Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commercial Refrigeration Equipment | Open Energy Information  

Open Energy Info (EERE)

Refrigeration Equipment Jump to: navigation, search TODO: Add description List of Commercial Refrigeration Equipment Incentives Retrieved from "http:en.openei.orgw...

2

List of Commercial Refrigeration Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Refrigeration Equipment Incentives Refrigeration Equipment Incentives Jump to: navigation, search The following contains the list of 103 Commercial Refrigeration Equipment Incentives. CSV (rows 1 - 103) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility

3

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network (OSTI)

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I Fishery Leaflet 427 Washington 25, D. C. June 1956 REFRIGERATION OF FISH - PART em; COlD STORAGE DESIGN · · · · · 18 Specific design features 0 0 · · · · · · · · · · · · · · 19 Refrigerated surfaces 0 · · 0 0 0 · 0

4

US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US Department of Energy's Regulatory Negotiations Convening on US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that is certified to the Department; The timing of when the certification should be made relative to distribution in commerce; and Alterations to a basic model that would impact the certification.

5

DOE/EA-1643: Environmental Assessment for 10 CFR 431 Commercial Refrigeration Equipment (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT FOR ENVIRONMENTAL ASSESSMENT FOR 10 CFR Part 431 Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator- Freezers without Doors; and Remote Condensing Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator-Freezers December 2008 CHAPTER 16. ENVIRONMENTAL IMPACT ANALYSIS TABLE OF CONTENTS 16.1 INTRODUCTION ............................................................................................................ 16-1 16.2 AIR QUALITY ANALYSIS ............................................................................................ 16-1

6

Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant  

E-Print Network (OSTI)

A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence which has the lowest energy cost to operate at a given plant cooling load and outside air wet bulb temperature. and satisfies all the constraints associated with the refrigeration system. Selection of the optimal equipment sequence is very difficult given the complexity of the refrigeration system and the dynamic nature of the plant cooling load. As a solution a computer program was developed to generate optimal equipment sequences to operate for combinations of a wide range of plant cooling loads and outside air wet bulb temperatures. Analysis of the solution identified the need for a retrofit project to remove "vital" constraints in order to improve the refrigeration system's performance. The solution to the problem was then incorporated in the operating procedures for the Central Utility Plant.

Fiorino, D. P.; Priest, J. W.

1986-01-01T23:59:59.000Z

7

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

Science Conference Proceedings (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

8

List of Refrigerators Incentives | Open Energy Information  

Open Energy Info (EERE)

Refrigerators Incentives Refrigerators Incentives Jump to: navigation, search The following contains the list of 657 Refrigerators Incentives. CSV (rows 1-500) CSV (rows 501-657) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial

9

Low-GWP Refrigerants Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Low-GWP Refrigerants Research Project Emerging Technologies » Low-GWP Refrigerants Research Project Low-GWP Refrigerants Research Project The U.S. Department of Energy is currently conducting research into low global warming potential (GWP) refrigerants. As concerns about climate change intensify, it is becoming increasingly clear that suitable low-GWP refrigerants will be needed for both new and existing residential and commercial heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. Project Description This project seeks to develop alternative refrigerants for HVAC&R equipment. The overall environmental impacts of alternative refrigerants will be assessed using a life cycle climate performance model that accounts for direct emissions associated with refrigerant leaks and indirect

10

DOE/EA-1643: Finding of No Significant Impact for 10 CFR Part 431 Commerical Refrigeration Equipment (12/31/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FOR FINDING OF NO SIGNIFICANT IMPACT FOR 10 CFR Part 431 Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator- Freezers without Doors; and Remote Condensing Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator-Freezers December 31, 2008 [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket Number: EERE-2006-STD-OI26] RIN 1904-AB59 Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator- . Freezers without

11

Table B36. Refrigeration Equipment, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

6. Refrigeration Equipment, Number of Buildings and Floorspace, 1999" 6. Refrigeration Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)",,,"All Buildings","All Buildings with Refrigeration Equipment","Type of Equipment (more than one may apply)" ,,,"Walk-In","Open Cases or Cabinets","Closed Cases or Cabinets",,,"Walk-In","Open Cases or Cabinets","Closed Cases or Cabinets" "All Buildings ................",4657,950,658,255,719,67338,25652,19713,8808,19938 "Building Floorspace"

12

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for  

Open Energy Info (EERE)

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: www.scribd.com/doc/34712276/Energy-efficiency-standards-for-refrigerat Equivalent URI: cleanenergysolutions.org/content/energy-efficiency-standards-refrigera Language: English Policies: Regulations Regulations: "Appliance & Equipment Standards and Required Labeling,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

13

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network (OSTI)

-acceptable refrigerants. Whether involving design of specific new products or refriger- ants to which the entire industryElectric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use

Oak Ridge National Laboratory

14

Product Standards for Refrigerators (Japan) | Open Energy Information  

Open Energy Info (EERE)

Product Standards for Refrigerators (Japan) Product Standards for Refrigerators (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Refrigerators (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_re-freez_Jul.2006.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-refrigerators-japan Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a guide in response to its newly established set of standards and labelling

15

Regenerator for Magnetic Refrigerants - Energy Innovation Portal  

Magnetic refrigeration is being investigated as an alternative to conventional gas compressor technology ... because of its potential to save energy and ...

16

List of Data Center Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 17 Data Center Equipment Incentives. CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs (Minnesota) Utility Rebate Program Minnesota Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Central Air conditioners Heat pumps Lighting Lighting Controls/Sensors Programmable Thermostats Refrigerators Windows Room Air Conditioners Ground Source Heat Pumps Building Insulation Clothes Washers Comprehensive Measures/Whole Building Dishwasher Water Heaters LED Exit Signs Commercial Refrigeration Equipment Data Center Equipment

17

DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm...

18

Federal Energy Management Program: Covered Product Category: Refrigerated  

NLE Websites -- All DOE Office Websites (Extended Search)

Refrigerated Beverage Vending Machines to someone by E-mail Refrigerated Beverage Vending Machines to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on Google Bookmark Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on Delicious Rank Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Refrigerated Beverage Vending Machines on AddThis.com...

19

Energy Audit Equipment  

E-Print Network (OSTI)

The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple tools or expensive technically complex or multifunctional tools. In general, tools are needed which measure light, temperature and humidity, electricity, air flow, heat loss, and general energy information.

Phillips, J.

2012-01-01T23:59:59.000Z

20

List of Agricultural Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Agricultural Equipment Incentives Agricultural Equipment Incentives Jump to: navigation, search The following contains the list of 90 Agricultural Equipment Incentives. CSV (rows 1 - 90) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Vermont Agricultural Agricultural Equipment Custom/Others pending approval Lighting

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Transport Refrigeration Equipment: Analysis of Emissions and Economics of Electrification  

Science Conference Proceedings (OSTI)

Most refrigerated trucks, trailers, and ocean containers used to transport, deliver, and store fresh and frozen foods utilize an auxiliary diesel engine (10 to 34 hp) to operate on-board refrigeration systems. These engines are vital for product temperature control while the vehicle is on the road, but also idle while the truck is parked at a facility, pre-cooling, loading, unloading, or waiting to be dispatched. As a result, large distribution centers can experience high concentrations of pollutants and...

2004-06-30T23:59:59.000Z

22

Energy Efficient Operation of Ammonia Refrigeration Systems  

SciTech Connect

Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

Mohammed, Abdul Qayyum [University of Dayton, Ohio; Wenning, Thomas J [ORNL; Sever, Franc [University of Dayton, Ohio; Kissock, Professor Kelly [University of Dayton, Ohio

2013-01-01T23:59:59.000Z

23

Small Commercial Refrigeration Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Commercial Refrigeration Incentive Small Commercial Refrigeration Incentive Small Commercial Refrigeration Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives over $5,000 must be pre-approved Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Outside Air Economizers: $1,250 Evaporator Fan Motors: $20 - $100 Evaporator Fan Motor Controls: $550 Door/Frame Heater Controls: $50 per door Case Light Occupancy Controls: $40 LED Refrigerator and Freezer Case Light Fixtures: $6 - $15 per foot Energy Star Ice Machines: $50 - $75 Efficient Compressors: $200 Display Case Strip-Curtain and Continuous Covers: $6 per foot

24

Energy Saving with Absorption Refrigeration Technologies  

E-Print Network (OSTI)

Absorption refrigeration technology can be an economical and cost effective means of reducing energy cost and/or improving the efficiency and output of your process. We believe the potential benefits of absorption refrigeration technology have generally been overlooked by the process industry. This paper will address the application of the lithium bromide-water cycle in various energy saving modes. A waste heat powered absorption chiller producing chilled water can reduce energy consumption in a process plant by replacing an existing mechanical refrigeration system or replacing cooling tower water with a lower temperature cooling medium at negligible increase in energy cost. A variety of waste heat sources can be used at temperatures as low as 150 F.

Davis, R. C.

1984-01-01T23:59:59.000Z

25

List of Personal Computing Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Personal Computing Equipment Incentives Personal Computing Equipment Incentives Jump to: navigation, search The following contains the list of 21 Personal Computing Equipment Incentives. CSV (rows 1 - 21) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alexandria Light and Power - Commercial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Commercial Industrial Central Air conditioners Chillers Compressed air Custom/Others pending approval Heat pumps Lighting Motor VFDs Motors Programmable Thermostats Water Heaters Windows Commercial Refrigeration Equipment Personal Computing Equipment Ground Source Heat Pumps Yes Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program (Idaho) Utility Rebate Program Idaho Commercial

26

Multiple-Zone Variable Refrigerant Flow System Modeling and Equipment Performance Mapping  

Science Conference Proceedings (OSTI)

We developed a variable refrigerant flow (VRF) vapor compression system model, which has five indoor units, one outdoor unit and one water heater. The VRF system can run simultaneous space conditioning (cooling or heating) and water heating. The indoor units and outdoor unit use fin-&-tube coil heat exchangers, and the water heater uses a tube-in-tube heat exchanger. The fin-&-tube coil heat exchangers are modeled using a segment-by-segment approach and the tube-in-tube water heater is modeled using a phase-by-phase approach. The compressor used is a variable-speed rotary design. We calibrated our model against a manufacturer s product literature. Based on the vapor compression system model, we investigated the methodology for generating VRF equipment performance maps, which can be used for energy simulations in TRNSYS and EnergyPlus, etc. In the study, the major independent variables for mapping are identified and the deviations between the simplified performance map and the actual equipment system simulation are quantified.

Shen, Bo [ORNL; Rice, C Keith [ORNL

2012-01-01T23:59:59.000Z

27

Non-intrusive refrigerant charge indicator - Energy ...  

... -phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, ...

28

Renewable Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Equipment Exemption Renewable Energy Equipment Exemption Eligibility Agricultural Commercial General PublicConsumer Residential Savings For Solar Buying & Making...

29

Energy Department Announces More Stringent Criteria for ENERGY STAR Refrigerators  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced increased energy efficient criteria for refrigerators carrying the ENERGY STAR label. In order to qualify, full-size...

30

Energy and global warming impacts of next generation refrigeration and air conditioning technologies  

SciTech Connect

Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1996-10-01T23:59:59.000Z

31

About the Appliance and Equipment Standards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About the Appliance and About the Appliance and Equipment Standards Program About the Appliance and Equipment Standards Program The Department of Energy (DOE) and the Buildings Technologies Office sets minimum energy efficiency standards for approximately 50 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each day, such as space heating and cooling, refrigeration, cooking, clothes washing and drying, and lighting. DOE's minimum efficiency standards significantly reduce U.S. energy demand, lower emissions of greenhouse gases and other pollutants, and save consumers billions of dollars every year, without lessening the

32

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

33

ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED ENERGY CONSERVATION STANDARD FOR REFRIGERATORS, REFRIGERATOR-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSESSMENT FOR THE PROPOSED ENERGY ASSESSMENT FOR THE PROPOSED ENERGY CONSERVATION STANDARD FOR REFRIGERATORS, REFRIGERATOR- , AND FREEZERS - 1. INTRODUCTION AND NEED FOR PROPOSED ACTION ental Assessment (EA) on the candidate energy conservation stand licy Act. of 1969 (NEPA), regulations of the Council on Environmentd Qu refrigerators, re€iigerator-freezers, and freezers was prepared pursuant to the National ' ederal Regulations, Parts 1500 through. 1508. The proposed energy conservation standard (Level 1) and the alternative standards are being reviewed in an energy- efficiency standards rulemaking that the Department has undertaken pursuant to the Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Consehation Act

34

Equipment Certification | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Equipment Certification Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines Siting and Permitting Canada Commercial Construction Developer

35

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

subpart W. Statutory Authority The current energy conservation standards for commercial refrigeration equipment are mandated by Part A-1, the "Certain Industrial Equipment" of...

36

La Plata Electric Association - Energy Efficient Equipment Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Plata Electric Association - Energy Efficient Equipment Rebate La Plata Electric Association - Energy Efficient Equipment Rebate Program La Plata Electric Association - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwasher: $40 Clothes Washer: $40 Refrigerator/Freezer: $40 Refrigerator/Freezer Recycling: $25 Water Heaters: $75 - $300 ETS Heaters: $20 - $30/kWh Heater Timing Devices: $25 Motors: $9/HP Motor Wiring Assistance: $1.50/HP Air-source Heat Pumps: Contact LPEA Geothermal Heat Pumps: Contact LPEA Energy Efficient Lighting (Commercial Only): $250/kW reduced

37

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information Oregon Program Type ApplianceEquipment Efficiency...

38

Appliance and Equipment Energy Efficiency Standards | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Program Information New York Program Type ApplianceEquipment Efficiency Standards ''...

39

Tipmont REMC - Energy Efficiency Equipment Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tipmont REMC - Energy Efficiency Equipment Rebate Program Tipmont REMC - Energy Efficiency Equipment Rebate Program Tipmont REMC - Energy Efficiency Equipment Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $35 Electric Water Heater: $50 - $100 Geothermal Heat Pumps: $500 Air-source Heat Pumps: $150 - $450/ton Provider Tipmont REMC Tipmont REMC customers are eligible for rebates for the installation of efficient water heaters and air-source and geothermal heat pumps. A rebate is also available for the recycling of older, less efficient refrigerators and stand alone freezers. Air-source heat pumps are eligible for rebates

40

Could You Save Money on Your Refrigerator? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy by choosing the right refrigerator and using it efficiently. These tips explain all sorts of ways you can ensure your refrigerator uses as little energy as possible to keep itself cool. So this week, we're curious: Could you save money with your refrigerator? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Money on Summer Holidays? Have You Seen Energy Efficiency Improvements in Your Neighborhood?

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Could You Save Money on Your Refrigerator? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy by choosing the right refrigerator and using it efficiently. These tips explain all sorts of ways you can ensure your refrigerator uses as little energy as possible to keep itself cool. So this week, we're curious: Could you save money with your refrigerator? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Money on Summer Holidays? Have You Seen Energy Efficiency Improvements in Your Neighborhood?

42

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Cooking Equipment Incentives Jump to: navigation, search The following contains the list of 39 Commercial Cooking Equipment Incentives. CSV (rows 1 - 39) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

43

Building Technologies Office: Refrigerated Beverage Vending Machines...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use to Save Money. Learn More. News DOE Issues Notice of Proposed Rulemaking for Commercial Refrigeration Equipment Energy Conservation Standard August 29, 2013 DOE Issues...

44

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...  

Open Energy Info (EERE)

It uses a bottom-up approach to estimate residential end-use consumption and evaluate the energy saving potential for refrigerators. References Retrieved from "http:...

45

Federal Energy Management Program: New and Underutilized Refrigeration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Management, and Vending Machine Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Refrigeration, Computer Power Management,...

46

Office Equipment Energy Use  

Science Conference Proceedings (OSTI)

Miscellaneous electric loads in office buildings consume nearly 58 billion kilowatt hours per year, which translates to $6.1 billion in electricity costs to businesses. Most office space is not sub metered, thus making it difficult for tenants to know how much electricity they use. Consequently, they are unable to see how the amount they pay for their space is affected by the efficiency of equipment they choose and how they operate it. By using recommended power-saving equipment and best practices outlin...

2010-12-16T23:59:59.000Z

47

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Heating Refrigeration Air Conditioning Space Heating EnergyRefrigeration Air Conditioning Space Heating Savings inTorchiere Space heating Air conditioning Electric motors

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

48

List of Food Service Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Service Equipment Incentives Service Equipment Incentives Jump to: navigation, search The following contains the list of 112 Food Service Equipment Incentives. CSV (rows 1 - 112) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Arizona Commercial Industrial Institutional Local Government Retail Supplier Schools State Government Building Insulation Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators LED Exit Signs Evaporative Coolers Vending Machine Controls Food Service Equipment Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

49

Energy efficiency strategies in refrigeration systems of large supermarkets  

Science Conference Proceedings (OSTI)

Energy efficiency and its relationship with sustainable development are one of the most important objectives in modern engineering systems. In Industrial Installations that use refrigeration systems that are associated with the food industry, this optimization ... Keywords: energy efficiency, optimizing parameters, refrigeration systems, supermarkets

J. M. Garcia; L. M. R. Coelho

2010-07-01T23:59:59.000Z

50

Energy conservation for household refrigerators and water heaters  

Science Conference Proceedings (OSTI)

An energy conservation arrangement for household refrigerators and water heaters, in which the source of cold water to the hot water heater is divided and part is caused to flow through and be warmed in the condenser of the refrigerator. The warmed water is then further heated in the oil cooling loop of the refrigerator compressor, and proceeds then to the top of the hot water tank.

Speicher, T. L.

1984-12-11T23:59:59.000Z

51

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

52

DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches Agreement with LG Electronics, USA, On Refrigerator Reaches Agreement with LG Electronics, USA, On Refrigerator Energy Matter DOE Reaches Agreement with LG Electronics, USA, On Refrigerator Energy Matter November 14, 2008 - 4:47pm Addthis ENERGY STAR® Program Continues to Help American Consumers Make Energy Efficient Choices WASHINGTON - The U.S. Department of Energy (DOE) today announced an agreement with LG Electronics, USA, Inc. (LG), resolving concerns related to energy usage measurements reported on LG French Door refrigerators with through-the-door ice and water service. The ENERGY STAR® program helps American consumers make energy efficient choices, saving billions of dollars while protecting the environment by using identified energy efficient products and practices. "DOE believes that the actions LG plans to take will benefit consumers and

53

List of Equipment Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Insulation Incentives Insulation Incentives Jump to: navigation, search The following contains the list of 242 Equipment Insulation Incentives. CSV (rows 1 - 242) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Central Air conditioners Chillers Custom/Others pending approval Energy Mgmt. Systems/Building Controls Equipment Insulation Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Programmable Thermostats Refrigerators Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

54

Puerto Rico - Renewable Energy Equipment Certification | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puerto Rico - Renewable Energy Equipment Certification Puerto Rico - Renewable Energy Equipment Certification Eligibility Construction InstallerContractor Savings For Solar Buying...

55

DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm Addthis DOE-initiated testing has revealed that a Samsung refrigerator (model RF26VAB), which the company had claimed was Energy Star compliant, consumed more energy than permitted by the Energy Star program. Test results for the Samsung model at issue show that, when tested in accordance with DOE's test procedure, it consumed between 7 and 11.4 percent more energy than the Energy Star requirement. Samsung is no longer manufacturing this model, although it may still be available from some retail outlets. Based on this testing, DOE is referring Samsung Model RF26VAB to the U.S.

56

Covered Product Category: Residential Refrigerators | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Refrigerators Residential Refrigerators Covered Product Category: Residential Refrigerators October 7, 2013 - 11:19am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential refrigerators, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

57

Covered Product Category: Residential Refrigerators | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerators Refrigerators Covered Product Category: Residential Refrigerators October 7, 2013 - 11:19am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential refrigerators, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

58

Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems  

SciTech Connect

This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

Fricke, Brian A [ORNL; Bansal, Pradeep [ORNL; Zha, Shitong [Hillphoenix

2013-01-01T23:59:59.000Z

59

Parke County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 1 per home or business Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Water Heater: $50 - $150 Refrigerator/Freezer Recycling: $35 Air-Source/Dual Fuel Heat Pump: $150 - $500 Geothermal Heat Pump: $800 Provider Parke County REMC Parke County REMC offers rebates to commercial and residential customers for purchasing and installing qualifying energy efficient water heaters, air-source heat pumps, dual fuel heat pumps, and geothermal heat pumps.

60

Energy Consumption of Refrigerators in Ghana - Outcomes of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy efficiency standards for equipment: Additional opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

efficiency standards for equipment: Additional opportunities in the residential and commercial sectors Title Energy efficiency standards for equipment: Additional opportunities in...

62

Southwest Gas Corporation - Commercial Energy Efficient Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water heaters, tankless...

63

Improving the energy efficiency of refrigerators in India  

Science Conference Proceedings (OSTI)

Five state-of-the-art, production refrigerators from different manufacturers in India were subjected to a variety of appliance rating and performance evaluation test procedures in an engineering laboratory. Cabinet heat loss, compressor calorimeter, high-ambient pull-down, and closed-door energy consumption tests were performed on each unit to assess the current status of commercially available Indian refrigerators and refrigerator component efficiencies. Daily energy consumption tests were performed at nominal line voltages and at 85% and 115% of nominal voltage to assess the effect of grid voltage variations. These test results were also used to indicate opportunities for effective improvements in energy efficiency. A widely distributed ``generic`` computer model capable of simulating single-door refrigerators with a small interior freezer section was used to estimate cabinet heat loss rates and closed door energy consumption values from basic cabinet and refrigeration circuit inputs. This work helped verify the model`s accuracy and potential value as a tool for evaluating the energy impact of proposed design options. Significant differences ranging from 30 to 90% were seen in the measured performance criterion for these ``comparable`` refrigerators suggesting opportunities for improvements in individual product designs. Modeled cabinet heat loadings differed from experimentally extrapolated values in a range from 2--29%, and daily energy consumption values estimated by the model differed from laboratory data by as little as 3% or as much as 25%, which indicates that refinement of the model may be needed for this single-door refrigerator type. Additional comparisons of experimentally measured performance criteria such as % compressor run times and compressor cycling rates to modeled results are given. The computer model is used to evaluate the energy saving impact of several modest changes to the basic Indian refrigerator design.

Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

1995-04-01T23:59:59.000Z

64

DOE Closes Investigation into Energy Efficiency of Viking Refrigerator |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closes Investigation into Energy Efficiency of Viking Closes Investigation into Energy Efficiency of Viking Refrigerator DOE Closes Investigation into Energy Efficiency of Viking Refrigerator November 9, 2010 - 7:30pm Addthis The Department of Energy has closed its investigation into the energy efficiency of Viking Range Corporation's refrigerator-freezer model VCSB542. The Department initiated this investigation in response to allegations that the model failed to meet federal energy efficiency standards. After reviewing data provided by Viking for this model, the Department issued a testing demand on June 16, 2010 and initially tested four units, one of which was defective and replaced by a fifth unit. The test results showed that two Viking units failed the federal energy standard for maximum energy use, while two passed. Because of the wide variation in the

65

DOE Closes Investigation into Energy Efficiency of Viking Refrigerator |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

into Energy Efficiency of Viking into Energy Efficiency of Viking Refrigerator DOE Closes Investigation into Energy Efficiency of Viking Refrigerator November 9, 2010 - 7:30pm Addthis The Department of Energy has closed its investigation into the energy efficiency of Viking Range Corporation's refrigerator-freezer model VCSB542. The Department initiated this investigation in response to allegations that the model failed to meet federal energy efficiency standards. After reviewing data provided by Viking for this model, the Department issued a testing demand on June 16, 2010 and initially tested four units, one of which was defective and replaced by a fifth unit. The test results showed that two Viking units failed the federal energy standard for maximum energy use, while two passed. Because of the wide variation in the

66

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, ... Refrigeration, Office Equipment and Special Space Uses: TXT:

67

Of Refrigerators & Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Of Refrigerators & Regulations Of Refrigerators & Regulations Of Refrigerators & Regulations February 8, 2011 - 9:29am Addthis Jesse Lee White House Director of Online Affairs Editor's Note: This entry has been cross-posted from The White House Blog. For those interested in the President's remarks to the U.S. Chamber of Commerce and his views on the shared responsibilities of government and business to the American people, our post earlier will give a suitable overview. For those interested in the details of the President's Executive Order on reviewing regulations and their impacts on the economy, Cass Sunstein's post this morning will also be of value. But the President also took a moment during his speech to put the debate over regulation in a different perspective, and to break through the false dichotomy so often

68

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

69

Equipment Insulation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Equipment Insulation Jump to: navigation, search TODO: Add description List of Equipment Insulation...

70

Guide to Energy-Efficient Office Equipment  

Science Conference Proceedings (OSTI)

Office equipment directly consumes as much as 30 billion kilowatt-hours of electricity, which represents 5% of total commercial electric energy consumption. EPRI's Guide to Energy-Efficient Office Equipment discusses the energy cost savings and environmental benefits of using high-efficiency equipment in areas ranging from personal computers and monitors to printers, copiers, and facsimile machines.

1996-04-05T23:59:59.000Z

71

Equipment Certification Requirements | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Requirements Equipment Certification Requirements Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Contents 1 Equipment Certification Incentives 2 References Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines

72

Energy-related laboratory equipment (ERLE) guidelines  

SciTech Connect

This document describes the Used Energy-Related Laboratory Equipment grants, and eligibility and procedures for participation. The document contains tables identifying typical equipment that may be requested, where to review ERLE equipment lists, and where to mail applications, a description of the eligible equipment grants access data system, and a copy of the ERLE grant application and instructions for its completion and submission.

Not Available

1995-01-01T23:59:59.000Z

73

FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS  

SciTech Connect

Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle floating pressure control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

2010-04-01T23:59:59.000Z

74

The Energy-Saving Design Practices for Direct Cooling Refrigerator  

Science Conference Proceedings (OSTI)

The area of evaporator on cold storage chamber was added under a constant total evaporator area. Composite and stereoscopic structure with laminated exchanger flake was used on evaporator of freezing chamber. Wing - flakes were fixed outside the refrigerant ... Keywords: refrigerantion, energy-saving, condensor, evaporator

Cai Yingling; Zhang Hua; Chen Shuai; Li Gang; Xia Peng

2009-10-01T23:59:59.000Z

75

Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III  

Science Conference Proceedings (OSTI)

The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

Sand, J.R.; Fischer, S.K.; Baxter, V.D.

1997-06-01T23:59:59.000Z

76

Energy Efficiency Evaluation of Refrigeration Technologies in Combined Cooling, Heating and Power Systems  

E-Print Network (OSTI)

With development of absorption refrigeration technology, the cooling requirement can be met using various optional refrigeration technologies in a CCHP system, including compression refrigeration, steam double-effect absorption refrigeration, steam single-effect absorption refrigeration, flue gas absorption refrigeration and hot water absorption refrigeration, etc. As a universal criterion, the COP coefficient cannot reflect the difference in availability of driving energy for different chillers. Exergy efficiency of optional chillers in CCHP system was analyzed and compared, which can be regarded as an important reference criterion in comparison of energy efficiency. Furthermore, a new index, relative electricity saving ratio, was put forward for evaluating end energy efficiency of all kinds of chillers in a CCHP system, which indicates actual energy or electricity saving ratio for different absorption chillers with various parameters in contrast to the reference electricity-driven refrigeration scheme.

Zuo, Z.; Hu, W.

2006-01-01T23:59:59.000Z

77

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Construction General Public/Consumer Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Equipment Certification Provider Florida Solar Energy Center Under the Solar Energy Standards Act of 1976, the Florida Solar Energy Center (FSEC) is responsible for certifying all solar equipment sold in Florida. A manufacturer who wishes to have their solar equipment certified first contacts FSEC for an application and requests that FSEC test samples of the product at random. Equipment is then subjected to a series of tests in order to be approved or denied certification. Standards and applications procedures for specific technologies are available on the FSEC web site.

78

Alliant Energy Interstate Power and Light - Farm Equipment Energy...  

Open Energy Info (EERE)

Equipment, Ceiling Fan, Clothes Washers, CustomOthers pending approval, Dishwasher, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat recovery, Lighting,...

79

Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog  

Science Conference Proceedings (OSTI)

This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

Not Available

1994-07-01T23:59:59.000Z

80

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Data from the 1999 Commercial Buildings Energy Consumption Survey ... and energy-using equipment types (heating, cooling, refrigeration, water ...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Efficiency Standards for Residential and Commercial Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards for Residential and Commercial Equipment: Additional Opportunities Title Energy Efficiency Standards for Residential and Commercial Equipment: Additional...

82

Chinese Wind Energy Equipment Association CWEEA | Open Energy Information  

Open Energy Info (EERE)

Equipment Association CWEEA Equipment Association CWEEA Jump to: navigation, search Name Chinese Wind Energy Equipment Association (CWEEA) Place Beijing, Beijing Municipality, China Zip 100825 Sector Wind energy Product Association representing Chinese wind energy equipment makers, including organisations engaged in wind turbine assembly and component sub-assemblies. References Chinese Wind Energy Equipment Association (CWEEA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Wind Energy Equipment Association (CWEEA) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Wind Energy Equipment Association (CWEEA)" Retrieved from "http://en.openei.org/w/index.php?title=Chinese_Wind_Energy_Equipment_Association_CWEEA&oldid=343566"

83

Energy Sub-Metering Equipment and Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sub-Metering Equipment and Applications Energy Sub-Metering Equipment and Applications Speaker(s): Sim Gurewitz Date: July 24, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew This talk will address the following topics:Submetering basics: What is it? How does a submeter work?How to obtain a finer level of energy information within the buildingApplications: Who submeters and why?LEED NC/EB/CS and submetering / Energy & Atmosphere pointsSubmetering equipment: gas, electric, water, steam, CW Btu and HHW BtuHow to install equipment without scheduling an outageLoad Control option for automated load shedding and peak shavingWireless submeters and communication options / integration to EMS-BMCSAutomatic remote meter reading and cost allocation softwarePutting it all together into a metering SYSTEM: read from anywhere, IP

84

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

85

Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AHRI Comments - DOE Verification Testing in Support of Energy Star AHRI Comments - DOE Verification Testing in Support of Energy Star May 9, 2011 P a g e | 1 May 9, 2010 Ms. Ashley Armstrong U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 RE: DOE Verification Testing in Support of Energy Star Dear Ms. Armstrong: I am writing on behalf of the Air Conditioning, Heating and Refrigeration Institute (AHRI) to address the proposed DOE requirements for verification testing in support of the Energy Star program. AHRI is the trade association representing manufacturers of heating, cooling, and commercial refrigeration equipment. More than 300 members strong, AHRI is an internationally recognized advocate for the industry, and develops standards for and certifies the performance of many of the

86

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

comparison of VAV and VRF air conditioning systems in anThe variable refrigerant flow (VRF) and ground source heatthe energy efficiency of VRF systems compared with GSHP

Hong, Tainzhen

2010-01-01T23:59:59.000Z

87

Working Fluids Low Global Warming Potential Refrigerants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Fluids Low GWP Working Fluids Low GWP Refrigerants - CRADA Ed Vineyard Oak Ridge National Laboratory vineyardea@ornl.gov (865) 574-0576 3 April 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: - High GWP refrigerants increase CO 2 equivalent emissions for HVAC&R equipment - Low GWP alternatives may increase energy consumption, introduce safety risks, require significant modifications to equipment, and have higher costs

88

Working Fluids Low Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Fluids Low GWP Working Fluids Low GWP Refrigerants - CRADA Ed Vineyard Oak Ridge National Laboratory vineyardea@ornl.gov (865) 574-0576 3 April 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: - High GWP refrigerants increase CO 2 equivalent emissions for HVAC&R equipment - Low GWP alternatives may increase energy consumption, introduce safety risks, require significant modifications to equipment, and have higher costs

89

NineStar Connect - Residential Energy Efficient Equipment Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NineStar Connect - Residential Energy Efficient Equipment Rebate Program NineStar Connect - Residential Energy Efficient Equipment Rebate Program Eligibility Residential Savings...

90

Refrigerator Standards Save Consumers $ Billions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions March 5, 2013 - 10:35am Addthis Refrigerator Standards Refrigerator Standards Refrigerator technology has come a long way since Dr. John Gorrie (1803 - 1855), a forward-looking inventor, was granted U. S. Patent #8080 for mechanical refrigeration in 1851. In those days, ice was expensive, if it was even available: Blocks of natural ice were carved from frozen lakes and rivers and stored in special warehouses under layers of sawdust for insulation. By the 1890s, pollution and sewage dumping caused by population growth compromised sources of pure, natural ice, threatening the brewing, meat-packing, and dairy industries. As these and other industries sought better solutions, modern refrigeration technology started to evolve.

91

List of Processing and Manufacturing Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 130 Processing and Manufacturing Equipment Incentives. CSV (rows 1 - 130) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial Custom Project Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Boilers Central Air conditioners Chillers Custom/Others pending approval Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Processing and Manufacturing Equipment Refrigerators Yes AEP Ohio - Commercial Self Direct Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Fed. Government Industrial

92

Solar and Wind Energy Equipment Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption Solar and Wind Energy Equipment Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate None Program Info State Wisconsin Program Type Property Tax Incentive Rebate Amount Varies Provider Wisconsin Department of Revenue In Wisconsin, any value added by a solar-energy system or a wind-energy system is exempt from general property taxes. A solar-energy system is defined as "equipment which directly converts and then transfers or stores solar energy into usable forms of thermal or electrical energy, but does not include equipment or components that would be present as part of a

93

Energy-Saving Equipment Deduction (Arkansas) | Open Energy Information  

Open Energy Info (EERE)

Review 2002-07-18 References DSIRE1 Summary This tax deduction is for individual homeowners who install any energy saving equipment including solar heating and cooling...

94

Building Equipment Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

rooftop units Appliances Water heaters Supermarket refrigeration systems Ground-source space conditioning and water heating systems Multi-zone heating, ventilation, and air...

95

ARTI Refrigerant Database  

Science Conference Proceedings (OSTI)

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

1994-05-27T23:59:59.000Z

96

Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount '''Lighting''' Small Business Lighting: $3 - $190 CFLs: $3 - $12 LEDs: $10 - $25 Ceramic Metal Halide Lamps: $25 LED Exit Signs: $50 LED Traffic Signals: $5 - $20 Lighting Controls: $40 - $80 T8 Lamp Upgrade: $1 per lamp '''HVAC''' HVAC Installations (New Construction): $30/ton HVAC Replacements: $100 - $550

97

Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency  

E-Print Network (OSTI)

The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics of the variable refrigerant volume multi-zone air conditioning system, and discusses the advantages of its application.

Zhu, H.

2006-01-01T23:59:59.000Z

98

Data Center Equipment | Open Energy Information  

Open Energy Info (EERE)

Center Equipment Jump to: navigation, search TODO: Add description List of Data Center Equipment Incentives Retrieved from "http:en.openei.orgwindex.php?titleDataCenterEquip...

99

Sales and Use Tax Exemption for Renewable Energy Equipment  

Energy.gov (U.S. Department of Energy (DOE))

In April 2008, the Maryland enacted legislation exempting geothermal and solar energy equipment from the state sales and use tax. Geothermal equipment is defined as "equipment that uses ground loop...

100

Renewable Energy Equipment Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment Sales Tax Exemption Equipment Sales Tax Exemption Renewable Energy Equipment Sales Tax Exemption < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate None Program Info State Massachusetts Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Massachusetts Department of Revenue Massachusetts law exempts from the state's sales tax "equipment directly relating to any solar, windpowered; or heat pump system, which is being utilized as a primary or auxiliary power system for the purpose of heating or otherwise supplying the energy needs of an individual's principal residence in the commonwealth." Massachusetts Tax Form ST-12 is available on the

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Efficiency Report-Chapter 4: Commercial Buildings Sector  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey (CBECS) The CBECS ... water heating, refrigeration, powering office equipment, and other uses.

102

Property Tax Assessment for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment Property Tax Assessment for Renewable Energy Equipment < Back Eligibility Utility Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount Renewable-energy equipment assessed at 20% of its depreciated cost Provider Arizona Department of Revenue Renewable energy equipment owned by utilities and other entities operating in Arizona is assessed at 20% of its depreciated cost for the purpose of determining property tax. "Renewable energy equipment" is defined as "electric generation facilities, electric transmission, electric distribution, gas distribution or combination gas and electric transmission

103

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

104

Interstate Power and Light (Alliant Energy) - Farm Equipment Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Efficiency Incentives Interstate Power and Light (Alliant Energy) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Commercial Lighting Lighting Cooling Construction Commercial Weatherization Manufacturing Maximum Rebate Contact Alliant Energy Interstate Power and Light Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Farm Energy Audit: Free Automatic Milker Takeoffs: $5/cow Dairy Scroll Compressor: $250 Heat Reclaimers: $5/cow Milk Precooler: $3.40/cow Variable Speed Drives for Dairy Vacuum Pumps: $5/cow Motors: Up to $1080 Variable Frequency Drives: $30/HP

105

Solar Energy Equipment Certification (Arkansas) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

106

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

J. 1996. Energy Labeling, Standards and Building Codes: Aof National Energy-Efficiency Standards for Refrigerators.2000. Energy Labels and Standards, IEA/OECD, Paris, France.

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

107

Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators  

E-Print Network (OSTI)

This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

Luckyanova, Maria N. (Maria Nickolayevna)

2008-01-01T23:59:59.000Z

108

Appliance and Equipment Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards < Back Program Info State Oregon Program Type Appliance/Equipment Efficiency Standards Provider Oregon Department of Energy '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

109

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

customers who improve efficiency through food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates through... http:energy.gov...

110

Property:Building/SPElectrtyUsePercRefrigeration | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercRefrigeration SPElectrtyUsePercRefrigeration Jump to: navigation, search This is a property of type String. Refrigeration Pages using the property "Building/SPElectrtyUsePercRefrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 4.24846345193 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 24.6944086225 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.29913989581 + Sweden Building 05K0014 + 7.46645043826 + Sweden Building 05K0015 + 0.0 +

111

Clark Public Utilities - Solar Energy Equipment Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Loan Energy Equipment Loan Clark Public Utilities - Solar Energy Equipment Loan < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $30,000 Solar Pool Heaters and Solar Water Heaters: $10,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Solar PV: up to $30,000 Solar Pool Heaters and Solar Water Heaters: up to $10,000 Provider Clark PUD Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and solar water heaters and up to $30,000 for photovoltaic systems. Solar water heater loans, solar pool heater loans and solar PV loans under

112

Appliance and Equipment Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards < Back Program Info State District of Columbia Program Type Appliance/Equipment Efficiency Standards Provider Washington State Department of Commerce '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

113

Energy Equipment Property Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Property Tax Exemption Energy Equipment Property Tax Exemption Energy Equipment Property Tax Exemption < Back Eligibility Commercial Industrial Residential Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Heating Water Swimming Pool Heaters Water Heating Wind Program Info State Arizona Program Type Property Tax Incentive Rebate Amount 100% of increased value Provider Arizona Department of Revenue Arizona's property tax exemption was established in June 2006 ([http://www.azleg.gov/legtext/47leg/2r/bills/hb2429s.pdf HB 2429]) and originally applied only to "solar energy devices and any other device or system designed for the production of solar energy for on-site

114

Energy Performance Assessment for Equipment and Utility Systems...  

Open Energy Info (EERE)

Energy Performance Assessment for Equipment and Utility Systems: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Assessment for...

115

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy...

116

Balance-of-System Equipment Required for Renewable Energy Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both grid-connected and off-grid home renewable energy systems require additional “balance-of-system” equipment. Both grid-connected and off-grid home renewable energy systems require additional "balance-of-system" equipment. How does it work? With a stand-alone system, depending on your needs, balance-of-system equipment could account for half of your total system costs. For both stand-alone and grid-connect systems, you will need power conditioning equipment, safety equipment, and meters and instrumentation. For stand-alone systems, you will also want batteries and charge controllers.

117

Energy Simulation of Integrated Multiple-Zone Variable Refrigerant Flow System  

Science Conference Proceedings (OSTI)

We developed a detailed steady-state system model, to simulate the performance of an integrated five-zone variable refrigerant flow (VRF)heat pump system. The system is multi-functional, capable of space cooling, space heating, combined space cooling and water heating, and dedicated water heating. Methods were developed to map the VRF performance in each mode, based on the abundant data produced by the equipment system model. The performance maps were used in TRNSYS annual energy simulations. Using TRNSYS, we have successfully setup and run cases for a multiple-split, VRF heat pump and dehumidifier combination in 5-zone houses in 5 climates that control indoor dry-bulb temperature and relative humidity. We compared the calculated energy consumptions for the VRF heat pump against that of a baseline central air source heat pump, coupled with electric water heating and the standalone dehumidifiers. In addition, we investigated multiple control scenarios for the VRF heat pump, i.e. on/off control, variable indoor air flow rate, and using different zone temperature setting schedules, etc. The energy savings for the multiple scenarios were assessed.

Shen, Bo [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

2013-01-01T23:59:59.000Z

118

Alliant Energy Interstate Power and Light (Electric) - Business...  

Open Energy Info (EERE)

Amount New Construction: Varies, see program web site Custom: Based on Annual Dollar Energy Savings Food Service Equipment: 200 - 500 Commercial Refrigeration Equipment: 75...

119

Shenyang Tendo New Energy Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tendo New Energy Equipment Co Ltd Tendo New Energy Equipment Co Ltd Jump to: navigation, search Name Shenyang Tendo New Energy Equipment Co Ltd Place Shenyang, Liaoning Province, China Zip 110168 Sector Wind energy Product Wind power equipment manufacturer, also an investor in wind project engineering and wind project developemnt. It vows to form a complete wind indsutry value chain from equipment manufacture to wind farm development. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Tuori Solar Energy Equipment Mfg Company | Open Energy Information  

Open Energy Info (EERE)

Tuori Solar Energy Equipment Mfg Company Tuori Solar Energy Equipment Mfg Company Jump to: navigation, search Name Tuori Solar Energy Equipment Mfg Company Place Baoding, Hebei Province, China Zip 71000 Sector Solar Product A manufacturer of solar thermal heaters for water and indoor spaces. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Equipment  

Science Conference Proceedings (OSTI)

...Manual gas cutting equipment consists of gas regulators, gas hoses, cutting torches, cutting tips, and multipurpose wrenches. Auxiliary equipment may include a hand truck, tip cleaners, torch ignitors, and protective goggles. Machine cutting

122

Energy Market Profiles: Hospital Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

This report profiles the U.S. healthcare market on size and energy-related characteristics and provides energy benchmarking data that can be used to make meaningful comparisons between healthcare facilities. The intent of the report is to provide both utility and hospital managers with a better understanding of the key characteristics of the healthcare market and enhance their abilities to assess how well their facilities are performing relative to hospitals with similar energy equipment.

1999-12-22T23:59:59.000Z

123

Operations and Maintenance for Major Equipment Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Major Equipment Types for Major Equipment Types Operations and Maintenance for Major Equipment Types October 7, 2013 - 9:53am Addthis Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc. No single resource covers all equipment in use by Federal agencies, and listing major equipment types is beyond the scope of this website. Instead, the Federal Energy Management Program (FEMP) outlines major equipment types within chapter 9 of the Federal Energy Management Programs's (FEMP) O&M Best Practices Guide. The FEMP O&M Best Practices Guide focuses on: Boilers Steam traps Chillers Cooling towers Energy management and building automation systems Air handling systems

124

Solar Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Equipment Certification Solar Equipment Certification Solar Equipment Certification < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Program Info State Minnesota Program Type Equipment Certification Provider Minnesota Department of Commerce Minnesota law requires that all active solar space-heating and water-heating systems, sold, offered for sale, or installed on residential and commercial buildings in the state meet Solar Rating and Certification Corporation (SRCC) standards. Specifically, the rule references SRCC's "Operating Guidelines" pertaining to collector certification and system certification: OG-100 and OG-300, respectively. Local building officials

125

PPP Equipment Corporation | Open Energy Information  

Open Energy Info (EERE)

PPP Equipment Corporation Sector Solar Product PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

126

Zhongneng Windpower Equipments | Open Energy Information  

Open Energy Info (EERE)

manufacturer engages in the development, design, testing and products manufacture of rotor blade of WTGS. References Zhongneng Windpower Equipments1 LinkedIn Connections...

127

Stangl Semiconductor Equipment AG | Open Energy Information  

Open Energy Info (EERE)

Solar Product German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References Stangl Semiconductor Equipment AG1 LinkedIn...

128

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

Nucleares, SA Place Madrid, Spain Zip 28006 Sector Services Product ENSA is a Spanish nuclear components and nuclear services supply company. References Equips Nucleares, SA1...

129

Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies  

SciTech Connect

International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

Fischer, S.; Sand, J.; Baxter, V.

