National Library of Energy BETA

Sample records for refrigeration order 2012-ce-1510

  1. International Refrigeration: Order (2012-CE-1510) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Refrigeration: Order (2012-CE-1510) International Refrigeration: Order (2012-CE-1510) July 20, 2012 DOE ordered International Refrigeration Products to pay an 8,000 ...

  2. International Refrigeration: Order (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  3. International Refrigeration: Proposed Penalty (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that International Refrigeration Products failed to certify a various room air conditioners as compliant with the applicable energy conservation standards.

  4. Almo: Order (2012-CE-1416) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon 2012-CE-1416AlmoOrder More Documents & Publications Almo: Proposed Penalty (2012-CE-1416) International Refrigeration: Order (2012-CE-1510) Commercial Display Systems: ...

  5. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Cospolich Refrigerator: Order (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE ordered Cospolich Refrigerator Co, Inc. to pay a $8,000 civil penalty after finding Cospolich Refrigerator had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  7. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  9. North Star Refrigerator: Order (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE ordered North Star Refrigerator Co., Inc. to pay a $8,000 civil penalty after finding North Star Refrigerator had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Everest Refrigeration: Order (2015-SE-42001) | Department of Energy

    Energy Savers [EERE]

    Order (2015-SE-42001) Everest Refrigeration: Order (2015-SE-42001) June 9, 2015 DOE ordered Bu Sung America Corporation (dba Everest Refrigeration) to pay a $12,080 civil penalty after finding Bu Sung had manufactured and distributed in commerce in the U.S. at least 64 units of noncompliant commercial refrigerator basic model ESGR3. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Bu Sung. PDF icon Everest Refrigeration: Order (2015-SE-42001) More

  11. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-01-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  12. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  13. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-06-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  14. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  15. Thermoacoustic refrigeration

    SciTech Connect (OSTI)

    Garrett, S.L.; Hofler, T.J. )

    1992-12-01

    Shortly after their introduction, chlorofluorocarbons (CFCs) used as working fluids in a vapor compression (Rankine) refrigeration cycle became dominant in almost all small and medium-scale food refrigerator/freezer and building/residential air-conditioning applications. That situation is about to change dramatically and, at this moment, unpredictably. Two recent events are responsible for the new era in refrigeration that will dawn before the beginning of the 21st Century. The most significant of these is the international ban on the production of CFCs which were found to be destroying the Earth's protective ozone layer. The second event was the discovery of high temperature superconductors and the development of high speed and high density electronic circuits that require active cooling. It is the purpose of this article to introduce an entirely new approach to refrigeration that was first discovered in the early 1980s. This new approach-thermoacoustic refrigeration-uses high intensity sound waves to pump heat, with inert gases as the working fluid.

  16. Fluorescent refrigeration

    DOE Patents [OSTI]

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  17. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  18. Fluorescent refrigeration

    DOE Patents [OSTI]

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  19. Refrigeration system

    SciTech Connect (OSTI)

    Pagani, R.F.; Clarke, K.J.; Avon, E.J.

    1986-11-11

    This patent describes a chamber including an expandable refrigerant system associated therewith. The system comprises reservoir containing an expandable refrigerant coolant and lead piping connecting the reservoir to conduits carrying the coolant therein. The chamber comprises top, bottom and side walls, accordingly defining an interior and an exterior to the chamber, one of the walls comprises a door affording access into the chamber, each of the walls being insulated with insulating material. At least one of the walls comprises a first layer of the insulating material extending thereover adjacent the exterior and a second layer of the insulating material extending thereover adjacent the interior. The reservoir, lead piping and conduits are disposed intermediate the first and second layers of insulating material thereby isolating them from both the interior and exterior. Heat transferring through the at least one wall is substantially absorbed by the coolant and the insulating material cooled by the coolant, before it is able to penetrate through the at least one wall, permitting a product placed in the chamber to effectively maintain or substantially maintain a selected even temperature.

  20. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  4. Refrigerators and Refrigerator-Freezers (Appendix A1 after May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) The Department of Energy (DOE) ...

  5. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  6. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect (OSTI)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  7. Low-GWP Refrigerants for Refrigeration Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-GWP Refrigerants for Refrigeration Systems Low-GWP Refrigerants for Refrigeration Systems Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Life Cycle Climate Performance of supermarket refrigeration.<br /> Credit: Oak Ridge National Lab Life Cycle Climate Performance of supermarket refrigeration. Credit: Oak Ridge National Lab Brian Fricke

  8. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  9. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  10. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  11. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  12. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  13. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  14. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  15. Smeg: Order (2014-CE-23003)

    Broader source: Energy.gov [DOE]

    DOE ordered Smeg USA, Inc. to pay a $16,000 civil penalty after finding Smeg had failed to certify that certain models of refrigerators/refrigerator-freezers/freezers, dishwashers, and cooking products comply with the applicable energy conservation standards.

  16. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  17. Magnetocaloric Refrigeration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    compression cycle and thus reduce greenhouse gas emissions by eliminating the use of high-global-warming-potential refrigerants. Refrigeration technologies based on MCE are...

  18. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  19. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  20. Refrigerated cryogenic envelope

    DOE Patents [OSTI]

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  1. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  2. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  3. ORDER

    Energy Savers [EERE]

    PP&L EnergyPlus Company Order No. EA-210 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On May 4, 1999, PP&L EnergyPlus Company (PP&L EnergyPlus) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. PP&L EnergyPlus, a limited

  4. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  5. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  6. Thermoacoustic refrigerators and engines comprising cascading...

    Office of Scientific and Technical Information (OSTI)

    Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units Title: Thermoacoustic refrigerators and engines comprising cascading stirling ...

  7. High Efficiency Low Emission Refrigeration System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * DOE reports, conference proceedings, journal articles, trade shows - Intermediate ... Refrigeration Systems," International Journal of Refrigeration (submitted). 14 Next ...

  8. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  9. Adsorption Refrigeration System

    SciTech Connect (OSTI)

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  10. Nostalgia Products: Order (2014-CE-14017)

    Broader source: Energy.gov [DOE]

    DOE ordered Nostalgia Products Group, LLC to pay a $8,000 civil penalty after finding Nostalgia Products had failed to certify that certain models of refrigerators and refrigerator-freezers comply with the applicable energy conservation standards.

  11. Hisense USA: Order (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  12. Mackle Company: Order (2010-SE-0106)

    Broader source: Energy.gov [DOE]

    DOE ordered Mackle Company, Inc. to pay a $27,200 civil penalty after finding the company had failed to certify that a variety of refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  13. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  14. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  15. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  16. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  17. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  18. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  19. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  20. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  1. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  2. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  3. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  4. Compact acoustic refrigerator

    SciTech Connect (OSTI)

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  5. New Advanced Refrigeration Technology Provides Clean Energy,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ORNL and Hillphoenix, found solutions to both challenges-the refrigerant leakage and high-global warming potential refrigerants-by using CO2 as the refrigerant and confining it to ...

  6. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.; Miller, W.A.

    1989-01-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising refrigeration system, such as a different capillary tube or compressor, may improve their performance. 12 refs., 2 figs., 3 tabs.

  7. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We compare refrigeration system performance to that for a supermarket having nearly identical layout and refrigeration loads, in a similar climate and of similar vintage, that uses ...

  8. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.
    Credit: Whirlpool Embraco's high ...

  9. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  10. Multi-stage Cascaded Stirling Refrigerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Multi-stage Cascaded Stirling Refrigerator Multi-stage Cascaded Stirling Refrigerator Los Alamos National Laboratory (LANL) researchers have developed a multi-stage...

  11. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Commercial Refrigeration Equipment -- v2.0 More Documents & Publications Beverage Vending Machines Commercial Refrigeration Equipment Fluorescent Lamp Ballasts

  12. Semiconductor-based optical refrigerator

    DOE Patents [OSTI]

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  13. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  14. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  15. Parameter spaces and design optimization of thermoacoustic refrigerators

    SciTech Connect (OSTI)

    Wetzel, M.; Herman, C.

    1996-12-31

    In the last two decades thermoacoustic refrigerators were developed in research laboratories with the goal to understand the basic physics and thermodynamics of thermoacoustic heat pumping. These research efforts led to a good understanding of this new environmentally safe refrigeration technology that employs acoustic power to pump heat. Consequently the next step is to improve and optimize the performance of thermoacoustic refrigerators and seek commercial applications. For this purpose, the need for fast and simple engineering estimates arises. By implementing the simplified linear model of thermoacoustic refrigerators--the short stack boundary layer approximation--such design estimates were derived and presented in this paper in the form of a design algorithm. Calculations obtained with this algorithm predict values for the Coefficient Of Performance (COP) of the order of 5 to 6. These values cannot be achieved at this time because of loss mechanisms in key parts of the thermoacoustic refrigerator, which are not quite understood yet. Nevertheless, these values are encouraging and gaining a better understanding of these loss mechanisms will be a big step towards the commercial market for this new environmentally safe refrigeration technology.

  16. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  17. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  18. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetocaloric Materials Chill Next-Generation Refrigerators Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Magnetocaloric Materials Chill Next-Generation Refrigerators You've seen them. You may even decorate with them. The ubiquitous "sticker-uppers" that cover your refrigerator, helping to keep your

  19. Refrigerator-freezer energy testing with alternative refrigerants

    SciTech Connect (OSTI)

    Sand, J.R. ); Vineyard, E.A.; Sand, J.R.

    1989-01-01

    As a result of the Montreal Protocol (UNEP 1987) that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must resolved. Among these are energy impacts, system compatibility, cost, and availability, In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers (AHAM 1985). The results are presented for an 18 ft{sup 3} (0.51 m{sup 3}), top mount refrigerators-freezer with a static condenser using the following refrigerants: R 12, R500, R12/dimethylether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12/DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants, indicating a higher capacity. While the R134a and R22/R142b results were less promising (6.8% and 8.5% higher energy consumption, respectively), changes to the refrigeration system, such as a different capillary tube or compressor, may improve their performance. It is noted that the test results are only an initial step in determining a replacement for R12.

  20. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  1. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  2. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  3. Almo: Order (2012-CE-1416)

    Broader source: Energy.gov [DOE]

    DOE ordered Almo Corporation to pay a $6,500 civil penalty after finding Almo had failed to certify that certain models of residential refrigerators comply with the applicable energy conservation standards.

  4. Curtis: Order (2015-CE-14021)

    Broader source: Energy.gov [DOE]

    DOE ordered Curtis International, Ltd. to pay a $5,800 civil penalty after finding Curtis had failed to certify that refrigerator-freezer basic model FR9211 complies with the applicable energy conservation standards.

  5. Electrolux: Order (2015-CE-14020)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America, Inc. to pay a $20,000 civil penalty after finding Electrolux had failed to certify that certain models of refrigerator-freezers comply with the applicable energy conservation standards.

  6. Legacy: Order (2015-CE-14025)

    Broader source: Energy.gov [DOE]

    DOE ordered The Legacy Companies to pay a $8,000 civil penalty after finding Legacy had failed to certify that refrigerator Maxx-Ice brand basic model MCR3U complies with the applicable energy conservation standards.

  7. Perlick: Order (2011-SE-1401)

    Broader source: Energy.gov [DOE]

    DOE ordered Perlick Corporation to pay a $400 civil penalty after finding Perlick had manufactured and distributed in commerce in the U.S. at least two noncompliant model HP48RO, electric refrigerators.

  8. Perlick: Order (2013-SE-14002)

    Broader source: Energy.gov [DOE]

    DOE ordered Perlick Corporation to pay a $60,725 civil penalty after finding Perlick had manufactured and distributed in commerce in the U.S. 347 units of basic model HP48RR, a noncompliant refrigerator.

  9. LG: Order (2015-CE-14022)

    Broader source: Energy.gov [DOE]

    DOE ordered LG Electronics USA, Inc. to pay a $8,000 civil penalty after finding LG had failed to certify that various refrigerator-freezer basic models comply with the applicable energy conservation standards.

  10. Atosa: Order (2015-CE-42037)

    Broader source: Energy.gov [DOE]

    DOE ordered Atosa Catering Equipment, Inc. to pay a $8,000 civil penalty after finding Atosa had failed to certify that certain models of self-contained commercial refrigeration equipment with doors comply with the applicable energy conservation standards.

  11. High Efficiency Motors for Refrigerated Open Display Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with support from commercial refrigeration OEMs, retrofit contractors, utilities ... from commercial refrigeration OEMs, retrofit contractors, utilities and grocery sites. ...

  12. Everest Refrigeration: Noncompliance Determination (2015-SE-42001)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Bu Sung America Corporation (dba Everest Refrigeration) finding that commercial refrigeration equipment model number ESGR3 does not comport with the energy conservation standards.

  13. Refrigeration system having dual suction port compressor

    DOE Patents [OSTI]

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  14. Everest Refrigeration: Proposed Penalty (2015-SE-42001)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Bu Sung America Corporation (dba Everest Refrigeration) manufactured and distributed noncompliant commercial refrigeration equipment model ESGR3 in the U.S.

  15. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  16. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  17. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  18. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  19. Method and apparatus for desuperheating refrigerant

    DOE Patents [OSTI]

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  20. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  1. A recuperative superfluid stirling refrigerator

    SciTech Connect (OSTI)

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  2. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  3. Sanden Vendo America: Order (2014-SE-52002)

    Broader source: Energy.gov [DOE]

    DOE ordered Sanden Vendo America Inc. to pay a $6,200 civil penalty after finding Sanden Vendo America had manufactured and distributed in commerce in the U.S. 31 units of Class A refrigerated bottled or canned beverage vending machine model Vue30 (with 1128127 cassette refrigeration deck), a noncompliant product.

  4. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  5. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  6. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    SciTech Connect (OSTI)

    Dieckmann, John

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  7. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Description Magnetic refrigeration is being investigated as an alternative to conventional gas compressor technology for cooling and heating because of its potential to save energy and reduce operating costs. The potential

  8. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryIowa State University and Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Magnetic refrigeration is

  9. IMPACTS OF REFRIGERANTLINE LENGTH ON SYSTEM EFFICIENCY IN RESIDENTIAL HEATING AND COOLING SYSTEMS USING REFRIGERANT DISTRIBUTION.

    SciTech Connect (OSTI)

    ANDREWS, J.W.

    2001-04-01

    The effects on system efficiency of excess refrigerant line length are calculated for an idealized residential heating and cooling system. By excess line length is meant refrigerant tubing in excess of the 25 R provided for in standard equipment efficiency test methods. The purpose of the calculation is to provide input for a proposed method for evaluating refrigerant distribution system efficiency. A refrigerant distribution system uses refrigerant (instead of ducts or pipes) to carry heat and/or cooling effect from the equipment to the spaces in the building in which it is used. Such systems would include so-called mini-splits as well as more conventional split systems that for one reason or another have the indoor and outdoor coils separated by more than 25 ft. This report performs first-order calculations of the effects on system efficiency, in both the heating and cooling modes, of pressure drops within the refrigerant lines and of heat transfer between the refrigerant lines and the space surrounding them.

  10. Covered Product Category: Commercial Refrigerators and Freezers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program.

  11. Working Fluids Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to achieve these goals - Provide guidance to the HVAC&R community on selecting alternative, energy-efficient, low GWP refrigerants - Enable U.S. manufacturers to position ...

