [OSTI]

    Luis A. Correa; Jos P. Palao; Gerardo Adesso; Daniel Alonso

    2013-04-29T23:59:59.000Z

    An implementation of quantum absorption chillers with three qubits has been recently proposed, that is ideally able to reach the Carnot performance regime. Here we study the working efficiency of such self-contained refrigerators, adopting a consistent treatment of dissipation effects. We demonstrate that the coefficient of performance at maximum cooling power is upper bounded by 3/4 of the Carnot performance. The result is independent of the details of the system and the equilibrium temperatures of the external baths. We provide design prescriptions that saturate the bound in the limit of a large difference between the operating temperatures. Our study suggests that delocalized dissipation, which must be taken into account for a proper modelling of the machine-baths interaction, is a fundamental source of irreversibility which prevents the refrigerator from approaching the Carnot performance arbitrarily closely in practice. The potential role of quantum correlations in the operation of these machines is also investigated.

  19. An electric utility's adventures in commercial refrigeration

    SciTech Connect (OSTI)

    Flannick, J.A. (Wisconsin Electric Co., Milwaukee, WI (United States)); Stamm, R.H. (Industrial Refrigeration, Sandy, OR (United States)); Calle, M.M. (Technical Resources, Inc., Milwaukee, WI (United States)); Gomolla, J.C. (Gomolla (Jerry C.), Milwaukee, WI (United States))

    1994-10-01T23:59:59.000Z

    This article provides a look at the history of energy conservation efforts in supermarket refrigeration from World War II to the present and a goal for the future. A supermarket is a low profit margin business, typically netting 1 percent on annual sales. The typical supermarket's annual electric bill equals or exceeds the annual profits. With all of these data, it looked like energy conservation in the supermarket industry was going to be an easy task. Change the lighting to a more energy-efficient system and lower the head pressure and raise the suction pressure in the refrigeration. Any owner, CEO, or general manager who could easily increase his bottom-line profit by 10 to 30 percent would jump at the opportunity, especially when the electric utility was willing to support a portion of the cost for the changes.

  20. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; Fricke, Brian A [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  1. HVAC's Variable Refrigerant Flow (VRF) Technology

    E-Print Network [OSTI]

    Jones, S.

    2012-01-01T23:59:59.000Z

    1 Comfort by Design Steve Jones Commercial Sales Manager for Mitsubishi Southwest Business Unit HVAC?s Variable Refrigerant Flow (VRF) Technology HVAC Industry Overview HVAC Market Dollar Volume $18 Billion Source:;NABH Research....2M Systems Ductless is a small percent of the U.S. HVAC market but current building and energy usage trends indicate a large growth opportunity Determining the Proper Application Worldwide Usage-Opportunity Window Unitary Chillers...

  2. Tapered pulse tube for pulse tube refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W. (Sante Fe, NM); Olson, Jeffrey R. (San Mateo, CA)

    1999-01-01T23:59:59.000Z

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  3. Process for the production of refrigerator oil

    SciTech Connect (OSTI)

    Kunihiro, T.; Tsuchiya, K.

    1985-06-04T23:59:59.000Z

    A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

  4. Cool energy savings opportunities in commercial refrigeration

    SciTech Connect (OSTI)

    Westphalen, D.; Brodrick, J.; Zogg, R.

    1998-07-01T23:59:59.000Z

    The commercial sector consumes over 13 quads of primary energy annually. Most of this consumption (two-thirds) meets the energy needs of lighting and heating, ventilation, and air-conditioning. The largest consuming group of the remaining one-third is commercial refrigeration at about one quad annually (990 trillion Btu), valued at over $7 billion per year to the commercial sector consumer. Potential energy savings are estimated to be about 266 trillion Btu, with consumer savings valued at about $2 billion. This study provides the first known estimates of these values using a bottom-up approach. The authors evaluated numerous self-contained and engineered commercial refrigeration systems in this study, such as: supermarket central systems, beverage merchandisers, ice machines, and vending machines. Typical physical characteristics of each equipment type were identified at the component level for energy consumption. This information was used to form a detailed database from which they arrived at the estimate of 990 trillion Btu energy consumption for the major equipment types used in commercial refrigeration. Based on the implementation of the most cost-effective technology improvements for the seven major equipment types, they estimated an annual potential energy savings of 266 trillion Btu. Much of the savings can be realized with the implementation of high-efficiency fan motors and compressors. In many cases, payback can be realized within three years.

  5. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN); Fairchild, Phillip D. (Clinton, TN); Biermann, Wendell J. (Fayetteville, NY)

    1990-01-01T23:59:59.000Z

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  6. ARM - VAP Product - mmcrmode4pr200606161cloth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc6161cloth Documentation Data Management Facility Plots (Quick Looks) Citation

  7. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01T23:59:59.000Z

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  8. Hydrophilic structures for condensation management in refrigerator appliances

    DOE Patents [OSTI]

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21T23:59:59.000Z

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  9. Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory

    E-Print Network [OSTI]

    Tan, C.; Liu, J.; Tang, F.; Liu, Y.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-4 Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory Chaoyi Tan Jianlong Liu Fennan Tang Yang Liu Hunan University of Technology... fiber ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-4 2. REFRIGERATION SYSTEM SUPERIOR DESIGN PROPOSAL IN MUCILAGE GLUE FIBER FACTORY 2.1 Refrigeration system superior design proposal in mucilage glue fiber factory...

  10. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    1998-04-28T23:59:59.000Z

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  11. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28T23:59:59.000Z

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  12. Compressor calorimeter performance of refrigerant blends: Comparative methods and results for a refrigerator/freezer application

    SciTech Connect (OSTI)

    Rice, C K; Sand, J R

    1993-01-01T23:59:59.000Z

    A protocol was developed to define calorimeter operating pressures for nonazeotropic refrigerant mixtures (NARMs) which corresponded with the saturated evaporator and condenser temperatures commonly used for pure refrigerants. Compressor calorimeter results were obtained using this equivalent-mean-temperature (EMT) approach and a generally applied Association of Home Appliance Manufacturers (AHAM) procedure at conditions characteristic of a domestic refrigerator-freezer application. Tests with R-12 and two NARMs indicate that compressor volumetric and isentropic efficiencies are nearly the same for refrigerants with similar capacities and pressure ratios. The liquid-line temperature conditions specified in the AHAM calorimeter rating procedure for refrigerator-freezer compressors were found to preferentially derate NARM performance relative to R-12. Conversion of calorimeter data taken with a fixed liquid-line temperature to a uniform minimal level of condenser subcooling is recommended as a fairer procedure when NARMs are involved. Compressor energy-efficiency-ratio (EER) and capacity data measured as a result of the EMT approach were compared to system performance calculated using an equivalent-heat-exchanger-loading (EHXL) protocol based on a Lorenz-Meutzner (L-M) refrigerator-freezer modeling program. The EHXL protocol was used to transform the calorimeter results into a more relevant representation of potential L-M cycle performance. The EMT method used to set up the calorimeter tests and the AHAM liquid-line conditions combined to significantly understate the cycle potential of NARMs relative to that predicted at the more appropriate EHXL conditions. Compressor conditions representative of larger heat exchanger sizes were also found to give a smaller L-M cycle advantage relative to R-12.

  13. LG to DOE General Counsel; Re:Request for Comment on Large Capacity Clothes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVACResearchof EnergyWashers

  14. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  15. High-Performance Refrigerator Using Novel Rotating Heat Exchanger...

    Broader source: Energy.gov (indexed) [DOE]

    pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially...

  16. Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...

    Open Energy Info (EERE)

    for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Focus...

  17. DOE Opens Three Investigations into Alleged Refrigerator Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that...

  18. New Refrigerant Boosts Energy Efficiency of Supermarket Display...

    Energy Savers [EERE]

    Solstice N40 offer supermarkets an easy solution to reduce their refrigeration system's electricity consumption, save energy, and cut greenhouse gas emissions. The Building...

  19. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  20. Supermarket refrigeration assessment for the New England Electric System

    SciTech Connect (OSTI)

    Tsaros, T.L.; Walker, D.H. (Foster-Miller, Inc., Waltham, MA (United States))

    1991-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) has undertaken a project to assess the impact of energy efficient supermarket refrigeration on the electric capacity requirements of the New England Electric System (NEES) service territories. The leading supermarket chains in the NEES service territories were contacted and the number of supermarkets and the types of refrigeration systems employed were established. Estimates were then made of the potential demand and energy savings that NEES and the supermarkets could realize if energy efficient refrigeration systems were employed. On the basis of this analysis, possible incentives to accelerate the implementation of energy efficient refrigeration equipment in NEES service territories were recommended. 4 refs., 10 figs., 27 tabs.