1997-12-01T23:59:59.000Z

130

EA-1643: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Finding of No Significant Impact 43: Finding of No Significant Impact EA-1643: Finding of No Significant Impact Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commerical Freezers, and Commercial Refrigerator-Freezers without Doors; and Remote Condensing Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator-Freezers The proposed action is the establishment of new energy conservation standards for commerical refrigeration equipment. DOE is adopting Trial Standard Level 4 for CRE. Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commerical Freezers, and Commercial

131

EA-1643: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Finding of No Significant Impact 3: Finding of No Significant Impact EA-1643: Finding of No Significant Impact Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commerical Freezers, and Commercial Refrigerator-Freezers without Doors; and Remote Condensing Commercial Refrigerators, Commercial Freezers, and Commercial Refrigerator-Freezers The proposed action is the establishment of new energy conservation standards for commerical refrigeration equipment. DOE is adopting Trial Standard Level 4 for CRE. Energy Conservation Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Ice-Cream Freezers; Self-Contained Commercial Refrigerators, Commerical Freezers, and Commercial

132

An Energy Policy Perspective on Solar Hot Water Equipment Mandates  

E-Print Network (OSTI)

An Energy Policy Perspective on Solar Hot Water EquipmentU.S. OIL VULNERABILITY: ENERGY POLICY FOR THE 1980's, DOE/cited as Langston]. ENERGY POLICY tween a new house with

Williams, Stephen F.

1981-01-01T23:59:59.000Z

133

Appliance and Equipment Energy Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Standards Energy Efficiency Standards Appliance and Equipment Energy Efficiency Standards < Back Program Info State New York Program Type Appliance/Equipment Efficiency Standards Provider New York State Energy Research and Development Authority '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for

134

Clark Public Utilities - Solar Energy Equipment Loan (Washington...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Clark Public Utilities - Solar Energy Equipment Loan (Washington) This is the approved revision of this page, as...

135

Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Baicheng, Jilin Province, China Sector Wind energy Product Baicheng-based wind turbine tower producer. References Jilin Tianhe Wind Power Equipment Co Ltd1 LinkedIn Connections...

136

Energy efficiency standards for residential and commercial equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

207 Energy Efficiency Standards for Residential and Commercial Equipment: Additional Opportunities Greg Rosenquist, Michael McNeil, Maithili Iyer, Steve Meyers, and Jim McMahon...

137

Adoption of ENERGY STAR equipment varies among appliances ...  

U.S. Energy Information Administration (EIA)

Appliances with the ENERGY STAR logo are intended to represent more-efficient options in the marketplace. The adoption of this more-efficient equipment can vary ...

138

Table H3: End Use Equipment in Large Hospitals  

U.S. Energy Information Administration (EIA)

Refrigeration Equipment HVAC Conservation Features ... Commercial Refrigeration ... Walk-In Units ..... Cases or Cabinets ..... Residential-Type Units ...

139

Definition: Equipment Condition Monitor | Open Energy Information  

Open Energy Info (EERE)

Condition Monitor Condition Monitor Jump to: navigation, search Dictionary.png Equipment Condition Monitor A monitoring device that automatically measures and communicates equipment characteristics that are related to the "health" and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can automatically generate alarm signals if conditions exceed preset thresholds.[1] Related Terms sustainability References ↑ https://www.smartgrid.gov/category/technology/equipment_condition_monitor [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]] Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Condition_Monitor&oldid=502601"

140

Definition: Equipment Health Sensor | Open Energy Information  

Open Energy Info (EERE)

Sensor Sensor Jump to: navigation, search Dictionary.png Equipment Health Sensor Monitoring devices that automatically measure and communicate equipment characteristics that are related to the 'health' and maintenance of the equipment. These characteristics can include, but are not limited to temperature, dissolved gas, and loading. These devices can also automatically generate alarm signals if the equipment characteristics reach critical or dangerous levels.[1] Related Terms sustainability References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Health_Sensor&oldid=502526

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CVD Equipment Corp | Open Energy Information  

Open Energy Info (EERE)

CVD Equipment Corp CVD Equipment Corp Jump to: navigation, search Name CVD Equipment Corp Place Ronkonkoma, New York Zip 11779 Sector Solar Product New York-based maker of chemical vapour deposition process equipment. This equipment is used in the manufacture of solar and semiconductor fabrication. Coordinates 40.81122°, -73.098744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.81122,"lon":-73.098744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Definition: Disturbance Monitoring Equipment | Open Energy Information  

Open Energy Info (EERE)

Disturbance Monitoring Equipment Disturbance Monitoring Equipment Jump to: navigation, search Dictionary.png Disturbance Monitoring Equipment Devices capable of monitoring and recording system data pertaining to a Disturbance. Such devices include the following categories of recorders: Sequence of event recorders which record equipment response to the event., Fault recorders, which record actual waveform data replicating the system primary voltages and currents. This may include protective relays., Dynamic Disturbance Recorders (DDRs), which record incidents that portray power system behavior during dynamic events such as low-frequency (0.1 Hz - 3 Hz) oscillations and abnormal frequency or voltage excursions. Phasor Measurement Units and any other equipment that meets the functional requirements of DMEs may qualify as DMEs.[1]

143

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Amarnath, M. Blatt, Variable refrigerant flow: where, why,simulation in the variable refrigerant flow air-conditioningsimulation of the variable refrigerant flow air conditioning

Hong, Tainzhen

2010-01-01T23:59:59.000Z

144

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

D. Brown (2004). Industrial Refrigeration Best PracticesD. Brown (2004). Industrial Refrigeration Best Practicesoutlet common in industrial refrigeration Source: Wilcox,

Lekov, Alex

2009-01-01T23:59:59.000Z

145

B. Air Conditioning and Refrigeration Institute (ARI). C. American Society of Mechanical Engineers (ASME). D. Cryogenic Society of America (CSA).  

E-Print Network (OSTI)

a. Design and specify refrigeration systems and equipment in accordance with "Energy Conservation Standards " stipulated in Section 15010- Basic Mechanical Requirements. b. Every effort should be made to specify equipment which does not require any CFC refrigerants, including R-11, R-12, R113, or

Cooling Tower Sump Filtration System

2012-01-01T23:59:59.000Z

146

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

Science Conference Proceedings (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

2009-05-11T23:59:59.000Z

147

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-11-24T23:59:59.000Z

148

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

1987-01-01T23:59:59.000Z

149

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

1987-01-01T23:59:59.000Z

150

Chemically assisted mechanical refrigeration process  

DOE Patents (OSTI)

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-06-23T23:59:59.000Z

151

Equipment Energy Use Analysis: Bob Evans Store #130, Marion, Ohio  

Science Conference Proceedings (OSTI)

Energy use and cost are important operating considerations for full-menu restaurants. Researchers monitored cookline appliances and other process equipment at a restaurant in Ohio and collected data used to derive typical energy use profiles and to perform energy cost analyses. This report describes the monitored appliances, the data acquisition equipment and methods used to perform the monitoring, and the energy consumption and estimated energy costs for operation of each appliance.

1997-02-03T23:59:59.000Z

152

Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Yeelong Wind Power Equipment Manufacturing Co Ltd Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place Hebei Province, China Sector Wind energy Product China-based wind turbine equipment manufacturer. References Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd is a company located in Hebei Province, China . References ↑ "[ Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Hebei_Yeelong_Wind_Power_Equipment_Manufacturing_Co_Ltd&oldid=346424

153

HVAC Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Equipment Rebate Program HVAC Equipment Rebate Program HVAC Equipment Rebate Program < Back Eligibility Agricultural Commercial Industrial Installer/Contractor Institutional Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Heat Pumps Maximum Rebate Rebates of greater than $5,000 require pre-approval Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies depending on technology and efficiency Provider Efficiency Vermont NOTE: Rebate reservations are required for all boiler and furnace projects. Efficiency Vermont offers rebates for commercial installations of high-efficiency HVAC equipment and controls. For businesses and purchases

154

Cruising Equipment Company CECO | Open Energy Information  

Open Energy Info (EERE)

Cruising Equipment Company CECO Cruising Equipment Company CECO Jump to: navigation, search Name Cruising Equipment Company (CECO) Place Seattle, Washington Zip 98107 Product Maker of pollution control equipment - bought by Xantrex in 2000. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Definition: Equipment Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Rating Jump to: navigation, search Dictionary.png Equipment Rating The maximum and minimum voltage, current, frequency, real and reactive power flows on individual equipment under steady state, short-circuit and transient conditions, as permitted or assigned by the equipment owner.[1] Also Known As Standard current ratings Related Terms reactive power, smart grid References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Equipment_Rating&oldid=502535" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

156

Definition: Reduced Equipment Failures | Open Energy Information  

Open Energy Info (EERE)

limits based on real-time equipment or environmental factors.1 Related Terms sustainability References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You...

157

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network (OSTI)

61 standards, effect on energy useU.S. , 16 statistical12 refrigerator energy useU.S. , 16 energy cost reduction,Appliance Energy Conservation Act of 1987, U.S. Congress

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

158

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

system. The refrigeration system design involves sizing ofDesign Essentials for Refrigerated Storage Facilities, American Society for Heating Refrigeration anddesign considerations are mostly related to wall and roof types, shell insulation, and the refrigeration

Lekov, Alex

2009-01-01T23:59:59.000Z

159

Solar and Wind Equipment Certification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Equipment Certification Solar and Wind Equipment Certification Solar and Wind Equipment Certification < Back Eligibility Commercial Construction Industrial Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Equipment Certification Provider Arizona Solar Energy Industries Association Collectors, heat exchangers and storage units of solar energy systems -- and the installation of these systems -- sold or installed in Arizona must have a warranty of at least two years. The remaining components of the system and their installation must have a warranty of at least one year.

160

Appliance and Equipment Standards Result in Large Energy, Economic, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Standards Result in Large Energy, Economic, Appliance and Equipment Standards Result in Large Energy, Economic, and Environmental Benefits Appliance and Equipment Standards Result in Large Energy, Economic, and Environmental Benefits Saving Consumers and Businesses Energy and Money by Setting Efficiency Standards Saving Consumers and Businesses Energy and Money by Setting Efficiency Standards The Building Technologies Office (BTO) implements minimum energy conservation standards for more than 50 categories of appliances and equipment. As a result of these standards, energy users saved about $40 billion on their utility bills in 2010. Since 2009, 18 new or updated standards have been issued, which will help increase annual savings by more than 50 percent over the next decade. By 2030, cumulative operating cost

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data Network Equipment Energy Use and Savings Potential in Buildings  

SciTech Connect

Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

2010-06-09T23:59:59.000Z

162

Project and Equipment Financing (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project and Equipment Financing (Virginia) Project and Equipment Financing (Virginia) Project and Equipment Financing (Virginia) < Back Eligibility Local Government Savings Category Other Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Water Heating Wind Program Info State Virginia Program Type State Loan Program Rebate Amount Varies Provider Virginia Resources Authority The Virginia Resources Authority (VRA) was created in 1984 and provides financial assistance to local governments in Virginia for a variety of projects, including energy and energy conservation projects. In March 2011, H.B. 2389 added "renewable energy" to the list of eligible projects (though it may have already been technically eligible under the "energy" category).

163

CSIC Chongqing Haizhuang Windpower Equipment Co Ltd | Open Energy  

Open Energy Info (EERE)

CSIC Chongqing Haizhuang Windpower Equipment Co Ltd CSIC Chongqing Haizhuang Windpower Equipment Co Ltd Jump to: navigation, search Name CSIC (Chongqing) Haizhuang Windpower Equipment Co Ltd Place Chongqing Municipality, China Zip 400021 Sector Wind energy Product A wind turbine producer and wind power project developer. References CSIC (Chongqing) Haizhuang Windpower Equipment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CSIC (Chongqing) Haizhuang Windpower Equipment Co Ltd is a company located in Chongqing Municipality, China . References ↑ "CSIC (Chongqing) Haizhuang Windpower Equipment Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CSIC_Chongqing_Haizhuang_Windpower_Equipment_Co_Ltd&oldid=343992

164

China Ordnance Equipment Group Corporation COEGC | Open Energy Information  

Open Energy Info (EERE)

Ordnance Equipment Group Corporation COEGC Ordnance Equipment Group Corporation COEGC Jump to: navigation, search Name China Ordnance Equipment Group Corporation (COEGC) Place Beijing Municipality, China Sector Solar, Wind energy Product Chinese state-owned conglomerate that manufactures a number of products for Chinese People's Liberation Army diversifying into wind and solar equipment manufacturing. References China Ordnance Equipment Group Corporation (COEGC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Ordnance Equipment Group Corporation (COEGC) is a company located in Beijing Municipality, China . References ↑ "[ China Ordnance Equipment Group Corporation (COEGC)]" Retrieved from

165

Shenyang Tianrui Wind Equipments Sales Company Co Ltd | Open Energy  

Open Energy Info (EERE)

Tianrui Wind Equipments Sales Company Co Ltd Tianrui Wind Equipments Sales Company Co Ltd Jump to: navigation, search Name Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. Place Liaoning Province, China Sector Wind energy Product Lianoning Province-based JV responsible for the marketing and sales of the wind components made by Shenyang Tianxiang. References Shenyang Tianrui Wind Equipments Sales Company Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shenyang Tianrui Wind Equipments Sales Company Co., Ltd. is a company located in Liaoning Province, China . References ↑ "Shenyang Tianrui Wind Equipments Sales Company Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Shenyang_Tianrui_Wind_Equipments_Sales_Company_Co_Ltd&oldid=35092

166

Commonwealth's Master Equipment Leasing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth's Master Equipment Leasing Program Commonwealth&#039;s Master Equipment Leasing Program Commonwealth's Master Equipment Leasing Program < Back Eligibility Institutional State Government Program Info State Virginia Program Type Leasing Program Provider Virginia Department of the Treasury The [http://www.trs.virginia.gov/debt/MELP%20Guides.aspx Master Equipment Leasing Program] (MELP) ensures that all Commonwealth agencies, authorities and institutions obtain consistent and competitive credit terms for financing equipment and energy efficiency projects. Agencies can finance energy projects at a minimum of $10,000 and can make repayments over 3, 5, 7 and 10 year terms. '''Qualifying Energy Projects''' Energy efficiency projects may include personal property, the installation or modification of an installation in a building, professional management,

167

Tax Credit for Renewable Energy Equipment Manufacturers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers Tax Credit for Renewable Energy Equipment Manufacturers < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate $20 million Program Info Expiration Date 1/1/2014 State Oregon Program Type Industry Recruitment/Support Rebate Amount 50% of eligible costs (10% per year for 5 years) Provider Oregon Business Development Department The Tax Credit for Renewable Energy Resource Equipment Manufacturing Facilities was enacted as a part of Oregon's Business Energy Tax Credit (BETC) in July 2007, with the passage of [http://www.leg.state.or.us/07reg/measpdf/hb3200.dir/hb3201.en.pdf HB

168

Validation of International Atomic Energy Agency Equipment Performance Requirements  

Science Conference Proceedings (OSTI)

Performance requirements and testing protocols are needed to ensure that equipment used by the International Atomic Energy Agency (IAEA) is reliable. Oak Ridge National Laboratory (ORNL), through the US Support Program, tested equipment to validate performance requirements protocols used by the IAEA for the subject equipment categories. Performance protocol validation tests were performed in the Environmental Effects Laboratory in the categories for battery, DC power supply, and uninterruptible power supply (UPS). Specific test results for each piece of equipment used in the validation process are included in this report.

Chiaro, PJ

2004-02-17T23:59:59.000Z

169

Covered Product Category: Imaging Equipment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Imaging Equipment Imaging Equipment Covered Product Category: Imaging Equipment October 7, 2013 - 10:58am Addthis Did you know? Manufacturers ship ENERGY STAR-qualified products with energy- saving power management features enabled. These features will substantially reduce energy use and related operating cost. Work with your IT staff to ensure these features are not overridden, or to re-enable them if they already have been. FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including imaging equipment, which is covered by the ENERGY STAR® program. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

170

Electrical Equipment Replacement: Energy Efficiency versus System Compatibility  

E-Print Network (OSTI)

Electrical equipment components are replaced every day because of failure, obsolescence, or upgrade. Because of technological gains, replacement components are typically more energy efficient than older equipment. Life cycle cost analyses encourage end users to select the most energy efficient equipment when replacing motors, motor drives, transformers, lamps, ballasts, etc., given costs associated with energy consumption when compared with installation. The selection of replacement parts that are compatible with existing system components and loads is critical. The purpose of this paper is to discuss fundamental electrical design principles often overlooked when replacing existing equipment with energy efficient models. NOTE: The views expressed in this paper are those of the author and do not necessarily reflect the views of the United States of America, the U. S. Department of Justice, or the Federal Bureau of Prisons.

Massey, G. W.

2005-01-01T23:59:59.000Z

171

Product Standards for Vending Equipment (Japan) | Open Energy Information  

Open Energy Info (EERE)

Product Standards for Vending Equipment (Japan) Product Standards for Vending Equipment (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Vending Equipment (Japan) Focus Area: Energy Efficiency Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_vending_machines_may2007.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-vending-equipment-j Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a guide in response to its newly established set of standards and labelling

172

Property:Incentive/EquipReqs | Open Energy Information  

Open Energy Info (EERE)

EquipReqs EquipReqs Jump to: navigation, search Property Name Incentive/EquipReqs Property Type Text Description Equipment Requirements. Pages using the property "Incentive/EquipReqs" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + New Construction and Retrofit/Renovation projects that reduce peak kW demand AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + See program web site AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Customer must accept recommendations from a tune-up analysis. AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + New Construction and Retrofit/Renovation projects that reduce peak kW demand AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + View program web site and contact AEP

173

Property Tax Exemption for Residential Renewable Energy Equipment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment Property Tax Exemption for Residential Renewable Energy Equipment < Back Eligibility Residential Savings Category Bioenergy Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Colorado Program Type Property Tax Incentive Rebate Amount 100% exemption for renewable energy system property Most locally assessed renewable energy property meet the criteria to be classified as personal property under § 39-1-102 (11), C.R.S. For Colorado property taxation purposes, solar energy facilities property used to produce two (2) megawatts or less of AC electricity and wind energy facilities property used to produce two (2) megawatts or less of AC

174

ARTI Refrigerant Database  

Science Conference Proceedings (OSTI)

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

Calm, J.M.

1992-04-30T23:59:59.000Z

175

Semantic search | Open Energy Information  

Open Energy Info (EERE)

Government Industrial Local Government Nonprofit State Government Agricultural Equipment Energy Mgmt. SystemsBuilding Controls Heat pumps Lighting Motor VFDs Motors Refrigerators...

176

Evaluation of design options for improving the energy efficiency of an environmentally safe domestic refrigerator-freezer  

SciTech Connect

In order to reduce greenhouse emissions from power plants and respond to regulatory actions arising from the National Appliance Energy Conservation Act (NAECA), several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as improved cabinet insulation and high-efficiency compressor and fans, were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system to produce a unit that is superior from an environmental viewpoint due to its lower energy consumption and the use of refrigerant HFC-134a as a replacement for CFC-12. Baseline energy performance of the original 1993 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model was used to evaluate the energy savings for several design modifications that, collectively, could achieve a targeted energy consumption of 1.00 kWh/d for a 20 ft{sup 3} (570 l) top-mount, automatic-defrost, refrigerator-freezer. The energy consumption goal represents a 50% reduction in the 1993 NAECA standard for units of this size. Following the modeling simulation, laboratory prototypes were fabricated and tested to experimentally verify the analytical results and aid in improving the model in those areas where discrepancies occurred. While the 1.00 kWh/d goal was not achieved with the modifications, a substantial energy efficiency improvement of 22% (1.41 kWh/d) was demonstrated using near-term technologies. It is noted that each improvement exacts a penalty in terms of increased cost or system complexity/reliability. Further work on this project will analyze cost-effectiveness of the design changes and investigate alternative, more-elaborate, refrigeration system changes to further reduce energy consumption.

Vineyard, E.A.; Sand, J.R. [Oak Ridge National Lab., TN (United States); Bohman, R.H.

1995-03-01T23:59:59.000Z

177

Energy Use of Residential Refrigerators and Freezers: Function...  

NLE Websites -- All DOE Office Websites (Extended Search)

These UAF functions were used to project energy use in the nearly 4,000 households in the 2005 Residential Energy Consumption Survey (RECS), a statistical...

178

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network (OSTI)

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water easy. Since refrigeration equipment runs more than heat pumps, energy savings can be large for ground-coupled refrigeration. The paper presents a design procedure for ground loops for heat pumps, hot water, ice machines, and water-cooled refrigeration. It gives an overview of the commercial ground-coupled systems in Louisiana that have both refrigeration and heat pumps. Systems vary from small offices to a three-story office building with 187 tons. A chain of hamburger outlets uses total ground-coupling in all of its stores. A grocery store has ground-coupling for heat pumps and refrigeration. Desuperheaters provide 80 percent of the hot water for a coin laundry in the same building. A comparison of energy costs in a bank with a ground-coupled heat pump system to a similar bank with air-conditioning and gas for heat revealed a 31 percent reduction in utility costs for the ground-coupled building. Two buildings of the Mississippi Power and Light Co. have ground-coupled heat pumps in one, and high efficiency air source heat pumps in the other. Energy savings in nine months was 60,000 kWh (25 percent), and electric peak demand was reduced 42 kW (35 percent).

Braud, H. J.

1986-01-01T23:59:59.000Z

179

China Refrigerator Information Label  

E-Print Network (OSTI)

LBNL-246E China Refrigerator Information Label: Specification Development and Potential Impact Jianhong Cheng China National Institute of Standardization Tomoyuki Sakamoto The Institute of Energy

180

Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility: Building 382 Rev. 1, 02/11/00 Facility: Building 382 Rev. 1, 02/11/00 Training: (1) ESH114 Lockout/Tagout ASD125 APS LOTO ESH371 Electrical Safety - General ESH195 PPE ESH141 Hand and Power Tools (2) ESH707 Accelerator Worker ESH738 GERT (3) ESH196 Hazard Communication ESH376 or 456 Chemical Waste (4) ASDSF6 (5) ESH170 OSHA Lead Standard ESH196 Hazard Communication ESH195 PPE ESH141 Hand and Power Tools (6) ESH195 PPE ESH141 Hand and Power Tools (7) Informal OJT (8) Formal OJT Management Tools: (A) ANL-E ESH Manual SMART (B) APS-SAD APS-CO (C) Waste Handling Procedure Manual Equipment Hazards Engineered Controls Electrical Safety Training References Electrical Safety Procedures Mechanical Safety Training References Mechanical

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar & Wind Equipment Certification (Arizona) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

182

Commercial Cooking Equipment | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History View New Pages...