  12. Natural Refrigerant (R-729) Heat Pump

    Broader source: Energy.gov (indexed) [DOE]

    Natural Refrigerant (R-729) Heat Pump 2014 Building Technologies Office Peer Review New Project Lee Jestings (lee@S-RAM.com), Project Summary Timeline: Key Partners: Start date:...

  13. Miniaturized Air to Refrigerant Heat Exchangers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in ORNL's Building Technologies Research & Integration Center. Working Fluids Low Global Warming Potential Refrigerants Improving Data Center Efficiency with Rack or Row...

  14. Air Conditioning Heating and Refrigeration Institute Comment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon DOE Reg Burden RFI 7-18-14 More Documents & Publications Regulatory Burden RFI from AHRI Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute ...

  15. Ex Parte Communication_Kitable Refrigerator/Freezer Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CommunicationKitable RefrigeratorFreezer Guidance Ex Parte CommunicationKitable RefrigeratorFreezer Guidance This memo memorializes the meeting between AHAM and the Department ...

  16. Thermoacoustic Engines and Refrigerators: A Short Course (Conference...

    Office of Scientific and Technical Information (OSTI)

    Thermoacoustic Engines and Refrigerators: A Short Course Citation Details In-Document Search Title: Thermoacoustic Engines and Refrigerators: A Short Course You are accessing a ...

  17. Product Standards for Refrigerators (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Refrigerators (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Refrigerators (Japan) Focus Area: Appliances & Equipment Topics: Policy...

  18. American Society of Heating, Refrigeration, and Air Condition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers ...

  19. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document ...

  20. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; ...

  1. 2014-08-01 Issuance: Test Procedure for Refrigerated Bottled...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines; Notice of Proposed Rulemaking and public meeting 2014-08-01 Issuance: Test Procedure for Refrigerated ...

  2. Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...

    Open Energy Info (EERE)

    Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators...

  3. Unified HVAC and Refrigeration Control Systems for Small Footprint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    refrigeration systems and integrate photovoltaic sources Key Issues: Low-cost, "low-touch" retrofit of control technology into buildings and refrigeration systems to facilitate ...

  4. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue ...

  5. WPN 00-5: Approval of Replacement Refrigerators and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provides states with the approval to include refrigerator and electric water heater replacements as an allowable measure. PDF icon WPN 00-5: Approval of Replacement Refrigerators ...

  6. Ames Lab-based consortium to research improving refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Lab-based consortium to research improving refrigeration technology Ames Tribune ... alternative environmentally-friendly and energy- efficient technologies in refrigeration. ...

  7. Ames Laboratory to lead new consortium to advance refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  8. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document ...

  9. 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

  10. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm Addthis...

  11. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative ...

  12. Pecharsky talks magnetic refrigeration with Forbes | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pecharsky talks magnetic refrigeration with Forbes In a May 6 article, Forbes contributor Hillary Brueck writes about the race to develop magnetic refrigeration and interviewed...

  13. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  14. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  15. Magnetocaloric Refrigerator/Freezer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetocaloric Refrigerator/Freezer Magnetocaloric Refrigerator/Freezer Researchers demonstrate General Electric's magnetocaloric system. <br /> Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. <br /> Photo courtesy of General Electric Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: General Electric -

  16. Thermoacoustic refrigerators and engines comprising cascading stirling

    Office of Scientific and Technical Information (OSTI)

    thermodynamic units (Patent) | DOEPatents Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units Title: Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage

  17. Danby Products: Order (2012-CE-1415)

    Broader source: Energy.gov [DOE]

    DOE ordered Danby Products to pay a $9,900 civil penalty after finding Danby had failed to certify that certain models of refrigerators and freezers comply with the applicable energy conservation standard.

  18. Living Direct: Order (2011-CE-1904)

    Broader source: Energy.gov [DOE]

    DOE ordered Living Direct, Inc. to pay a $6,000 civil penalty after finding Living Direct had failed to certify that certain models of dishwashers, refrigerator-freezers and freezers comply with the applicable energy conservation standards.

  19. Bull Outdoor Products: Order (2015-CE-14014)

    Broader source: Energy.gov [DOE]

    DOE ordered Bull Outdoor Products, Inc. to pay a $8,000 civil penalty after finding Bull had failed to certify that refrigerator basic model BC-130 complies with the applicable energy conservation standards.

  20. Elmira Stove Works: Order (2011-CE-1407)

    Broader source: Energy.gov [DOE]

    DOE ordered Elmira Stove Works to pay a $6,000 civil penalty after finding Elmira Stove Works had failed to certify that certain models of refrigerator-freezers comply with the applicable energy conservation standard.

  1. Fagor America: Order (2013-CEW-19001)

    Broader source: Energy.gov [DOE]

    DOE ordered Fagor America, Inc. to pay a $13,000 civil penalty after finding Fagor America had failed to certify that certain models of residential refrigerator-freezers and dishwashers comply with the applicable energy and water conservation standards.

  2. Cal Flame: Order (2015-CE-14015)

    Broader source: Energy.gov [DOE]

    DOE ordered Cal Flame to pay a $8,000 civil penalty after finding Cal Flame had failed to certify that refrigerator basic model BBQ09849P-H complies with the applicable energy conservation standards.

  3. Distinctive Appliances: Order (2015-CE-14019)

    Broader source: Energy.gov [DOE]

    DOE ordered Distinctive Appliances Distributing, Inc. to pay a $16,000 civil penalty after finding Distinctive Appliances had failed to certify that certain models of Fhiaba-brand refrigerator-freezers comply with the applicable energy conservation standards.

  4. Minibar North America: Order (2014-CE-14010)

    Broader source: Energy.gov [DOE]

    DOE ordered Minibar North America, Inc. to pay a $8,000 civil penalty after finding Minibar had failed to certify that certain models of refrigerators comply with the applicable energy conservation standards.

  5. Acme Kitchenettes: Order (2011-CE-1406)

    Broader source: Energy.gov [DOE]

    DOE ordered Acme Kitchenettes Corp. to pay a $6,000 civil penalty after finding Acme Kitchenettes had failed to certify that certain models of refrigerators comply with the applicable energy conservation standards.

  6. Counterflow absorber for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  7. Novel materials for laser refrigeration

    SciTech Connect (OSTI)

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  8. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  9. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  10. DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a supplemental proposed determination regarding miscellaneous residential refrigeration products.

  11. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    SciTech Connect (OSTI)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  12. Bearing construction for refrigeration compresssor

    DOE Patents [OSTI]

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  13. Dual-circuit, multiple-effect refrigeration system and method

    DOE Patents [OSTI]

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  14. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  15. Method and apparatus for passive refrigerant retrieval and storage

    SciTech Connect (OSTI)

    Squire, D.C.

    1991-12-17

    This patent describes a method of retrieving and storing refrigerant from a cooling system being serviced of the type having a compressor for circulating a compressible refrigerant in a closed, pressurized system between a condenser and an evaporator to provide a cooling effect. It comprises: connecting one end of a refrigerant collector tube contained within a housing to the cooling system at the condenser outlet; connecting the interior of the housing to the compressor inlet; operating the cooling system compressor to pressurize refrigerant in the cooling system and pump the refrigerant into the collector tube; and discharging refrigerant from the collector tube into the housing interior through a metering valve where the refrigerant pressure is reduced and evaporates and cools the refrigerant remaining in the tube and the evaporated refrigerant is drawn into the compressor inlet whereby the refrigerant becomes trapped within the housing.

  16. DOE Reaches Settlements with Three Commercial Refrigeration Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturers | Department of Energy Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers DOE Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers March 1, 2016 - 6:20pm Addthis DOE settled enforcement actions against Utility Refrigerator, True Manufacturing, and Victory Refrigeration for distributing commercial refrigeration equipment in the United States that do not meet applicable energy conservation standards. As a part of the

  17. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  18. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  19. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOE Patents [OSTI]

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  20. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  1. Defrost Temperature Termination in Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Sharma, Vishaldeep

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  2. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  3. Cospolich Refrigerator: Proposed Penalty (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Cospolich Refrigerator Co, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  4. Advances in refrigeration and heat transfer engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  5. DOE Closes Investigation of Whirlpool's Maytag Refrigerator

    Broader source: Energy.gov [DOE]

    The Department of Energy has closed its investigation into the energy efficiency of Whirlpool's Maytag refrigerator-freezer model "MSD2578VE." The Department opened this investigation and requested...

  6. DOE Closes Investigation of Arcelik's Blomberg Refrigerator

    Broader source: Energy.gov [DOE]

    The Department of Energy has closed its investigation into the energy efficiency of Arcelik's Blomberg refrigerator-freezer model # BRFB1450. The Department opened this investigation based on a...

  7. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  8. Danby Products: Order (2012-CE-1415) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order (2012-CE-1415) August 9, 2012 DOE ordered Danby Products to pay a 9,900 civil penalty after finding Danby had failed to certify that certain models of refrigerators...

  9. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P.

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  10. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  11. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect (OSTI)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  12. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  13. Utility: Order (2016-CE-42007) | Department of Energy

    Energy Savers [EERE]

    CE-42007) Utility: Order (2016-CE-42007) January 5, 2016 DOE ordered Utility Refrigerator to pay a $8,000 civil penalty after finding Utility had failed to certify that certain models of commercial refrigerator equipment comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Utility. PDF icon Utility: Order (2016-CE-42007) More Documents & Publications Utility: Proposed Penalty (2016-CE-42007)

  14. Sanyo Electric: Order (2010-CE-1210) | Department of Energy

    Energy Savers [EERE]

    Sanyo Electric: Order (2010-CE-1210) Sanyo Electric: Order (2010-CE-1210) October 13, 2010 DOE issued an Order and entered into a Compromise Agreement with Sanyo E&E Corp. after finding Sanyo had used an improper method to submit its certification that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Sanyo. PDF

  15. Versonel: Order (2014-CE-21009)

    Broader source: Energy.gov [DOE]

    DOE ordered Smart Surplus, Inc. d/b/a Versonel to pay a $8,000 civil penalty after finding Versonel had failed to certify that certain models of refrigerators and residential clothes dryers comply with the applicable energy conservation standards.

  16. Whirlpool: Order (2013-SE-1420)

    Broader source: Energy.gov [DOE]

    DOE ordered Whirlpool Corporation to pay a $5,329,800 civil penalty after finding Whirlpool had manufactured and distributed in commerce in the U.S. at least 26,649 units of basic model 8TAR81 noncompliant refrigerator-freezer.

  17. AHT: Order (2015-SE-42031)

    Broader source: Energy.gov [DOE]

    DOE ordered AHT Cooling Systems, Inc. to pay a $179,040 civil penalty after finding AHT had manufactured and distributed in commerce in the U.S. at least 1,032 units of commercial refrigeration equipment model RIO S 68 L F, a noncompliant product.

  18. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  19. DOE Reaches Settlements with Three Commercial Refrigeration Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    True agreed to a 36,400 civil penalty after manufacturing and distributing 182 units of commercial refrigerator models TCGG-72 and TCGG-72S. Utility Refrigerator agreed to ...

  20. Could You Save Money on Your Refrigerator? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy...

  1. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rack and system diagram for the CO2 refrigeration system.
    Credit: Oak Ridge National Lab High-Efficiency, Low-Emission Refrigeration System Workshop 2: Advanced HVAC&R ...

  2. DOE Resolves Avanti Refrigerator and Freezer Civil Penalty Case

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy announced that it has resolved the civil penalty action against Mackle Company for its failure to certify that refrigerators and refrigerator-freezers sold under the...

  3. Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)

    SciTech Connect (OSTI)

    Deru, M.

    2011-02-01

    This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

  4. Refrigerant pressurization system with a two-phase condensing ejector

    DOE Patents [OSTI]

    Bergander, Mark

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  5. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect (OSTI)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  6. Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech12_vineyard_040313.pdf More Documents & Publications Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Low-GWP Refrigerants for Refrigeration Systems Image of

  7. DOE Collects Civil Penalties for Failure to Certify Consumer Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products | Department of Energy Consumer Refrigeration Products DOE Collects Civil Penalties for Failure to Certify Consumer Refrigeration Products April 22, 2015 - 8:41pm Addthis The Office of Enforcement recently resolved enforcement actions against seven companies that failed to submit required reports to certify that their refrigerators, refrigerator-freezers, and/or freezers comply with federal energy conservation standards. DOE assessed civil penalties of $8,000 per manufacturer for

  8. DOE Proposes Higher Efficiency Standards for Refrigerators | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Higher Efficiency Standards for Refrigerators DOE Proposes Higher Efficiency Standards for Refrigerators September 28, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the release of a new proposed energy efficiency standard for residential refrigerators, refrigerator-freezers, and freezers. The standard, as proposed, could save consumers as much as $18.6 billion over thirty years. The Obama Administration has made efficiency standards a major

  9. EERE Success Story-New Refrigerant Boosts Energy Efficiency of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supermarket Display Cases | Department of Energy Refrigerant Boosts Energy Efficiency of Supermarket Display Cases EERE Success Story-New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases February 20, 2015 - 4:55pm Addthis EERE Success Story—New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases Research supported by the Energy Department's Building Technologies Office has led to a major breakthrough in refrigeration systems' efficiency, and the result may

  10. New Refrigeration Technology Could Substantially Cut Energy Use |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Refrigeration Technology Could Substantially Cut Energy Use New Refrigeration Technology Could Substantially Cut Energy Use April 1, 2016 - 11:40pm Addthis New Energy Department-supported technologies under development at Ames National Laboratory could make refrigerators a substantially more energy efficient appliance. New Energy Department-supported technologies under development at Ames National Laboratory could make refrigerators a substantially more energy

  11. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  12. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Research & Development Roadmap: ...

  13. Helium refrigeration considerations for cryomodule design

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  14. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  15. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  16. Method and apparatus for de-superheating refrigerant

    DOE Patents [OSTI]

    Zess, J.A.; Drost, M.K.; Call, C.J.

    1997-11-25

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

  17. Retrofitting Doors on Open Refrigerated Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases Retrofitting Doors on Open Refrigerated Cases Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs18_goetzler_040413.pdf More Documents & Publications Better Buildings Alliance - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer

  18. Control method for mixed refrigerant based natural gas liquefier

    DOE Patents [OSTI]

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  19. 2014-04-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding test procedures for residential refrigerators and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014.

  20. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  1. Fagor America: Order (2011-CE-14/1908)

    Broader source: Energy.gov [DOE]

    DOE ordered Fagor America, Inc. to pay a $6,000 civil penalty after finding Fagor America had failed to certify that certain models of refrigerators and dishwashers comply with the applicable energy conservation standards.

  2. Smeg USA: Order (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  3. Measurements with a recuperative superfluid Stirling refrigerator

    SciTech Connect (OSTI)

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1995-08-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9% {sup 3}He- {sup 4}He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed.

  4. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  5. Covered Product Category: Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  6. Solubility modeling of refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs where structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.

  7. Refrigeration in a world without CFCs

    SciTech Connect (OSTI)

    Garland, R.W.; Adcock, P.W.

    1996-09-01

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries, worldwide, are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side effects. The refrigeration and air conditioning industry, due to its reliance on CFCs and HCFCs has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Additionally, absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. The purpose of this paper is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles and environmental impacts for those familiar with absorption. The introduction will include a brief history of absorption and a description of the basic refrigeration cycle, while the advanced sections will discuss triple-effect technology and a life-cycle or ``systems`` approach to evaluating global warming impacts.