  1. Mexico Sectoral Study on Climate and Refrigeration Technology...

    Open Energy Info (EERE)

    Reduction Potential and Implementing NAMAs Jump to: navigation, search Name Mexico-Sectoral Study on Climate and Refrigeration Technology in Developing Countries and the...

  2. Polyhalogenated hydrocarbon refrigerants and refrigerant oils colored with fluorescent dyes and method for their use as leak detectors

    SciTech Connect (OSTI)

    Parekh, M.

    1988-07-19T23:59:59.000Z

    A leak detectable refrigeration composition is described comprising: (A) a refrigeration liquid selection from the group consisting of: (1) a polyhalogenated hydrocarbon refrigerant; (2) a refrigeration oil selected from the group consisting of naphthenic oils, paraffinic oils, alkylated benzenes, silicones, polyglycols, diesters or triesters of dicarboxylic or tricarboxylic acids, and polyalkyl silicate oils, and (3) a mixture of A(1) and A(2), and (B) a fluorescent dye compound or composition comprising the dye selected from the group consisting of: (1) a fluorescent dye selected from the group consisting of perylene, naphthoxanthene, monocyclic aromatic compounds having an organometallic compound, (2) a solution of fluorescent dye in a solvent, and (3) a mixture of B(1) and B(2). The fluorescent dye compound or composition is soluble in the refrigeration liquid. The concentration of the dye being at least 0.001 grams per 100 grams of the refrigeration liquid.

  3. Reliability Design and Case Study of a Refrigerator Compressor Subjected to Repetitive Loads, International Journal of Refrigeration

    E-Print Network [OSTI]

    Woo, S.; O'Neal, D.L.; Pecht, M.

    A newly designed crankshaft of a compressor for a side-by-side (SBS) refrigerator was studied. Using mass and energy conservation balances, a variety of compressor loads typically found in a refrigeration cycle were analyzed. The laboratory failure... vis-a-vis de la fiabilite et etude de casArticle history: Received 18 March 2008 Received in revised form 6 May 2008 Accepted 21 July 2008 Published online 31 July 2008 Keywords: Refrigeration system Compression system Reciprocating compressor...

  4. (Solar clothes dryer and wastewater heat exchanger). Final report

    SciTech Connect (OSTI)

    Baer, B.F.

    1984-12-04T23:59:59.000Z

    The first project investigated the technical possibilities of adapting a domestic electric clothes dryer to utilize solar-heated water as the heat source, replacing electric resistance heat. The second project attempted to extract wastewater heat from a commercial dishwasher to preheat fresh water to be used in the next dish washing cycle. It is felt that the clothes dryer project has met all of intended goals. Although a solar application has some real-world practical problems, the application of a dryer connected directly to the home heating system will prove to be cost-beneficial over the life of a dryer. The additional cost of a heat exchanger is not excessive, and the installation cost, if installed with the initial house plumbing is less than $100. From a practical point of view, the complexity of installing a wastewater heat extracter is considered impractical. The environment in which such equipment must operate is difficult at best, and most restaurants prefer to maintain as simple an operation as possible. If problems were to occur in this type of equipment, the kitchen would effectively be crippled. In conclusion, further research in the concept is not recommended. Recent advances in commercial dishwashers have also considerably reduced the heat losses which accompanied equipment only a few years old.

  5. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOE Patents [OSTI]

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20T23:59:59.000Z

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  6. DYNAMIC SIMULATION OF INEXTENSIBLE CLOTH Jan Bender, Daniel Bayer and Raphael Diziol

    E-Print Network [OSTI]

    Prautzsch, Hartmut

    DYNAMIC SIMULATION OF INEXTENSIBLE CLOTH Jan Bender, Daniel Bayer and Raphael Diziol Institut für-based modelling, impulse-based simulation, inelastic textiles 1. INTRODUCTION The dynamic simulation of cloth an efficient simulation. For example, Georgii and Westermann (2005) describe a method for a fast dynamic

  7. SectionILesson7ZippersandFacings Master Clothing Volunteer Program

    E-Print Network [OSTI]

    a facing. P Share something they have learned during the lessons. #12;Master Clothing Volunteer Program Construction Lesson 7: Zippers and Facings (7) 1 Section I Basic Clothing Construction Lesson 7 Zippers of the Lesson Participants should be able to: P Insert a lapped and a centered zipper. P Interface and stitch

  8. E-Print Network 3.0 - absorption refrigerator system Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles... interactions between the refrigerated cases and the...

  9. E-Print Network 3.0 - adsorption refrigeration system Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles... interactions between the refrigerated cases and the...

  10. E-Print Network 3.0 - absorption refrigeration machines Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refrigeration systems (2-3) htm systems (2-3) Thermo... ) Absorption: used more for air conditioning and for refrigeration- Absorption: used more for air conditioning... air...

  11. E-Print Network 3.0 - aqua-ammonia absorption refrigeration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each document... an individual study related to the interaction between refrigeration and air conditioning use, its environmental... , regarding refrigerant emission policy...

  12. E-Print Network 3.0 - absorption refrigerating machine Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    refrigeration systems (2-3) htm systems (2-3) Thermo... ) Absorption: used more for air conditioning and for refrigeration- Absorption: used more for air conditioning... air...

  13. Cascade and secondary coolant supermarket refrigeration systems : modelling and new frost correlations.

    E-Print Network [OSTI]

    Haile-Michael, Getu

    2011-01-01T23:59:59.000Z

    ??Nowadays traditional (direct expansion) supermarket refrigeration systems are mostly employed in supermarket establishments for refrigerating food products and beverages in the store. However, the installations (more)

  14. 1991 & 1992 trade-in refrigerator metering project

    SciTech Connect (OSTI)

    Bos, W.

    1994-12-31T23:59:59.000Z

    Under SMUD`s Equipment Efficiency Improvement Program the District offers an incentive of $100 to customers who trade in an older refrigerator in conjunction with the purchase of a new model. More than 40,000 refrigerators have been traded in this program as of January 1993. This program has provided 36.5% of the total reported savings from all SMUD`s conservation programs through April 1993. Of this 36.5% reported savings, 84.7% is attributed to the trading in of an old refrigerator for a new model, and only 15.3% to purchases of a new refrigerators without trading in their older model. In 1992 two laboratory studies were undertaken to quantify energy use of older, close to retirement, domestic residential refrigerators from participants in SMUD`s refrigerator trade-in program. One study focused on annual energy use from older model refrigerators received from this program, and the second study focused on potential energy savings from condenser coil cleaning from this same stock of refrigerators. To determine the performance of these refrigerators, a sample of 79 units was randomly selected for testing. Each unit was tested to obtain annual energy use (kWh/yr) and to document physical and operational conditions. A subset of 28 units from this sample was also tested to determine energy savings as a result of cleaning condenser coils. This was done by comparing test results of annual energy use before and after coil cleaning. These refrigerators were tested to the same conventional procedures (commonly called the {open_quotes}DOE{close_quotes} test, or AHAM test procedures) used to arrive at annual energy use labeled on all new refrigerators. Although laboratory results do not exactly replicate field (in-home) results, they have been found to still be a reasonably good predictor of energy use as reported in a Lawrence Berkeley Laboratory study , discussed in the following section.