183

Solar and Wind Equipment Sales Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Wind Equipment Sales Tax Exemption Solar and Wind Equipment Sales Tax Exemption Solar and Wind Equipment Sales Tax Exemption < Back Eligibility Commercial General Public/Consumer Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Maximum Rebate No maximum Program Info Start Date 1/1/1997 Expiration Date 12/31/2016 State Arizona Program Type Sales Tax Incentive Rebate Amount 100% of sales tax on eligible equipment Provider Arizona Department of Revenue Arizona provides a sales tax exemption* for the retail sale of solar energy devices and for the installation of solar energy devices by contractors.

184

Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficient Equipment Commercial Energy Efficient Equipment Rebate Program Southwest Gas Corporation - Commercial Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate General: 50% of purchase price Custom: $20,000 Program Info Expiration Date 12/15/2013 State Nevada Program Type Utility Rebate Program Rebate Amount Air Curtain: $1,950 Modulating Burner Control: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Clothes Dryer: $30 Custom: $1/therm up to $20,000 Convection Oven: $550 Conveyor Oven: $300-$750 Dishwasher: $1,050-$2,000 Energy Audit: $5,000/facility; $50,000/customer Furnace (Northern Nevada Only): $300-$500

185

Orange County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange County REMC - Energy Efficient Equipment Rebate Program Orange County REMC - Energy Efficient Equipment Rebate Program Orange County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Electric Water Heaters: $25 - $150 Hybrid Heat Pump Water Heater: $300 - $400 Central Air Conditioning: $100 - $200 Air-Source Heat Pumps: $200 - $800 Geothermal Heat Pumps: $1,000 ETS Systems: varies CFL bulbs: see program web site Provider Orange County REMC Orange County REMC offers incentives for members to improve the energy

186

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

been required to comply with the Department of Energy's (DOE) energy conservation standards for refrigerated beverage vending machines since 2012. Refrigerated beverage vending...

187

ARTI refrigerant database  

Science Conference Proceedings (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

Calm, J.M.

1997-02-01T23:59:59.000Z

188

Kentucky Utilities Company - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. Rebates are offered for refrigerators and freezers, clothes...

189

Categorical Exclusion Determinations: Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment CX(s) Applied: B5.1 Date: 02062012 Location(s):...

190

Energy Performance Assessment for Equipment and Utility Systems: Third  

Open Energy Info (EERE)

Energy Performance Assessment for Equipment and Utility Systems: Third Energy Performance Assessment for Equipment and Utility Systems: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Assessment for Equipment and Utility Systems: Third Edition Focus Area: Energy Efficiency Topics: System & Application Design Website: www.emt-india.net/Book4/Book4.htm Equivalent URI: cleanenergysolutions.org/content/energy-performance-assessment-equipme Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Energy Standards,Upgrade Requirements" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

191

Foodservice Equipment Applications Handbook  

Science Conference Proceedings (OSTI)

A typical foodservice operation may spend 75 percent or more of its energy dollar to provide lighting, refrigeration, ventilation, and miscellaneous end uses. Performance characteristics and operational advantages make electricity an excellent option for powering major cooking equipment. This handbook describes the six most common types of major cooking appliances--griddles, fryers, broilers, ovens, ranges, and kettles--including typical applications and industry purchasing trends. Such information will ...

1996-03-26T23:59:59.000Z

192

Heating and Cooling System Support Equipment Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy Saver website for more information about thermostats and control systems in homes. Ducts Efficient and well-designed duct systems distribute air properly throughout a building, without leaking, to keep all rooms at a comfortable

193

Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Refrigerator 7: Refrigerator Recycling Evaluation Protocol Doug Bruchs and Josh Keeling, The Cadmus Group, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 7 - 1 Chapter 7 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 4 4 Gross Savings......................................................................................................................... 5

194

Appliance and Equipment Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance and Equipment Efficiency Standards Appliance and Equipment Efficiency Standards Appliance and Equipment Efficiency Standards < Back Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Rhode Island Program Type Appliance/Equipment Efficiency Standards Provider Rhode Island Office of Energy Resources '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will

195

Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis  

Science Conference Proceedings (OSTI)

The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

NONE

1995-07-01T23:59:59.000Z

196

Fluorescent refrigeration  

DOE Patents (OSTI)

Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

1995-09-05T23:59:59.000Z

197

Collecting Construction Equipment Activity Data from Caltrans Project Records  

E-Print Network (OSTI)

Industrial Law n and Garden Logging Military Tactical Support Misc. Portable Equipment Transport Refrigeration

Kable, Justin M

2008-01-01T23:59:59.000Z

198

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

washer Dishwashing Dishwasher Lighting Torchiere Spacea higher-efficiency dishwasher. ** This category does notPool pump Ceiling fan Dishwasher Torchiere Refrigerator Room

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

199

New Hampshire Electric Co-Op - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

air sealing, insulation, equipment thermostats and insulation, as well as the energy consumption of the home's refrigerator. The NHEC representative may recommend certain...

200

Louisville Gas and Electric - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. Rebates are offered for refrigerators and freezers, clothes...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: B5.1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment CX(s) Applied: B5.1 Date: 12062011 Location(s):...

202

Historic Energy Efficiency Rules Would Save Consumers Money and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improve energy efficiency standards for commercial refrigeration equipment, such as restaurant-size fridges or the deli case at a convenience store. This proposed rule could, if...

203

City of Tallahassee Utilities- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

City of Tallahassee Utilities (CTU) offers residential customers rebates for the purchase of ENERGY STAR appliances and heating and cooling equipment. Qualifying appliances include refrigerators,...

204

Energy efficiency standards for residential and commercial equipment: Additional  

NLE Websites -- All DOE Office Websites (Extended Search)

207 207 Energy Efficiency Standards for Residential and Commercial Equipment: Additional Opportunities Greg Rosenquist, Michael McNeil, Maithili Iyer, Steve Meyers, and Jim McMahon Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 September 2004 This work was supported by the National Commission on Energy Policy through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Table of Contents 1. Introduction........................................................................1 2. Products Considered..............................................................2 3. Technology Cost-Efficiency Analysis...........................................3

205

Nanjing First Second Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Power Equipment Co Ltd Power Equipment Co Ltd Jump to: navigation, search Name Nanjing First Second Power Equipment Co Ltd Place Nanjing, Jiangsu Province, China Zip 210032 Sector Solar, Wind energy Product Nanjing-based manufacturer of inverters for wind and solar power. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Zhangjiakou Kunyuan Wind Power Equipment Co | Open Energy Information  

Open Energy Info (EERE)

Zhangjiakou Kunyuan Wind Power Equipment Co Zhangjiakou Kunyuan Wind Power Equipment Co Jump to: navigation, search Name Zhangjiakou Kunyuan Wind Power Equipment Co Place Zhangjiakou, Hebei Province, China Sector Wind energy Product Zhangjiakou-based wind turbine blade producer. Coordinates 40.812511°, 114.878326° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.812511,"lon":114.878326,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Nantong Hongbo Windpower Equipment Co Ltd HWE | Open Energy Information  

Open Energy Info (EERE)

Hongbo Windpower Equipment Co Ltd HWE Hongbo Windpower Equipment Co Ltd HWE Jump to: navigation, search Name Nantong Hongbo Windpower Equipment Co Ltd (HWE) Place Nantong, Jiangsu Province, China Zip 226371 Sector Wind energy Product Wind turbine tower producer. Coordinates 32.087399°, 121.062218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.087399,"lon":121.062218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Foshan Dongxing Fengying Wind Power Equipment Co Ltd | Open Energy  

Open Energy Info (EERE)

Foshan Dongxing Fengying Wind Power Equipment Co Ltd Foshan Dongxing Fengying Wind Power Equipment Co Ltd Jump to: navigation, search Name Foshan Dongxing Fengying Wind Power Equipment Co Ltd Place Foshan, China Zip 528000 Sector Wind energy Product Foshan-based wind turbine manufacturer. Coordinates 23.035509°, 113.110611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.035509,"lon":113.110611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Jiangsu Guoshen Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guoshen Wind Power Equipment Co Ltd Guoshen Wind Power Equipment Co Ltd Jump to: navigation, search Name Jiangsu Guoshen Wind Power Equipment Co Ltd Place Yancheng, Jiangsu Province, China Sector Wind energy Product Funing-based wind tower producer. Coordinates 33.583°, 113.983009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.583,"lon":113.983009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

A study of industrial equipment energy use and demand control  

E-Print Network (OSTI)

Demand and duty factors were measured for selected equipment [air compressors, electric furnaces, injection-molding machines, a welder, a granulator (plastics grinder), a sheet metal press and brake, a lathe, a process chiller, and cooling tower pumps and fans] in two industrial plants. Demand factors for heavily loaded air compressors were found to be near 100 %, for lightly loaded centrifugal equipment (lathe, sheet metal shear and brake, and granulator) near 10 %, and for injection-molding machines near 50 %. The measured demand factors differ from those often estimated during energy surveys. Duty factors for some equipment were found to exceed 100 %, showing that some loads were on for longer periods than that indicated by plant personnel. Comparing a detailed summary of equipment rated loads to annual utility bills, when measurements are not available, can prevent over-estimation of the demand and duty factors for a plant. Raw unadjusted estimates of demand factors of 60 % or higher are often made, yet comparisons of rated loads to utility bills show that some equipment demand factors may be 50 % or less. This project tested a simple beacon alerting system, which used a blue strobe light to alert plant personnel when a preset demand limit had been reached. Tests of load shedding verified that the estimated demand savings of 50 kVA were realized (out of a total demand of almost 1200 kVA) when lighting and air conditioning loads were turned off.

Dooley, Edward Scott

2001-01-01T23:59:59.000Z

211

PhD student in Energy Technology, specifically in Magnetic Refrigeration The School of Industrial Engineering and Management at the Royal Institute of  

E-Print Network (OSTI)

PhD student in Energy Technology, specifically in Magnetic Refrigeration Processes The School Technology, specifically Magnetic Refrigeration Processes. KTH is the largest technical university in Sweden and the environment. Core knowledge areas include energy technology, industrial design and innovation, product

Kazachkov, Ivan

212

Nanjing Sunec Wind Generator Equipment Factory | Open Energy Information  

Open Energy Info (EERE)

Sunec Wind Generator Equipment Factory Sunec Wind Generator Equipment Factory Jump to: navigation, search Name Nanjing Sunec Wind Generator Equipment Factory Place Nanjing, Jiangsu Province, China Zip 211100 Sector Wind energy Product A Chinese manufacturer for power supply, grid automation equipment and small-to-medium wind turbines, as well as a wind project developer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Energy Efficient Equipment Product Model Listings | Open Energy...  

Open Energy Info (EERE)

appliance models. Products are identified as ENERGY STAR qualified andor regulated in Canada under the Energy Efficiency Regulations. Many products can carry an EnerGuide label,...

214

Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Equipment Manufacturing Co Ltd Equipment Manufacturing Co Ltd Jump to: navigation, search Name Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place Yinchuan, Ningxia Autonomous Region, China Sector Wind energy Product Subsidiary of Nordex that manufactures its MW-class wind turbines in Yinchuan, China. Set-up through a JV between Nordex AG, Ningxia Electric Power, & Ningxia Tianjing Electric Energy. Coordinates 38.467899°, 106.262299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.467899,"lon":106.262299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network (OSTI)

of the tower An (earlier) alternative is to use a spray pond to cool water; disadvantages are a large areaRefrigerationRefrigerationRefrigeration coursecourse # 424503.0# 424503.0 v.v. 20122012 7. Air conditioning, cooling towersg, g Ron Zevenhoven ??bo, is the hi htemperature at which condensation begins when air is cooled at constant pressurecooled

Zevenhoven, Ron

216

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network (OSTI)

refrigeration processes (4 5) Vapor-compression refrigeration processes (4-5) Absorption refrigeration; Gas processing (O2, H2, CO2, LPG, LNG...) (3) Air conditioning, cooling towers, rg/pages/zon Air conditioning, cooling towers, food cooling and freezing (4) Heat pumps, heat pipes, special ww.sgisland.o p p

Zevenhoven, Ron

217

Baicheng Miracle Equipment Machinery Company Ltd | Open Energy Information  

Open Energy Info (EERE)

Machinery Company Ltd Machinery Company Ltd Jump to: navigation, search Name Baicheng Miracle Equipment Machinery Company Ltd Place Baicheng, Jilin Province, China Zip 137000 Sector Wind energy Product A wind equipment manufacturer, jointly established by Jiangsu Miracle Logistics System Engineering Ltd and Baicheng Tongye Ltd. Coordinates 45.234879°, 123.065598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.234879,"lon":123.065598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

219

News From the D.C. Office: Energy-Efficient Office Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

From the D.C. Office Energy-Efficient Office Equipment Around the World... Energy consumption from office-equipment use continues to grow unabated because of the strong growth...

220

After-hours power status of office equipment and energy use of miscellaneous plug-load equipment  

E-Print Network (OSTI)

industrial refrigerator, S freezer incandescent tracklight, 50 lamps each phone/PBX centrex system coffee maker, residential model microwave oven

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret; Busch, John F.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open Energy  

Open Energy Info (EERE)

Tianxiang Wind Equipments Manufacturing Co Ltd Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product Liaoning Province-based JV and manufacturer of rotor blades, hubs, nacelle covers, and other key components for wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Harbin Wind Power Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Harbin Wind Power Equipment Company Jump to: navigation, search Name Harbin Wind Power Equipment...

223

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

Southern California Edison (2007). DR Strategies for Coldof Southern California Edison Refrigerated Warehouses byTable 5. Southern California Edison Commercial Cold Storage

Lekov, Alex

2009-01-01T23:59:59.000Z

224

ARTI Refrigerant Database  

SciTech Connect

The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

1993-04-30T23:59:59.000Z

225

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Certification of Commercial Heating, Ventilating, Air-Conditioning, Refrigeration, and Water Heating Equipment Sign up for e-mail updates on regulations for this and other products...

226

DOE Proposes Higher Efficiency Standards for Refrigerators  

Energy.gov (U.S. Department of Energy (DOE))

New Proposed Standards for Residential Refrigerators and Freezers to Lower Energy Use by as much as Twenty-Five Percent

227

Optimization of the Refrigerant Capacity in Multiphase ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title, Optimization of the Refrigerant Capacity in Multiphase Magnetocaloric Materials.

228

NICE3: Industrial Refrigeration System  

SciTech Connect

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

229

NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)  

SciTech Connect

This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

Not Available

2012-07-01T23:59:59.000Z

230

After-hours power status of office equipment and energy use of miscellaneous plug-load equipment  

Science Conference Proceedings (OSTI)

This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

2004-05-27T23:59:59.000Z

231

ARTI Refrigerant Database  

Science Conference Proceedings (OSTI)

The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

Calm, J.M.

1992-11-09T23:59:59.000Z

232

Semiconductor Equipment and Materials International SEMI | Open Energy  

Open Energy Info (EERE)

Semiconductor Equipment and Materials International SEMI Semiconductor Equipment and Materials International SEMI Jump to: navigation, search Name Semiconductor Equipment and Materials International (SEMI) Place San Jose, California Zip 95134 2127 Product Global trade association, publisher and conference organiser representing the semiconductor and flat panel display equipment manufacturers. References Semiconductor Equipment and Materials International (SEMI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Semiconductor Equipment and Materials International (SEMI) is a company located in San Jose, California . References ↑ "Semiconductor Equipment and Materials International (SEMI)" Retrieved from "http://en.openei.org/w/index.php?title=Semiconductor_Equipment_and_Materials_International_SEMI&oldid=350739

233

Appliance/Equipment Efficiency Standards | Open Energy Information  

Open Energy Info (EERE)

Appliance/Equipment Efficiency Standards Appliance/Equipment Efficiency Standards Jump to: navigation, search Many states have established minimum efficiency standards for certain appliances and equipment. In these states, the retail sale of appliances and equipment that do not meet the established standards is prohibited. The federal government has also established efficiency standards for certain appliances and equipment. When both the federal government and a state have adopted efficiency standards for the same type of appliance or equipment, the federal standard overrides the state standard even if the state standard is stricter. [1] Appliance/Equipment Efficiency Standards Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Appliance Efficiency Regulations (California) Appliance/Equipment Efficiency Standards California Yes

234

Definition: Diagnosis & Notification Of Equipment Condition | Open Energy  

Open Energy Info (EERE)

Diagnosis & Notification Of Equipment Condition Diagnosis & Notification Of Equipment Condition Jump to: navigation, search Dictionary.png Diagnosis & Notification Of Equipment Condition Diagnosis and notification of equipment condition is defined as on-line monitoring and analysis of equipment, its performance, and operating environment in order to detect abnormal conditions (e.g., high number of equipment operations, temperature, or vibration). Asset managers and operations personnel can then be automatically notified to respond to conditions that increase the probability of equipment failure.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Functions' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Diagnosis_%26_Notification_Of_Equipment_Condition&oldid=502541"

235

News From the D.C. Office: Energy-Saving Office Equipment, Part...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial view of Washington D.C. News From the D.C. Office Energy-Saving Office Equipment, Part 1 More on the DC Office efficiency up-grade: Lighting, Office Equipment: Part 2...

236

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

237

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

238

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) April 25, 2013 DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Duracold Refrigeration Manufacturing. Duracold Refrigeration Manufacturing: Order (2013-CE-5342) More Documents & Publications Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) North Star Refrigerator: Order (2013-CE-5355) Schott Gemtron: Order (2013-CE-5358

239

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

240

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network (OSTI)

.100.110.2 Typical refrigerant: R-134a, R- 600a and other hydrocarbons cture:http://1 Air-cooled condensing unit ncompressioisentropicwithprocess isentropicc realc t COP COP · The diagram gives some efficiency data from commercial vapour- 6 some efficiency data from commercial vapour compression refrigerators (T1 = TH, T2 = TL, data from 1976

Zevenhoven, Ron

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vaccine refrigerator testing. Final report  

SciTech Connect

For the Central American Health Clinic Project initiated in 1986, Sandia National Laboratories and the Florida Solar Energy Center recognized the need for a test and evaluation program for vaccine refrigeration systems. At the Florida Solar Energy Center, side-by-side testing of three photovoltaic powered vaccine refrigerators began in 1987. The testing was expanded in 1988 to include a kerosene absorption refrigerator. This report presents observations, conclusions, and recommendations derived from testing the four vaccine refrigeration systems. Information is presented pertaining to the refrigerators, photovoltaic arrays, battery subsystems, charge controllers, and user requirements. This report should be of interest to designers, manufacturers, installers, and users of photovoltaic-powered vaccine refrigeration systems and components.

Ventre, G.G. [Univ. of Central Florida, Orlando, FL (United States); Kilfoyle, D.; Marion, B. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

1990-06-01T23:59:59.000Z

242

CRAD, Equipment and Piping Labeling Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Equipment and Piping Labeling Assessment Plan Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance with DOE requirements.

243

MSA Apparatus Construction for Chemical Equipment Ltd | Open Energy  

Open Energy Info (EERE)

MSA Apparatus Construction for Chemical Equipment Ltd MSA Apparatus Construction for Chemical Equipment Ltd Jump to: navigation, search Name MSA Apparatus Construction for Chemical Equipment Ltd Place United Kingdom Sector Hydro, Hydrogen Product Supplies hydrogen reduction reactors or hydrogenation reactors for polysilicon production. References MSA Apparatus Construction for Chemical Equipment Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. MSA Apparatus Construction for Chemical Equipment Ltd is a company located in United Kingdom . References ↑ "MSA Apparatus Construction for Chemical Equipment Ltd" Retrieved from "http://en.openei.org/w/index.php?title=MSA_Apparatus_Construction_for_Chemical_Equipment_Ltd&oldid=34895

244

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Part A-1 of Title III (42 U.S.C. 6311-6317) establishes a similar program for ''Certain Industrial Equipment,'' which includes commercial refrigeration equipment. Amendments to...

245

Property:Building/SPBreakdownOfElctrcityUseKwhM2Refrigeration | Open Energy  

Open Energy Info (EERE)

Refrigeration Refrigeration Jump to: navigation, search This is a property of type String. Refrigeration Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Refrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 2.77390577084 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 37.1080462614 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.895094880057 + Sweden Building 05K0014 + 12.4536103016 + Sweden Building 05K0015 + 0.0 +

246

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

Design Essentials for Refrigerated Storage Facilities,the facility HVAC loads can be shed in non- essential areasfacility HVAC load by raising temperature set points in non-essential

Lekov, Alex

2009-01-01T23:59:59.000Z

247

International Refrigeration: Order (2012-CE-1510)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

248

Cospolich Refrigerator: Order (2013-CE-5314)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Cospolich Refrigerator Co, Inc. to pay a $8,000 civil penalty after finding Cospolich Refrigerator had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

249

Investigation of Chlorine-Free Refrigerants for Low-Temperature Supermarket Refrigeration  

Science Conference Proceedings (OSTI)

With the phaseout of chlorofluorocarbon (CFC) refrigerants, supermarkets are seeking a replacement for R-502, the refrigerant of choice for low-temperature (frozen food) refrigeration. EPRI has conducted field testing to characterize the performance of the new hydrofluorocarbon (HFC) nonchlorinated refrigerants replacements for R-502. Results showed that energy and demand savings can be obtained using these alternative refrigerants with zero ozone-depleting potential.

1996-08-10T23:59:59.000Z

250

Wind Measurement Equipment: Registration (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) Wind Measurement Equipment: Registration (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Department of Aeronautics All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be

251

Pollution Control Equipment Tax Deduction (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control Equipment Tax Deduction (Alabama) Pollution Control Equipment Tax Deduction (Alabama) Pollution Control Equipment Tax Deduction (Alabama) < Back Eligibility Commercial Construction Developer Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Corporate Tax Incentive The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable components or materials for use therein, that are located in Alabama and are acquired or constructed primarily for the control, reduction, or elimination of air, ground, or water pollution or radiological hazards where such pollution or

252

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

of Energy Efficiency and Renewable Energy. 2000. Screeningof Energy Efficiency and Renewable Energy. 2000. Screeningof Energy Efficiency and Renewable Energy. 2000. Screening

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

253

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Office of Energy Efficiency and Renewable Energy. 2000. Office of Energy Efficiency and Renewable Energy. 2000. Office of Energy Efficiency and Renewable Energy. 2000.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

254

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Domestic Appliances and Lighting (EEDAL '03). Turin, Italy.Devoted to Appliance and Lighting Standards. Energy andAppliances, Equipment, and Lighting Murakoshi, C. 1999.