  8. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Broader source: Energy.gov [DOE]

    This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America’s Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster refrigeration system. We compare refrigeration system performance to that for a supermarket having nearly identical layout and refrigeration loads, in a similar climate and of similar vintage, that uses a conventional hydrofluorocarbon (HFC) refrigerant. Delhaize provided the submetered and utility data used to generate the performance summaries herein.

  9. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    SciTech Connect (OSTI)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon; Kim, Youngkwon

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.

  10. Dilution cycle control for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  11. Refrigeration options for the Advanced Light Source Superbend Dipole Magnets

    SciTech Connect (OSTI)

    Green, M.A.; Hoyer, E.H.; Schlueter, R.D.; Taylor, C.E.; Zbasnik, J.; Wang, S.T.

    1999-07-09

    The 1.9 GeV Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) produces photons with a critical energy of about 3.1 kev at each of its thirty-six 1.3 T gradient bending magnets. It is proposed that at three locations around the ring the conventional gradient bending magnets be replaced with superconducting bending magnets with a maximum field of 5.6 T. At the point where the photons are extracted, their critical energy will be about 12 keV. In the beam lines where the SuperBend superconducting magnets are installed, the X ray brightness at 20 keV will be increased over two orders of magnitude. This report describes three different refrigeration options for cooling the three SuperBend dipoles. The cooling options include: (1) liquid helium and liquid nitrogen cryogen cooling using stored liquids, (2) a central helium refrigerator (capacity 70 to 100 W) cooling all of the SuperBend magnets, (3) a Gifford McMahon (GM) cryocooler on each of the dipoles. This paper describes the technical and economic reasons for selecting a small GM cryocooler as the method for cooling the SuperBend dipoles on the LBNL Advanced Light Source.

  12. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect (OSTI)

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  13. SCREW COMPRESSOR CHARACTERISTICS FOR HELIUM REFRIGERATION SYSTEMS

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter; Creel, Jonathan; Arenius, Dana; Casagrande, Fabio; Howell, Matt

    2008-03-01

    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression.At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss

  14. Measurements of the efficiency and refrigeration power of pulse-tube refrigerators

    SciTech Connect (OSTI)

    Herrmann, S.; Radebaugh, R.

    1986-09-01

    Pulse-tube or thermoacoustic refrigerators have the potential for high reliability since they require only one moving part - an oscillating piston or diaphragm at room temperature. If a tube is closed at one end and connected to a pressure-wave generator at the open end, and if the phase angle between mass flow and pressure is shifted from 90/sup 0/, then refrigeration occurs at the open end. The shift in phase angle can be realized by thermal relaxation between the gas and the tube walls or by an orifice at the closed end. A low temperature of 60 K using helium gas in a one-stage orifice pulse tube has been achieved at NBS. The report describes the first measurements of the efficiency, refrigeration power, and refrigeration power per unit mass flow, for three pulse-tube refrigerators. Three tube sizes, differing in length and diameter, were studied over a frequency range of 3 to 11.5 Hz. Cooling efficiencies as high as 90% of the Carnot efficiency were obtained when compressor and regenerator losses are neglected.

  15. Tapered pulse tube for pulse tube refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  16. Extension of a Virtual Refrigerant Charge Sensor

    SciTech Connect (OSTI)

    Kim, Woohyun; Braun, J.

    2015-07-01

    The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. To evaluate the accuracy of the VRC, data were first collected from previous laboratory tests for different systems and over a wide range of operating conditions. In addition, new laboratory tests were performed to consider conditions not available within the existing data set. The systems for the new laboratory tests were two residential ductless split heat pump systems that employ a variable-speed compressor and R-410a as the refrigerant. Based on the evaluations, the original virtual charge sensor (termed model I) was found to work well in estimating the refrigerant charge for systems with a variable-speed compressor under many operating conditions. However, for extreme test conditions such as low outdoor temperatures and low compressor speed, the VRC needed to be improved. To overcome the limitations, the model associated with the VRC sensor was modified to include a term involving the inlet quality to the evaporator estimated from the condenser outlet condition (termed model II). Both model I and II showed good performance in terms of predicting charge levels for systems with a constant speed compressor, but model II gave better performance for systems with a variable-speed compressor. However, when the superheat of the compressor was zero, neither model I nor II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. This model improved performance for a laboratory-tested system that included a number of points with no superheat entering the compressor.

  17. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  18. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  19. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOE Patents [OSTI]

    DeVault, Robert C.; Fairchild, Phillip D.; Biermann, Wendell J.

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  20. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  1. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review | Department of Energy Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech13_mclinden_040213.pdf More Documents & Publications Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low

  2. EERE Success Story-New Advanced Refrigeration Technology Provides Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Low Utility Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets EERE Success Story-New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center

  3. Hydrophilic structures for condensation management in refrigerator appliances

    DOE Patents [OSTI]

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  4. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burden RFI | Department of Energy Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its

  5. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  6. Purchasing Energy-Efficient Commercial Refrigerators and Freezers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerators and Freezers Purchasing Energy-Efficient Commercial Refrigerators and Freezers The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition

  7. Purchasing Energy-Efficient Refrigerated Beverage Vending Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerated Beverage Vending Machines Purchasing Energy-Efficient Refrigerated Beverage Vending Machines The Federal Energy Management Program (FEMP) provides acquisition guidance for refrigerated beverage vending machines, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any

  8. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment; Final Rule | Department of Energy 0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding test procedures for commercial refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014. Though it is not intended or expected, should any discrepancy occur

  9. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products; Notice of Proposed Rulemaking | Department of Energy 6 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for miscellaneous refrigeration products, as issued by the Deputy Assistant Secretary for Energy Efficiency on

  10. 6 Energy Saving Tips for Commercial Refrigerators and Freezers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6 Energy Saving Tips for Commercial Refrigerators and Freezers 6 Energy Saving Tips for Commercial Refrigerators and Freezers February 28, 2014 - 6:11pm Addthis Dale Linkous carries pizza out of the walk-in freezer in the kitchen at the National Renewable Energy Laboratory in Golden, Colorado. The Energy Department <a href="http://energy.gov/articles/new-energy-efficiency-standards-commercial-refrigeration-equipment-cut-businesses-energy">announced new energy

  11. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    SciTech Connect (OSTI)

    Reis, Chuck; Nelson, Eric; Armer, James; Johnson, Tim; Hirsch, Adam; Doebber, Ian

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  12. Victory: Order (2015-SE-42033) | Department of Energy

    Energy Savers [EERE]

    Order (2015-SE-42033) Victory: Order (2015-SE-42033) October 27, 2015 DOE ordered Victory Refrigeration to pay a $1,600 civil penalty after finding Victory had manufactured and distributed in commerce in the U.S. at least 8 units of commercial refrigerator-freezer basic model RFS-1D-S1-EW-PT-HD, a noncompliant product. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Victory. PDF icon Victory: Order (2015-SE-42033) More Documents & Publications

  13. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M.

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  14. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration technology for smal diesel engines ...

  15. BTO Partners are Revolutionizing Refrigerators and Clothes Dryers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Environmentally friendly supermarket refrigeration technologies, such as the first hydro-fluorocarbon (HFC)-free CO2 system with 25 percent energy savings and 75 percent fewer ...

  16. DOE Opens Three Investigations into Alleged Refrigerator Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    submit detailed information about the design, marketing and U.S. sales of its Blomberg brand refrigerator-freezer, model "BRFB1450." The Department also requested testing data...

  17. Acoustic recovery of lost power in pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.; Gardner, D.L.; Backhaus, S.

    1999-02-01

    In an efficient Stirling-cycle cryocooler, the cold piston or displacer recovers power from the gas. This power is dissipated into heat in the orifice of an orifice pulse tube refrigerator, decreasing system efficiency. Recovery of some of this power in a pulse tube refrigerator, without sacrificing the simplicity and reliability inherent in a system with no cold moving parts, is described in this paper. In one method of such power recovery, the hot ends of both the regenerator and the pulse tube are connected to the front of the piston driving the refrigerator. Experimental data is presented demonstrating this method using a thermoacoustic driver instead of a piston driver. Control of time-averaged mass flux through the refrigerator is crucial to this power recovery, lest the refrigerator{close_quote}s cooling power be overwhelmed by a room-temperature mass flux. Two methods are demonstrated for control of mass flux: a barrier method, and a hydrodynamic method based on turbulent irreversible flow. At {minus}55{degree}C, the refrigerator provided cooling with 9{percent} of the Carnot coefficient of performance. With straightforward improvements, similar refrigerators should achieve efficiencies greater than those of prior pulse tube refrigerators and prior standing-wave thermoacoustic refrigerators, while maintaining the advantages of no moving parts. {copyright} {ital 1999 Acoustical Society of America.}

  18. EERE Success Story-New Refrigerant Boosts Energy Efficiency of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Success StoryNew Refrigerant Boosts Energy Efficiency of Supermarket Display Cases Research supported by the Energy Department's Building Technologies Office has led to ...

  19. Retrofitting Doors on Open Refrigerated Cases | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2013 BTO Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013...

  20. Low-Cost Electrochemical Compressor Utilizing Green Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications Low-Cost ... 31, 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation ...

  1. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  2. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature ...

  3. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon deer08bruenke.pdf More Documents & Publications Verifying TRU Passive DPF Cold Ambient Performance Active Diesel Emission Control Technology for Transport Refrigeration ...

  4. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI ... PDF icon DOE Com Reg Burden RFI 9-7-12.pdf More Documents & Publications Regulatory Burden ...

  5. Test results on a supercharged compressor for commercial refrigeration

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Wilhelm, W.G. )

    1989-01-01

    This paper reports on a project whose objective was to quantify the technical benefits of using refrigerant R-502 in a supercharged reciprocating compressor for commercial refrigeration applications. The supercharged compressor concept used a special heat exchanger that subcools the major portion of the liquid refrigerant leaving the condenser. This subcooling is achieved by flashing the remaining portion of the condensed liquid through an expansion valve, thereby cooling it, and using it to absorb heat from the rest of the refrigerant. This supercharged stream is then fed to the cylinders through ports in the cylinder walls that are uncovered when the piston reaches bottom dead center.

  6. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Fernandez, Nicholas; Stout, Tyson E.

    2010-03-31

    Five alternatives to vapor compression technology were qualitatively evaluated to determine their prospects for being better than vapor compression for space cooling and food refrigeration applications. The results of the assessment are summarized in the report. Overall, thermoacoustic and magnetic technologies were judged to have the best prospects for competing with vapor compression technology, with thermotunneling, thermoelectric, and thermionic technologies trailing behind in that order.

  7. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOE Patents [OSTI]

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  8. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  9. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miniaturized Air-to-Refrigerant Heat Exchangers 2014 Building Technologies Office Peer Review Prof. Reinhard Radermacher, raderm@umd.edu University of Maryland College Park Project Summary Timeline: Start date: 03/01/2013 Planned end date: 02/29/2016 Key Milestones 1. Heat exchanger designs/process: 6/30/14 2. Fabrication/testing of 1 kW: 9/30/14 3. Fabrication/testing of 10 kW: 9/30/2015 Budget: Total DOE $ to date: $561K Total future DOE $: $489K Target Market/Audience: Residential and

  10. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miniaturized Air-to-Refrigerant Heat Exchangers 2015 Building Technologies Office Peer Review Reinhard Radermacher raderm@umd.edu 20%+ Better University of Maryland College Park Project Summary Timeline: Start date: 3/1/2013 Planned end date: 2/29/2016 Key Milestones 1. Design optimization, 3/30/14 2. Fabrication/testing, 1kW prototype, 1/30/2015 3. Fabrication/testing, 10kW prototype, 9/30/2015 Budget: Total Budget: $1500K Total UMD: $1050K Total DOE $ to date for UMD: $881K Total future DOE $

  11. New Regenerative Cycle for Vapor Compression Refrigeration

    Office of Scientific and Technical Information (OSTI)

    SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator,

  12. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  13. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  14. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  15. American Society of Heating, Refrigeration, and Air Condition Engineers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASHRAE) 2016 Annual Conference | Department of Energy American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference June 25, 2016 9:00AM EDT to June 29

  16. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  17. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  18. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect (OSTI)

    Stovall, Therese K; Baxter, Van D

    2010-01-01

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  19. Design issues of a thermoacoustic refrigerator and its heat exchangers

    SciTech Connect (OSTI)

    Wetzel, M.; Herman, C.

    1996-12-31

    Thermoacoustic refrigeration is a fast advancing new refrigeration technology. Performance calculations indicate remarkable values for the thermoacoustic core of a thermoacoustic refrigerator. The thermoacoustic core is responsible for pumping heat from a cold to a hot temperature reservoir. However, the systems necessary to support the thermoacoustic core, such as heat exchangers and acoustic drivers are the weak points of this refrigeration technology. Particularly, heat exchangers were designed so far without any optimization. A reason for this is the lack of knowledge of the flow structures and heat transfer phenomena at the interface between the thermoacoustic core and the heat exchangers. For the purpose of gaining better insight, the authors built a thermoacoustic refrigerator model and applied visualization techniques, such as smoke injection and holographic interferometry, to visualize the flow and temperature fields at the interface.

  20. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  1. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  2. New technologies for refrigeration without CFCs

    SciTech Connect (OSTI)

    Swift, G.W.

    1992-09-01

    Today the appliance industry and other cooling industries are facing the double challenge of eliminating environmentally harmful CFCs while simultaneously improving energy efficiency. These challenges will force this industry to make tremendous changes and to work out many difficult problems, ranging from choice of technology through production-line retooling to product-liability concerns. Three new cooling technologies--sonic compression, thermoacoustic refrigeration, and Malone refrigeration--have been developed at least in part at Los Alamos National Laboratory. We will discuss the principles, features, and status of each of these three technologies. With these three examples we hope to show that mechanical compression and subsequent evaporation of CFCs is not the only potentially practical way to produce cooling. These examples are only three of many alternative cooling technologies. No new technology can be guaranteed a success before development is complete, from either an economic or engineering point of view. But enough alternative cooling technologies exist, and the probability for success of each technology is high enough, that one or more of these technologies can almost certainly be produced at reasonable cost, eliminate CFCS, and reduce the consumption of electricity.

  3. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  4. Utility: Order (2016-SE-42003) | Department of Energy

    Energy Savers [EERE]

    SE-42003) Utility: Order (2016-SE-42003) March 1, 2016 DOE ordered Utility Refrigerator to pay a $200 civil penalty after finding Utility manufactured and distributed in commerce in the U.S. 1 unit of a Utility brand commercial refrigerator, model PT-R-75-SS-3S-3S-N. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Utility. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do

  5. Refrigeration Recovery for Experiment Hall High Target Loads

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni, Errol Yuksek, Jonathan Creel

    2010-04-01

    The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled for the summer of 2010 and running for two years until the planned shut-down for 12GeV. The End Station Refrigerator (ESR) supports the three experiment halls, two of which may normally have a hydrogen target. The refrigerator for the ESR is a CTI/Helix 1500 W 4.5-K refrigerator nominally capable of supporting a 1250 W target load at 12 bar and 15-K (plus 1100 W of 4.5-K refrigeration). As such, this refrigerator is not capable of supporting the Qweak experiment target load in its present condition. Additionally, since the installation of an ambient air vaporizer for a single use, two week run duration of a high target load in the summer of 2003 there has been a consistent usage of the Central Helium Liquefier’s (CHL’s) 3 bar 4.5-K helium, supplied via an existing transfer-line to the ESR, for other high target loads. By the fall of 2004, it was apparent that this continued use of CHL’s supercritical helium was routinely being sought by the hall experimenters. As such, a method of refrigeration recovery was proposed to reduce the support required of CHL for these high target loads, including the anticipated Qweak experiment, while utilizing the recovered CHL refrigeration from the target to increase ESR’s 12 bar 15-K capacity.