  15. G429/429e/G429g Clothing, Equipment, Supply List Field clothes, field boots, and field equipment, including geologic hammer and hand lens, will be needed

    E-Print Network [OSTI]

    Polly, David

    G429/429e/G429g Clothing, Equipment, Supply List Clothing Field clothes, field boots, and field than a heavy jacket over just a t- shirt. At least two pairs of hiking or work boots are strongly suit (optional) o Water shoes (tevas or old tennis shoes) for use in G429e and/or recreation o Flip

  16. M. Bahrami ENSC 461 (S 11) Refrigeration Cycle 1 Refrigeration Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    of refrigerators and heat pumps is expressed in terms of coefficient of performance (COP): innet H HP innet L R W Q specified temperature levels. It sets the highest theoretical COP. The coefficient of performance for Carnot Evaporator QH Expansion valve h4 = h3 Compressor 3 2 1 4 Superheated vapor Saturated vapor Saturated liquid

  17. 1st TECCS meeting, 26th April 2007 Adsorption Refrigeration

    E-Print Network [OSTI]

    Davies, Christopher

    TECCS meeting, 26th April 2007 Adsorption refrigerators and heat pumps These machines ADsorb cycles for: Heat pumps Refrigerators Air conditioning Driven by heat from: Fossil fuels Bio fuels Waste of concept forced convection adsorption machine [#1] · Generating temperature 225° C · Heat rejection

  18. NBSIFI 86-3373 Impact of Refrigerant Property

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of performance prediction to refrigerant properties for a residential, split heat pump operating in the cooling mode. The NBS steady-state heat pump model, HPSIM, was used in this study. The individual influence and refrigerant mass flow rate are also given in the report. iii #12;Discrepancy between heat pump laboratory test

  19. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31T23:59:59.000Z

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  20. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

    1995-10-31T23:59:59.000Z

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  1. Control of Refrigeration Systems for Trade-off between Energy

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of Refrigeration Systems for Trade-off between Energy Consumption and Food Quality Loss Ph and Technology (DMST) under Grant: 2002-603/4001-93. CMBC consists of seven industrial companies, three academic of the three academic partners in the center. The refrigeration research activities within CMBC were initiated

  2. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  3. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Baxter, Van D [ORNL

    2010-01-01T23:59:59.000Z

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  4. Date | 1Refrigeration and Air Conditioning EMA Education and Training Date | 2Refrigeration and Air Conditioning EMA Education and Training

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Date | 1Refrigeration and Air Conditioning EMA Education and Training #12;Date | 2Refrigeration operating pressure (MOP) 5. De-humidifying (Te control) 6. Defrost funtions 7. Loss of charge detection (LOC control) 6. Defrost funtions 7. Loss of charge detection (LOC) 8. Bleed function 9. Sensor placement tips

  5. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect (OSTI)

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30T23:59:59.000Z

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the latest state-of-the-art for thermodynamic properties of HFC refrigerant blends. These models were incorporated into version 7 of NIST REFPROP database.

  6. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01T23:59:59.000Z

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  7. Product Refrigerator Freezer Fresh, in shell 4 to 5 weeks Don't freeze

    E-Print Network [OSTI]

    Burke, Peter

    Product Refrigerator Freezer Eggs Fresh, in shell 4 to 5 weeks Don't freeze Raw yolks, whites 2 recommended storage times are for quality only. Refrigerator & Freezer Storage Chart Product Refrigerator, opened 3 days Don't freeze unopened 10 days 1 year Mayonnaise, commercial Refrigerate after opening 2

  8. Effect of parasitic refrigeration on the efficiency of magnetic liquefiers

    SciTech Connect (OSTI)

    Barclay, J.A.; Stewart, W.F.

    1982-01-01T23:59:59.000Z

    Our studies have shown that magnetic refrigerators have the potential to liquefy cryogens very efficiently. High efficiency is especially important for liquid hydrogen and natural gas applications where the liquefaction costs are a significant fraction of the total liquid cost. One of the characteristics of magnetic refrigerators is the requirement for a high-field superconducting magnet. Providing a 4.2-K bath for this magnet will require a small amount of parasitic refrigeration at 4.2 K even though the rest of the liquefier may be at 110 K (liquid natural gas) or higher. For several different refrigeration power levels at 4.2 K, we have calculated the efficiency of the magnetic liquefier as a function of power, temperature and the 4.2-K refrigerator efficiency. The results show that if the ratio of the thermal load at 4.2 K to the main refrigerator power is 0.001 or less, the effect on the efficiency of the liquefier is negligible at all temperatures below room temperature provided the 4.2-K refrigerator efficiency is high.

  9. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL] [ORNL; Bansal, Pradeep [ORNL] [ORNL; Zha, Shitong [Hillphoenix] [Hillphoenix

    2013-01-01T23:59:59.000Z

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  10. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01T23:59:59.000Z

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  11. New energy test procedures for refrigerators and other appliances

    SciTech Connect (OSTI)

    Meier, Alan; Ernebrant, Stefan; Kawamoto, Kaoru; Wihlborg, Mats

    1999-04-01T23:59:59.000Z

    Many innovations in refrigerator design rely on microprocessors, sensors, and algorithms to control automatic defrost, variable speed,and other features. Even though these features strongly influence energy consumption, the major energy test procedures presently test only a refrigerator's mechanical efficiency and ignore the ''software'' aspects. We describe a new test procedure where both ''hardware'' and ''software'' tests are fed into a dynamic simulation model. A wide range of conditions can be tested and simulated. This approach promotes international harmonization because the simulation model can also be programmed to estimate energy use for the ISO, DOE, or JIS test. The approach outlined for refrigerators can also be applied to other appliances.

  12. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25T23:59:59.000Z

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  13. Refrigerator with a clearance seal compressor

    SciTech Connect (OSTI)

    Holland, N. J.

    1985-09-10T23:59:59.000Z

    In a Stirling refrigeration system in which a displacer is driven in a reciprocating motion within a cold finger by a pressure differential between helium gas in the cold finger and helium gas in a gas spring volume, the reciprocating piston compressor for the working volume has a clearance seal between the working volume and a control volume. The only lubricant in that seal is the helium gas. The mean pressure of the working volume relative to the control volume can be controlled by varying the length of the clearance seal throughout the stroke of the piston. Preferably, the seal is between alumina ceramic sleeves. The clearance seal compressor may also be used in a Gifford-McMahon cycle.

  14. Automatic Modeling of Virtual Humans and Body Clothing Nadia Magnenat-Thalmann, Hyewon Seo, Frederic Cordier

    E-Print Network [OSTI]

    Cordier, Frederic

    Automatic Modeling of Virtual Humans and Body Clothing Nadia Magnenat-Thalmann, Hyewon Seo-mail: {thalmann, seo, cordier}@miralab.unige.ch Abstract Highly realistic virtual human models are rapidly

  15. E-Print Network 3.0 - aluminum-impregnated carbon cloth Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test 1 2 3 4 5 6 7 8 PEL* Time: % of Oxygen >19.5% and <23.5% % of LEL ** <10% Carbon Monoxide... Lifeline Gloves Protective Clothing Safety Harness Emergency Retrieval...

  16. Food and clothing as modes of discourse: Women writing in material and culinary languages

    E-Print Network [OSTI]

    Buerkle, Elizabeth Turner

    2012-06-07T23:59:59.000Z

    This thesis examines two mediums of nonverbal communication, food and clothing, in the works of four women writers from diverse cultural backgrounds. Four novels are discussed: Their Eyes Were Watching God (Zora Neale Hurston, 1937), The Color...

  17. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Sharma, Vishaldeep [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  18. DOE Receives Responses on the Implementation of Large-Capacity Clothes

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLE ONLINEforApplicationsEP9425 701Washer

  19. Articles of protective clothing adapted for deflecting chemical permeation and methods therefor

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  20. Availability of refrigerants for heat pumps in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    grids Smart cities #12;8 Residential HPs Refrigerants Use of aero-geo- +hydrothermal renewable energy cooling and heating Residential Future: Heating of electric cars and cooling the batteries Future: Smart

  1. Applications Tests of Energy Efficient, Environmentally Friendly Refrigerants

    E-Print Network [OSTI]

    Nimitz, J.; Glass, S.; McCullough, E.; Dhooge, P.

    development efforts for Ikon C, an energy efficient R-22 replacement, will also be described. The Ikon refrigerants are nonflammable, non-ozone-depleting, have low global warming, relatively low toxicity, are thermally stable, and are compatible with most...

  2. Reliability of Heat Pumps Containing R410-A Refrigerant

    E-Print Network [OSTI]

    McJimsey, B. A.; Cawley, D.

    1998-01-01T23:59:59.000Z

    on alternate refrigerants. One major manufacturer announced a formation of black smudge on internal surfaces of field trial units using HFCs. Several causes were suggested but none were published. Reports of capillary tube plugging were wide spread. Polyol...

  3. absorption refrigeration system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L. 12 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

  4. absorption refrigeration systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L. 12 Energy Savings from Floating Head Pressure in Ammonia Refrigeration Systems Texas A&M University - TxSpace Summary:...