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

255

Solar powered refrigeration apparatus  

SciTech Connect

Solar powered refrigeration apparatus is disclosed in which an absorption refrigeration system is operated directly by solar energy. One end of a heat pipe is thermally connected to the boiler of the absorption refrigeration system, and a solar collector is thermally coupled to the other remote end of the heat pipe. The heat pipe is a sealed, evacuated metal tube partially filled with water. The solar collector is a double walled glass vacuum tube with a central axial opening for accommodating the remote end of the heat pipe. Heat energy collected by the solar collector boils the water in the heat pipe to subsequently condense in the area of the boiler thus transferring heat energy along the heat pipe to the boiler. The heat pipe is installed sloping downwardly away from the boiler to permit the return of condensate down the pipe to the solar collector area thus permitting continuous operation.

Theakston, F.H.

1982-12-07T23:59:59.000Z

256

Agricultural Lighting and Equipment Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program Agricultural Lighting and Equipment Rebate Program < Back Eligibility Agricultural Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Varies according to technology; prescriptive and custom rebates available Provider Efficiency Vermont In Vermont, agricultural operations are eligible for prescriptive and customized incentives on equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting (free to $175 per fixture, depending on the type of fixture or lighting) and for a variety of equipment including plate coolers, variable speed milk transfer

257

Advanced Vacuum Clean Equipment Optimizer Ltd AVACO | Open Energy  

Open Energy Info (EERE)

Vacuum Clean Equipment Optimizer Ltd AVACO Vacuum Clean Equipment Optimizer Ltd AVACO Jump to: navigation, search Name Advanced Vacuum & Clean Equipment Optimizer Ltd (AVACO) Place Daegu, Daegu, Korea (Republic) Product Korean manufacturer of flat panel display equipments; makes sputtering equipment for cell manufacturing. Coordinates 35.88871°, 128.614868° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.88871,"lon":128.614868,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

China SC Exact Equipment Co LTD | Open Energy Information  

Open Energy Info (EERE)

SC Exact Equipment Co LTD SC Exact Equipment Co LTD Jump to: navigation, search Name China SC Exact Equipment Co., LTD Place Shenzhen, Guangdong Province, China Zip 518125 Sector Solar Product China-based Solar PV cell equipment manufacturer. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Varian Semiconductor Equipment Associates Inc VSEA | Open Energy  

Open Energy Info (EERE)

Varian Semiconductor Equipment Associates Inc VSEA Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name Varian Semiconductor Equipment Associates Inc (VSEA) Place Gloucester, Massachusetts Zip 1930 Sector Services Product Massachusetts-based, designs, manufactures, and services semiconductor processing equipment used in the fabrication of integrated circuits. Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Definition: Smart Appliances And Equipment (Customer) | Open Energy  

Open Energy Info (EERE)

Appliances And Equipment (Customer) Appliances And Equipment (Customer) Jump to: navigation, search Dictionary.png Smart Appliances And Equipment (Customer) Home appliances and devices (i.e., thermostats, pool pumps, clothes washers/dryers, water heaters, etc.) that use wireless technology (i.e., ZigBee) to receive real-time data from the AMI system to control or modulate their operation.[1] Related Terms advanced metering infrastructure, smart grid References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Smart_Appliances_And_Equipment_(Customer)&oldid=493118"

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ramgraber Semiconductor Equipment GmbH | Open Energy Information  

Open Energy Info (EERE)

Ramgraber Semiconductor Equipment GmbH Ramgraber Semiconductor Equipment GmbH Jump to: navigation, search Name Ramgraber Semiconductor Equipment GmbH Place Brunnthal, Germany Zip 85649 Sector Solar Product Makes semiconductor processing equipment, including solar cell manufacturing lines. Coordinates 48.006898°, 11.684687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.006898,"lon":11.684687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Adsorption Refrigeration System  

SciTech Connect

Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

Wang, Kai [ORNL; Vineyard, Edward Allan [ORNL

2011-01-01T23:59:59.000Z

263

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

cost of technologies providing higher energy efficiencycost of technologies providing higher energy efficiencydetermining energy cost savings associated with efficiency

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

264

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

in 1995: Characteristics, Energy Consumption, and EnergyBaseline Annual Energy Consumption: not available Baselinefor about 2% of the energy consumption by Air Distribution

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

265

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

266

Avista Utilities (Gas & Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates through...

267

Demand Response Opportunities in Industrial Refrigerated Warehouses in  

NLE Websites -- All DOE Office Websites (Extended Search)

Response Opportunities in Industrial Refrigerated Warehouses in Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California Publication Type Conference Paper LBNL Report Number LBNL-4837E Year of Publication 2011 Authors Goli, Sasank, Aimee T. McKane, and Daniel Olsen Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 08/2011 Conference Location Niagara Falls, NY Keywords market sectors, openadr, refrigerated warehouses Abstract Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

268

DOE/EA-1674: Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines (August 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines August 2009 16-i CHAPTER 16. ENVIRONMENTAL IMPACT ANALYSIS TABLE OF CONTENTS 16.1 INTRODUCTION ............................................................................................................ 16-1 16.2 AIR EMISSIONS ANALYSIS......................................................................................... 16-1 16.2.1 Air Emissions Descriptions................................................................................ 16-1 16.2.2 Air Quality Regulation....................................................................................... 16-3 16.2.3 Analytical Methods for Air Emissions

269

HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2  

E-Print Network (OSTI)

(Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) FactorsHANDLING FRESH FISH REFRIGERATION OF FISH - PART 2 UNITED STATES DEPARTMENT OF THE INTERIOR FISH 428 Washington 25, D, C. December 1956 REFRIGERATION OF FISH - PART TWO HANDLING FRESH FISH By Charles

270

EWEB - Existing Facilities Energy Efficiency Rebate Program ...  

Open Energy Info (EERE)

Lighting, Lighting ControlsSensors, Motors, Programmable Thermostats, Refrigerators, Windows, Vending Machine Controls, Commercial Cooking Equipment, Commercial Refrigeration...

271

Baoding Solar Thermal Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Equipment Company Equipment Company Jump to: navigation, search Name Baoding Solar Thermal Equipment Company Place Baoding, Hebei Province, China Sector Solar Product Solar water heating system manufacturer. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

PST Exemption on Renewable Energy Equipment (Prince Edward Island...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

which are exempt from provincial sales tax include: wind energy generating systems biogas energy generating systems ground-source or geothermal heat pump energy generating...

273

Get energy-related lab equipment for schools - ERLE  

Office of Scientific and Technical Information (OSTI)

Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Citations Database Energy Science and Technology Software Center E-print Network Information Bridge LEDP...

274

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

McMahon Environmental Energy Technologies Division LawrenceDepartment of Energy- Building Technologies Program, 2004.years): 14 Baseline Technology: 90 Energy Factor (EF), 50

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

275

Japanese refrigerators field testing  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, A.T.

1989-03-01T23:59:59.000Z

276

Japanese Refrigerators Field Testing.  

SciTech Connect

Residential refrigerators consume the equivalent of 1700 megawatts (MW) of baseload power in the Bonneville Power Administration (BPA) service area. Japanese manufacturers have designed refrigerator units that appear more energy efficient than some currently available American models. This report summarizes preliminary findings from field testing of 12 refrigerators of Japanese manufacture to evaluate annual kilowatt hour (kWh) use during actual operation. The units have also undergone laboratory testing sponsored by BPA at ETL Testing Laboratories, Inc. in Cortland, New York. A final report of the project -- due at the end of 1989 -- will correlate in detail the results of field and laboratory tests in comparison to performance ratings determined by the manufacturer.

Lou, Albert T.

1989-03-01T23:59:59.000Z

277

Harbin Hafei Winwind Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Hafei Winwind Wind Power Equipment Co Ltd Hafei Winwind Wind Power Equipment Co Ltd Jump to: navigation, search Name Harbin Hafei-Winwind Wind Power Equipment Co Ltd Place Harbin, Heilongjiang Province, China Zip 150060 Sector Services, Wind energy Product Manufacturer of wind turbines. Provides installation and after-sale services and technology support. References Harbin Hafei-Winwind Wind Power Equipment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Harbin Hafei-Winwind Wind Power Equipment Co Ltd is a company located in Harbin, Heilongjiang Province, China . References ↑ "Harbin Hafei-Winwind Wind Power Equipment Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Harbin_Hafei_Winwind_Wind_Power_Equipment_Co_Ltd&oldid=346385"

278

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Industrial Standards Committee American National Standards Institute Air-Conditioning and Refrigeration

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

279

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network (OSTI)

Industrial Standards Committee American National Standards Institute Air-Conditioning and Refrigeration

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

280

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

2000, U.S. Department of Energy. Washington, DC. Report No.professional.html> 8. Federal Energy Management Program,U.S. Department of Energy-Energy Information Administration,

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD-0003 / (RIN)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD-0003 DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD-0003 / (RIN) 1904-AC19 DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD-0003 / (RIN) 1904-AC19 In today's call we discussed the new CRE proposed standard and how ControlTec anti-sweat controls can help meet those standards without sacrificing equipment performance or integrity. We have a revolutionary product that is the only in the business that has built in Measurement & Verification (M&V). All other anti-sweat heater controls are old technology that has algorithm's to estimate store conditions inaccurately. EPCA Commercial Refrigeration Standards.pdf More Documents & Publications General Electric: ENERGY STAR Referral (PFSF5NFZ****) Docket No. EERE- 2008-BT-STD-0005, RIN 1904-AB57 Ex parte

282

CRIMM Energy-saving Magnetic Separation Equipment and ...  

Science Conference Proceedings (OSTI)

Symposium, Water and Energy in Mineral Processing. Presentation ... Opportunities to Reduce Energy and Water Intensity of Mining Operations Processing of...

283

Veeco Solar Equipment formerly Mill Lane Engineering | Open Energy  

Open Energy Info (EERE)

Veeco Solar Equipment formerly Mill Lane Engineering Veeco Solar Equipment formerly Mill Lane Engineering Jump to: navigation, search Name Veeco Solar Equipment (formerly Mill Lane Engineering) Place Lowell, Massachusetts Zip 1851 Sector Solar Product Mill Lane Engineering is a privately held Massachusetts corporation that designs, builds, and integrates custom solar equipment and flexible solar panel coating systems. Coordinates 43.33937°, -88.817939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.33937,"lon":-88.817939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

FirstEnergy (West Penn Power) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pumps: 250unit Chillers: 12.50-25ton Custom: 0.05kWh saved annually RefrigerationFood Service Equipment: Varies Provider FirstEnergy (West Penn Power)...

285

Energy Conservation Program: Energy Conservation Standards for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation Program: Energy Conservation Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers, Final Rule Title Energy Conservation Program: Energy...

286

TECHNICAL SUPPORT DOCUMENT: ENERGY CONSERVATION STANDARDS FOR CONSUMER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUPPORT DOCUMENT: ENERGY SUPPORT DOCUMENT: ENERGY CONSERVATION STANDARDS FOR CONSUMER PRODUCTS: REFRIGERATORS, FURNACES, AND TELEVISION SETS including Environmental Assessment (DOEIEA-0372) Regulatory Impact Analysis November 1988 U.S. Department of Energy Assistant Secretary, Conservation and Renewable Energy Building Equipment Division DOE/EA-0372 ONMENTAL ASSESSMENT FOR PROPOSED ENERGY 0NSERVATION STANDARDS FOR TWO TYPES OF CONSUMER PRODUCTS; REFRIGERATORS, REFRIGERATOR-FREEZERS, AND FREEZERS; SMALL GAS FURNACES; AND A PROPOSED 'NO STANDARD" STANDARD FOR TELEVISION SETS TRODUCTION AND SUMMARY his environmental assessment (EA) evaluates the environmental impacts lting from new or amended energy-efficiency standards for refrigerators, igerator-freezers, freezers, small gas furnaces, and television sets as mandated

287

TVA - Energy Right Solutions for Business (Alabama) | Open Energy...  

Open Energy Info (EERE)

Doors, Heat pumps, Lighting, Lighting ControlsSensors, Motors, Refrigerators, LED Exit Signs, Commercial Refrigeration Equipment, Food Service Equipment, LED Lighting...

288

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network (OSTI)

) and gives it off at higher ail.asp?article temperature (and pressure) and gives it off at higher temperature or no pressure changes Coolant for an engine: e:http://www 8.11.2012?bo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 32/64 pressure changes. Coolant for an engine: not a refrigerant

Zevenhoven, Ron

289

Appliance and Equipment Efficiency Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Standards Efficiency Standards Appliance and Equipment Efficiency Standards < Back Program Info State Arizona Program Type Appliance/Equipment Efficiency Standards Provider Arizona Department of Commerce '' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of products. In general, states which had set standards prior to federal action may enforce their own standards until the federal standards take effect. States that had not set standards prior to federal action must use the federal standards. This summary addresses (1) state appliance standards that will be in place until the federal standards take effect and (2) products for which the federal government is not currently developing an efficiency

290

GT Solar Technologies formerly GT Equipment Technologies | Open Energy  

Open Energy Info (EERE)

GT Solar Technologies formerly GT Equipment Technologies GT Solar Technologies formerly GT Equipment Technologies Jump to: navigation, search Name GT Solar Technologies (formerly GT Equipment Technologies) Place Merrimack, New Hampshire Zip 3054 Product US-based manufacturer of turnkey multicrystalline PV wafer, cell, and module fabrication lines; also offers EFG and dentritic growth furnaces. Coordinates 42.872517°, -71.490603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.872517,"lon":-71.490603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Special Audit Report on the Department of Energy's Arms and Military-type Equipment, IG-0385  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy memorandum DATE: February 1, 1996 REPLY TO ATTN TO: IG-1 SUBJECT: INFORMATION: "Special Audit Report on the Department of Energy's Arms and Military-Type Equipment" TO: The Secretary BACKGROUND: The Department of Energy is responsible for over 50 major facilities across the United States, many of which use and store nuclear and other sensitive materials. The Department maintains a large inventory of arms and military-type equipment to use in protecting its nuclear weapons, materials, facilities, and classified information against theft, sabotage, espionage, and terrorist activity. The Department's inventory of arms and military-type equipment included handguns, rifles, submachine guns, grenade

292

News From the D.C. Office: Energy-Saving Office Equipment Part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerial view of Washington D.C. 3 Aerial view of Washington D.C. News From the D.C. Office Energy-Saving Office Equipment Part 2: Making the "Virtual Office" Real More on the DC Office efficiency up-grade: Lighting, Office Equipment: Part 1 Regular readers of the Center for Building Science News know that energy-efficient lighting and office equipment can have significant environmental and economic benefits. Previous articles ("Monitored Savings from Energy-Efficient Lighting in D.C. Office" [Spring 1997, p. 3] and "Energy-Saving Office equipment" [Summer 1997, p. 3]) discussed these features of Berkeley Lab's Washington, D.C. office. The D.C. office also serves as a demonstration site for telecommunications technologies, which have energy and environmental benefits of their own.

293

Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. The meeting took place on Thursday January 5 th , 2012 from 2pm to 3-pm. The following topics were discussed. 1.) Sell-Through. HARDI asked for clarification on the DOE's notation on the Framework Document

294

EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations  

E-Print Network (OSTI)

7 Variable Refrigerant Flowto EnergyPlus. Variable Refrigerant Flow Systems The ACMcapability to model variable refrigerant flow (VRF) systems

Hong, Tianzhen

2009-01-01T23:59:59.000Z

295

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

8 8 Commercial Refrigeration - Installed Base and Total Energy Consumption by Type Equipment Supermarket Refrigeration Systems Display Cases 2,100 214 Compressor Racks 140 373 Condensers 140 50 Walk-Ins 245 51 Walk-In Coolers and Freezers (Non-Supermarket) 755 148 Food Preperation and Service Equipment 1,516 55 Reach-In Refrigerators and Freezers 2,712 106 Beverage Merchandisers 920 45 Ice Machines 1,491 84 Refrigerated Vending Machines 3,816 100 Total 1225 Note(s): Source(s): Installed Total Energy Base (thousand) Consumption (TWh/yr) Energy consumption values have been rounded to the nearest whole number, and therefore the total does not exactly equal the sum of the energy consumption values for each equipment type. DOE/EERE/Navigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Table 3-1, p. 26

296

Multi-stage Cascaded Stirling Refrigerator  

NLE Websites -- All DOE Office Websites (Extended Search)

have developed a multi-stage refrigerator, designed to recapture and utilize the acoustic energy that would ordinarily be wasted in traditional Stirling configurations. Available...

297

Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 9, 2011 May 9, 2011 DOE Verification Program May 9, 2011 Ashley Armstrong US Department of Energy Reference: DOE Verification Testing in Support of ENERGY STAR Subject: Comments from Hobart, Div. ITW Food Equipment Group Dear Ms. Armstrong, Hobart/ITW Food Equipment Group has been working diligently with the US EPA through NAFEM to ensure that the ENERGY STAR enhancements are fair to Food Service Equipment manufacturers. One of the mainstays has always been that Commercial Food Service equipment should not be required to be verification tested by a third party laboratory. We firmly believe that the proven method of periodic inspections by third-party certification bodies is more than adequate for verifying compliance with energy consumption standards. To that end, we

298

Foreign-Made Energy Conservation Equipment in the U. S. Market  

E-Print Network (OSTI)

The huge jump in energy prices since the early 1970s has created a large market for energy-saving industrial equipment and systems in the U.S. In Europe and Japan, great emphasis has been placed on developing energy-efficient products and processes for many years. Therefore, as U.S. energy prices have risen to world levels, the cost-saving advantages of many types of energy-efficient foreign-made equipment have been given a substantial boost. Foreign suppliers have found large U.S. markets for both process-specific and wide application energy-efficient equipment in a number of industries and industrial applications. Industrial managers should not overlook this potential source of improved energy savings. The products and processes already in use in other countries can also be important sources of new ideas and hardware.

Exstrum, B. A.

1983-01-01T23:59:59.000Z

299

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

Science Conference Proceedings (OSTI)

Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

Goli, Sasank; McKane, Aimee; Olsen, Daniel

2011-06-14T23:59:59.000Z

300

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

Science Conference Proceedings (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use  

Science Conference Proceedings (OSTI)

Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

Potter, T.F.; Benson, D.K.

1991-01-01T23:59:59.000Z

302

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Refrigerators and Freezers Residential Refrigerators and Freezers Sign up for e-mail updates on regulations for this and other products Manufacturers have been required to comply with the Department of Energy's (DOE) energy conservation standards for residential refrigerators and freezers since 1990. Residential refrigerators and freezers include refrigerators, refrigerator-freezers, and freezers, such as standard-size residential units as well as compact units used in offices and dormitory rooms. Known collectively as "refrigeration products," these appliances chill and preserve food and beverages, provide ice and chilled water, and freeze food. The standard implemented in 1990 will save approximately 5.6 quads of energy and result in approximately $61.7 billion in energy bill savings for products shipped from 1990-2019. The standard will avoid about 312.4 million metric tons of carbon dioxide emissions, equivalent to the annual greenhouse gas emissions of about 61.3 million automobiles.

303

Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes  

E-Print Network (OSTI)

Demo: Organic Solar Cell-equipped Energy Harvesting Active Networked Tag (EnHANT) Prototypes Gerald their communications and networking parameters to the available environmental energy harvested by the organic solar harvesting, organic solar cells, ultra-low-power com- munications, ultra-wideband impulse radio, energy

Carloni, Luca

304

High Efficiency Low Emission Supermarket Refrigeration Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies.

305

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

buildings/appliance_standards/residential/ac_central.html>LBNL-56207 Energy Efficiency Standards for Residential andLevels for Upgraded Standards....8 6. Estimation of

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

306

Duke Energy - Heating & Cooling Equipment Loan Program (North...  

Open Energy Info (EERE)

Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Active Incentive No Implementing Sector Utility Energy Category...

307

Duke Energy - Heating & Cooling Equipment Loan Program (South...  

Open Energy Info (EERE)

Air conditioners, CaulkingWeather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs Active Incentive No Implementing Sector Utility Energy Category...

308

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

E-Print Network (OSTI)

Department of Energy. Washington, DC. Report No. LBNL-47463.Expenditures, October, 1998. Washington, DC. Report No. DOE/Program (CLASP). Washington, DC. (Table 2-1). Report No.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-01-01T23:59:59.000Z

309

Interstate Power and Light (Alliant Energy) - Farm Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Farm Energy Audit: Free Automatic Milker Takeoffs: 5cow Dairy Scroll Compressor: 250 Heat...

310

Energy Basics: Supporting Equipment for Heating and Cooling Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Heating and Cooling Systems Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat...

311

Energy Equipment Choices: Fuel Costs and Other Determinants  

U.S. Energy Information Administration (EIA)

Price data and projections for electricity and gas for each of the nine U.S. Census divisions from 1990 through 2010, taken from the Annual Energy Outlook

312

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

results. Download CX-004168: Categorical Exclusion Determination Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus CX(s) Applied: A1, A9,...

313

DOE Closes Investigation of Arcelik's Blomberg Refrigerator | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arcelik's Blomberg Refrigerator Arcelik's Blomberg Refrigerator DOE Closes Investigation of Arcelik's Blomberg Refrigerator September 1, 2010 - 4:37pm Addthis The Department of Energy has closed its investigation into the energy efficiency of Arcelik's Blomberg refrigerator-freezer model # BRFB1450. The Department opened this investigation based on a complaint. DOE subpoenaed information from Arcelik, reviewed Arcelik's response, and performed its own testing of this model. Based on our investigation and test results, DOE has determined this model to be compliant with federal energy conservation standards. Notice of Compliance Determination Addthis Related Articles DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations DOE Closes Investigation of Whirlpool's Maytag Refrigerator

314

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

315

Saving Energy in the Office with IT Equipment  

E-Print Network (OSTI)

, physics, learning, .... #12;#12;State of the art method Boykov et al., Fast Approximate Energy to apply digital makeup to Brad Pitt in Interview with a Vampire. #12;Image Editing: Snakes, Intelligent

Ford, James

316

Baoding Hengyi Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source...

317

Commercial and Industrial Prescriptive Rebates | Open Energy...  

Open Energy Info (EERE)

Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Refrigerators, Roofs, LED Exit Signs, Commercial Refrigeration Equipment, Food Service Equipment, Room Air...