  6. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  7. ISSUANCE 2015-10-20: Energy Conservation Program: Energy Conservation Standards for Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Refrigerated Beverage Vending Machines

  8. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  9. Miniaturized Air to Refrigerant Heat Exchangers

    Broader source: Energy.gov [DOE]

    This project is developing a miniaturized air-to-refrigerant heat exchanger that is more compact and more energy efficient than current market designs. The heat exchanger will feature at least 20% less volume, material volume, and approach temperature compared to current multiport flat tube designs, and it will be in production within five years. The heat exchanger, which acts as both an evaporator and a condenser, can be applied to commercial and residential air-conditioning or heat pump systems with various capacity scales. Prototype 1-kilowatt (kW) and 10 kW designs will be tested and then improved as necessary for final tests and demonstration in a 3-ton heat pump.

  10. Spray generators for absorption refrigeration systems

    DOE Patents [OSTI]

    Sibley, Howard W.

    1979-06-19

    A spray generator for an absorption refrigeration system that includes a heat exchanger comprised of a multiplicity of variably spaced heat exchange tubes. The tubes are spaced close together near the top of the heat exchanger and spaced more widely apart near the bottom of the heat exchanger. Dilute absorbent solution is sprayed down through the heat exchanger. The close nesting of the tubes in the top portion of the heat exchanger retards liquid flow and aids heating of the solution. The wide spacing of the tubes in the lower section of the heat exchanger facilitate vapor flow out of the heat exchanger and eliminates liquid "blow-off". The top tubes are covered by a baffle to prevent the liquid solution from splashing out of the heat exchanger off of these top tubes.

  11. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  12. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  13. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  14. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect (OSTI)

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires intrusion into the system to measure the refrigerant high-side and low-side pressures. Once the pressures are known, based on the equipment's refrigerant charging chart? or in most cases, based on the technician's experience? the refrigerant charging status is determined. However, there is a catch: by the time a refrigeration technician is called, most of the refrigerant has already escaped into the atmosphere. The new technology provides a real-time warning so that when, say, 20% of the refrigerant has leaked, the equipment users will be warned, even though the equipment is still functioning properly at rated capacity. Temperature sensors are becoming very accurate and very low in cost, compared with pressure sensors. Using temperature sensors to detect refrigerant charge status is inherently nonintrusive, inexpensive, and accurate. With the addition of two temperature sensors for detecting dirty air filters, the capability of the diagnostic equipment is further enhanced with very little added cost. This report provides laboratory test data on the change of indoor coil refrigerant temperature and subcooling as a function of refrigerant charge for a 2-ton split heat pump system. The data can be used in designing the indicators for refrigerant loss and dirty air filter sensors.

  15. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  16. VEE-0079 - In the Matter of Diversified Refrigeration, Inc. | Department of

    Office of Environmental Management (EM)

    Energy 9 - In the Matter of Diversified Refrigeration, Inc. VEE-0079 - In the Matter of Diversified Refrigeration, Inc. Diversified Refrigeration, Inc. (DRI) requests a six-month exception from the 2001 energy appliance efficiency standards for built-in refrigerators that become effective July 1, 2001. As explained below, we are granting DRI a six-month exception - from July 1, 2001 to December 31, 2001 - that permits the firm to produce a specific number of non-compliant refrigerators per

  17. RPI: Order (2015-CE-42065) | Department of Energy

    Energy Savers [EERE]

    Order (2015-CE-42065) RPI: Order (2015-CE-42065) November 6, 2015 DOE ordered RPI Industries, Inc. to pay a $8,000 civil penalty after finding RPI had failed to certify that certain models of commercial refrigeration equipment comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and RPI. PDF icon RPI: Order (2015-CE-42065) More Documents & Publications RPI: Proposed Penalty (2015-CE-42065) Cal Flame:

  18. 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Establish an ASRAC Working Group 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group This document is a pre-publication ...

  19. DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations

    Broader source: Energy.gov [DOE]

    The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that failed to meet federal...

  20. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  1. New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases

    Broader source: Energy.gov [DOE]

    Research supported by the Energy Departments Building Technologies Office has led to a major breakthrough in refrigeration systems efficiency, and the result may yield big energy savings for...

  2. Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  3. Property:Building/SPElectrtyUsePercRefrigeration | Open Energy...

    Open Energy Info (EERE)

    yUsePercRefrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  4. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  5. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    SciTech Connect (OSTI)

    Lima Sharma, Ana L.; Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  6. Commissioning and operation of the CEBAF end station refrigeration system

    SciTech Connect (OSTI)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.; Kashy, D.; Keesee, M.; Wilson, J. Jr.

    1996-08-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1,500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned fin 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance.

  7. North Star Refrigerator: Proposed Penalty (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  8. DOE Closes Investigation into Energy Efficiency of Viking Refrigerator

    Broader source: Energy.gov [DOE]

    The Department of Energy has closed its investigation into the energy efficiency of Viking Range Corporation’s refrigerator-freezer model VCSB542.  The Department initiated this investigation in...

  9. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  10. Development and Evaluation of a Sandia Cooler-based Refrigerator...

    Office of Environmental Management (EM)

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air-bearing supported rotating heat-sink impeller. The project included baseline ...

  11. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerants Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants Credit: National Institute of Standards Credit: National Institute of Standards Lead Performer: National Institute of Standards and Technology - Gaithersburg, MD Partners: -- Catholic University of America - Washington, DC -- George Mason University - Fairfax, VA DOE Funding: $1,750,000 Cost Share: N/A Project Term: 2/1/2011 - 3/31/2015 Project Objective This project evaluates alternative

  12. Natural Refrigerant High-Performance Heat Pump for Commercial Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Refrigerant High-Performance Heat Pump for Commercial Applications Natural Refrigerant High-Performance Heat Pump for Commercial Applications Credit: S-RAM Credit: S-RAM Lead Performer: S-RAM - Franklin, TN Partners: -- Oak Ridge National Laboratory - Oak Ridge, TN -- Purdue University - West Lafayette, IN -- ReGen Power - Canning Vale, Western Australia DOE Funding: $400,000 Cost Share: $125,000 Project Term: December 2013 - December 2017 Funding Opportunity: Building

  13. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  14. BTO Partners are Revolutionizing Refrigerators and Clothes Dryers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partners are Revolutionizing Refrigerators and Clothes Dryers BTO Partners are Revolutionizing Refrigerators and Clothes Dryers April 14, 2015 - 3:18pm Addthis Oak Ridge National Lab’s Ayyoub Momen demonstrates ultrasonic clothes dryer technology for David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy (EERE) Oak Ridge National Lab's Ayyoub Momen demonstrates ultrasonic clothes dryer technology for David Danielson, Assistant Secretary for

  15. New Energy Efficiency Standards for Commercial Refrigeration Equipment to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cut Businesses' Energy Bills and Carbon Pollution | Department of Energy Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution February 28, 2014 - 10:45am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's State of the Union address and the Administration's Climate Action Plan, the Energy Department

  16. DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matter | Department of Energy Reaches Agreement with LG Electronics, USA, On Refrigerator Energy Matter DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy Matter November 14, 2008 - 4:47pm Addthis ENERGY STAR® Program Continues to Help American Consumers Make Energy Efficient Choices WASHINGTON - The U.S. Department of Energy (DOE) today announced an agreement with LG Electronics, USA, Inc. (LG), resolving concerns related to energy usage measurements reported on LG

  17. REA Refrigerated Display Case LED Lighting Performance Specification |

    Energy Savers [EERE]

    Department of Energy REA Refrigerated Display Case LED Lighting Performance Specification REA Refrigerated Display Case LED Lighting Performance Specification A Retailer Energy Alliances (REA) Project PDF icon rea_refrig_display_spec.pdf More Documents & Publications CBEA LED Site Lighting Specification - Version 1.3, Released 2/15/2012 Model Specification for LED Roadway Luminaires, V2.0 CBEA High-Efficiency Parking Structure Lighting Specification

  18. Heat exchanger bypass system for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  19. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  20. DEVELOPMENT OF A REFRIGERANT DISTRIBUTION SECTION FOR ASHRAE STANDARD 152.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2001-09-07

    In a recent draft report titled ''Impacts of Refrigerant Line Length on System Efficiency in Residential Heating and Cooling Systems Using Refrigerant Distribution,'' (Andrews 2000) some baseline calculations were performed to estimate various impacts on system efficiency of long refrigerant distribution lines. Refrigerant distribution refers to ''mini-splits'' and other types of space beating and cooling equipment that utilize refrigerant lines, rather than ducts or pipes, to transport heat and cooling effect from the outdoor unit to the building spaces where this heat or cooling is used. Five factors affecting efficiency were studied in each of the space conditioning modes (heating and cooling) for a total of ten factors in all. Temperature changes and pressure drops in each of the two refrigerant lines accounted for four of the factors, with the remaining one being elevation of the indoor unit relative to the outdoor unit. Of these factors, pressure drops in the suction line in cooling showed by far the largest effect. This report builds on these baseline calculations to develop a possible algorithm for a refrigerant distribution section of ASHRAE Standard 152. It is based on the approximate treatment of the previous report, and is therefore subject to error that might be corrected using a more detailed analysis, possibly including computer modeling and field testing. However, because the calculated efficiency impacts are generally small (a few percent being typical) it may be that the approximate treatment is sufficient. That question is left open for discussion. The purpose of this report is not to advocate the adoption of the methodology developed, but rather to present it as an option that could either be adopted as-is or used as a starting point for further analysis. It is assumed that the reader has available and is familiar with ASHRAE Standard 152P and with the previous analysis referred to above.

  1. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOE Patents [OSTI]

    Spauschus, Hans O.; Starr, Thomas L.

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  2. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    SciTech Connect (OSTI)

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-28

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3 deg. C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  3. Compatibility of refrigerants and lubricants with electrical sheet insulation under retrofit conditions

    SciTech Connect (OSTI)

    Doerr, R.G.; Waite, T.D.

    1996-11-01

    To determine whether exposure to the original refrigerant/mineral oil would affect compatibility of sheet insulation with alternative refrigerant/lubricant after retrofit, sheet insulation was exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Most of the sheet insulation materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant at high temperature. This was attributed to incompatibility of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) sheet was initially observed, but 2048 subsequent tests under extremely dry conditions showed that embrittlement of the PET materials was attributed to moisture present during the exposure.

  4. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  5. Frost sensor for use in defrost controls for refrigeration

    DOE Patents [OSTI]

    French, Patrick D.; Butz, James R.; Veatch, Bradley D.; O'Connor, Michael W.

    2002-01-01

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  6. Midea: Order (2010-SE-0110, 2012-SE-1402, 2012-SE-1404, 2013-SE-1401)

    Broader source: Energy.gov [DOE]

    DOE ordered Midea America Corp., Hefei Hualing Co., Ltd., and China Refrigeration Industry Co., Ltd., to pay a $4,579,949 ($4,562,838 plus one percent interest) civil penalty after finding Midea had manufactured and distributed in commerce in the U.S. a large quantity of basic models HD-146F, HS-390C, UL-WD145-D, and UL-WD195-D of noncompliant refrigerator-freezers and freezers.

  7. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  8. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy and Evaluation of a Sandia Cooler-based Refrigerator Condenser Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air-bearing supported rotating heat-sink impeller. The project included baseline performance testing of a residential refrigerator, analysis, and design development of a Sandia Cooler condenser assembly including a spiral channel

  9. DOE Publishes Notice of Proposed Rulemaking for Commercial Refrigeration Equipment Test Procedure

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for commercial refrigeration equipment.

  10. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  11. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  12. Simplified Helium Refrigerator Cycle Analysis Using the `Carnot Step'

    SciTech Connect (OSTI)

    P. Knudsen; V. Ganni

    2006-05-01

    An analysis of the Claude form of an idealized helium liquefier for the minimum input work reveals the ''Carnot Step'' for helium refrigerator cycles. As the ''Carnot Step'' for a multi-stage polytropic compression process consists of equal pressure ratio stages; similarly for an idealized helium liquefier the ''Carnot Step'' consists of equal temperature ratio stages for a given number of expansion stages. This paper presents the analytical basis and some useful equations for the preliminary examination of existing and new Claude helium refrigeration cycles.

  13. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. 2014-07-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule Correction

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule correction regarding test procedures for refrigerators, refrigerator-freezers, and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  15. Purchasing Energy-Efficient Commercial Refrigerators and Freezers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  16. Purchasing Energy-Efficient Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  17. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    SciTech Connect (OSTI)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  18. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  19. High-Efficiency, Low-Emission Refrigeration System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Low-Emission Refrigeration System High-Efficiency, Low-Emission Refrigeration System Image of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Image of the compressor rack and system diagram for the CO2 refrigeration system. Credit: Oak Ridge National Lab Diagram of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Diagram of the compressor rack and

  20. TASK ORDER

    National Nuclear Security Administration (NNSA)

    NA0000XXX Task Order No: DE-DT000XXXX Statement of Work August 7, 2015 Task Order Title: Design, Integration, Construction, Communications, and Engineering (DICCE) Services for Port of Cat Lai, Vietnam. Scope: The Contractor shall design, construct, and integrate fully functional portal monitor and communications systems at designated sites in Vietnam. * Port of Cat Lai Requirements Documents: The following task order requirements describe key milestones and deliverables. For a more complete

  1. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  2. Ordering Information

    Gasoline and Diesel Fuel Update (EIA)

    coal industry Natural gas trade (Table 4.3) Ordering Information This publication and other Energy Information Administration (EIA) publications may be purchased from the...

  3. ISSUANCE 2015-07-15: Energy Conservation Program: Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines, Final Rule

  4. 1982 Orders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOCKET FE CITE DATE NUMBER APPLICANT NAME ORDER NO. 70116.ERA 121482 82-04-LNG PhillipsMarathon 49 70552.ERA 113082 82-09-NG Northern Natural Gas 48 70541.ERA 110182...

  5. Minituraized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Accomplishments: 10kW Radiator Fabrication 1kW: 484 Tubes, 140mm x 150mm 10kW: 2280 Tubes, 444mm x 580mm Tube Defects Significant tubes had fractures and leaks Had to re-order ...

  6. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions

    SciTech Connect (OSTI)

    Doerr, R.; Waite, T.