  5. Supermarket refrigeration modeling and field demonstration: Interim report

    SciTech Connect (OSTI)

    Walker, D.H.; Deming, G.I.

    1989-03-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) has undertaken a project to investigate supermarket refrigeration. The objectives of this project are (1) to develop an energy use and demand model of supermarket refrigeration systems and (2) to carry out an extensive field test of such systems in an operating supermarket. To accomplish these goals, a supermarket owned by Safeway Stores, Inc., and located in Menlo Park, CA, with an existing conventional refrigeration system utilizing single compressor units, was equipped with a state-of-the-art system with multiplexed parallel compressors. The store and both refrigeration systems were thoroughly instrumented and a test schedule was prepared and executed. Presented in this report are the preliminary results of this field test along with the initial validation of the energy use and demand model. 62 figs., 47 tabs.

  6. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  7. North Star Refrigerator: Proposed Penalty (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  8. Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  9. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01T23:59:59.000Z

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  10. Design and construction of the astronautics refrigerator magnet

    SciTech Connect (OSTI)

    Dresner, L.

    1994-05-01T23:59:59.000Z

    This document reports on the design, construction, and testing of a 7-Tesla, 4-in. bore superconducting magnet for use in the Astronautics Refrigerator Experiment. The magnet is a single-strand, layer-wound, potted solenoid wound with Formvar-insulated SSC strands. The magnet was constructed by American Magnetics, Inc. of Oak Ridge and has been installed in the Astronautics Refrigerator Experiment at the Astronautics Technology Center in Madison, Wisconsin.

  11. Improving the energy efficiency of refrigerators in India

    SciTech Connect (OSTI)

    Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

    1995-04-01T23:59:59.000Z

    Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

  12. ARI delegation to Japan on Alternative Refrigerants. [Foreign Trip Report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    Researchers from ARI member companies spoke at the International Conference on Alternative Refrigerants in Tokyo and visited several Japanese organizations for the purpose of exchanging information on alternative refrigerants. The specific purpose of the meetings was to review the methods being utilized to screen alternatives to CFCs and HCFCs: materials compatibility screening methods, lubricant testing techniques, as well as flammability studies. A list of papers presented at the conference is included.

  13. Refrigerator design for the ambulatory and wheelchair-using elderly

    E-Print Network [OSTI]

    Mills, Mary Sue

    1986-01-01T23:59:59.000Z

    of limitations snd their higher degree of dependence on products. An important arse in product design which has seldom been considered is that of kitchen appliances, and, more specifically, rafr igerators. Refrigerator design has changed little in the last... For the elderly or disabled is a relatively unexplored ares. The present research is an attempt to rectify this neglect. LITERATURE REVIEW Ther s is a striking lack of information in the literature specifically concerned with refrigerators. Those few studies...

  14. Demand Side Management (DSM) Through Absorption Refrigeration Systems

    E-Print Network [OSTI]

    Chao, P. Y.; Shukla, D.; Amarnath, A.; Mergens, E.

    DEMAND SIDE MANAGEMENT (DSM) TIIROUGH ABSORPTION REFRIGERATION SYSTEMS Peter Y. Chao, PhD, Deepak Shukla, PhD, Sr. Process Engineers, TENSA Services, Inc. Ammi Amarnath, Sr. Project Manager, Electrical Power Research Institute Ed. Mergens.... They are Peak Clipping, Valley filling, Load Shifting, Strategic Conservation, Strategic Load Growth, and Flexible Load Shaping. Absorption Refrigeration from waste heat offers a viable option for DSM. This will either reduce the peak load (peak clipping...

  15. A review of lubrication and preformance issues in refrigeration systems using an HFC (R-134a) refrigerant

    SciTech Connect (OSTI)

    Reyes-Gavilan, J.; Eckard, A.; Flak, T.; Tritak, T. [Witco Corporation, Oakland, NJ (United States)

    1996-04-01T23:59:59.000Z

    It has been considered critical for refrigerant and compressor lubricant to be miscible with each other over part of the range of operating conditions of refrigerant systems. Adequate miscibility, many believe, provides oil return to the compressor. Presently, synthetic polyol esters have been selected for use with HFC refrigerants, such as R-134a, which are considered appropriate alternatives to CFCs. The authors will review the mechanical issues in miscible vs non-miscible naphthenic hydrocarbon oil-based lubricants. Extensive lab, test stand and cabinet testing has been conducted and data will be presented which show responsible and predictable performance based on the chemical and physical properties of the lubricant and refrigerant. Many non-miscible systems show satisfactory performance with the proper selection of lubricant, additives and mechanical configuration. 3 refs., 3 figs., 5 tabs.

  16. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  17. Improvement of the Performance for an Absorption Refrigeration System with Lithium bromide-water as Refrigerant by Increasing Absorption Pressure

    E-Print Network [OSTI]

    Xie, G.; Sheng, G.; Li, G.; Pan, S.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-10-4 Improvement of the Performance for an Absorption Refrigerating System with Lithium bromide-water as Refrigerant by Increasing Absorption... in order to lay a theoretical foundation of improving the performance of whole LBAC. 2. THE PRINCIPLE OF ENHANCING ABSORPTION EFFICIENCY OF THE ABSORBER It is well known that the absorption of ICEBO2006, Shenzhen, China HVAC...

  18. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOE Patents [OSTI]

    Spauschus, Hans O. (Stockbridge, GA); Starr, Thomas L. (Roswell, GA)

    1999-01-01T23:59:59.000Z

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  19. Combination cooler and freezer for refrigerating containers and food in outer space

    SciTech Connect (OSTI)

    Rudick, A.G.

    1988-04-19T23:59:59.000Z

    A refrigeration apparatus for cooling containers and food in the microgravity conditions of outer space is described comprising: (a) a housing defining a refrigeration compartment for supporting the containers in a container storage area and food in a refrigerated food storage area, and freezer compartment; (b) cold plate means within the refrigeration compartment for cooling the containers and food by conduction; (c) thermoelectric refrigeration means for maintaining the cold plates at temperatures which cool the contents of the refrigeration compartment, and the freezer compartment.

  20. Performance of HCFC22 alternative refrigerants

    SciTech Connect (OSTI)

    Jung, D.; Kim, C.B.; Song, Y.J.; Park, B.J.

    1999-07-01T23:59:59.000Z

    In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.

  1. The development of a proff of principle superfluid Joule-Thomson refrigerator for cooling below 1 Kelvin

    E-Print Network [OSTI]

    Miller, Franklin K., 1970-

    2005-01-01T23:59:59.000Z

    A new type of sub-Kelvin refrigerator, the superfluid Joule-Thomson refrigerator, has been developed and its performance has been experimentally verified. This refrigerator uses a liquid superfluid mixture of He and 4He ...

  2. Environmental assessment for proposed energy conservation standards for refrigerators, refrigerator-freezers, and freezers

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This Environmental Assessment (EA) on the candidate energy conservation standards for refrigerators, refrigerator-freezers, and freezers was prepared pursuant to the National Environmental Policy Act of 1969 (NEPA), regulations of the Council on Environmental Quality, Title 40, Code of Federal Regulations, Parts 1500 through 1508. The proposed energy conservation standard (Level 1) and the alternative standards are being reviewed in an energy-efficiency standards rulemaking that the Department has undertaken pursuant to the Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Conservation Act. The EA presents the associated environmental impacts from four energy conservation standards for this type of household appliance. For purposes of this EA, each standard is an alternative action and is compared to what is expected to happen if no new standards for this type of product were finalized, i.e., the no action alternative. Of the four energy conservation standard levels considered, standard level 4 has the highest level of energy efficiency and the largest environmental impact. The proposed action implementing Standard Level 1 would have the least environmental impacts, through emission reductions, of the four alternatives. The description of the standards results from the appliance energy-efficiency analyses conducted for the rulemaking. The presentation of environmental impacts for each of the alternatives appears at Section 3 of the EA.

  3. Development of energy-efficiency standards for Indian refrigerators

    SciTech Connect (OSTI)

    Bhatia, P.