318

Electric Efficiency Standard (Indiana) | Open Energy Information  

Open Energy Info (EERE)

Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Refrigerators, Roofs, LED Exit Signs, Commercial Refrigeration Equipment, Food Service Equipment, Room Air...

319

Baltimore Gas & Electric Company (Electric) - Commercial Energy...  

Open Energy Info (EERE)

Vending Machine Controls, Commercial Refrigeration Equipment, Food Service Equipment, LED Lighting, Reach-In Door Closer, ECM Evaporator Fan MotorController, Refrigerated...

320

Energy Market Profiles: Volume 1: 1995 Commercial Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the region, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how to best narrow a research focus. This study provides utility managers and decision makers with commercial market profiles for 10 regions in the United States. This report is available only to funders of Program 101A or 101.001. Funders ma...

1999-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Market Profiles: Volume 3: 1998 Industrial Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the region, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how best to narrow the research focus. This study provides utility managers and decision makers with industrial market profiles for 10 regions of the United States. This report is available only to funders of Program 101A or 101.001. Funders ...

1999-12-03T23:59:59.000Z

322

Energy Market Profiles: Volume 1: 1998 Commercial Buildings, Equipment, and Energy Use  

Science Conference Proceedings (OSTI)

Energy use and equipment profiles at the region, segment, and end-use levels provide key information required to lay the groundwork for major marketing decisions. These decisions include how desirable a market is for utility entry, how quickly to enter a market, and how best to narrow the research focus. This study provides utility managers and decision makers with commercial market profiles for 10 regions of the United States. This report is available only to funders of Program 101A or 101.001. Funders ...

1999-12-02T23:59:59.000Z

323

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

324

A New Absorption Cycle: The Single-Effect Regenerative Absoprtion Refrigeration Cycle  

E-Print Network (OSTI)

REGENERATIVE ABSORPTION REFRIGERATION CYCLE ABSTRACT A new absorption cycle , using heat as the energy

Dao, K.

2011-01-01T23:59:59.000Z

325

A field demonstration of energy conservation using occupancy sensor lighting control in equipment rooms  

SciTech Connect

The Pacific Northwest Laboratory identified energy savings potential of automatic equipment-room lighting controls, which was demonstrated by the field experiment described in this report. Occupancy sensor applications have gained popularity in recent years due to improved technology that enhances reliability and reduces cost. Automatic lighting control using occupancy sensors has been accepted as an energy-conservation measure because it reduces wasted lighting. This study focused on lighting control for equipment rooms, which have inherent conditions ideal for automatic lighting control, i.e., an area which is seldom occupied, multiple users of the area who would not know if others are in the room when they leave, and high lighting energy intensity in the area. Two rooms were selected for this study: a small equipment room in the basement of the 337 Building, and a large equipment area in the upper level of the 329 Building. The rooms were selected to demonstrate the various degrees of complexity which may be encountered in equipment rooms throughout the Hanford Site. The 337 Building equipment-room test case demonstrated a 97% reduction in lighting energy consumption, with an annual energy savings of $184. Including lamp-replacement savings, a total savings of $306 per year is offset by an initial installation cost of $1,100. The installation demonstrates a positive net present value of $2,858 when the lamp-replacement costs are included in a life-cycle analysis. This also corresponds to a 4.0-year payback period. The 329 Building equipment-room installation resulted in a 92% reduction in lighting energy consumption. This corresponds to annual energy savings of $1,372, and a total annual savings of $2,104 per year including lamp-replacement savings. The life-cycle cost analysis shows a net present value of $15,855, with a 5.8-year payback period.

Dagle, J.E.

1992-09-01T23:59:59.000Z

326

Compliance, Certification and Enforcement for US Appliance and Equipment Energy Efficiency Programs by US DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compliance, Certification and Enforcement Compliance, Certification and Enforcement for US Appliance and Equipment Energy Efficiency Programs by US DOE As the Department of Energy is ramping up its focus on energy-efficiency, the Office of the General Counsel is stepping up enforcement and verification efforts to ensure manufacturers meet the energy and water conservation standards expected of them and save energy for American consumers and businesses. Recent enforcement initiatives go beyond compliance with energy-efficiency standards. We are working to protect consumers through verification and supporting the enforcement of Energy Star specifications to ensure that manufacturers offer the energy savings they advertise. Enforcement initiatives include: * Conservation Standards Enforcement

327

(Small scale wind energy conversion programmatic equipment. Final report)  

SciTech Connect

The purpose of this project is to provide South Dakota citizens with a case study of the institutional and technical problems encountered in the installation, maintenance and use of a small wind energy system. The project will provide information on wind turbine reliability, maintenance requirements and power production to demonstrate the feasibility of small-scale wind energy conversion projects for South Dakota. The system was installed by vocational students and instructors at Mitchell Vocational School. It has been in operation since the fall of 1983.

Wegman, S.

1985-05-20T23:59:59.000Z

328

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment (RIN: 1904-AC19) EERE - Buildings Technology Program N/A DOE proposes to adopt amended energy conservation standards for commercial refrigeration equipment. The proposed standards consist of maximum daily energy consumption (MDEC) values as a function of either refrigerated volume or total display area (TDA). DOE proposes that the standards covered in this NOPR, if adopted, would apply to all equipment listed in Table I.1 of the NOPR and manufactured in, or imported into, the United States on or after 3 years after the publication date of the final rule, or January 1, 2016. B5.1 - Actions to conserve energy or water

329

Sales and Use Tax Exemption for Renewable Energy Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Equipment Renewable Energy Equipment Sales and Use Tax Exemption for Renewable Energy Equipment < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Retail Supplier State Government Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 7/1/2009 State Colorado Program Type Sales Tax Incentive Rebate Amount 100% Provider Colorado Department of Revenue Colorado exempts from the state's sales and use tax all sales, storage, and use of components used in the production of alternating current electricity from a renewable energy source. Effective July 1, 2009, through July 1, 2017, all sales, storage, and use of components used in solar thermal

330

Process and apparatus for conserving energy in laundry equipment  

SciTech Connect

In a tumbler type of dryer, particularly for large capacity commercial and institutional laundries, a heating control system is provided which is responsive to the rate of increase of temperature of hot air leaving the dryer. When this temperature increase exceeds a preselected rate the dryer control system is automatically instructed to shut off or diminish the hot air supply, as well as the tumbler operation if desired. Thus energy is not wastefully consumed after the laundry is already dry; on the other hand, the dryer does not prematurely shut down while laundry is still damp, whereby the dryer must be started up again and energy again is unnecessarily wasted. Different settings are selected in accordance with the characteristics of the type of laundry being processed.

Haried, J.C.

1981-05-19T23:59:59.000Z

331

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

332

Estimates of Refrigerator Loads in Public Housing Based on Metered Consumption Data  

SciTech Connect

The New York Power Authority (NYPA), the New York City Housing Authority (NYCHA), and the U.S. Departments of Housing and Urban Development (HUD) and Energy (DOE) have joined in a project to replace refrigerators in New York City public housing with new, highly energy-efficient models. This project laid the ground work for the Consortium for Energy Efficiency (CEE) and DOE to enable housing authorities throughout the United States to bulk-purchase energy-efficient appliances. DOE helped develop and plan the program through the ENERGY STAR@ Partnerships program conducted by its Pacific Nofiwest National Laboratory (PNNL). PNNL was subsequently asked to conduct the savings evahations for 1996 and 1997. PNNL designed the metering protocol and occupant survey, supplied and calibrated the metering equipment, and managed and analyzed the data. The 1996 metering study of refrigerator energy usage in New York City public housing (Pratt and Miller 1997) established the need and justification for a regression-model-based approach to an energy savings estimate. The need originated in logistical difficulties associated with sampling the population and pen?orming a stratified analysis. Commonly, refrigerators[a) with high representation in the popula- tion were missed in the sampling schedule, leaving significant holes in the sample and difficulties for the stratified anrdysis. The just{jfcation was found in the fact that strata (distinct groups of identical refrigerators) were not statistically distinct in terms of their label ratio (ratio of metered consumption to label rating). This finding suggested a general regression model could be used to represent the consumption of all refrigerators in the population. In 1996 a simple two-coefficient regression model, a function of only the refrigerator label rating, was developed and used to represent the existing population of refrigerators. A key concept used in the 1997 study grew from findings in a small number of apartments metered in 1996 with a detailed protocol. Fifteen-minute time-series data of ambient and compartment temperatures and refrigerator power were analyzed and demonstrated the potential for reducing power records into three components. This motivated the development of an analysis process to divide the metered consumption into baseline load, occupant-associated load, and defrosting load. The baseline load is the consumption that would occur if the refrigerator were on but had no occupant usage load (no door- opening events) and the defrosting mechanism was disabled. The motivation behind this component reduction process was the hope that components could be more effectively modeled than the total. We reasoned that the components would lead to abetter (more general and more significant) understanding of the relationships between consumption, the characteristics of the refrigerator, and its operating environment.

JD Miller; RG Pratt

1998-09-11T23:59:59.000Z

333

List of Dishwasher Incentives | Open Energy Information  

Open Energy Info (EERE)

Dishwasher Incentives Dishwasher Incentives Jump to: navigation, search The following contains the list of 364 Dishwasher Incentives. CSV (rows 1 - 364) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Alabama - Residential Energy-Efficient Appliance Rebate Program (Alabama) State Rebate Program Alabama Residential Clothes Washers Dishwasher Refrigerators No Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program Alaska Residential Clothes Washers

334

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network (OSTI)

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration Machine or the Absorption Chiller provided with heat from Combined Heat and Power Plants - has the lowest primary energy consumption at what load level. For low levels this is direct cooling. If demand exceeds the capacity of direct cooling, the absorption chiller is the option to choose. However, in future the compression refrigeration machine is more efficient at providing high load levels than the Absorption Chiller. The operation analysis shows that flow rates are often held constant and the re-cooling temperatures are often above the ambient temperature. By the integration of automatic flow rate control and lowering the re-cooling temperature of the chillers, electricity consumption of pumps can be reduced and energy efficiency enhanced.

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

335

Adaptive Optimization of Central Chiller Plant Equipment Sequencing  

E-Print Network (OSTI)

Control strategies for plant engineering systems are a contemporary research topic of great interest. Their purpose is to provide control that adapts to changes in demand and other operating conditions in order to operate the system at maximum efficiency at all times. The U.S. Department of Energy (DOE) supports research on control models for energy-intensive industrial processes. Likewise, the National Science Foundation (NSF) recognizes the need to develop control algorithms for plant heating, ventilating, and air conditioning (HVAC) systems. In this research paper, a control algorithm was developed to select the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipment sequence to reflect changes in the plant's cooling load and outside air conditions and it insures that the central refrigeration system operates with the lowest possible energy cost at all times.

Fiorino, D. P.; Priest, J. W.

1987-09-01T23:59:59.000Z

336

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

Hong, Tainzhen

2010-01-01T23:59:59.000Z

337

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Refrigerators and Freezers Test Procedure Sign up for e-mail updates on regulations for this and other products The Energy Department is conducting a rulemaking to...

338

Superinsulation in refrigerators and freezers  

SciTech Connect

The results presented here were obtained during Phase 4 of the first CRADA, which had the specific objective of determining the lifetime of superinsulations when installed in simulated refrigerator doors. The second CRADA was established to evaluate and test design concepts proposed to significantly reduce energy consumption in a refrigerator-freezer that is representative of approximately 60% of the US market. The stated goal of this CRADA is to demonstrate advanced technologies which reduce, by 50%, the 1993 National Appliance Energy Conservation Act (NAECA) standard energy consumption for a 20 ft{sup 3} (570 L) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction of efficient appliances by demonstrating design changes that can be effectively incorporated into new products. In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy consumption of 1.413 kWh/d [Vineyard, et al., 1995]. Following discussions with an advisory group comprised of all the major refrigerator-freezer manufacturers, several options were considered for the Phase 2 effort, one of which was cabinet heat load reductions.

Vineyard, E.; Stovall, T.K.; Wilkes, K.E.; Childs, K.W.

1998-02-01T23:59:59.000Z

339

DOE Resolves Avanti Refrigerator and Freezer Civil Penalty Case  

Energy.gov (U.S. Department of Energy (DOE))

Today, the Department of Energy announced that it has resolved thecivil penalty action against Mackle Company for its failure to certify that refrigerators and refrigerator-freezers sold under the...

340

VEE-0079 - In the Matter of Diversified Refrigeration, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

Diversified Refrigeration, Inc. (DRI) requests a six-month exception from the 2001 energy appliance efficiency standards for built-in refrigerators that become effective July 1, 2001. As explained...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)  

SciTech Connect

This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

Deru, M.

2011-02-01T23:59:59.000Z

342

Refrigeration needs for sustainable preservation of horticultural products  

Science Conference Proceedings (OSTI)

Fresh horticultural products are highly perishable and need refrigeration for further preservation. Refrigeration needs energy consumption with consequent economical cost and damage for the environment. The objective of the present work was to use efficiently ... Keywords: energy efficiency, food salads, halophytes, postharvest technologies, refrigeration, safe food, sustainability

Custdia Gago; Ana Rita Sousa; Miriam Julio; Graa Miguel; Dulce Antunes; Thomas Panagopoulos

2011-02-01T23:59:59.000Z

343

Buildings Energy Data Book: 5.7 Appliances  

Buildings Energy Data Book (EERE)

Equipment 4% Total Source(s): 1.23 Quad DOEEERENavigant Consulting, Energy Savings Potential and R&D Opportunities for Commercial Refrigeration, Sept. 2009, Figure 1-2, p. 17...

344

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

by utility incentives and state business energy tax credits.by state business energy tax credits and utility incentives.

Lekov, Alex

2009-01-01T23:59:59.000Z

345

Comparison of Several Eco-Friendly Refrigeration Technologies  

E-Print Network (OSTI)

In this paper, the operation principles, thermodynamics characteristics, and technical practicability were compared between thermoelectric refrigeration, magnetic refrigeration and adsorption refrigeration. The TE refrigeration is the most well-developed, applicable and competitive technology. Three eco-friendly refrigeration systems are increasingly getting attention, especially in a day with increasingly energy and environmental crises. In summary, thermoelectric refrigeration possesses the following superiorities: a longer developmental period, more perfect techniques, increasing applications, a larger range of refrigerating capacity, and a better economic property in small refrigerating capacity. Thermoelectric refrigeration cannot be replaced in special fields, and its applications have received more and more attention in recovering waste heat. Magnetic refrigeration has been widely applied in lower temperature regions; its application in middle temperature regions is juvenile. In particular, there is no application of this technique in high temperature regions. Adsorption refrigeration is practical only in near room temperatures. Its advantage is that it can be used in some fields where conventional refrigeration cannot be applied, such as in the application of solar energy, geothermal energy, and other renewable energy, and the recovery of residual and waste heat.? Supported by the Young Foundation of Central South University of Forestry & Technology (06002A) The disadvantages are as follows: the cost is expensive, no practical technique is available at present, and thus, it possesses no general superiority versus other refrigeration technologies.

Tang, C.; Luo, Q.; Li, X.; Zhu, X.

2006-01-01T23:59:59.000Z

346

ARTI refrigerant database  

Science Conference Proceedings (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M.

1996-07-01T23:59:59.000Z

347

ARTI refrigerant database  

Science Conference Proceedings (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M. [Calm (James M.), Great Falls, VA (United States)] [Calm (James M.), Great Falls, VA (United States)

1999-01-01T23:59:59.000Z

348

ARTI refrigerant database  

Science Conference Proceedings (OSTI)

The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

Calm, J.M.

1996-11-15T23:59:59.000Z

349

End-Use Load and Consumer Assessment Program: Analysis of residential refrigerator/freezer performance  

SciTech Connect

The Bonneville Power Administration (Bonneville) is conducting a large end-use data acquisition program in an effort to understand how energy is utilized in buildings with permanent electric space heating equipment in the Pacific Northwest. The initial portion of effort, known as the End-Use Load and Consumer Assessment Program (ELCAP), was conducted for Bonneville by the Pacific Northwest Laboratory (PNL). The collection of detailed end-use data provided an opportunity to analyze the amount of energy consumed by both refrigerators and separate freezers units located in residential buildings. By obtaining this information, the uncertainty of long- term regional end-use forecasting can be improved and potential utility marketing programs for new appliances with a reduced overall energy demand can be identified. It was found that standby loads derived from hourly averages between 4 a.m. and 5 a.m. reflected the minimum consumption needed to maintain interior refrigerator temperatures at a steady-state condition. Next, an average 24-hour consumption that included cooling loads from door openings and cooling food items was also determined. Later, analyses were conducted to develop a model capable of predicting refrigerator standby loads and 24-hour consumption for comparison with national refrigerator label ratings. Data for 140 residential sites with a refrigeration end-use were screened to develop a sample of 119 residences with pure refrigeration for use in this analysis. To identify those refrigerators that were considered to be pure (having no other devices present on the circuit) in terms of their end-use classification, the screening procedure used a statistical clustering technique that was based on standby loads with 24-hour consumption. 5 refs., 18 figs., 4 tabs.

Ross, B.A.

1991-09-01T23:59:59.000Z

350

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Wine Chillers and Miscellaneous Refrigeration Products Standard Wine Chillers and Miscellaneous Refrigeration Products Standard Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is initiating a rulemaking to develop a potential test procedure and energy conservation standard for miscellaneous residential refrigeration products, which include wine chillers and other products that are not currently covered as residential refrigerators, refrigerator-freezers, or freezers. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document regarding energy conservation standards for residential wine chillers and other residential refrigeration products. 77 FR 7547 (February 13, 2012).

351

Energy Basics: Air Conditioning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to...

352

Figure 61. Efficiency gains for selected commercial equipment ...  

U.S. Energy Information Administration (EIA)

Efficiency gains for selected commercial equipment in three cases, 2040 ... Refrigeration Electric water heating Ventilation Lighting $4.74 $4.35 ...

353

Building Technologies Office: About the Appliance and Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

the Appliance and Equipment Standards Program the Appliance and Equipment Standards Program The Department of Energy (DOE) and the Buildings Technologies Office sets minimum energy efficiency standards for approximately 50 categories of appliances and equipment used in homes, businesses, and other applications, as required by existing law. The appliances and equipment covered provide services that are used by consumers and businesses each day, such as space heating and cooling, refrigeration, cooking, clothes washing and drying, and lighting. DOE's minimum efficiency standards significantly reduce U.S. energy demand, lower emissions of greenhouse gases and other pollutants, and save consumers billions of dollars every year, without lessening the vital services provided by these products. In addition, DOE implements laws designed to limit the water consumption of several plumbing products.

354

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

u COMMERCIAL REFRIGERATION STANDBY External power suppliesTV External Power Supply Standby Transformers Computers/SeHeat Pump Water Heater Standby TV Refrigerator Others* Air

Zhou, Nan

2010-01-01T23:59:59.000Z

355

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network (OSTI)

CL COMMERCIAL REFRIGERATION STANDBY External power suppliesTV, refrigerator, fans, standby, air conditioner, electricConditioner Diff 3.59E-04 The standby power consumption of

Zhou, Nan

2011-01-01T23:59:59.000Z

356

Residential Energy Efficiency Rebate Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Clothes Washers: $40-$75 Dehumidifiers: $25 Refrigerators: $50 Pool pumps: $200 Provider Efficiency Vermont Efficiency Vermont provides financial incentives for its residential customers to install energy efficient equipment in their homes. Eligible Energy Star equipment includes dehumidifiers (seasonal rebates), refrigerators, clothes washers, and swimming pool pumps. The website provides details on eligible makes and models as well as rebate application

357

Energy studies on central and variable refrigerant flow air-conditioning systems  

Science Conference Proceedings (OSTI)

Air-conditioning is a major contributor to energy end-use in commercial buildings. Different types of airconditioning systems are installed in commercial buildings including packaged systems

2012-01-01T23:59:59.000Z

358

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

Lekov, Alex

2009-01-01T23:59:59.000Z

359

Energy Intense Equipment Purchasing Behaviour: A Review of the Literature i How do consumers and firms purchase equipment  

E-Print Network (OSTI)

by Natural Resources Canada with maintaining an ongoing database of information in the field of equipment, this report is an attempt to synthesize the information in the database; it outlines the most important issues. ........................................................16 7. DOCUMENT AND DATABASE REFERENCESERROR! BOOKMARK NOT DEFINED. #12;How do consumers and firms

360

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Rebates Program Indiana Michigan Power offers rebates for HVAC equipment, variable frequency drives, commercial refrigeration equipments, food...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Japanese Refrigerators : A Field Performance Analysis : Summary Report.  

SciTech Connect

Society generally expects Japanese refrigerators to be more energy efficient than their American-made counterparts. With increasing attention being focused on appliance energy efficiency, research into operating characteristics of Japanese refrigerators has gained importance. Other projects report the monitored energy use of certain models of Japanese refrigerators. In addition, laboratory tests determined energy consumption of certain refrigerators under controlled conditions. In 1987, Bonneville Power Administration (BPA) undertook a project to measure and analyze the energy consumption of 12 Japanese-made refrigerators in the Portland-Vancouver metropolitan area. This project's purpose was to collect field data on certain models and compare with that collected in other projects and laboratory tests. Japanese energy consumption figures fall 30--40% below those of DOE. This energy savings, if real, could substantially cut baseload power for utilities. Determining typical refrigerator energy use patterns and which environmental factors effect them helps utilities to forecast demand. 7 refs., 1 fig., 1 tab.

Short, John A.

1990-02-01T23:59:59.000Z

362

International Refrigeration: Proposed Penalty (2012-CE-1510) | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

International Refrigeration: Proposed Penalty (2012-CE-1510) International Refrigeration: Proposed Penalty (2012-CE-1510) International Refrigeration: Proposed Penalty (2012-CE-1510) July 9, 2012 DOE alleged in a Notice of Proposed Civil Penalty that International Refrigeration Products failed to certify a various room air conditioners as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. International Refrigeration: Proposed Penalty (2012-CE-1510) More Documents & Publications

363

A compact rotating dilution refrigerator  

E-Print Network (OSTI)

We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 0.001 rad/s up to angular velocities in excess of 2.5 rad/s. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

Fear, M J; Chorlton, D A; Zmeev, D E; Gillott, S J; Sellers, M C; Richardson, P P; Agrawal, H; Batey, G; Golov, A I

2013-01-01T23:59:59.000Z

364

Air Conditioning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm...