    1995-01-12

    Motor materials were exposed to original refrigerants R-11, R-12, R-22 and R-502 in the presence of mineral oil for 500 hours. These same materials were then exposed to alternative refrigerants R-123, R-134a, R-407C (R-32/R-125/R-134a) and R-404A (R-125/R-143a/R-134a), respectively, in the presence of the appropriate lubricant for 500 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1,000 hours. These tests were conducted to determine whether exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials with the alternative refrigerant/lubricant after retrofit. Motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concerns were embrittlement of the polyethylene terephthalate (PET) sheet and sleeving insulations, and delamination and blistering of the Nomex sheet insulation in the R-22, R-502, and R-12. Embrittlement of the PET materials was attributed to moisture present during the exposure. Separation of the 475 varnish from metal surfaces in the R-123 was also a concern. The sheet and sleeving insulations were affected by the original refrigerant/mineral oil to a greater extent than by the alternative refrigerant and lubricant.

  7. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  8. Heat powered refrigeration compressor. Semi-annual technical report

    SciTech Connect (OSTI)

    Goad, R.R.

    1981-01-01

    The objective of this program is to develop and improve the design of previously started prototypes of the Heat Powered Refrigeration Compressor. To build this prototype and ready it for testing by the University of Evansville is another goal. This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system. Work performed in the past four months has consisted of: engineering of HX-1; comparisons of specifications from different companies to ensure state of the art applications of parts for project; coordinating project requirements with machine shop; designing condenser; and partial assembly of HX-1.

  9. Free displacer and Ringbom displacer for a Malone refrigerator

    SciTech Connect (OSTI)

    Swift, G.W.; Brown, A.O.

    1994-05-01

    Malone refrigeration uses a liquid near its critical point (instead of the customary gas) as the working fluid in a Stirling, Brayton, or similar regenerative or recuperative cycle. Thus far, we have focused on the Stirling cycle, to avoid the difficult construction of the high-pressure-difference counterflow recuperator required for a Brayton machine. Our first Malone refrigerator used liquid propylene (C{sub 3}H{sub 6}) in a double-acting 4-cylinder Stirling configuration. First measurements with a free displacer used in a liquid working fluid are presented. The displacer was operated both in harmonic mode and in Ringbom mode, in liquid carbon dioxide. The results are in reasonable agreement with expectations.

  10. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    SciTech Connect (OSTI)

    Venkatarao Ganni, James Fesmire

    2012-06-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  11. PROCESS STUDY OF NOMINAL 2 K REFRIGERATION RECOVERY

    SciTech Connect (OSTI)

    Knudsen, Peter; Ganni, Venkatarao

    2008-03-01

    There is an increased interest in the nominal 2-K helium refrigeration systems (below lambda) for various test stands and applications at the present time. This paper presents the process parameter choices and their influence on the system performance of various noncold compressor configurations. This study is intended to facilitate the adoption of this process in conjunction with commercially-available small 4.5-K helium liquefaction systems. By way of an introduction, the efficiency of some commonly employed (but inefficient) 2-K process configurations are analyzed. Then the analyses of three nominal 2-K refrigeration-recovery process configurations are presented. The effect of the process parameters, such as flow imbalance, heat-exchanger size, supply pressure and 4.5-K plant interaction location(s) are investigated so that the optimum conditions yielding the required performance can be determined.

  12. Solar heat pump systems with refrigerant-filled collectors

    SciTech Connect (OSTI)

    O'Dell, M.P.; Beckman, W.A.; Mitchell, J.W.

    1983-01-01

    The heat pump system with a refrigerant-filled evaporator consists of a standard air-to-air or air-to-liquid heat pump that utilizes a solar panel as the evaporator. A combination of solar energy and convection heat transfer acts as the ''free'' energy absorbed by the collector/evaporator. In this paper, the seasonal performance of such systems for industrial applications will be presented. Performance of collector/evaporator heat pumps will be compared with alternative heat pump and solar systems. The benefits of covered and coverless collector/evaporators will be discussed. Results to date have shown that refrigerant-filled collector heat pumps do not perform as well as conventional heat pumps at small collector areas but have as much as 15% performance improvement over conventional heat pumps at an appropriate collector area.

  13. Pilot Testing of Commercial Refrigeration-Based Demand Response

    SciTech Connect (OSTI)

    Hirsch, Adam; Clark, Jordan; Deru, Michael; Trenbath, Kim; Doebber, Ian; Studer, Daniel

    2015-10-08

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certain DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.

  14. GE Appliances: Order (2012-SE-1403) | Department of Energy

    Energy Savers [EERE]

    Appliances: Order (2012-SE-1403) GE Appliances: Order (2012-SE-1403) October 3, 2012 DOE ordered GE Appliances, a Division of General Electric Company to pay a $63,000 civil penalty after finding GE had privately labeled and distributed in commerce in the U.S. the 4-cubic-foot capacity refrigerator basic model SMR04GAZCS, which includes models SMR04GAZACS and SMR04GAZBCS. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and GE. PDF icon GE Appliances: Order

  15. Traulsen: Order (2015-SE-42002) | Department of Energy

    Energy Savers [EERE]

    Order (2015-SE-42002) Traulsen: Order (2015-SE-42002) August 31, 2015 DOE ordered Traulsen - ITW Food Group LLC to pay a $52,600 civil penalty after finding Traulsen had manufactured and distributed in commerce in the U.S. at least 284 units of commercial refrigerator-freezer basic model RDT132DUT-HHS, a noncompliant product. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Traulsen. PDF icon Traulsen: Order (2015-SE-42002) More Documents &

  16. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  17. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  18. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  19. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect (OSTI)

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  20. Potential of the tractor-trailer and container segments as entry markets for a proposed refrigeration technology

    SciTech Connect (OSTI)

    Smith, S.A.; Davis, L.J.; Garrett, B.A.

    1987-05-01

    The refrigerated trailer and container segments of the transportation industry are evaluated as potential entry markets for a proposed absorption refrigeration technology. To perform this analysis the existing transportation refrigeration industry is characterized; this includes a description of the current refrigeration technology, rating systems, equipment manufacturers, maintenance requirements, and sales trends. This information indicates that the current transportation refrigeration industry is composed of two major competitors, Thermo King and Carrier. In addition, it has low profit potential, some barriers to entry and low growth potential. Data are also presented that characterize the transportation refrigeration consumers, specifically, major groups, market segmentation, consumer decision process, and buying criteria. This consumer information indicates that the majority of refrigerated trailer consumers are private carriers, and that the majority of refrigerated container consumers are shipping companies. Also, these consumers are primarily interested in buying reliable equipment at a low price, and are quite satisfied with existing refrigeration equipment.

  1. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect (OSTI)

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  2. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOE Patents [OSTI]

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  3. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  4. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  5. The superfluid Stirling refrigerator, a new method for cooling below 0.5 K

    SciTech Connect (OSTI)

    Brisson, J.G.; Kotsubo, V.; Swift, G.W.

    1993-04-09

    A new subkelvin refrigerator, the superfluid Stirling cycle refrigerator, uses a working fluid of {sup 3}He-{sup 4}He mixture in a Stirling cycle. The thermodynamically active components of the mixture are the {sup 3}He, which behaves like a Boltzman gas, and the phonon-roton gas in the {sup 4}He. The superfluid component of the liquid is inert. Two refrigerators have been built and temperatures of 340 mK have been achieved.

  6. The superfluid Stirling refrigerator, a new method for cooling below 0. 5 K

    SciTech Connect (OSTI)

    Brisson, J.G.; Kotsubo, V.; Swift, G.W.

    1993-04-09

    A new subkelvin refrigerator, the superfluid Stirling cycle refrigerator, uses a working fluid of [sup 3]He-[sup 4]He mixture in a Stirling cycle. The thermodynamically active components of the mixture are the [sup 3]He, which behaves like a Boltzman gas, and the phonon-roton gas in the [sup 4]He. The superfluid component of the liquid is inert. Two refrigerators have been built and temperatures of 340 mK have been achieved.

  7. Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy February 1, 2016 DOE will not seek civil penalties or injunctive relief concerning violations of certain energy conservation standards applicable to refrigeration systems of walk-in coolers/walk-in freezers. PDF icon Enforcement Policy - WICF (02/01/2016) PDF icon Enforcement Policy - WICF (8/31/2015 - OBSOLETE) PDF icon

  8. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  9. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard A.

    2013-01-01

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

  10. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect (OSTI)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  11. 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Establish an ASRAC Working Group | Department of Energy : Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group This document is a pre-publication Federal Register Notice of Intent regarding establishment of an ASRAC Working Group for Miscellaneous Refrigeration Products, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 26,

  12. Research and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    none,

    2011-07-01

    The Department of Energy commissioned this roadmap to establish a set of high-priority research and development (R&D) activities that will accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities occurs within an accelerated five-year timeframe, and covers several prominent equipment types. The roadmap is organized around four primary objectives to: assess and mitigate safety risks, characterize refrigerant properties, understand efficiency and environmental tradeoffs, and support new refrigerant and equipment development.

  13. Regenerator optimization for Stirling cycle refrigeration II

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1994-07-01

    A cryogenic regenerator for a Stirling cycle is discussed using fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. We argue that the optimum design corresponds to uniform channel flow with minimum turbulence where the gas velocity and channel width are optimized as a function of gas temperature. The maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity equal to sound speed times loss fraction, 1/{sigma}. This velocity and an axial thermal conductivity in the gas leads to a minimum channel width and characteristic length, L=T(dz/dT). A particular scaling of width, W{sup 2} = W{sub o}{sup 2}T{sup 1/2}, and length, L = L{sub o} T{sup {minus}1/2} leads to a design where longitudinal conduction decreases as T{sup 3/2} and the remaining two losses, transverse conduction and friction are equal and constant. The loss fraction, 1/{sigma}, must be made quite small, {approximately}(1/60) in order that the cumulative losses for a large temperature ratio like 300K to 4K, be small enough, like 20% to 40%. This is because half the entropy generated as a loss must be transported first to the cold end before returning to the hot end before being rejected. The dead volume ratio then determines the minimum frequency and with it and the pressure the necessary wall properties. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. This generation of entropy in the walls is derived in terms of the wall heat capacity and thermal conductivity.

  14. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  15. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect (OSTI)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  16. Measurements with reticulated vitreous carbon stacks in thermoacoustic prime movers and refrigerators

    SciTech Connect (OSTI)

    Adeff, J.A.; Hofler, T.J.; Atchley, A.A.; Moss, W.C.

    1998-07-01

    Reticulated vitreous carbon has been successfully used as a stack material in thermoacoustic prime movers and refrigerators. It is a rigid glassy carbon material, with a porous spongelike structure. Test results indicate peak pressure amplitudes of up to 32{percent} in a prime mover, and refrigeration performance comparable to that of a traditional plastic roll stack. {copyright} {ital 1998 Acoustical Society of America.}

  17. A Comparative Study on the Environmental Impact of CO2 Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Sharma, Vishaldeep; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Accordingly, the interest in using natural refrigerants, such as carbon dioxide (CO2), and new refrigerant blends with low GWP in such systems is increasing. In this paper, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of three supermarket refrigeration systems. These systems include a transcritical CO2 booster system, a cascade CO2/N-40 system, and a baseline R-404A multiplex direct expansion system. The study is performed for cities representing different climates within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, a parametric analysis is performed to study the impact of annual leak rate on the systems' LCCP.

  18. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    SciTech Connect (OSTI)

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  19. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect (OSTI)

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  20. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  1. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  2. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  3. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  4. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect (OSTI)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  5. Experimental study and analysis on components of a thermoacoustic refrigerator and thermoacoustic prime mover

    SciTech Connect (OSTI)

    Nohtomi, Makoto; Katsuta, Masafumi

    1999-07-01

    A thermoacoustic refrigerator and a thermoacoustic prime mover, due to its simple structure, would serve as very desirable systems because thermoacoustic prime movers can be driven with the waste heat such as an exhaust gas from engines, and with heat from the nature such as sunlight and a geothermal heat. The thermoacoustic refrigerator and the thermoacoustic prime mover combined would serve as a perfect cooling system without moving parts, CFC's and HFC's. Thus this Thermoacoustic-driven Thermoacoustic Refrigerator will replace the previous paper compression refrigeration system. The authors set up the thermoacoustic refrigerator and thermoacoustic prime mover to investigate the fundamental characteristics. On the refrigerator tests, dimensions of the stack are varied as a parameter of experiments. As a result, influences of the stack configuration on the performance are confirmed, so the design method for the optimum dimension to attain the large temperature difference can be indicated. About the prime mover tests, fundamental characteristics of stack dimensions is checked. The way to improve the thermal efficiency of the prime mover is mentioned in terms of the operating condition. Numerical calculations about the refrigerator are made which is based on the enthalpy flow model by Radebaugh. The result of calculations has a good agreement in quality with the experimental results, so the propriety of this model is confirmed.

  6. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

  7. Experimental investigation of an advanced adsorption refrigeration cycle

    SciTech Connect (OSTI)

    Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    Experimental measurements are made for a silica gel-water advanced absorption refrigeration chiller (1.2-kW [4,095-Btu/h] cooling capacity) to evaluate its performance under different temperature and adsorption/desorption cycle time conditions. This paper describes the operating principle of the chiller, outlines the experimental hardware, and discusses results obtained by varying the cooling and hot water inlet temperatures and adsorption/desorption cycle times, as well as their agreement with the simulated results given by a lumped parameter model. The chiller performance is analyzed in terms of cooling capacity and coefficient of performance (COP). Excellent qualitative agreement was obtained between the experimental data and simulated results. The results showed the advanced three-stage cycle to be particularly well suited for operation with low-grade-temperature waste heat as the driving source, since it worked with small regenerating temperature lifts (heat source-heat sink temperature) of 10 to 30 K.

  8. Triple effect absorption chiller utilizing two refrigeration circuits

    SciTech Connect (OSTI)

    DeVault, R.C.

    1988-03-22

    This patent describes a heat absorption method for an absorption chiller. It comprises: providing a firs absorption system circuit for operation within a first temperature range, providing a second absorption system circuit for operation within a second temperature range; heat exchanging refrigerant and absorber solution; thermal communication with an external heat load. This patent describes a heat absorption apparatus for use as an absorption chiller. It includes: a first absorption system circuit for operation within a first temperature range; a second absorption system circuit for operation within a second temperature range which has a lower maximum temperature relative to the first temperature range; the first circuit having generator means, condenser means, evaporator means, and absorber means operatively connected together; the second circuit having generator means condenser means, evaporator means, and absorber means operative connected together; and the first circuit condenser means and the first circuit absorber means being in heat exchange communication with the second circuit generator means.

  9. Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator

    SciTech Connect (OSTI)

    Minner, B.L.; Braun, J.E.; Mongeau, L.G.

    1997-12-31

    Theoretical models were integrated with a design optimization tool to allow estimates of the maximum coefficient of performance for thermoacoustic cooling systems. The system model was validated using experimental results for a well-documented prototype. The optimization tool was then applied to this prototype to demonstrate the benefits of systematic optimization. A twofold increase in performance was predicted through the variation of component dimensions alone, while a threefold improvement was estimated when the working fluid parameters were also considered. Devices with a similar configuration were optimized for operating requirements representative of a home refrigerator. The results indicate that the coefficients of performance are comparable to those of existing vapor-compression equipment for this application. In addition to the choice of working fluid, the heat exchanger configuration was found to be a critical design factor affecting performance. Further experimental work is needed to confirm the theoretical predictions presented in this paper.