    1999-07-01T23:59:59.000Z

    The application of advanced techniques in engineering simulation and economic analysis for the development of efficiency standards for Indian refrigerators is illustrated in this paper. A key feature of this methodology is refrigerator simulation to generate energy savings for a set of energy-efficient design options and life-cycle cost (LCC) analysis with these design options. The LCC of a refrigerator is analyzed as a function of five variables: nominal discount rate, fuel price, appliance lifetime, incremental price, and incremental energy savings. The frequency of occurrence of the LCC minimum at any design option indicates the optimum efficiency level or range. Studies carried out in the US and European Economic Community show that the location of the LCC minimum under different scenarios (e.g., variable fuel price, life-time, discount rate, and incremental price) is quite stable. Thus, an efficiency standard can be developed based on the efficiency value at the LCC minimum. This paper examines and uses this methodology in developing efficiency standards for Indian refrigerators. The potential efficiency standard value is indicated to be 0.65 kWh/day for a 165-liter, CFC-based, manual defrost, single-door refrigerator-freezer.

  4. Control of household refrigerators. Part 1: Modeling temperature control performance

    SciTech Connect (OSTI)

    Graviss, K.J.; Collins, R.L.

    1999-07-01T23:59:59.000Z

    Commercial household refrigerators use simple, cost-effective, temperature controllers to obtain acceptable control. A manually adjusted airflow damper regulates the freezer compartment temperature while a thermostat controls operation of the compressor and evaporator fan to regulate refrigerator compartment temperature. Dual compartment temperature control can be achieved with automatic airflow dampers that function independently of the compressor and evaporator fan thermostat, resulting in improved temperature control quality and energy consumption. Under dual control, freezer temperature is controlled by the thermostat while the damper controls refrigerator temperature by regulating airflow circulation. A simulation model is presented that analyzes a household refrigerator configured with a conventional thermostat and both manual and automatic dampers. The model provides a new paradigm for investigating refrigerator systems and temperature control performance relative to the extensive verification testing that is typically done by manufacturers. The effects of each type of control and damper configuration are compared with respect to energy usage, control quality, and ambient temperature shift criteria. The results indicate that the appropriate control configuration can have significant effects and can improve plant performance.

  5. Residential appliances technology atlas

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Residential appliance technology and efficiency opportunities for refrigerators and freezers, cooking appliances, clothes washers and dryers, dishwashers, and some often-ignored household devices such as spas, pool pumps, waterbed heaters, televisions, and home computers are thoroughly covered in this Atlas. The US appliance market, fuel shares, efficiency standards, labeling, and advances in home automation, design for recycling, and CFC issues are also discussed. The resource section contains lists of appliance manufacturers and distributors, and trade, professional, and governmental organizations, a summary of key resources for further information, and an index.

  6. Energy performance listings: Residential refrigerator/freezers

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The Energy Performance Listings series provides comparative information across manufacturers on products. The Refrigerator/Freezers Listings include more than 2900 models that meet or exceed federal standards contained in the Energy Conservation Program for Consumer Products. Information on model energy efficiency levels, performance characteristics, and manufacturer names permits easy selection of top-performing equipment. Each Energy Performance Listing includes an introductory section, two sections of model listings, and an appendix with manufacturer contacts. The first model-listing section presents information in descending order of efficiency for all manufacturers. These efficiency-ordered listings also include banners or symbols to identify voluntary efficiency thresholds for U.S. DOE/U.S. EPA`s Energy Star Program and U.S. DOE`s Federal Energy Management Program (FEMP). Products listed above each banner meet or exceed the efficiency level established by the Energy Star program. All models noted with the symbol meet or exceed FEMP levels. With these listings, users can quickly identify the most efficient product in a particular size range, identify products that meet the efficiency criteria of a specific program, or determine an efficiency threshold that will include a specific number of manufacturers. The second section of model listings presents products grouped by manufacturer and catalog number, allowing users to quickly find and identify performance information on specific models. Energy Performance Listings are tools that support purchasing and procurement by federal, state, and local governments and others, including utility companies, energy interest groups, and research organizations. The listings may be used for program design and planning purposes, equipment selection, specification, and purchasing decisions. The listings are a product of the Energy-Efficient Procurement Collaborative, Inc. and are available through NYSERDA.

  7. --No Title--

    Broader source: Energy.gov (indexed) [DOE]

    the usage of energy efficient appliances by offering rebates on certain ENERGY STAR products including air conditioners, clothes washers, and dehumidifiers. Upon submission...

  8. Additional Guidance Regarding Application of Current Procedures...

    Broader source: Energy.gov (indexed) [DOE]

    Additional Guidance Regarding Application of Current Procedures for Testing Energy Consumption of Clothes Washers with Warm Rinse Cycles, Issued: June 30, 2010. Draft of DOE...

  9. Earthjustice, Appliance Standards Awareness Project, Natural...

    Office of Environmental Management (EM)

    Council - Comments in response to DOE solicitation of views on the implementation of test procedure waivers for large capacity clothes washers Earthjustice, Appliance Standards...

  10. EA-1344: Final Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    Environmental Assessment EA-1344: Final Environmental Assessment Proposed Energy Conservation Standards for Residential Clothes Washers The Energy Policy and Conservation Act,...

  11. Gunnison County Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gunnison County Electric Association (GCEA), a Touchstone Energy Cooperative, has a residential rebate program for eligible Energy Star appliances including clothes washers, dishwashers,...

  12. Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

  13. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  14. Douglas Electric Cooperative- Residential Energy Efficiency Loans

    Broader source: Energy.gov [DOE]

    Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures. Rebates include clothes washers, heat pumps, manufactured homes, and...

  15. Southwest Gas Corporation- Commercial Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water...

  16. Questar Gas- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers,...

  17. Questar Gas- Residential Energy Efficiency Rebate Programs (Idaho)

    Broader source: Energy.gov [DOE]

    Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers, water...

  18. Unitil- Residential Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers New Hampshire residential customers a number of programs to encourage more energy efficient homes. The Energy Star Appliance Program provides rebates for clothes washers, air...

  19. ASKO Appliances: Order (2012-CE-19/2004) | Department of Energy

    Office of Environmental Management (EM)

    civil penalty after finding ASKO had failed to certify that certain models of residential dishwashers and clothes washers comply with the applicable energy and water...

  20. DOE response to questions from AHAM on the supplemental proposed...

    Energy Savers [EERE]

    response to questions from AHAM on the supplemental proposed test procedure for residential clothes washers DOE response to questions from AHAM on the supplemental proposed test...

  1. Vera Irrigation District #15- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and...

  2. Wyoming's Appliance Rebate Program Surges Ahead | Department...

    Energy Savers [EERE]

    Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from 50 to 250. The program still has 40 percent...

  3. Buying an Appliance this Holiday Season? ENERGY STAR Products...

    Office of Environmental Management (EM)

    Freezers Room air conditioners Televisions Clothes washers Dishwashers Battery chargers Water heaters Fluorescent lamp ballasts Incandescent reflector lamps If your appliance has...

  4. Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

  5. Next Generation Low-Global Warming Potential Refrigerants R&D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities...

  6. Modeling the effects of Refrigerant Charging on Air Conditioner Performance Characteristics For Three Expansion Devices

    E-Print Network [OSTI]

    Farzad, Mohsen

    An experimental and analytical study concerned with the off-design refrigerant charging of air conditioners is presented. A series of experiments were conducted to characterize the effects of refrigerant charge and type of expansion device...

  7. Application Availability of Insulation Heat of the Terrace in a Rebuilt Refrigerator

    E-Print Network [OSTI]

    Qu, C.; Sun, Y.; Chen, Z.

    2006-01-01T23:59:59.000Z

    Dealing with the terrace in rebuilt refrigerators influences the performance characteristics, performance safety and construction costs. This paper researches the heat transfer of the terrace of the rebuilt refrigerator by the numerical method...

  8. E-Print Network 3.0 - absorption refrigeration cycle Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Content Distribution Psy Press Titles Summary: applications, including absorption refrigeration, air liquefaction, automotive 973 Downloaded... optimization of vapor...