365

Buildings consume 41% of the nation's primary energy, of which equipment uses 57% to provide comfortable indoor  

E-Print Network (OSTI)

Frigidaire, General Electric, and Whirlpool) controlled 95% of the domestic refrigerator- freezer (RF) market

Oak Ridge National Laboratory

366

Cospolich Refrigerator: Proposed Penalty (2013-CE-5314)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Cospolich Refrigerator Co, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

367

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

368

Kylteknik ("KYL")Kylteknik ("KYL") RefrigerationRefrigerationRefrigerationRefrigeration  

E-Print Network (OSTI)

task 37 ­ Energy from biogas and landfill gas. . . . . . . . . . . . . . . . . . 255 Enterprise-processing of biogas. . . . . . . . . . . . . . . . . . . . . . . . 259 Development of the logistical system for wood

Zevenhoven, Ron

369

Sound quality descriptors for HVAC equipment from ARI Standards  

Science Conference Proceedings (OSTI)

The Air Conditioning and Refrigeration Institute (ARI) has several standards that provide methods to evaluate the sound quality of heating ventilating and air?conditioning (HVAC) equipment. These include Standard 270 Sound rating of outdoor unitary equipment

2003-01-01T23:59:59.000Z

370

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Efficiency Determination Methods and Alternate Rating Methods Alternative Efficiency Determination Methods and Alternate Rating Methods Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is proposing to revise and expand its existing regulations governing the use of alternative efficiency determination methods (AEDM) and alternate rating methods (ARM) for covered products as alternatives to testing for the purpose of certifying compliance. Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a final rule revising its existing regulations governing the use of particular methods as alternatives to testing for commercial heating, ventilating, air conditioning, water heating, and refrigeration equipment. 78 FR 79579 (December 31, 2013).

371

Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Extremely Low-Energy Design Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility Preprint Rois Langner and Michael Deru National Renewable Energy Laboratory Alexander Zhivov, Richard Liesen, and Dale Herron U.S. Army Engineer Research and Development Center Presented at the 2012 ASHRAE Winter Conference Chicago, Illinois January 21-25, 2012 Conference Paper NREL/CP-5500-53810 March 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

372

High energy arcing fault fires in switchgear equipment : a literature review.  

SciTech Connect

In power generating plants, switchgear provide a means to isolate and de-energize specific electrical components and buses in order to clear downstream faults, perform routine maintenance, and replace necessary electrical equipment. These protective devices may be categorized by the insulating medium, such as air or oil, and are typically specified by voltage classes, i.e. low, medium, and high voltage. Given their high energy content, catastrophic failure of switchgear by means of a high energy arcing fault (HEAF) may occur. An incident such as this may lead to an explosion and fire within the switchgear, directly impact adjacent components, and possibly render dependent electrical equipment inoperable. Historically, HEAF events have been poorly documented and discussed in little detail. Recent incidents involving switchgear components at nuclear power plants, however, were scrupulously investigated. The phenomena itself is only understood on a very elementary level from preliminary experiments and theories; though many have argued that these early experiments were inaccurate due to primitive instrumentation or poorly justified methodologies and thus require re-evaluation. Within the past two decades, however, there has been a resurgence of research that analyzes previous work and modern technology. Developing a greater understanding of the HEAF phenomena, in particular the affects on switchgear equipment and other associated switching components, would allow power generating industries to minimize and possibly prevent future occurrences, thereby reducing costs associated with repair and downtime. This report presents the findings of a literature review focused on arc fault studies for electrical switching equipment. The specific objective of this review was to assess the availability of the types of information needed to support development of improved treatment methods in fire Probabilistic Risk Assessment (PRA) for nuclear power plant applications.

Nowlen, Steven Patrick; Brown, Jason W.; Wyant, Francis John

2008-10-01T23:59:59.000Z

373

Section 5.5.2 Food Service/Laundry Equipment: Greening Federal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Section DOEGO-102001-1165 NRELBK-710-29267 May 2001 96 5.5.2 Food ServiceLaundry Equipment REFRIGERATORS AND FREEZERS In commissaries, refrigerators and freezers can account for...

374

Defrost Temperature Termination in Supermarket Refrigeration Systems  

SciTech Connect

The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

2011-11-01T23:59:59.000Z

375

The Ghana Refrigerator Efficiency Initiative - An Overview of...  

NLE Websites -- All DOE Office Websites (Extended Search)

refrigeration services the most expensive of energy services in residential Ghanaian households, posing serious financial burden on households. --The problem that this project...

376

Purchase of newer refrigerators slows during economic downturn ...  

U.S. Energy Information Administration (EIA)

Sales data from the Association of Home Appliance ... Decreasing sales of new refrigerators means slower adoption of new energy-efficient technology and less ...

377

DOE Opens Three Investigations into Alleged Refrigerator Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that...

378

Many Small Consumers, One Growing Problem: Achieving Energy Savings for Electronic Equipment Operating in Low Power Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Consumers, One Growing Problem: Achieving Energy Savings Small Consumers, One Growing Problem: Achieving Energy Savings for Electronic Equipment Operating in Low Power Modes Christopher Payne, Lawrence Berkeley National Laboratory Alan Meier, International Energy Agency ABSTRACT An increasing amount of electricity is used by equipment that is neither fully "on" nor fully "off." We call these equipment states low power modes, or "lopomos." "Standby" and "sleep" are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10% of residential energy consumption. Lopomo energy consumption is

379

Energy Efficiency Services Sector: Workforce Size and Expectations for Growth  

E-Print Network (OSTI)

design specifications General contractors, builders, remodelers Equipment (e.g. , mechanical, electrical, lighting, and refrigeration)

Goldman, Charles

2010-01-01T23:59:59.000Z

380

Business Energy Efficiency Rebate (Offered by 11 Utilities) ...  

Open Energy Info (EERE)

Lighting ControlsSensors, Motor VFDs, Programmable Thermostats, Water Heaters, LED Exit Signs, Commercial Cooking Equipment, Commercial Refrigeration Equipment, Food...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Guide to Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a commercial work truck. Powering commercial lawn service equipment with alternative fuels is an effective way to reduce petroleum use. Alternative fuels can also reduce pollutant emissions compared with conventional fuels. Nu- merous biodiesel, compressed natural gas, electric, and propane

382

DOE/EA-1673: Environmental Assessment for Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment (July 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Environmental Assessment for 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment July 2009 8-i CHAPTER 8. ENVIRONMENTAL ASSESSMENT TABLE OF CONTENTS 8.1 INTRODUCTION ............................................................................................................... 8-1 8.2 AIR QUALITY ANALYSIS ............................................................................................... 8-1 8.3 AIR POLLUTANT DESCRIPTIONS ................................................................................ 8-1 8.4 AIR QUALITY REGULATIONS ...................................................................................... 8-3

383

HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment  

SciTech Connect

Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment' provides the deliverable leading into the Gate 3 'Scoping Assessment Screen'. This report is an example of a Stage 2 deliverable written to document the screening of options against the Gate 3 criteria and to support DOE decision making and option prioritization. The objective of this scoping assessment was to perform a transparent evaluation of the HVAC system options for NZEH based on the applying the Gate 3 criteria uniformly to all options.

Baxter, Van D [ORNL

2005-11-01T23:59:59.000Z

384

Optimal Performance of Quantum Refrigerators  

E-Print Network (OSTI)

A reciprocating quantum refrigerator is studied with the purpose of determining the limitations of cooling to absolute zero. We find that if the energy spectrum of the working medium possesses an uncontrollable gap, then there is a minimum achievable temperature above zero. Such a gap, combined with a negligible amount of noise, prevents adiabatic following during the demagnetization stage which is the necessary condition for reaching $T_c \\to 0$. The refrigerator is based on an Otto cycle where the working medium is an interacting spin system with an energy gap. For this system the external control Hamiltonian does not commute with the internal interaction. As a result during the demagnetization and magnetization segments of the operating cycle the system cannot follow adiabatically the temporal change in the energy levels. We connect the nonadiabatic dynamics to quantum friction. An adiabatic measure is defined characterizing the rate of change of the Hamiltonian. Closed form solutions are found for a const...

Feldmann, Tova

2009-01-01T23:59:59.000Z

385

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

1 1 Main Residential Heating Equipment as of 1987, 1993, 1997, 2001, and 2005 (Percent of Total Households) Equipment Type 1987 1993 1997 2001 2005 Natural Gas 55% 53% 53% 55% 52% Central Warm-Air Furnace 35% 36% 38% 42% 40% Steam or Hot-Water System 10% 9% 7% 7% 7% Floor/Wall/Pipeless Furnace 6% 4% 4% 3% 2% Room Heater/Other 4% 3% 4% 3% 3% Electricity 20% 26% 29% 29% 30% Central Warm-Air Furnace 8% 10% 11% 12% 14% Heat Pump 5% 8% 10% 10% 8% Built-In Electric Units 6% 7% 7% 6% 5% Other 1% 1% 2% 2% 1% Fuel Oil 12% 11% 9% 7% 7% Steam or Hot-Water System 7% 6% 5% 4% 4% Central Warm-Air Furnace 4% 5% 4% 3% 3% Other 1% 0% 0% 0% 0% Other 13% 11% 9% 8% 10% Total 100% 100% 100% 100% 100% Note(s): Source(s): Other equipment includes wood, LPG, kerosene, other fuels, and none. EIA, A Look at Residential Consumption in 2005, June 2008, Table HC2-4; EIA, A Look at Residential Energy Consumption in 2001, Apr. 2004, 'Table HC3-

386

ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade | Open Energy  

Open Energy Info (EERE)

ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade ZhongHang Baoding Huiteng Windpower Equipment Co Ltd HT Blade Jump to: navigation, search Name ZhongHang (Baoding) Huiteng Windpower Equipment Co Ltd (HT Blade) Place Baoding, Hebei Province, China Zip 71051 Sector Wind energy Product Leading supplier of wind turbine blades in China. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume III: Test protocol  

DOE Green Energy (OSTI)

The American Society of Mechanical Engineers' [ASME] Center for Research and Technology Development [CRTD] has been awarded a subcontract by the National Renewable Energy Laboratory [NREL] to demonstrate the technical performance and viability of flue gas temperature control in combination with dry acid gas reagent and activated carbon injection at an existing electrostatic precipitator [ESP] equipped municipal waste combustor [MWC]. The objective of this proof-of-concept demonstration test is to economically and reliably meet 40 CFR 60 Subpart Cb Emissions Guidelines for MWC's at existing ESP equipped facilities. The effort is being directed by a Subcommittee of tile ASME Research Committee on Industrial and Municipal Wastes [RCIMW] chaired by Dave Hoecke. Mr. Greg Barthold of ASME/CRTD is the Project Manager. ASME/CRTD contracted with Rigo & Rigo Associates, Inc. in cooperation with A.J. Chandler & Associates, Ltd. to be the Principal Investigator for the project and manage the day-t o-day aspects of the program, conduct the testing reduce and interpret the data and prepare the report. Testing will be conducted at the 2 by 210 TPD, ESP equipped MWC at the Davis County Resource Recovery Facility in Layton, Utah. The test plan calls for duplicate metals (Cd, Pb and Hg), dioxin and acid gas runs.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Inc., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

388

Building Technologies Office: Low-Global Warming Potential Refrigerants  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Global Warming Low-Global Warming Potential Refrigerants Research Project to someone by E-mail Share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Facebook Tweet about Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Twitter Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Google Bookmark Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Delicious Rank Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on Digg Find More places to share Building Technologies Office: Low-Global Warming Potential Refrigerants Research Project on AddThis.com... About Take Action to Save Energy

389

Development of Refrigerant Change Indicator and Dirty Air Filter Sensor  

Science Conference Proceedings (OSTI)

The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires intrusion into the system to measure the refrigerant high-side and low-side pressures. Once the pressures are known, based on the equipment's refrigerant charging chart? or in most cases, based on the technician's experience? the refrigerant charging status is determined. However, there is a catch: by the time a refrigeration technician is called, most of the refrigerant has already escaped into the atmosphere. The new technology provides a real-time warning so that when, say, 20% of the refrigerant has leaked, the equipment users will be warned, even though the equipment is still functioning properly at rated capacity. Temperature sensors are becoming very accurate and very low in cost, compared with pressure sensors. Using temperature sensors to detect refrigerant charge status is inherently nonintrusive, inexpensive, and accurate. With the addition of two temperature sensors for detecting dirty air filters, the capability of the diagnostic equipment is further enhanced with very little added cost. This report provides laboratory test data on the change of indoor coil refrigerant temperature and subcooling as a function of refrigerant charge for a 2-ton split heat pump system. The data can be used in designing the indicators for refrigerant loss and dirty air filter sensors.

Mei, V.

2003-06-24T23:59:59.000Z

390

Elastic Metal Alloy Refrigerants: Thermoelastic Cooling  

SciTech Connect

BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state materialan elastic shape memory metal alloyas a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

2010-10-01T23:59:59.000Z

391

Regenerator for Magnetic Refrigerants  

Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators.

392

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Refrigerated Beverage Vending Machines Energy Conservation Standards Refrigerated Beverage Vending Machines Energy Conservation Standards Sign up for e-mail updates on regulations for this and other products The Department of Energy (DOE) is considering amending energy conservation standards for refrigerated beverage vending machines (BVMs) as required by (42 U.S.C. 6295(m)(1)). Recent Updates | Public Meeting Information | Submitting Public Comments | Milestones and Documents | Related Rulemakings | Statutory Authority | Contact Information Recent Updates DOE published a notice of public meeting and availability of the framework document regarding energy conservation standards for refrigerated beverage vending machines. 78 FR 33262 (June 4, 2013). Public Meeting Information A public meeting was held on June 20, 2013.

393

Optimal Design Refrigeration System for a Mucilage Glue Fiber Factory  

E-Print Network (OSTI)

In a mucilage glue fiber factory, the design of the refrigeration system takes into account the characteristics of mucilage glue fiber production and fully uses the refrigeration compressor heat to economize energy and reduce the production cost. In this paper, the author introduces different points of this kind of design with conventional design. For efficient use of the compressed heat of the refrigeration system, the designer should calculate the number of condensers according to the changes that the refrigeration system undergoes after using the soft water as cooling water. To economize the investment, the designer should use the refrigeration workshop and the soft water workshop and obtain optimum processing to shorten the duct. Through an economizing energy analysis, the paper demonstrates that an optimum design for a refrigeration system for a mucilage glue factory has a significant energy saving potential.

Tan, C.; Liu, J.; Tang, F.; Liu, Y.

2006-01-01T23:59:59.000Z

394

Synergico: a new "Design for Energy Efficiency" Method enhancing the Design of more environmentally friendly Electr(on)ic Equipments  

E-Print Network (OSTI)

Synergico: a new "Design for Energy Efficiency" Method enhancing the Design of more environmentally efficient products and infrastructures. For the electr(on)ic industry, in-use energy consumption to the Design for Energy Efficiency of electr(on)ic equipments focusing on the use phase. This paper presents

Paris-Sud XI, Université de

395

LANSCE | Lujan Center | Ancillary Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ancillary Equipment Ancillary Equipment For general questions, please contact the Lujan Center Sample Environments responsible: Victor Fanelli | vfanelli@lanl.gov | 505.667.8755 Sample and Equipment Shipping Instructions For questions regarding shipping procedures, contact Lujan Center Experiment Coordinator: Leilani Conradson | leilani@lanl.gov | 505.665.9505 Low Temperature Equipment Specifications Flight Path/Instrument Compatibility Responsible Displex closed-cycle refrigerators Tmin= 4 K to 12 K Tmax= 300 K to 340 K 11 - Asterix 04 - HIPPO 03 - HIPD 10 - LQD 02 - SMARTS Victor Fanelli vfanelli@lanl.gov Or particular instrument scientist Top loading closed-cycle refrigerator T = 10 K to 500 K option of in situ gas adsorption cell 07 - FDS Luke Daemon lld@lanl.gov Monika Hartl hartl@lanl.gov

396

Managing EHS of PV-Related Equipment at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Managing environment, health, and safety (EHS) risks at a national laboratory, or university, can be intimidating to a researcher who is focused on research results. Laboratory research and development (R&D) operations are often driven by scientists with limited engineering support and lack well-refined equipment development resources. To add to the burden for a researcher, there is a plethora of codes, standards, and regulations that govern the safe installation and operation of photovoltaic-related R&D equipment -- especially those involving hazardous production materials. To help guide the researcher through the vast list of requirements, the EHS office at NREL has taken a variety of steps. Organizationally, the office has developed hazard-specific laboratory-level procedures to govern particular activities. These procedures are a distillation of appropriate international codes, fire agencies, SEMI standards, U.S. Department of Energy orders, and other industry standards to those necessary and sufficient to govern the safe operation of a given activity. The EHS office works proactively with researchers after a concept for a new R&D capability is conceived to help guide the safe design, acquisition, installation, and operation of the equipment. It starts with a safety assessment at the early stages such that requirements are implemented to determine the level of risk and degree of complexity presented by the activity so appropriate controls can be put in place to manage the risk. As the equipment requirements and design are refined, appropriate equipment standards are applied. Before the 'to-build' specifications are finalized, a process hazard analysis is performed to ensure that no single-point failure presents an unacceptable risk. Finally, as the tool goes through construction and installation stages, reviews are performed at logical times to ensure that the requisite engineering controls and design are in place and operational. Authorization to operate is not given until adherence to these requirements is fully verified and documented. Operations continue under the conditions defined through this process and are reviewed with changing processes.

McCuskey, T.; Nelson, B. P.

2012-06-01T23:59:59.000Z

397

L&E: Refrigerated Display Case | The Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting & Electrical » Adopt the Lighting & Electrical » Adopt the refrigerated display case lighting performance specification and start saving on your case lighting costs Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt the refrigerated display case lighting performance specification and start saving on your case lighting costs The LED Refrigerated Display Case Lighting Specification delivers nearly 50% energy savings compared to typical display case lighting. If all retail refrigerated display cases switched today to LED systems, over 2.1 TWh of electricity could be saved annually. LED Refrigerated Display Case Lighting Specification

398

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

399

Definition: Reduced T&D Equipment Maintenance Cost | Open Energy  

Open Energy Info (EERE)

T&D Equipment Maintenance Cost T&D Equipment Maintenance Cost Jump to: navigation, search Dictionary.png Reduced T&D Equipment Maintenance Cost The cost of sending technicians into the field to check equipment condition is high. Moreover, to ensure that they maintain equipment sufficiently, and identify failure precursors, some utilities may conduct equipment testing and maintenance more often than is necessary. Online diagnosis and reporting of equipment condition would reduce or eliminate the need to send people out to check equipment resulting in a cost savings.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_T%26D_Equipment_Maintenance_Cost&oldid=417296"

400

Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool  

SciTech Connect

Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Vineyard, Edward Allan [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Opens Three Investigations into Alleged Refrigerator Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opens Three Investigations into Alleged Refrigerator Efficiency Opens Three Investigations into Alleged Refrigerator Efficiency Violations DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations April 12, 2010 - 7:27pm Addthis The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that failed to meet federal energy efficiency standards. Under the subpoena, Arçelik A.S, a Turkish Company is required to submit detailed information about the design, marketing and U.S. sales of its Blomberg brand refrigerator-freezer, model "BRFB1450." The Department also requested testing data from Whirlpool Corporation and Viking Range Corporation for two refrigerator-freezers that the companies

402

DOE Opens Three Investigations into Alleged Refrigerator Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opens Three Investigations into Alleged Refrigerator Efficiency Opens Three Investigations into Alleged Refrigerator Efficiency Violations DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations April 12, 2010 - 7:27pm Addthis The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that failed to meet federal energy efficiency standards. Under the subpoena, Arçelik A.S, a Turkish Company is required to submit detailed information about the design, marketing and U.S. sales of its Blomberg brand refrigerator-freezer, model "BRFB1450." The Department also requested testing data from Whirlpool Corporation and Viking Range Corporation for two refrigerator-freezers that the companies

403

Solar absorption refrigeration system using new working fluid pairs  

Science Conference Proceedings (OSTI)

Absorption refrigeration systems powered by solar energy increasingly attract research interests in the last years. In this study, thermodynamic analyses for different working fluid pairs are performed. A computer simulation model has been developed ... Keywords: NH3-LiNO3, absorption, crystallization, generator, performance, refrigeration, solar energy

Jasim M. Abdulateef; Kamaruzzaman Sopian; M. A. Alghoul; Mohd Yusof Sulaiman; Azami Zaharim; Ibrahim Ahmad

2008-02-01T23:59:59.000Z

404

Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/2/11 6/2/11 Comments to the following DOE Proposed Rules: 10 CFR Part 431 [Docket No. EERE-2010-BT-TP-0036] RIN 1904-AC38 Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for Automatic Commercial Ice Makers Submitted by: Mary C. Howe, President, Howe Corporation, Chicago, IL 60642 mchowe@howecorp.com CORPORATION 1650 N Elston Ave * Chicago, IL. 60642 * (773) 235-0200 * Fax (773) 235-0269 * E-mail: howeinfo@howecorp.com 2 Item 1 - DOE also requests comment on the proposal that the use of amended test procedure be required upon the effective date of any test procedure final rule, 30 days after publication in the Federal Register. In the case of the addition of continuous production remote condenser ACIM's, the outside testing

405

CX-008032: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32: Categorical Exclusion Determination 32: Categorical Exclusion Determination CX-008032: Categorical Exclusion Determination Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment CX(s) Applied: B5.1 Date: 12/06/2011 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy DOE proposes to adopt amended energy conservation standards for commercial refrigeration equipment. The proposed standards consist of maximum daily energy consumption (MDEC) values as a function of either refrigerated volume or total display area (TDA). DOE proposes that the standards covered in this NOPR, if adopted, would apply to all equipment listed in Table I.1 of the NOPR and manufactured in, or imported into, the United States on or after 3 years after the publication date of the final rule, or January 1,

406

CX-007851: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Categorical Exclusion Determination 1: Categorical Exclusion Determination CX-007851: Categorical Exclusion Determination Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment CX(s) Applied: B5.1 Date: 02/06/2012 Location(s): Nationwide Offices(s): Energy Efficiency and Renewable Energy DOE proposes to adopt amended energy conservation standards for commercial refrigeration equipment. The proposed standards consist of maximum daily energy consumption (MDEC) values as a function of either refrigerated volume or total display area (IDA). DOE proposes that the standards covered in this Notice of Proposed Rulemaking (NOPR), if adopted, would apply to all equipment listed in Table 1.1 of the NOPR and manufactured in, or imported into, the United States on or after 3 years after the publication

407

NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

DEVAP Slashes Peak Power Loads DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up

408

Retrofitting Doors on Open Refrigerated Cases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofitting Doors on Open Retrofitting Doors on Open Refrigerated Cases William Goetzler Navigant Consulting, Inc. wgoetzler@navigant.com (781) 270-8351 April 4, 2013 BBA Refrigeration Project Team Images courtesy of REMIS AMERICA, LLC. 2 | Building Technologies Office eere.energy.gov Technology Overview Image from Investigation of Energy- Efficient Supermarket Display Cases. 2004, Oak Ridge National Laboratory. Background and Motivation * Adding doors to open cases (retrofits) greatly reduces cold air loss - 50-80% load reduction - Load reduction = system energy savings

409

Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wellesley Municipal Light Plant - Residential Energy Efficiency Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate Program Wellesley Municipal Light Plant - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Maximum Rebate Two equipment rebates per customer per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Refrigerator: $100 Clothes Washing Machine: $75 Central AC: $100 Room AC Unit: $50 Dishwasher: $75 Dehumidifier: $50 Provider Appliance Rebate Program Wellesley Municipal Light Plant (WMLP) offers a number of appliance rebates to residential customers who purchase and install energy efficient equipment. Rebates are available for refrigerators, dishwashers, clothes

410

Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes  

SciTech Connect

An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a unique opportunity to address the issue of low power mode energy consumption while technology development paths are still flexible.