  10. Super Efficient Refrigerator Program (SERP) evaluation. Volume 1: Process evaluation

    SciTech Connect (OSTI)

    Sandahl, L.J.; Ledbetter, M.R.; Chin, R.I.; Lewis, K.S.; Norling, J.M.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted this study for the US Department of Energy (DOE) as part of the Super Efficient Refrigerator Program (SERP) Evaluation. This report documents the SERP formation and implementation process, and identifies preliminary program administration and implementation issues. The findings are based primarily on interviews with those familiar with the program, such as utilities, appliance manufacturers, and SERP administrators. These interviews occurred primarily between March and April 1995, when SERP was in the early stages of program implementation. A forthcoming report will estimate the preliminary impacts of SERP within the industry and marketplace. Both studies were funded by DOE at the request of SERP Inc., which sought a third-party evaluation of its program.

  11. Corrosion of materials in absorption heating and refrigeration fluids

    SciTech Connect (OSTI)

    Griess, J.C.; DeVan, J.H.; Perez Blanco, H.

    1985-06-01

    The corrosion of metals and alloys in absorption refrigeration fluids has received little attention except for the behavior of steel and copper alloys in aqueous lithium bromide solutions. This report presents results of short-term corrosion tests on several materials in lithium bromide solutions as well as in other fluids of potential interest in advanced absorption machines. All materials tested had extremely high resistance to organic fluids, but in the aqueous systems some of the materials underwent localized attack. Type 304 stainless steel had acceptable corrosion resistance in most environments, but it underwent stress corrosion cracking in oxygen- or chromate-containing lithium bromide and even in the unstressed condition was subject to intergranular attack in hot concentrated caustic solutions. 10 refs., 2 figs., 4 tabs.

  12. Table B36. Refrigeration Equipment, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Refrigeration Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)",,,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)" ,,,"Walk-In","Open Cases or

  13. The Super Efficient Refrigerator Program: Case study of a Golden Carrot program

    SciTech Connect (OSTI)

    Eckert, J B

    1995-07-01

    The work in this report was conducted by the Analytic Studies Division (ASD) of the National Renewable Energy Laboratory (NREL) for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Office of Building Technologies. This case study describes the development and implementation of the Super Efficient Refrigerator Program (SERP), which awarded $30 million to the refrigerator manufacturer that developed and commercialized a refrigerator that exceeded 1993 federal efficiency standards by at least 25%. The program was funded by 24 public and private utilities. As the first Golden Carrot program to be implemented in the United States, SERP was studied as an example for future `market-pull` efforts.

  14. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  15. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  16. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  17. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  18. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  19. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect (OSTI)

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  20. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    SciTech Connect (OSTI)

    Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.; Zimmerman, Mark D.; Li, Manjie; Du, Yilin; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  1. New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets

    Broader source: Energy.gov [DOE]

    Traditional supermarket refrigeration systems found in most U.S. grocery stores require a substantial amount of energy to keep fruits and vegetables fresh year round. An average supermarket...

  2. An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade

    SciTech Connect (OSTI)

    Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

    2008-03-01

    In February 2006, Jefferson Laboratory in Newport News, VA, received Critical Decision 1 (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

  3. Dry demagnetization cryostat for sub-millikelvin helium experiments: Refrigeration and thermometry

    SciTech Connect (OSTI)

    Todoshchenko, I. Kaikkonen, J.-P.; Hakonen, P. J.; Savin, A.; Blaauwgeers, R.

    2014-08-01

    We demonstrate successful “dry” refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid {sup 3}He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid {sup 3}He. We show that the fork oscillator can be considered as self-calibrating in superfluid {sup 3}He at the crossover point from hydrodynamic into ballistic quasiparticle regime.

  4. CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA

    SciTech Connect (OSTI)

    Sharma, Vishaldeep; Fricke, Brian A; Bansal, Pradeep

    2014-01-01

    This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regions of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.

  5. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect (OSTI)

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  6. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  7. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements

    Broader source: Energy.gov [DOE]

    DOE-initiated testing has revealed that a Samsung refrigerator (model RF26VAB), which the company had claimed was Energy Star compliant, consumed more energy than permitted by the Energy Star...

  8. U.S. Residential Miscellaneous Refrigeration Products: Results from Amazon Mechanical Turk Surveys

    SciTech Connect (OSTI)

    Greenblatt, Jeffery B.; Young, Scott J.; Yang, Hung-Chia; Long, Timothy; Beraki, Bereket; Price, Sarah K.; Pratt, Stacy; Willem, Henry; Desroches, Louis-Benoit

    2013-11-14

    Amazon Mechanical Turk was used, for the first time, to collect statistically representative survey data from U.S. households on the presence, number, type and usage of refrigerators, freezers, and various “miscellaneous” refrigeration products (wine/beverage coolers, residential icemakers and non-vapor compression refrigerators and freezers), along with household and demographic information. Such products have been poorly studied to date, with almost no information available about shipments, stocks, capacities, energy use, etc. A total of 9,981 clean survey responses were obtained from five distinct surveys deployed in 2012. General refrigeration product survey responses were weighted to demographics in the U.S. Energy Information Administration’s Residential Energy Consumption Survey 2009 dataset. Miscellaneous refrigeration product survey responses were weighted according to demographics of product ownership found in the general refrigeration product surveys. Model number matching for a portion of miscellaneous refrigeration product responses allowed validation of refrigeration product characteristics, which enabled more accurate estimates of the penetrations of these products in U.S. households. We estimated that there were 12.3±1.0 million wine/beverage coolers, 5.5(–3.5,+3.2) million residential icemakers and 4.4(–2.7,+2.3) million non-vapor compression refrigerators in U.S. households in 2012. (All numerical results are expressed with ranges indicating the 95% confidence interval.) No evidence was found for the existence of non-vapor compression freezers. Moreover, we found that 15% of wine/beverage coolers used vapor compression cooling technology, while 85% used thermoelectric cooling technology, with the vast majority of thermoelectric units having capacities of less than 30 wine bottles (approximately 3.5 cubic feet). No evidence was found for the existence of wine/beverage coolers with absorption cooling technology. Additionally, we estimated that there were 3.6±1.0 million hybrid refrigerator-wine/beverage coolers and 0.9±0.5 million hybrid freezer-wine/beverage coolers in U.S. households. We also obtained estimates of miscellaneous refrigeration product capacities, lifetimes, purchase and installation costs, repair frequencies and costs, and maintenance costs. For wine/beverage coolers, we also obtained information on the penetration of built-in units, AC/DC operating capability, the use of internal lights, and distributions of door opening frequencies. This information is essential to develop detailed estimates of national energy usage and life-cycle costs, and would be helpful in obtaining information on other plug-load appliances. Additional information not highlighted in the main report was presented in Appendices.

  9. Enforcement Policy Statement Regarding Walk-in Cooler/Walk-in Freezer Refrigeration Systems

    Energy Savers [EERE]

    Issued: August 14, 2015 Updated: February 1, 2016 In an exercise of its enforcement discretion, DOE will not seek civil penalties or injunctive relief concerning violations of the four energy conservation standards applicable to dedicated condensing refrigeration systems operating at medium temperatures that are promulgated at 10 C.F.R. § 431.306(e), provided that the violations are related to the distribution in commerce of WICF refrigeration system components manufactured prior to January 1,

  10. 2014-08-01 Issuance: Test Procedure for Refrigerated Bottled or Canned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beverage Vending Machines; Notice of Proposed Rulemaking and public meeting | Department of Energy 01 Issuance: Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines; Notice of Proposed Rulemaking and public meeting 2014-08-01 Issuance: Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines; Notice of Proposed Rulemaking and public meeting This document is a pre-publication Federal Register notice of proposed rulemaking and public meeting regarding

  11. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    SciTech Connect (OSTI)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  12. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  13. ARTI Refrigerant Database. [Quarterly progress report, 1 July 1993--30 September 1993

    SciTech Connect (OSTI)

    Calm, J.M.

    1993-11-28

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R134a, R-141b, R-142b, R-143a, R-152a, R-227ea, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyol ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  14. Evaluation of EHD enhancement and thermoacoustic refrigeration for naval applications. Technical report, Jul-Sep 91

    SciTech Connect (OSTI)

    Memory, S.B.

    1991-12-01

    An evaluation has been made of two different techniques which could prove valuable for Naval refrigeration needs in the future. The first is electrohydrodynamic (EHD) enhancement of pool boiling and condensation heat transfer; this has been shown to provide significant enhancements for both modes of heat transfer under certain conditions and could provide increases in efficiency of present vapor-compression systems. EHD techniques are quite advanced and prototype condenser and evaporator bundles are currently being tested. The second technique is an alternative refrigeration technology called thermoacoustic refrigeration; alternative technologies have become increasingly attractive over recent years due to environmental concerns over CFCs. Thermoacoustic refrigeration uses acoustic power to pump heat from a low temperature source to a high temperature sink. It is still in the early stages of development and can presently accommodate only small thermal loads. However, its general principles of operation have been proven and its resent capacity and efficiency limitations are not seen as a problem in the long term. Electrohydrodynamic Enhancement, Boiling and Condensation, Thermoacoustic Refrigeration.

  15. Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1997-05-01

    Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

  16. Superfluid stirling refrigerator: A new method for cooling below 1 Kelvin

    SciTech Connect (OSTI)

    Kotsubo, V.; Swift, G.W.

    1990-01-01

    We have invented and built a new type of cryocooler, which we call the superfluid Stirling refrigerator (SSR). The first prototype reached 0.6 K from a starting temperature of 1.2 K. The working fluid of the SSR is the {sup 3}He solute in a superfluid {sup 3}He--{sup 4}He solution. At low temperatures, the superfluid {sup 4}He is in its quantum ground state, and therefore is thermodynamically inert, while the {sup 3}He solute has the thermodynamic properties of a dense ideal gas. Thus, in principle, any refrigeration cycle that can use an ideal gas can also use the {sup 3}He solute as working fluid. In our SSR prototype, bellows-sealed superleak pistons driven by a room-temperature camshaft work on the {sup 3}He solute. Ultimately, we anticipate elimination of moving parts by analogy with pulse-tube refrigeration. 15 refs., 6 figs.

  17. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  18. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, M.W.

    1995-12-19

    A method is disclosed using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient. 5 figs.

  19. Method using CO for extending the useful shelf-life of refrigerated red blood cells

    DOE Patents [OSTI]

    Bitensky, Mark W.

    1995-01-01

    Method using CO for extending the useful shelf-life of refrigerated red blood cells. Carbon monoxide is utilized for stabilizing hemoglobin in red blood cells to be stored at low temperature. Changes observed in the stored cells are similar to those found in normal red cell aging in the body, the extent thereof being directly related to the duration of refrigerated storage. Changes in cell buoyant density, vesiculation, and the tendency of stored cells to bind autologous IgG antibody directed against polymerized band 3 IgG, all of which are related to red blood cell senescence and increase with refrigerated storage time, have been substantially slowed when red blood cells are treated with CO. Removal of the carbon monoxide from the red blood cells is readily and efficiently accomplished by photolysis in the presence of oxygen so that the stored red blood cells may be safely transfused into a recipient.

  20. Measurement of solubility, viscosity, and density of R-410A refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schafer, W.R.

    2000-07-01

    Measurements of the refrigerant vapor/liquid lubricant equilibrium viscosity reduction of four polyolester lubricants, viscosity grades 32 and 68 ISO VG, with the refrigerant R-410A were taken between {minus}13 F and 257 F and up to 700 psia. A high and low miscibility grade polyolester was analyzed for each viscosity. The viscosity, density, and composition of the solubilized gas mixture in solution with the lubricant was obtained with constant gas vapor composition in the viscometer head space. This refrigerant has a very small temperature glide but is considered a zeotropic blend nonetheless. The fractionation data presented were obtained from individual isothermal measurements. The isotherm for each temperature detailed the composition of the equilibrium gas fractionation of R-32 and R-125 in the lubricant, mixed vapor pressure, concentration of the total mixed blend (percent by weight) in the lubricant, and viscosity in centipoise (cP) and centistokes (cSt).

  1. High power thermoacoustic refrigeration. Annual summary report, 1 June 1995-31 May 1996

    SciTech Connect (OSTI)

    Garrett, S.L.

    1996-06-15

    The purpose of this research project is to study the fundamental physical processes which are involved in production of high cooling powers from electrically driven thermoacoustic refrigeration. The results of these experimental investigations are then utilized to produce improved designs for the next generation of high power thermoacoustic refrigerators, chillers, and air conditioners. These research objectives are achieved by an integrated combination of experimental measurements on thermoacoustic components and subsystems, as well as complete refrigeration systems. Comparison of the measured performance to analytic models based on differential equations (low amplitude) and similitude (high amplitude) and to numerical models based on the Los Alamos National Laboratory Design Environment for Low-Amplitude ThermoAcoustic Engines (DELTA-E), are then made.

  2. High frequency thermoacoustic refrigerator. Annual summary report, 2 September 1993-31 May 1994

    SciTech Connect (OSTI)

    Symko, O.G.

    1994-06-16

    A small thermoacoustic refrigerator was developed for operation at 5 kHz. Its main components are a piezoelectric driver of the bimorph type, a cotton wool stack, a 1/2-wave resonator (operated at its 3rd harmonic), and photolithographically processed copper heat exchangers. Tests with air at 1 atmosphere as the working gas produced a temperature difference Delta T across the stack of 32 deg C in 4 seconds for an acoustic power input level of 160 dB. The refrigerator did not have thermal insulation. Improved performance is expected with pressurized helium gas and helium-xenon mixtures. The performance of this refrigerator and its small size make it attractive for applications in high speed electronics and possibly IR detectors.

  3. High frequency thermoacoustic refrigerator. Annual summary report, 1 June 1994-31 May 1995

    SciTech Connect (OSTI)

    Symko, O.G.

    1995-08-15

    Results are presented on the development of a high frequency thermoacoustic refrigerator and its performance. The device consists of a piezoelectric driver, operated around 5kHz, which is coupled to a cylindrical resonator containing air at 1 atmosphere as the compressible fluid. For sound levels of 155dB at the stack, a maximum T of 41 C was reached across a cotton wool stack 4mm long. A cooling power of 1.2 watt was achieved with a coefficient of performance of 3. This simple and lightweight refrigerator shows promise for cooling of small samples and electronic components. The performance of this type of refrigerator at high frequencies leads to high efficiency and power density. Research is aimed at improving its performance by optimizing some of the critical parameters such as the sound level and the thermal interface between stack and heat exchangers.

  4. Thermodynamic improvements for the space thermo-acoustic refrigerator (STAR). Master's thesis

    SciTech Connect (OSTI)

    Susalla, M.P.

    1988-06-01

    The objective of the STAR project is to test and space qualify a new continuous-cycle cryogenic refrigeration system for cooling of sensors and electronics which is based upon the newly discovered thermoacoustic heat-pumping effect. The new refrigerator has no sliding seals, a cycle frequency of about 300 Hz, and uses acoustic resonance to enhance the overall power density and efficiency. This thesis is concerned specifically with the design and testing of the thermodynamic element (or stack), which is responsible for the thermo-acoustic power conversion, and the testing of binary inert-gas mixtures as working fluids. Using the refrigerator's coefficient of performance relative to the ideal Carnot coefficient of performance as a measure of efficiency, a 93% improvement over previous designs.