  9. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    SciTech Connect (OSTI)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01T23:59:59.000Z

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  10. Effects of refrigeration in a transportable cryogenic aerospace application

    SciTech Connect (OSTI)

    Donovan, B.D.; Mahefkey, T. [Wright Lab., Wright-Patterson AFB, OH (United States); Ramalingam, M.L. [UES, Inc., Dayton, OH (United States)

    1995-12-31T23:59:59.000Z

    Preliminary feasibility studies, based on refrigeration thermodynamics, have been conducted for candidate power conditioning components in a 1MWe terrestrial/transportable cryogenic power system. The cryogenic power system being considered has a super conducting generator for high power applications such as the power source for a Ground Based Radar (GBR) System. While the superconducting generator operates at 77K or lower, the present analysis indicates that significant benefits cannot be derived by cooling the various components of the power conditioning system to such low temperatures. It was found that, by operating the power conditioning component at 150K instead of at 77K the overall system efficiency was not jeopardized by way of large input power requirements to dissipate small refrigerator loads. This is an acute problem as current cryogenic refrigeration systems allow for very low levels of energy dissipation while performing at about 7 to 10% of the Carnot coefficients of performance (COP) between 300K and 77K.

  11. Frost sensor for use in defrost controls for refrigeration

    DOE Patents [OSTI]

    French, Patrick D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Butz, James R. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Veatch, Bradley D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); O'Connor, Michael W. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107)

    2002-01-01T23:59:59.000Z

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  12. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14T23:59:59.000Z

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  13. SYMPOSIUM PAPER TC7.1 -DOMESTIC REFRIGERATORS AND FOOD FREEZERS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;SYMPOSIUM PAPER FOR TC7.1 - DOMESTIC REFRIGERATORS AND FOOD FREEZERS THE ENGINEERING AND MANUFACTURE OF A HIGH EFFICIENCY, AUTOMATIC DEFROSTING REFRIGERATOR-FREEZER by Raymond H. Bohman, P.E. Robert REFRIGERATOR - FREEZER 1. INTRODUCTION This paper describes the engineering effort and method of manufacture

  14. Refrigerated Warehouses Introduction Page 8-1 2008 Nonresidential Compliance Manual August 2009

    E-Print Network [OSTI]

    , including both coolers and freezers. Coolers are defined as refrigerated spaces cooled between 32°F (0°C) and 55°F (13°C). Freezers are #12;Page 8-2 Refrigerated Warehouses ­ Introduction 2008 Nonresidential Efficiency Standards do not address walk-in refrigerators and freezers, as these are covered by the Appliance

  15. Balancing Energy Consumption and Food Quality Loss in Supermarket Refrigeration System

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Balancing Energy Consumption and Food Quality Loss in Supermarket Refrigeration System J. Cai and J- tion of commercial refrigeration system, featuring balanced system energy consumption and food quality energy consumption and food quality loss, at varying ambient condition, in a supermarket refrigeration

  16. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Paper No. 206 IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, The Netherlands, 2012

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    outside the buildings for devices having the refrigerant charge of small heat pumps for space heatingPaper No. 206 10th IIR Gustav Lorentzen Conference on Natural Refrigerants, Delft, The Netherlands by subcooling of the refrigerant in the cold water tank (not used for cooling during winter). The water tank

  18. RHEOLOGICAL STUDY OF TWO-PHASE SECONDARY FLUIDS FOR REFRIGERATION AND AIR CONDITIONING.

    E-Print Network [OSTI]

    Boyer, Edmond

    , indirect refrigeration systems renews interest as they enable to notably reduce the use of environmental the refrigeration applications to the air-conditioning systems. However, this kind of process only remainsRHEOLOGICAL STUDY OF TWO-PHASE SECONDARY FLUIDS FOR REFRIGERATION AND AIR CONDITIONING. Mylène

  19. Chapter 4: Refrigeration Process Control: Simulation Model 64 44.. RREEFFRRIIGGEERRAATTIIOONN PPRROOCCEESSSS

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Chapter 4: Refrigeration Process Control: Simulation Model 64 44.. RREEFFRRIIGGEERRAATTIIOONN of the simulation model for the two-stage refrigeration system is presented. The model is based on the mathematical, it is #12;Chapter 4: Refrigeration Process Control: Simulation Model 65 translated into FORTRAN or C

  20. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  1. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A. (Madison, WI); Stewart, Walter F. (Marshall, WI); Henke, Michael D. (Los Alamos, NM); Kalash, Kenneth E. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  2. New compressor systems seen paring refrigeration costs 15%

    SciTech Connect (OSTI)

    Barber, J.

    1983-05-09T23:59:59.000Z

    Manufacturers claim that a parallel arrangement of three to five compressors of varying capacities can lower a store's refrigerating costs over 15%. The energy savings come from the more-precise matching of compressor capacity with refrigeration demand. The 500 stores that have installed uneven compressor systems are achieving a payback in under a year. Because it is important for controls to match a system for maximum efficiency, manufacturers are introducing tailor-made microprocessor controllers. A table summarizes three supermarket case histories. (DCK)

  3. Supermarket with Ground Coupled Carbon Dioxide Refrigeration Plant

    E-Print Network [OSTI]

    Rehault, N.

    2012-01-01T23:59:59.000Z

    refrigeration remains the last big subsector and the strongest emission source of the fluorinated hydrocarbons (HFC) in Germany? - Kauffeld [4] About 65 % of the cooling needs in Germany for frozen and refrigerated food products ? over 50.000 GWh.../a [2] In 2011, 72.4 % of the sales share of food retail industry realized in discounters and supermarkets in Germany [1] Supermarket: ? 600 ? 2.000 kWh/m2.a (PE) [3] Normal building: 200 ? 400 kWh/m2.a (PE) [4] [1] EHI retail institute 2012...

  4. Evaluation of ozone-friendly hydrofluoropropane-based zeotropic refrigerant mixtures in a Lorenz-Meutzner refrigerator/freezer

    SciTech Connect (OSTI)

    Baskin, E. [Environmental Protection Agency, Research Triangle Park, NC (United States); Bayoglu, E.S.; Delafield, F.R. [Acurex Environmental Corp., Durham, NC (United States)

    1997-12-31T23:59:59.000Z

    The design of the Lorenz-Meutzner refrigerator/freezer has two evaporators (located in the freezer and fresh food compartments), which makes it a leading candidate for use of zeotropic refrigerant mixtures. Zeotropic mixtures can have significant temperature glides during evaporation and condensation. Performance of the zeotropic mixture can be maximized in the LM design by permitting the lower end of the temperature glide to occur in the freezer compartment evaporator and the higher end in the fresh food compartment evaporator. Several hydrofluoropropane-based zeotropes (e.g., R-227 ea/R-245ca) have been shown through steady-state modeling to outperform R-134a by up to 15%. Results from previous testing of this refrigerator/freezer using R-32/R-124 (zeotropic mixture) were published in an ASHRAE paper (Sand et al. 1993). Their results showed performance gains of approximately 3% over R-12. In the study presented in this paper, the Lorenz-Meutzner refrigerator/freezer having two evaporators and two intercoolers was experimentally tested in an environmental chamber according to Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a. The R-245ca/R-134a and R-245ca/R-152a mixtures performed comparably to R-134a. R-245ca/R-270 outperformed all zeotropic mixtures and R-134a by at least 16%. Also, a refrigerant sampling loop is added to determine the running composition of the mixture and its effects on the performance of the refrigerator/freezer.

  5. 2014-07-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule Correction

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule correction regarding test procedures for refrigerators, refrigerator-freezers, and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  6. SectionILesson4PatternAlteration Master Clothing Volunteer Program

    E-Print Network [OSTI]

    , front and back skirt and sleeve. Press pattern pieces with a warm iron. It is easier to fit pattern for fit. P Lengthen and shorten a pattern. #12;Master Clothing Volunteer Program Section I, Basic to be altered. To check your pattern for fit, you will need the pattern pieces for the front and back bodice

  7. SectionILesson3SewingMachineCare Master Clothing Volunteer Program

    E-Print Network [OSTI]

    the activity using the following questions as guidelines: 1) Why is it necessary to clean and oil your sewing machine? 2) What types of oil can you use to oil your machine? 3) What are the steps to cleaning your-purpose oil. Use one drop of machine oil. Remove any excess oil with a soft cloth. Most moving parts need oil

  8. SectionILesson10SewingforProfit Master Clothing Volunteer Program

    E-Print Network [OSTI]

    Construction Lesson 10: Sewing for Profit (10) 1 Section I Basic Clothing Construction Lesson 10 Sewing: Working in the Apparel Industry IV. Achievement Program V. Closing Objectives of the Lesson Participants possibilities in the local apparel industry. P Develop feelings of self-worth and pride in skills learned

  9. Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE and to install heat pumps in unoccupied spaces. Nevertheless manufacturers keep working on components for hydrocarbons. In the frame of a research project on heat pumps for simultaneous heating and cooling, an R407C