Payne, Christopher T.; Meier, Alan K.

2004-08-24T23:59:59.000Z

411

An Advanced Solar-Powered Rotary Solid Adsorption Refrigerator with High Performance  

E-Print Network (OSTI)

In this paper, according to practical consideration, a new solar powered rotary solid adsorption refrigerator system adopting activated carbon fibre + ethanol as its adsorption pair has been designed with higher performance. Moreover, the principle of the refrigeration cycle, different components of the machine, selection of working pairs and feasible theory analysis of the refrigeration system all have been presented in detail. In addition, it shows that the new refrigerator has many great advantages including a simple structure, fast refrigeration, higher thermodynamic coefficient, friendly to the atmospheric environment, etc. This paper explains that the refrigerating process is constant, which has a promising potential for competing the 'intermittent' cycle reported before. Through improving the refrigerant performance of heat and mass transfer in the adsorbent bed, the refrigeration cycle has been advanced from the aspect of utilization of the thermal energy from low-temperature level resources. In addition, it is shown that the commercial solar powered refrigerator will be existent in the near future.

Zheng, A.; Gu, J.

2006-01-01T23:59:59.000Z

412

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

Science Conference Proceedings (OSTI)

Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

McMahon, James E.; Wiel, Stephen

2001-02-16T23:59:59.000Z

413

Refrigerated cryogenic envelope  

DOE Patents (OSTI)

An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

Loudon, John D. (Boulder, CO)

1976-11-16T23:59:59.000Z

414

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

4 4 Halocarbon Environmental Coefficients and Principal Uses 100-Year Global Ozone Depletion Warming Potential Potential (ODP) Compound (CO2 = 1) (Relative to CFC-11) Principal Uses Chlorofluorocarbons CFC-11 1.00 Blowing Agent, Chillers CFC-12 (1) 1.00 Auto A/C, Chillers, & Blowing Agent CFC-113 0.80 Solvent CFC-114 1.00 Solvent CFC-115 (2) 0.60 Solvent, Refrigerant Hydrochlorofluorocarbons HCFC-22 (2) 0.06 Residential A/C HCFC-123 0.02 Refrigerant HCFC-124 0.02 Sterilant HCFC-141b 0.11 CFC Replacement HCFC-142b 0.07 CFC Replacement Bromofluorocarbons Halon-1211 3.00 Fire Extinguishers Halon-1301 10.00 Fire Extinguishers Hydrofluorocarbons HFC-23 0.00 HCFC Byproduct HFC-125 0.00 CFC/HCFC Replacement HFC-134a 0.00 Auto A/C, Refrigeration HFC-152a (1) 0.00 Aerosol Propellant HFC-227ea 0.00 CFC Replacement

415

DOE Proposes Higher Efficiency Standards for Refrigerators | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Proposes Higher Efficiency Standards for Refrigerators DOE Proposes Higher Efficiency Standards for Refrigerators DOE Proposes Higher Efficiency Standards for Refrigerators September 28, 2010 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the release of a new proposed energy efficiency standard for residential refrigerators, refrigerator-freezers, and freezers. The standard, as proposed, could save consumers as much as $18.6 billion over thirty years. The Obama Administration has made efficiency standards a major priority as a way to save energy and money for American families and businesses. Since January 2009, the Department of Energy has finalized new efficiency standards for more than twenty household and commercial products, which will cumulatively save consumers between $250 billion and

416

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment. The program offers a rebate incentive for efficient lighting technologies, boilers, ventilation systems, and refrigerators. A receipt or invoice for purchased equipment...

417

Thermoacoustic engines and refrigerators  

SciTech Connect

This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

Swift, G.

1996-12-31T23:59:59.000Z

418

High temperature refrigerator  

SciTech Connect

A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

Steyert, Jr., William A. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

419

Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)  

SciTech Connect

Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned ?¢????phase change?¢??? or ?¢????two-phase?¢??? pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak?¢????a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems?¢????another environmental win. Project Activities - The ARCTIC project goal was to further develop an

Todd Salamon

2012-12-13T23:59:59.000Z

420

US Department of Energys Regulatory Negotiations Convening...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews...

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Performance monitoring strategies for effective running of commercial refrigeration systems  

Science Conference Proceedings (OSTI)

Refrigeration systems often represent the largest electricity consumers in the supermarkets. Therefore there is a clear need for running these systems effectively. Performance monitoring uses different techniques to determine the actual system state. ... Keywords: COP, FDD, energy monitoring, performance measure, refrigeration

Martin Hrn?r; Petr Stluka

2010-05-01T23:59:59.000Z

422

Advanced systems demonstration for utilization of biomass as an energy source. Volume III. Equipment specifications  

DOE Green Energy (OSTI)

This volume contains all of the equipment specifications to be utilized for the proposed biomass co-generation plant in Maine. (DMC)

Not Available

1980-10-01T23:59:59.000Z

423

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE))

This document is the U.S. Department of Energys presentation titled Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment?, date 6/26/2011.

424

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

425

EA-1673: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Final Environmental Assessment 3: Final Environmental Assessment EA-1673: Final Environmental Assessment 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment This chapter describes potential environmental effects that may result from amended energy conservation standards for certain equipment covered by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1. Environmental Assessment for 10 CFR 431 Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating

426

International Refrigeration: Proposed Penalty (2012-CE-1510)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Refrigeration Products International Refrigeration Products (room air conditioners) ) ) ) ) ) Case Number: 2012-CE-1510 NOTICE OF PROPOSED CIVIL PENALTY Date issued: July 9, 2012 Number of alleged violations: 5475 (365 days, 15 models) Maximum possible assessment: $1,095,000 Proposed civil penalty: $109,500 The U.S. Department of Energy ("DOE") Office of the General Counsel, Office of Enforcement, alleges that International Refrigeration Products ("IRP") has violated cettain provisions of the Energy Policy and Conservation Act, 42 U.S.C. § 6291 et seq. ("the Act"), and 10 C.P.R. § 429.12. Specifically, DOE alleges: 1. IRP has manufactured 1 a variety of Sea Breeze brand room air conditioners, including basic models WA46YR, WA48YRX, WA410YRX, WA412YRX, WH418ZRX,

427

Federal Register Vol. 76 No. 44, 12422-12505- Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)  

Energy.gov (U.S. Department of Energy (DOE))

Federal Register Vol. 76 No. 44, 12422-12505 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)....

428

Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop  

SciTech Connect

Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1994-09-01T23:59:59.000Z

429

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

DOE Green Energy (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

430

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

431

Refrigerant Properties: Commercial Cooling Update Issue 5, Rev. 6, September 1999  

Science Conference Proceedings (OSTI)

This Update describes the properties of existing and proposed refrigerants. Because many of these properties are measured by techniques that are still evolving, some of the values shown may change. The data included are from the most recently published sources. Properties covered include: ozone depletion potential, global warming potential, refrigeration capacity, energy efficiency, flammability, exposure limits,and refrigerant blends. A table conveniently compares traditional refrigerants in use, new re...

1999-09-30T23:59:59.000Z

432

Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duracold Refrigeration Manufacturing: Proposed Penalty Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) February 21, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

433

DOE Closes Investigation of Whirlpool's Maytag Refrigerator | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closes Investigation of Whirlpool's Maytag Refrigerator Closes Investigation of Whirlpool's Maytag Refrigerator DOE Closes Investigation of Whirlpool's Maytag Refrigerator July 8, 2010 - 3:12pm Addthis The Department of Energy has closed its investigation into the energy efficiency of Whirlpool's Maytag refrigerator-freezer model "MSD2578VE." The Department opened this investigation and requested testing data from Whirlpool based on a complaint (April 12, 2010, "DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations"). After reviewing the data and testing this model, the Department has found the model to be compliant with the applicable efficiency standards and has closed the investigation. The Department takes credible allegations seriously and will continue to initiate investigations on products that are

434

North Star Refrigerator: Proposed Penalty (2013-CE-5355) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Star Refrigerator: Proposed Penalty (2013-CE-5355) North Star Refrigerator: Proposed Penalty (2013-CE-5355) North Star Refrigerator: Proposed Penalty (2013-CE-5355) March 26, 2013 DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. North Star Refrigerator: Proposed Penalty (2013-CE-5355) More Documents & Publications

435

North Star Refrigerator: Proposed Penalty (2013-CE-5355) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Star Refrigerator: Proposed Penalty (2013-CE-5355) North Star Refrigerator: Proposed Penalty (2013-CE-5355) North Star Refrigerator: Proposed Penalty (2013-CE-5355) March 26, 2013 DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. North Star Refrigerator: Proposed Penalty (2013-CE-5355) More Documents & Publications

436

DOE Closes Investigation of Whirlpool's Maytag Refrigerator | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Whirlpool's Maytag Refrigerator of Whirlpool's Maytag Refrigerator DOE Closes Investigation of Whirlpool's Maytag Refrigerator July 8, 2010 - 3:12pm Addthis The Department of Energy has closed its investigation into the energy efficiency of Whirlpool's Maytag refrigerator-freezer model "MSD2578VE." The Department opened this investigation and requested testing data from Whirlpool based on a complaint (April 12, 2010, "DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations"). After reviewing the data and testing this model, the Department has found the model to be compliant with the applicable efficiency standards and has closed the investigation. The Department takes credible allegations seriously and will continue to initiate investigations on products that are

437

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

438

Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India  

SciTech Connect

The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

McNeil, Michael A.; Iyer, Maithili

2009-05-30T23:59:59.000Z

439

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

440

Optimal Performance of Quantum Refrigerators  

E-Print Network (OSTI)

A reciprocating quantum refrigerator is studied with the purpose of determining the limitations of cooling to absolute zero. We find that if the energy spectrum of the working medium possesses an uncontrollable gap, then there is a minimum achievable temperature above zero. Such a gap, combined with a negligible amount of noise, prevents adiabatic following during the demagnetization stage which is the necessary condition for reaching $T_c \\to 0$. The refrigerator is based on an Otto cycle where the working medium is an interacting spin system with an energy gap. For this system the external control Hamiltonian does not commute with the internal interaction. As a result during the demagnetization and magnetization segments of the operating cycle the system cannot follow adiabatically the temporal change in the energy levels. We connect the nonadiabatic dynamics to quantum friction. An adiabatic measure is defined characterizing the rate of change of the Hamiltonian. Closed form solutions are found for a constant adiabatic measure for all the cycle segments. We have identified a family of quantized frictionless cycles with increasing cycle times. These cycles minimize the entropy production. Such frictionless cycles are able to cool to $T_c=0$. External noise on the controls eliminates these frictionless cycles. The influence of phase and amplitude noise on the demagnetization and magnetization segments is explicitly derived. An extensive numerical study of optimal cooling cycles was carried out which showed that at sufficiently low temperature the noise always dominates restricting the minimum temperature.

Tova Feldmann; Ronnie Kosloff

2009-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Potential Refrigerants for Power Electronics Cooling  

DOE Green Energy (OSTI)

In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

Starke, M.R.

2005-10-24T23:59:59.000Z

442

Proceedings: Commercial Refrigeration Research Workshop  

Science Conference Proceedings (OSTI)

Improving refrigeration systems for commercial use can enhance both utility load factors and supermarket profits. This workshop has pinpointed research needs in commercial refrigeration and systems integration for a supermarket environment.

1984-10-01T23:59:59.000Z

443

Property:On-Site fabrication capability/equipment | Open Energy Information  

Open Energy Info (EERE)

On-Site fabrication capability/equipment On-Site fabrication capability/equipment Jump to: navigation, search Property Name On-Site fabrication capability/equipment Property Type Text Pages using the property "On-Site fabrication capability/equipment" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Full on-site carpentry, machine, and instrumentation shops Alden Small Flume + Full on-site carpentry, machine, and instrumentation shops Alden Tow Tank + Full on-site carpentry, machine, and instrumentation shops Alden Wave Basin + Full on-site carpentry, machine, and instrumentation shops C Chase Tow Tank + There is a machine shop in the Laboratory Conte Large Flume + Full carpentry shop with welding and machining capabilities Conte Small Flume + Full carpentry shop with welding and machining capabilities

444

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

that go Blip in the Night: Standby Power and How to LimitBertoldi, P. et. al. 2002. Standby Power Use: How Big ispower to reduce equipment standby power. Proceedings of

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

445

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

on Promotion of Sustainable Energy Consumption: Consumerin Promotion of Sustainable Energy Consumption, fromon Promotion of Sustainable Energy Consumption: Consumer

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

446

List of Whole House Fans Incentives | Open Energy Information  

Open Energy Info (EERE)

Whole House Fans Incentives Whole House Fans Incentives Jump to: navigation, search The following contains the list of 26 Whole House Fans Incentives. CSV (rows 1 - 26) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives (Iowa) Utility Rebate Program Iowa Agricultural Agricultural Equipment Ceiling Fan Clothes Washers Custom/Others pending approval Dishwasher Doors Heat recovery Lighting Motor VFDs Motors Refrigerators Water Heaters Windows Whole House Fans Room Air Conditioners Ground Source Heat Pumps Yes Alliant Energy Interstate Power and Light - Farm Equipment Energy Efficiency Incentives (Minnesota) Utility Rebate Program Minnesota Agricultural Agricultural Equipment

447

Refrigerator recycling and CFCs  

SciTech Connect

Utility-sponsored refrigerator and freezer pick-up programs have removed almost 900,000 inefficient appliances from the North American electric grid to date. While the CFC-12 refrigerant from the discarded appliances is typically removed and recycled, in all but a few programs the CFC-11 in the foam insulation is not. About a quarter-billion pounds of CFC-11 are banked in refrigerator foam in the United States. Release of this ``bank`` of CFC, combined with that from foam insulation used in buildings, will be the largest source of future emissions if preventive measures are not taken. Methods exist to recover the CFC for reuse or to destroy it by incineration. The task of recycling or destroying the CFCs and other materials from millions of refrigerators is a daunting challenge, but one in which utilities can play a leadership role. E Source believes that utilities can profitably serve as the catalyst for public-private partnerships that deliver comprehensive refrigerator recycling. Rather than treating such efforts solely as a DSM resource acquisition, utilities could position these programs as a multifaceted service delivery that offers convenient appliance removal for homeowners, a solid waste minimization service for landfills, a source of recycled materials for industry, and a CFC recovery and/or disposal service in support of the HVAC industry and society`s atmospheric protection goals and laws. Financial mechanisms could be developed through these public-private enterprises to ensure that utilities are compensated for the extra cost of fully recycling refrigerators, including the foam CFC.

Shepard, M.; Hawthorne, W.; Wilson, A.

1994-12-31T23:59:59.000Z

448

Waste Heat Recapture from Supermarket Refrigeration Systems  

DOE Green Energy (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

449

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mail mail u.s. Department of Energy Categorical Exclusion Determination Form Proposed Action Title: Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Commercial Refrigeration Equipment (RIN: 1904-AC19) Program or Field Office: EERE - Buildings Technology Program Location(s) (City/County/State): NfA Proposed Action Description: DOE proposes to adopt amended energy conservation standards for commercial refrigeration equipment. The proposed standards consist of maximum daily energy consumption (MDEC) values as a function of either refrigerated volume or total display area (IDA). DOE proposes that the standards covered in this NQPR, if adopted, would apply to all equipment listed in Table 1.1 of the NOPR and manufactured in, or imported

450

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Sectoral Trends in Global Energy Use a n d Greenhouse Gas1998. The Role of Building Energy Efficiency in ManagingDirectorate General for Energy. Danish Energy Management.

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

451

Low-temperature magnetic refrigerator  

DOE Patents (OSTI)

The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

Barclay, J.A.

1983-05-26T23:59:59.000Z

452

Novel materials for laser refrigeration  

SciTech Connect

The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

Hehlen, Markus P [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

453

Optimization of Industrial Refrigeration Systems  

E-Print Network (OSTI)

A computer program designed to optimize the size of an evaporative condenser in a two-stage industrial refrigeration plant was created. The program sizes both the high-stage and low-stage compressors and an evaporative condenser. Once the initial system is sized, a year long plant simulation is performed resulting in electric energy consumption profile and an exergy destruction profile for each component and for the system. The program uses actual regional hourly outside dry bulb and wet bulb temperatures for both sizing and simulation. An exergoeconomic optimization uses the results of the simulation combined with component and energy costs to optimize the condenser size such that both plant costs and energy losses are minimized.

Flack, P. J.; Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L.

1995-04-01T23:59:59.000Z

454

Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program eere.energy.gov BUILDING TECHNOLOGIES PROGRAM Update and Overview of DOE Rulemakings for ASHRAE 90.1 Equipment Ashley Armstrong Department of Energy Energy Efficiency & Renewable Energy 6/26/2011 Introduction and Background 1 Introduction and Background Status of Current DOE ASHRAE 90.1 Equipment Rulemaking 2 Update and Overview for Individual ASHRAE 90.1 Equipment Types 3 2 | Building Technologies Program eere.energy.gov Introduction and Background * The "ASHRAE Trigger": - EPCA directs DOE to review its minimum standards for certain commercial and industrial equipment whenever ASHRAE Standard 90.1 is amended with respect to such equipment. (42 USC 6313(a)(6)(A)) - The "ASHRAE Trigger" requires DOE review when ASHRAE

455

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Refrigerant Guide[1] The Greenhouse Gas Protocol tool for refrigeration is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

456

Preliminary selection of refrigerants for dual-circuit and Lorenz refrigerator/freezers  

SciTech Connect

The paper discusses the preliminary selection of refrigerants for dual-circuit and Lorenz refrigerator/freezers (RFs). Since RFs currently use a fully halogenated chlorofluorocarbon (CFC) as a refrigerant and are the most energy-consuming appliances in most households in the U.S., EPA is concerned about not only RFs' effects on stratospheric ozone depletion but also their impact on the greenhouse effect. Reductions in power consumption will slow the increase in carbon dioxide (CO{sub 2}) concentrations in the atmosphere by reducing the utility companies' need for capacity. CO{sub 2} concentrations are believed to be directly related to impacts of the greenhouse effect. For these reasons, EPA believes that finding the most energy-efficient refrigerant(s) and RF design is important when eliminating fully halogenated CFCs. Two new configurations (the dual-circuit and Lorenz RFs) appear to provide energy savings of up to 20% over standard U.S. RF designs.

Bare, J.C.

1990-01-01T23:59:59.000Z

457

Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

458

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

3 3 Residential Boiler Efficiencies (1) Gas-Fired Boilers Oil-Fired Boilers Average shipped in 1985 (2): 74% AFUE Average shipped in 1985 (2): 79% AFUE Best Available in 1981: 81% AFUE Best Available in 1981: 86% AFUE Best Available in 2007: 96% AFUE Best Available in 2007: 89% AFUE Note(s): Source(s): 1) Federal appliance standards effective Jan. 1, 1992, require a minimum of 80% AFUE (except gas-fired steam boiler, which must have a 75% AFUE or higher). 2) Includes furnaces. GAMA, Consumer's Directory of Certified Efficiency Ratings for Residential Heating and Water Heating Equipment, Aug. 2005, p. 88 and 106 for best- available AFUE; and GAMA for 1985 average AFUEs; GAMA Tax Credit Eligible Equipment: Gas- and Oil-Fired Boilers 95% AFUE or Greater, May 2007; and GAMA Consumer's Directory of Certified Efficiency Ratings for Heating and Water Heating Equipment, May 2007

459

OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE  

SciTech Connect

The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (TS) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

Venkatarao Ganni, Peter Knudsen

2010-04-01T23:59:59.000Z

460

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refrigeration equipment energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

Appliance Energy Consumption in Australia Appliance Energy Consumption in Australia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Energy Consumption in Australia Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.energyrating.gov.au/resources/program-publications/?viewPublicatio Equivalent URI: cleanenergysolutions.org/content/appliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling The document sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included. Televisions, which have carried a mandatory energy label from

462

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Development Bank International Energy Agency IEC IEE IEEEWorld Bank. 2004. World Bank GEF Energy Efficiency Portfoliomultilateral banks are increasingly recognizing that energy-

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

463

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Department of Energy, Washington, D.C. , January. AvailableInstitute for Energy Conservation, Washington, D.C. EIA.Alliance to Save Energy, Washington, DC Appliance Standards

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

464

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

represent 10-25% of the energy market in industrial,Accessing Overseas Markets: Energy Efficiency Standards andLabels Affect the Market Energy labels affect stakeholders

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

465

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network (OSTI)

in Chapter 9, government energy policies related to labelingany governments portfolio of energy-efficiency policies andfor government purchasing. Energy Programs and Policies that

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

466

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

when discussing other government energy policies related toany governments portfolio of energy-efficiency policies andportfolio of energy policies is available to governments for

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

467

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

It then shows the cost and energy-efficiency improvementsand forecast. Once cost and energy-efficiency data have beenin releasing cost- effective energy efficiency benefits in

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

468

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network (OSTI)

Role of Building Energy Efficiency in Managing AtmosphericConference on Energy Efficiency in Domestic Appliances andAnalysis of National Energy-Efficiency Standards for

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z