  5. Application of Best Industry Practices to the Design of Commercial Refrigerators

    SciTech Connect (OSTI)

    2002-06-30

    The substantial efficiency improvements which have been realized in residential refrigerators over the last twenty years due to implementation of the National Appliance Energy Conservation Act and changing consumer reactions to energy savings give an indication of the potential for improvement in the commercial sector, where few such efficiency improvements have been made to date. The purchase decision for commercial refrigerators is still focused primarily on first cost and product performance issues such as maximizing storage capacity, quick pulldown, durability, and reliability. The project applied techniques used extensively to reduce energy use in residential refrigeration to a commercial reach-in refrigerator. The results will also be applicable to other commercial refrigeration equipment, such as refrigerated vending machines, reach-in freezers, beverage merchandisers, etc. The project described in this paper was a collaboration involving the Appliance and Building Technology Sector of TIAX, the Delfield Company, and the U. S. Department of Energy's Office of Building Technologies. Funding was provided by DOE through Cooperative Agreement No. DE-FC26-00NT41000. The program plan and schedule were structured to assure successful integration of the TIAX work on development of efficient design concepts into Delfield's simultaneous development of the Vantage product line. The energy-saving design options evaluated as part of the development included brushless DC and PSC fan motors, high-efficiency compressors, variable-speed compressor technology, cabinet thermal improvement (particularly in the face frame area), increased insulation thickness, a trap for the condensate line, improved insulation, reduced-wattage antisweat heaters, non-electric antisweat heating, off-cycle defrost termination, rifled heat exchanger tubing, and system optimization (selection of heat exchangers, fans, and subcooling, superheat, and suction temperatures for efficient operation). The project started with a thorough evaluation of the baseline Delfield Model 6051 two-door reach-in refrigerator. Performance testing was done to establish a performance baseline which, to meet end-users requirements, would have to be met or exceeded by the high-efficiency refrigerator design. Energy testing was done to establish the baseline energy use. Diagnostic testing such as reverse heat leak testing and insulation conductivity testing was done to evaluate factors contributing to the cabinet load and energy use. Modeling was done to assess the energy savings potential of the energy saving design options. Discussion with vendors and cost modeling was done to assess the manufacturing cost impact of the options. Based on this work, the following group of design options was selected for incorporation in the final refrigerator design: (1) Brushless DC evaporator fans; (2) Improved face frame design; (3) Reduced antisweat heater wattage; (4) Condensate line trap; and (5) Optimized refrigeration system. There was no net cost premium associated with these design changes, leading to a high-efficiency design requiring no payback of any initial additional investment. Delfield incorporated these design options in the Vantage line design and built a first prototype, which was tested at TIAX. Additional design changes were implemented in the transition to manufacturing, based in part on results of initial prototype testing, and a pilot production unit was sent to TIAX for final testing. The energy use of the pilot production unit was 68% less than that of the baseline refrigerator when tested according to the ASHRAE 117 Energy Test Standard. The energy test results for the baseline refrigerator and the two new-design units is shown in Figure ES-1 below. The resulting energy consumption is well below Energy Star and proposed Canadian and California standards levels. Delfield has successfully transitioned the design to production and is manufacturing all configurations of the energy efficient reach-ins at a rate greater than 7,000 per year, with production quantities projected to double within a year.

  6. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  7. ISSUANCE 2015-02-03: Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

  8. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part II: Experimental comparison and verification of methods. Volume 2, In situ conductivity data

    SciTech Connect (OSTI)

    Kauffman, R.

    1995-09-01

    Data are presented for the accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures.

  9. Hydrophilic structure for condensation management on the movable mullion of a refrigerator

    DOE Patents [OSTI]

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2015-01-06

    A refrigerator appliance that includes a freezer compartment, a refrigeration compartment having two doors, and a mullion having an interior surface and an exterior surface. The mullion is movably coupled to, and configured to swing behind, at least one of the doors when the two doors are moved to a closed position. The exterior surface of the mullion directs condensation toward a transfer point. The exterior surface may be configured with a hydrophilic surface to direct and control the condensation. The condensation may also be directed into a receptacle or a wicking structure arranged to facilitate evaporation of the unwanted condensate.

  10. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  11. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  12. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    SciTech Connect (OSTI)

    Cavestri, R.C.

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  13. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  14. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P.; Talhi, Abdelhafid; Taylor, Craig M.

    1998-08-25

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  15. Compliance Order on Consent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance Order on Consent Compliance Order on Consent The Compliance Order on Consent provides the requirements for environmental cleanup of hazardous constituents for LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What is the Compliance Order on Consent? The Compliance Order on Consent between the State of New Mexico Environment Department and the United States Department of Energy and Los Alamos National

  16. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect (OSTI)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.

  17. Helium-Based Soundwave Chiller: Trillium: A Helium-Based Sonic Chiller- Tons of Freezing with 0 GWP Refrigerants

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Penn State is designing a freezer that substitutes the use of sound waves and environmentally benign refrigerant for synthetic refrigerants found in conventional freezers. Called a thermoacoustic chiller, the technology is based on the fact that the pressure oscillations in a sound wave result in temperature changes. Areas of higher pressure raise temperatures and areas of low pressure decrease temperatures. By carefully arranging a series of heat exchangers in a sound field, the chiller is able to isolate the hot and cold regions of the sound waves. Penn State’s chiller uses helium gas to replace synthetic refrigerants. Because helium does not burn, explode or combine with other chemicals, it is an environmentally-friendly alternative to other polluting refrigerants. Penn State is working to apply this technology on a large scale.

  18. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  19. The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-08-27

    This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.

  20. Consent Order public meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consent Order public meeting Consent Order public meeting WHEN: Apr 28, 2016 5:00 PM - 7:00 PM WHERE: Los Alamos County Council Chambers CATEGORY: Community TYPE: Meeting INTERNAL: Calendar Login Event Description On March 1, 2005, NMED, the Department of Energy (DOE) and the Regents of the University of California entered into the 2005 Consent Order that prescribed fence-to-fence cleanup requirements for the Laboratory. The public comment period on the Consent Order closes May 16, 2016

  1. A modified heat leak test facility employing a closed-cycle helium refrigerator

    SciTech Connect (OSTI)

    Boroski, W.N.

    1996-01-01

    A Heat Leak Test Facility (HLTF) has been in use at Fermilab for many years. The apparatus has successfully measured the thermal performance of a variety of cryostat components under simulated operating conditions. While an effective tool in the cryostat design process, the HLTF has several limitations. Temperatures are normally fixed at cryogen boiling points and run times are limited to cryogen inventory. Moreover, close personnel attention is required to maintain system inventories and sustain system equilibrium. To provide longer measurement periods without perturbation and to minimize personnel interaction, a new heat leak measurement facility (HLTF-2) has been designed that incorporates a closed-cycle helium refrigerator. The two-stage refrigerator provides cooling to the various temperature stations of the HLTF while eliminating the need for cryogens. Eliminating cryogen inventories has resulted in a reduction of the amount of direct personnel attention required.

  2. Performance Validation of Refrigeration Recovery for Experimental Hall High Target Loads

    SciTech Connect (OSTI)

    Errol Yuksek, Venkatarao, Ganni,Robert Norton, Peter Knudsen

    2012-07-01

    The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled to run until the planned shutdown in the spring of 2012 for the 12 GeV installation. As detailed in previous proceedings, support of this target's cryogenic load was made possible by incorporating modifications to the End Station Refrigerator (ESR) to recover the refrigeration supplied by the Central Helium Liquefier (CHL). Testing and commissioning for these modifications was performed in January and February 2010 demonstrating that the performance met or exceeded projected expectations. In this paper, we present the analysis of the test results in regards to the actual loads capable of being supported and the process boundaries encountered, as well as a discussion of the commissioning results for the cryogenic support of the Qweak target.

  3. Real-time determination of lubricant concentrations dissolved in alternative refrigerants

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schafer, W.R.

    1999-07-01

    A methodology was developed and used to measure both polyolester lubricant concentrations in solution with R-134a and R-407C and mineral oils in solution with R-123. This method is unaffected by changes in pressure, temperature, refrigerant type, and lubricant type. The concentration of dissolved lubricant was measured in three alternative refrigerants with two different synthetic polyolesters and two different mineral oils over a temperature range of 68 F (20 C) to 140 F (60 C) and a concentration range of 0 to 6% w/w. The evaluation methods included density, viscosity, and high-pressure liquid chromatography (HPLC). Measurements of viscosity and density were performed on an oscillating body viscometer. Lubricant concentrations determined by HPLC compared favorably with the ASHRAE Standard 41.1 method (ASHRAE 1984). Circulating lubricant, miscible and immiscible, concentration in identical R-407C operating systems was also measured to demonstrate the practical application of the test method.

  4. Lubricant return comparison of naphthenic and polyol ester oils in R-134a household refrigeration applications

    SciTech Connect (OSTI)

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.

    1996-12-31

    This paper presents mineral oils and polyol esters as possible lubricant options for domestic refrigeration applications employing R-134a as the heat exchange fluid. A performance comparison, based on data presented, is made between the mineral oils and polyol esters evaluated. To more closely examine lubricant return with N-70 and R-134a and ensure that the oil is not contributing to any deterioration in efficiency due to its accumulation in evaporators, a special test unit was designed with a difficult oil return configuration and its performance carefully monitored. Oil return with a hydrofluorocarbon-miscible polyol ester, R-133-O was also evaluated in this setup and its performance results compared to those obtained with the naphthenic refrigeration oil.

  5. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  6. New York Power Authority/New York City Housing Authority refrigerator replacement program, first program year evaluation. Final report

    SciTech Connect (OSTI)

    Kinney, L.F.; Lewis, G.; Pratt, R.G.; Miller, J.

    1997-08-01

    Acting as an energy services provider, the New York Power Authority (NYPA) has initiated a long-term project through which 20,000 refrigerators per year will be replaced with the most energy-efficient units possible in apartments managed by the New York City Housing Authority (NYCHA). Using bulk purchasing as an incentive to appliance manufacturers to produce energy-efficient refrigerators suitable for use in apartments, replaced in the first year of the program, which ended in December 1996. These units, kWh per year. Savings were determined by field testing and laboratory testing of 220 existing refrigerators and 56 newly-installed units. In the next program year, a 15.0-cubic-foot Maytag refrigerator, newly-designed in response to bulk purchasing incentives, is being installed. The new unit has a label rating of 437 kWh per year, 31 percent better than 1993 energy standards. Old refrigerators removed from apartments are {open_quotes}demanufactured{close_quotes} in an environmentally-appropriate way and both metals and refrigerants are recovered for reuse.

  7. Enforcement Policy Statement Regarding Walk-in Cooler/Walk-in Freezer Refrigeration Systems

    Broader source: Energy.gov [DOE]

    This policy is not currently in effect. If the Department of Energy receives recommended standards from the Appliance Standards and Rulemaking Advisory Committee within a specified time frame, DOE will not seek civil penalties or injunctive relief concerning violations of the four energy conservation standards applicable to dedicated condensing refrigeration systems operating at medium temperatures that are promulgated at 10 C.F.R. 431.306(e).

  8. Research & Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Low Global Warming Potential Refrigerants W. Goetzler, T. Sutherland, M. Rassi, J. Burgos November 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  9. Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis

    SciTech Connect (OSTI)

    1995-07-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

  10. A novel scheme to handle highly pulsed loads with a standard helium refrigerator

    SciTech Connect (OSTI)

    Slack, D.S.

    1993-06-30

    Helium refrigerator performance degrades rapidly when it has to handle a varying or pulsed heat load. A novel scheme is presented to handle highly pulsed 4.5 K cryogenic loads with a standard helium refrigerator by isolating it from these pulses. The scheme uses a relatively simple arrangement of control valves, heat exchangers, and a storage dewar. Applications include pulsed tokamak machines such as TPX (Tokamak Physics Experiment) and ITER (International Thermonuclear Experimental Reactor). For example, the TPX (currently in the conceptual design phase in a DoE contract) requires an average 4.5 K refrigerator capacity of about 10 kW; however, pulsed loads caused by eddy current and nuclear heating will exceed 100 kW. The scheme presented here provides a method for handling these pulsed loads. Because of the simple and proven nature of the components involved and the thermodynamic properties of the helium, the system could be implemented for projects such as TPX or ITER with little or no development.

  11. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    SciTech Connect (OSTI)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  12. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect (OSTI)

    Todd Salamon

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned ?¢????phase change?¢??? or ?¢????two-phase?¢??? pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak?¢????a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems?¢????another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy efficiency and carbon footprint reduction for our nation?¢????s Information and Communications Technology (ICT) infrastructure. The specific objectives of the ARCTIC project focused in the following three areas: i) advanced research innovations that dramatically enhance the ability to deal with ever-increasing device heat densities and footprint reduction by bringing the liquid cooling much closer to the actual heat sources; ii) manufacturing optimization of key components; and iii) ensuring rapid market acceptance by reducing cost, thoroughly understanding system-level performance, and developing viable commercialization strategies. The project involved participants with expertise in all aspects of commercialization, including research & development, manufacturing, sales & marketing and end users. The team was lead by Alcatel-Lucent, and included subcontractors Modine and USHose.

  13. Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1998-03-01

    An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

  14. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  15. Portsmouth Administrative Consent Order

    Broader source: Energy.gov [DOE]

    Portsmouth Administrative Consent Order ensures compliance by DOE at the Portsmouth Site with the Resource Recovery and Compensation Act, the Comprehensive Environmental Response, Compensation, and...

  16. HSI Tape Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tape Ordering HSI Tape Ordering General Procedure If you are retrieving multiple files from HPSS, it is best to order your retrieval requests in a way that makes sense for the HPSS system. In HPSS, files initially go onto a disk cache and migrate to tape as time passes. This means that files that were put into HPSS at the same time could end up spread across multiple tapes. Since each tape must by loaded into the reader, it will be fastest if you order your requests so that you are pulling all

  17. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  18. Directives System Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-16

    The order prescribes the process for development of Policy Statements, Orders, Notices, Manuals and Guides, which are intended to guide, inform, and instruct employees in the performance of their jobs, and enable them to work effectively within the Department and with agencies, contractors, and the public.

  19. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  20. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  1. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  2. Consent Order Update

    Broader source: Energy.gov [DOE]

    At the September 24, 2014 Board meeting Pete Maggiore DOE, Provided Information on the Consent Order Work that Needs to be Completed. Information on the Fiscal Year Work Plan was also Provided.

  3. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    SciTech Connect (OSTI)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  4. Method and apparatus for fine tuning an orifice pulse tube refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W.; Wollan, John J.

    2003-12-23

    An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.

  5. The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications

    SciTech Connect (OSTI)

    Brown, Daryl R.; Stout, Tyson E.; Dirks, James A.; Fernandez, Nicholas

    2012-12-01

    This article identifies and describes five alternative cooling technologies (magnetic, thermionic, thermoacoustic, thermoelectric, and thermotunnel) and qualitatively assesses the prospects of each technology relative to vapor compression for space cooling and food refrigeration applications. Assessment of the alternatives was based on the theoretical maximum % of Carnot efficiency, the current state of development, the best % of Carnot efficiency currently achieved, developmental barriers, and the extent of development activity. The prospect for each alternative was assigned an overall qualitative rating based on the subjective, composite view of the five characteristics.