  10. The Quantum Absorption Refrigerator Amikam Levy and Ronnie Kosloff

    E-Print Network [OSTI]

    Kosloff, Ronnie

    , 07.20.Pe,05.30.-d I. INTRODUCTION The adsorption chiller is a refrigerator which employs a heat source to replace mechanical work for driving a heat pump [1]. The first device was developed in 1850 c J h P Tc Th Tw - - - 0 FIG. 1: The quantum trickle: A quantum heat pump des- ignated

  11. Dry dilution refrigerator with 4He-1K-loop

    E-Print Network [OSTI]

    Uhlig, Kurt

    2014-01-01T23:59:59.000Z

    In this article we summarize experimental work on cryogen-free 3He/4He dilution refrigerators which, in addition to the dilution refrigeration circuit, are equipped with a 4He-1K-stage. This type of DR becomes worth considering when high cooling capacities are needed at T ~ 1 K to cool cold amplifiers and heat sink cables. In our application, the motivation for the construction of this type of cryostat was to do experiments on superconducting quantum circuits for quantum information technology and quantum simulations. In other work, DRs with 1K-stage were proposed for astro-physical cryostats. For neutron scattering research, a top-loading cryogen-free DR with 1K-stage was built which was equipped with a standard commercial dilution refrigeration insert. Cooling powers of up to 100 mW have been reached with our 1K-stage, but higher refrigeration powers were achieved with more powerful pulse tube cryocoolers and higher 4He circulation rates in the 1K-loop. Several different versions of a 1K-loop have been test...

  12. COMPUTER DESIGN AND OPTIMIZATION OF CRYOGENIC REFRIGERATION SYSTEMS

    E-Print Network [OSTI]

    green, M.A.

    2011-01-01T23:59:59.000Z

    and the assumed electrical energy cost is $0.04 per kWh.cost (the cost is given in US$ per kWh at 80.4°K) andThe cost of nitrogen refrigeration given in $ per kWh at

  13. 16 Heat Transfer and Air Flow in a Domestic Refrigerator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    445 16 Heat Transfer and Air Flow in a Domestic Refrigerator Onrawee Laguerre UMR Génie Industriel........................................................................447 16.2.2 Heat Transfer and Airflow Near a Vertical Plate..................................................448 16.2.3 Heat Transfer and Airflow in Empty Closed Cavity

  14. Energy consumption testing of innovative refrigerator-freezers

    SciTech Connect (OSTI)

    Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

  15. Procurement and commissioning of the CHL refrigerator at CEBAF

    SciTech Connect (OSTI)

    Chronis, W.C.; Arenius, D.M.; Bevins, B.S.; Ganni, V.; Kashy, D.H.; Keesee, M.M.; Reid, T.R.; Wilson, J.D.

    1996-08-01T23:59:59.000Z

    The CEBAF Central Helium Liquefier (CHL) provides 2K refrigeration to the 338 superconducting niobium cavities in two 400 MeV linacs and one 45 MeV injector. The CHL consists of three first stage and three second stage compressors, a 4.5K cold box, a 2K cold box, liquid and gaseous helium storage, liquid nitrogen storage, and transfer lines. Figure 1 presents a block diagram of the CHL refrigerator. The system was designed to provide 4.8 kW of primary refrigeration at 2K, 12 kW of shield refrigeration at 45K for the linac cryomodules, and 10 g/s of liquid flow for the end stations. In April 1994, stable 2K operation of the previously uncommissioned cold compressors was achieved. The cold compressors are a cold vacuum pump with an inlet temperature of circa 3.0K. These compressors operate on magnetic bearing,s and therefore eliminate the possibility of contamination due to any air leaks into the system. Operational data and commissioning experience as they relate to the warm gaseous helium compressors, turbines, instrumentation and control, and the cold compressors are presented.

  16. Simulating effects of multispeed compressors on refrigerator/freezer performance

    SciTech Connect (OSTI)

    Woodall, R.J. [International Paper Technology, Mobile, AL (United States); Bullard, C.W. [Univ. of Illinois, Urbana, IL (United States). Air Conditioning and Refrigeration Center

    1997-12-31T23:59:59.000Z

    Simulation analyses suggest that a multispeed compressor could increase steady-state operating efficiency by 4% to 14%. An additional 0.5% to 4% energy savings might be obtained from the reduction in the cycling frequency of the refrigerator. Several aspects of the robustness of the capillary tube-suction line heat exchanger design for the two-speed compressor system were also examined with the simulation model. It was shown that a system optimized for low-speed operation, when operating at the high speed, could have as much capacity as the original base case high-speed system. A relatively simple control strategy was proposed, one that requires measurement of on-cycle time and one or two compartment air temperatures. The effects of varying the speed of the evaporator or condenser fans at both compressor speeds were examined over a range of ambient temperatures. One energy-saving scenario was identified: decreasing the condenser fan speed for refrigerators operating at low ambient temperatures. By affecting the distribution of refrigerant change throughout the system, the decrease in condenser fan speed reduces the superheat in the evaporator and increases the overall UA of the evaporator. The resulting increase in evaporator capacity more than offsets the decrease in condenser UA and the energy use of the refrigerator is decreased.

  17. Analysis of household refrigerators for different testing standards

    SciTech Connect (OSTI)

    Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; McGill, I. [Fischer and Paykel Ltd., Auckland (New Zealand)

    1995-08-01T23:59:59.000Z

    This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energy consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.

  18. Embedded Smart Controller for an Industrial Reefer Refrigeration1

    E-Print Network [OSTI]

    Reznik, Leon

    Embedded Smart Controller for an Industrial Reefer Refrigeration1 Leon Reznik and Shane Spiteri School of Communications and Informatics Victoria University PO Box 14428, Melbourne City MC VIC 8001 2-5, 2001 Abstract. The paper describes the development of a smart embedded fuzzy system for reefer

  19. TEMPERATURE PREDICTION IN DOMESTIC REFRIGERATOR: DETERMINIST AND STOCHASTIC APPROACHES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the calculation of air and load temperatures. An analysis of the predicted temperatures was undertaken temperature and thermostat setting, on air and load temperatures in non ventilated domestic refrigerator was studied. A simplified steady state heat transfer model was developed which takes into account heat

  20. Demand Response Opportunities in Industrial Refrigerated Warehouses in

    E-Print Network [OSTI]

    LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

  1. HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2

    E-Print Network [OSTI]

    (Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) Factors to be Considered in the Freezing and Cold Storage of Fishery Products Part 4 (Fishery Leaflet 430) -- Preparation, Freezing, and Cold Storage of Fish, Shellfish, and Precooked Fishery Products Part 5 (Fishery Leaflet 431

  2. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    SciTech Connect (OSTI)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01T23:59:59.000Z

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  3. Removing Odors from Refrigerators and Freezers after Food has Spoiled

    E-Print Network [OSTI]

    FCS Project Team - FDRM UNIT

    2005-09-30T23:59:59.000Z

    ER-005 6-06 Extension Family and Consumer Science Specialists The Texas A&M University System If food has spoiled in a refrigerator or freezer because of a power failure or some other reason, undesirable odors can develop. To eliminate these odors...

  4. REVIEW OF SUPERCONDUCTING MAGNETOMETERS AND CRYOGENIC REFRIGERATION TECHNIQUES

    E-Print Network [OSTI]

    Boyer, Edmond

    3. REVIEW OF SUPERCONDUCTING MAGNETOMETERS AND CRYOGENIC REFRIGERATION TECHNIQUES By W. S. GOREE of the macroscopic quantum nature of the superconducting state. Several of these properties have direct application a closed superconducting path must remain constant as long as the path remains superconducting

  5. Waste Heat Recovery from Refrigeration in a Meat Processing Facility

    E-Print Network [OSTI]

    Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

    1980-01-01T23:59:59.000Z

    A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

  6. Leducq, Roche, Macchi-Tejeda , Fournaison, Guilpart Workshop on Refrigerant Charge Reduction, Cemagref Antony, France, 2009 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Leducq, Roche, Macchi-Tejeda , Fournaison, Guilpart IIR 1st Workshop on Refrigerant Charge, Antony cedex, 92 163,, France denis.leducq@cemagref.fr ABSTRACT A design of a low charge refrigerating on refrigerant charge and energy performance has been evaluated experimentally for a cold room refrigerating unit

  7. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  8. MC Appliance: Proposed Penalty (2014-CE-20002)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that MC Appliance Corporation failed to certify residential clothes washers and residential clothes dryers as compliant with the applicable energy conservation standards.