  6. Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

    SciTech Connect (OSTI)

    Cui, Jun

    2013-03-27

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  7. Shape Memory Alloys and their Applications in Power Generation and Refrigeration

    SciTech Connect (OSTI)

    Cui, Jun

    2013-07-01

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  8. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less

  9. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    SciTech Connect (OSTI)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features of the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.

  10. 4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation

    SciTech Connect (OSTI)

    Barclay, J.A.

    1980-02-01

    The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO/sub 4/, changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required.

  11. Order 13287, Preserve America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 In response to requirements of Executive Order 13287, Preserve America Office of History and Heritage Resources Office of the Executive Secretariat U.S. Department of Energy September 2014 An Assessment of Historic Properties and Preservation Activities at the U.S. Department of Energy Table of Contents Introduction ............................................................................................................................................ 3 Part I. Background and Overview

  12. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  13. Engineering analysis of the use of compression refrigerants in the thin polymer icemaker

    SciTech Connect (OSTI)

    Leigh, R.; Andrews, J.

    1995-11-01

    In previous studies the authors have developed the concept of an ice-making device constructed of thin polymer films, arranged so that when filled with a cold fluid they expand in a set of parallel tubes, on the exterior of which ice forms. When the ice is about one millimeter thick, the cold fluid is removed from the tubes and they collapse, being pulled away from the ice by a vacuum within. The device has been successfully demonstrated in a version where the tubes are filled with a water-ethylene glycol brine. This was followed by an economic assessment which indicated that the device would be even more competitive with existing systems if the compression refrigerant itself were admitted into the polymer film structure on which the ice forms. This report presents an engineering study of such a system, examines the outstanding questions which must still be answered and assesses the potential economics of the system. The authors develop preliminary designs for systems using R-134a and R-C318 as refrigerants which satisfy code requirements. They use standard thermodynamic and heat transfer analysis to determine expected performance for the systems, and combine this with component and assembly cost estimates to prepare life-cycle costs for the two new systems. Comparing them to commercially available systems, they find that these ``polymer evaporator`` systems seem to be completely feasible technically and that if they are successfully demonstrated, they should have substantial economic advantages over existing ice-making devices.

  14. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2000-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  15. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOE Patents [OSTI]

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2002-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  16. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.; Norton, Robert O.; Creel, Jonathan D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  17. Offshore refrigerated LPG loading/unloading terminal using a CALM buoy

    SciTech Connect (OSTI)

    Bonjour, E.L.; Simon, J.M.

    1985-03-01

    In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

  18. Synthesis and evaluation of ultra-pure rare-earth-coped glass for laser refrigeration

    SciTech Connect (OSTI)

    Patterson, Wendy M; Hehlen, Markus P; Epstein, Richard I; Sheik-bahae, Mansoor

    2009-01-01

    Significant progress has been made in synthesizing and characterizing ultra-pure, rare-earth doped ZIBLAN (ZrF{sub 4}-InF{sub 3}BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass capable of laser refrigeration. The glass was produced from fluorides which were purified and subsequently treated with hydrofluoric gas at elevated temperatures to remove impurities before glass formation. Several Yb3 +-doped samples were studied with degrees of purity and composition with successive iterations producing an improved material. We have developed a non-invasive, spectroscopic technique, two band differential luminescence thermometry (TBDLT), to evaluate the intrinsic quality of the ytterbium doped ZIBLAN used for laser cooling experiments. TBDLT measures local temperature changes within an illuminated volume resulting solely from changes in the relative thermal population of the excited state levels. This TBDLT technique utilizes two commercially available band pass filters to select and integrate the 'difference regions' of interest in the luminescence spectra. The goal is to determine the minimum temperature to which the ytterbium sample can cool on the local scale, unphased by surface heating. This temperature where heating and cooling are exactly balanced is the zero crossing temperature (ZCT) and can be used as a measure for the presence of impurities and the overall quality of the laser cooling material. Overall, favorable results were obtained from 1 % Yb3+-doped glass, indicating our glasses are desirable for laser refrigeration.

  19. NMED Consent Order

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begins environmental sampling in townsite September 25, 2008 Vicinity of Upper LA Canyon Investigated as Part of NMED Consent Order LOS ALAMOS, New Mexico, September 25, 2008-Environmental sampling, conducted on behalf of Los Alamos National Laboratory in the town of Los Alamos near upper Los Alamos Canyon, has begun. Known as the Upper Los Alamos Canyon Project, this effort is an environmental assessment of areas that have been or could have been affected by Laboratory operations from the days

  20. Thermoacoustic refrigerator

    DOE Patents [OSTI]

    Moss, W.C.

    1997-10-07

    A thermoacoustic device is described having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material. 13 figs.

  1. Thermoacoustic refrigerator

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    1997-01-01

    A thermoacoustic device having a thermal stack made from a piece of porous material which provides a desirable ratio of thermoacoustic area to viscous area, which has a low resistance to flow, which minimizes acoustic streaming and which has a high specific heat and low thermal conductivity is disclosed. The thermal stack is easy and cheap to form and it can be formed in small sizes. Specifically, in one embodiment, a thermal stack which is formed by the natural structure of a porous material such as reticulated vitreous carbon is disclosed. The thermal stack is formed by machining a block of reticulated vitreous carbon into the required shape of the thermal stack. In a second embodiment, a micro-thermoacoustic device is disclosed which includes a thermal stack made of a piece of porous material such as reticulated vitreous carbon. In another embodiment, a heat exchanger is disclosed which is formed of a block of heat conductive open cell foam material.

  2. Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Refrigerator Recycling Evaluation Protocol Doug Bruchs and Josh Keeling, The Cadmus Group, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 7 - 1 Chapter 7 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  3. Study of fractionation of refrigerant blends in contact with lubricants and measurement of the solubility, density, and viscosity

    SciTech Connect (OSTI)

    Cavestri, R.C.; Falconi, E.A.

    1999-07-01

    The fractionation of two refrigerant blends was studied using the gas equilibrium method. The amount of fractionation was measured by maintaining a constant composition of the refrigerant gas vapor over the lubricant, which was equal in composition to the liquid refrigerant gas blend introduced into the viscometer. Specifically, the concentration of the dissolved refrigerant gas in the lubricant ranges from 0.6% to 78% by weight in the specified temperature range of {minus}25 C to 125 C and within the highest test pressure of 500 psia (3.45 MPa). The polyolester chosen for this study was a 32 ISO VG complex branched acid pentaerythritol product. Smoothed graphical data presented were obtained from individual isothermal measurements. These individual isothermal measurement temperatures detail the composition of the equilibrium gas fractionation of R-32 and R-134a in the lubricant, mixed vapor pressure, concentration of the total mixed blend as percent by weight in the lubricant and viscosity in centipoise (cP) and centistokes (cSt). The raw data are presented in a smoothed graphical form based on a fixed vapor composition.

  4. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  5. The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation

    SciTech Connect (OSTI)

    Pratt, R.G.; Miller, J.D.

    1998-09-01

    This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

  6. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  7. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  8. Engineering analysis of the use of compression refrigerants in the thin polymer icemaker. Revision 2/96

    SciTech Connect (OSTI)

    Leigh, R.W.; Andrews, J.W.

    1996-02-01

    Preliminary designs for systems which satisfy code requirements using R-134a and R-C318 as refrigerants are developed. Standard thermodynamic and heat transfer analysis were used to determine expected performance for the systems. The R-C318 has a somewhat peculiar vapor/liquid equilibrium curve, and a novel heat exchanger was introduced to optimize performance of this refrigerant. These performance assessments with component and assembly cost estimates were combined to prepare life-cycle costs for the two new systems. Compared to commercially available systems, these ``polymer evaporator`` systems seem to be completely feasible technically and if successfully demonstrated, they should have substantial economic advantages over existing ice-making devices.

  9. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Energy Savers [EERE]

    GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat

  10. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    SciTech Connect (OSTI)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.

  11. DOE - Fossil Energy: Orders-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Granting Blanket Authority to Export Natural Gas to Mexico 3366 13-146-NG 121213 Iberdrola Energy Services, LLC Order Granting Blanket Authority to ImportExport Natural ...

  12. Paperclips Etc. Special Order Form

    Broader source: Energy.gov (indexed) [DOE]

    PSS-02.2 (March 7, 2011) Replaces PSS-02.1 PAPERCLIPS Etc. SPECIAL Orders Form This form is used to order supplies that are not readily available in the DOE HQ self-service supply...

  13. Price Quotes and Isotope Ordering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Price Quotes and Isotope Ordering Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Isotope...

  14. ORDER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rack or container with the firing chamber empty. During normal operations, long guns (e.g., rifles, shotguns, submachine guns) must not be carried with a round in the...

  15. Condensation of Refrigerant-11 on the outside of vertical enhanced tubes

    SciTech Connect (OSTI)

    Domingo, N.

    1981-08-01

    Experiments were conducted to determine heat transfer performance of single vertical tubes with Refrigerant-11 condensing on its outside surface. Twelve enhanced (fluted, spiraled, roped, and corrugated) tubes of 2.54-cm (1-in.) nominal outside diameter and 1.2-m (4-ft) length were tested. Several of the tested tubes featured internal enhanced geometries. A previously tested smooth tube served as the basis for comparison. Composite heat transfer coefficients (coefficients that include the resistances of both the condensing film and the tube wall), based on the total tube outside surface area, ranged from 850 to 6530 W/m/sup 2/ . K (150 to 1150 Btu/h . ft/sup 2/ . /sup 0/F) over the heat flux range of 5675 to 31,375 W/m/sup 2/ (1800 to 9950 Btu/h . ft/sup 2/). The primary conclusions from this study are: (1) for a given heat flux, an external fluted tube can increase composite condensing heat transfer coefficients by up to 5.5 times the smooth tube values, giving better condensing performance than any of the other geometries tested; (2) further increase in composite condensing coefficients can be achieved by using skirts to divide the fluted tube into equal condensing lengths; and (3) for a given overall temperature difference and water flow rate, internal flutes can increase the overall performance by up to 17% over that for a tube with identical outside flutes and a smooth inside surface.

  16. Public Order and Safety Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    | Activity Subcategories | Energy Use Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of...

  17. DOE Order on Quality Assurance

    Broader source: Energy.gov [DOE]

    The purpose of this order is to ensure that Department of Energy (DOE), including National Nuclear Security Administration (NNSA), products and services meet or exceed customers’ requirements and...

  18. Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model

    SciTech Connect (OSTI)

    Sharma, Chandan; Raustad, Richard

    2013-06-01

    Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

  19. High-Order/Low-Order methods for ocean modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  20. ESPC ENABLE Draft Task Order

    Broader source: Energy.gov [DOE]

    Document provides a draft for an agency to use when forming an ESPC ENABLE contract and making a task order award. This draft task order provides the framework for a contract that agencies and energy service companies can tailor to the particular needs of each site or project.

  1. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOE Patents [OSTI]

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  2. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOE Patents [OSTI]

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  3. Averen: Order (2010-CW-0711)

    Broader source: Energy.gov [DOE]

    DOE ordered Averen, Inc. to pay a $5,000 civil penalty after finding Averen had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  4. Danco: Order (2015-CW-28006)

    Broader source: Energy.gov [DOE]

    DOE ordered Danco, Inc. to pay a $8,000 civil penalty after finding Danco had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  5. Amerisink: Order (2010-CW-0710)

    Broader source: Energy.gov [DOE]

    DOE ordered Amerisink, Inc. to pay a $5,000 civil penalty after finding Amerisink had failed to certify that certain models of faucets comply with the applicable water conservation standards.

  6. Kohler: Order (2014-CW-30003)

    Broader source: Energy.gov [DOE]

    DOE ordered Kohler Co. to pay a $8,000 civil penalty after finding Kohler had failed to certify that certain models of water closets comply with the applicable water conservation standards.

  7. ETL: Order (2015-CW-29003)

    Broader source: Energy.gov [DOE]

    DOE ordered ETL, LLC to pay a $8,000 civil penalty after finding ETL had failed to certify that certain models of showerheads comply with the applicable water conservation standards.

  8. Quorum: Order (2014-CE-32013)

    Broader source: Energy.gov [DOE]

    DOE ordered Davoil, Inc. d/b/a Quorum International, Inc. to pay a $8,000 civil penalty after finding Quorum had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  9. Amerikooler: Order (2013-CE-5307)

    Broader source: Energy.gov [DOE]

    DOE ordered Amerikooler, Inc. to pay a $8,000 civil penalty after finding Amerikooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. Trastar: Order (2013-CE-49003)

    Broader source: Energy.gov [DOE]

    DOE ordered Trastar Inc. to pay a $8,000 civil penalty after finding Trastar had failed to certify that certain basic models of traffic signal modules and pedestrian modules comply with the applicable energy conservation standards.

  11. Electrolux: Order (2014-CE-23015)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America, Inc. to pay a $16,000 civil penalty after finding Electrolux had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  12. Sunpentown: Order (2012-CE-1505)

    Broader source: Energy.gov [DOE]

    DOE ordered Sunpentown International Inc. to pay a $12,160 civil penalty after finding Sunpentown had failed to certify that certain models of room air conditioners comply with the applicable energy conservation standards.

  13. Sears: Order (2012-CE-3606)

    Broader source: Energy.gov [DOE]

    DOE ordered Sears, Roebuck & Co. to pay an $8,000 civil penalty after finding Sears had failed to certify that Sears dehumidifiers comply with the applicable energy conservation standard.

  14. Electrolux: Order (2012-CE-1901)

    Broader source: Energy.gov [DOE]

    DOE ordered Electrolux North America to pay a $6,500 civil penalty after finding Electrolux had failed to certify that certain dishwashers comply with the applicable energy conservation standard.

  15. TCP: Order (2011-CE-3501)

    Broader source: Energy.gov [DOE]

    DOE ordered Technical Consumer Products, Inc. to pay a $3,000 civil penalty after finding TCP had failed to certify that a certain model of medium base compact fluorescent lamp (CFL) complies with the applicable energy conservation standards.

  16. Eurodib: Order (2014-CE-45001)

    Broader source: Energy.gov [DOE]

    DOE ordered Eurodib Inc. to pay a $8,000 civil penalty after finding Eurodib had failed to certify that certain models of automatic commercial ice makers comply with the applicable energy conservation standards.

  17. Winix: Order (2012-CE-3607)

    Broader source: Energy.gov [DOE]

    DOE ordered Cloud 9 Marketing, Inc. d/b/a Winix, Inc., to pay a $8,000 civil penalty after finding Winix had failed to certify that certain models of dehumidifiers comply with the applicable energy conservation standards.

  18. Aircooler: Order (2013-CE-5338)

    Broader source: Energy.gov [DOE]

    DOE ordered Aircooler Corporation to pay a $8,000 civil penalty after finding Aircooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  19. Satco: Order (2013-CE-2702)

    Broader source: Energy.gov [DOE]

    DOE ordered Satco Products, Inc. to pay a $8,000 civil penalty after finding Satco had failed to certify that certain models of general service fluorescent lamps comply with the applicable energy conservation standards.

  20. Leotek: Order (2013-CE-4903)

    Broader source: Energy.gov [DOE]

    DOE ordered Leotek Electronics USA Corp. to pay a $8,000 civil penalty after finding Leotek had failed to certify that certain models of traffic signal modules and pedestrian modules comply with the applicable energy conservation standards.