  9. MC Appliance: Order (2014-CE-20002)

    Broader source: Energy.gov [DOE]

    DOE ordered MC Appliance Corporation to pay a $16,000 civil penalty after finding MC Appliance had failed to certify that certain models of residential clothes washers and residential clothes dryers comply with the applicable energy conservation standards.

  10. 2013-2014 COOPERATIVES LEASE REGULATIONS Cooperatives Collective, University of California, Davis Student Housing

    E-Print Network [OSTI]

    Todd, Brian

    dryers or air conditioners. The Resident agrees to exercise reasonable care in his or her use be responsible for the maintenance, repair or replacement of any furniture, freezers, clothes washers, clothes

  11. 2014-2015 COOPERATIVES LEASE REGULATIONS Cooperatives Collective, University of California, Davis Student Housing

    E-Print Network [OSTI]

    Hernes, Peter J.

    dryers or air conditioners. The Resident agrees to exercise reasonable care in his or her use be responsible for the maintenance, repair or replacement of any furniture, freezers, clothes washers, clothes

  12. China Refrigerator Information Label: Specification Development and Potential Impact

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David; Zheng, Nina; Zhou, Nan; Aden, Nathaniel; Lin, Jiang; Jianhong, Cheng; Sakamoto, Tomoyuki

    2008-02-01T23:59:59.000Z

    In the last five years, China's refrigerator market has grown rapidly, and now urban markets are showing signs of saturation, with ownership rates in urban households reaching 92%. Rural markets continue to grow from a much lower base. As a result of this growth, the Chinese government in 2006 decided to revise the refrigerator standards and its associated efficiency grades for the mandatory energy information label. In the Chinese standards process, the efficiency grades for the information label are tied to the minimum standards. Work on the minimum standards revision began in 2006 and continued through the first half of 2007, when the draft standard was completed under the direction of the China National Institute of Standardization (CNIS). Development of the information label grades required consideration of stakeholder input, continuity with the previous grade classification, ease of implementation, and potential impacts on the market. In this process, CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing technical input to the process, comment and advice on particular technical issues, and evaluation of the results. After three months of effort and three drafts of the final grade specifications, this work was completed. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. The new information label thresholds to be implemented in 2008 maintain the approach first adopted in 2005 of establishing efficiency levels relative to the minimum standard, but increased the related required efficiency levels by 20% over those established in 2003 and implemented in 2005. The focus of improvement was on the standard refrigerator/freezer (class 5), which constitutes the bulk of the Chinese market. Indeed, the new requirements to achieve grade 1 on the label are now virtually as stringent as those for US Energy Star-qualified or EU A-grade refrigerators. When the energy information label went into effect in March 2005, refrigerator manufacturers were required to display their declared level of efficiency on the label and report it to the China Energy Label Center (CELC), a newly established unit of CNIS responsible for label program management. Because of the visible nature of the label, it was found, through a METI/IEEJ-supported study, that MEPS non-compliance dropped from 4% to zero after the label became mandatory, and that the percentage of higher-grade refrigerators increased. This suggests that the label itself does have potential for shifting the market to higher-efficiency models (Lin 2007). One challenge, however, of assessing this potential impact is the lack of a comprehensive baseline of market efficiency and a program to evaluate the market impact on a yearly basis. As a result, the impact evaluation in this study draws upon the market transformation experience of the related EU energy information label, for which quantitative assessments of its market impact exist. By assuming a parallel process unfolding in China, it is possible to look at the potential impact of the label to 2020. The results of the analysis demonstrates that a robust market transformation program in China focused on the energy information label could save substantial amounts of electricity by 2020, totaling 16.4 TWh annually by that year, compared to a case in which the efficiency distribution of refrigerators was frozen at the 2007 level. Remarkably, the impact of a successful market transformation program with the label would essentially flatten the consumption of electricity for refrigerator use throughout most of the next decade, despite the expectations of continued growth in total stock by nearly 190 million units. At the end of this period, total consumption begins to rise again, as the least efficient of the units have been mostly removed from the market. Such a level of savings would reduce CO{sub

  13. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    E-Print Network [OSTI]

    Levine, Mark D.

    2010-01-01T23:59:59.000Z

    televisions, refrigerators and freezers, mobile phones,dishwashers, refrigerators and freezers and clothes washersand 48 million refrigerator/freezers with exports of 20

  14. University of California Davis West Village: The Largest Planned...

    Energy Savers [EERE]

    lighting fluorescent or LED Assume 80% hardwired lighting Lighting controls Vacancy sensors Energy Star Appliances Dishwasher, Refrigerator, Washer Cooktop Oven Standard...

  15. Energy Department and AHAM Partner to Streamline ENERGY STAR...

    Energy Savers [EERE]

    Energy Department and AHAM Partner to Streamline ENERGY STAR Testing for Washers, Dryers, Refrigerators Energy Department and AHAM Partner to Streamline ENERGY STAR Testing for...

  16. DOE/AHAM advanced refrigerator technology development project

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.; Rice, C.K.; Linkous, R.L.; Hardin, C.V.; Bohman, R.H.

    1997-03-01T23:59:59.000Z

    As part of the effort to improve residential energy efficiency and reduce greenhouse emissions from power plants, several design options were investigated for improving the energy efficiency of a conventionally designed domestic refrigerator-freezer. The program goal was to reduce the energy consumption of a 20-ft{sup 3} (570-L) top-mount refrigerator-freeze to 1.00 kWh/d, a 50% reduction from the 1993 National Appliance Energy Conservation Act (NAECA) standard. The options--such as improved cabinet and door insulation, a high-efficiency compressor, a low-wattage fan, a large counterflow evaporator, and adaptive defrost control--were incorporated into prototype refrigerator-freezer cabinets and refrigeration systems. The refrigerant HFC-134a was used as a replacement for CFC-12. The baseline energy performance of the production refrigerator-freezers, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The project consisted of three main phases: (1) an evaluation of energy-efficient design options using computer simulation models and experimental testing, (2) design and testing of an initial prototype unit, and (3) energy and economic analyses of a final prototype. The final prototype achieved an energy consumption level of 0.93 kWh/d--an improvement of 45% over the baseline unit and 54% over the 1993 NAECA standard for 20-fg{sup 3} (570-L) units. The manufacturer`s cost for those improvements was estimated at $134; assuming that cost is doubled for the consumer, it would take about 11.4 years to pay for the design changes. Since the payback period was thought to be unfeasible, a second, more cost-effective design was also tested. Its energy consumption level was 1.16 kWh/d, a 42% energy savings, at a manufacturer`s cost increase of $53. Again assuming a 100% markup, the payback for this unit would be 6.6 years.

  17. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01T23:59:59.000Z

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  18. Heat powered refrigeration compressor. Semi-annual technical report

    SciTech Connect (OSTI)

    Goad, R.R.

    1981-01-01T23:59:59.000Z

    The objective of this program is to develop and improve the design of previously started prototypes of the Heat Powered Refrigeration Compressor. To build this prototype and ready it for testing by the University of Evansville is another goal. This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system. Work performed in the past four months has consisted of: engineering of HX-1; comparisons of specifications from different companies to ensure state of the art applications of parts for project; coordinating project requirements with machine shop; designing condenser; and partial assembly of HX-1.

  19. New age water chillers with water as refrigerant

    E-Print Network [OSTI]

    Khnl-Kinel, J

    1998-01-01T23:59:59.000Z

    Vacuum-process technology producing chilled water needs no refrigerant of the conventional kind, but water from the process itself is used to generate cooling. This eye-catching novelty incorporates many of the considerations about the future of refrigerants: "ozone friendly", no extra demands for safety measures or for skilful operators, no special requirements concerning the installation's components, lower maintenance costs since leakages can be accommodated from the system. Vacuum-process technology may be used not only for production of chilled water but also for Binary Ice - pumpable suspension of minute ice crystals in an aqueous solution. This means that all the advantages related to a latent heat system may become available.

  20. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    SciTech Connect (OSTI)

    Venkatarao Ganni, James Fesmire

    2012-06-01T23:59:59.000Z

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.