National Library of Energy BETA

Sample records for refrigeration air conditioning

  1. American Society of Heating, Refrigeration, and Air Condition...

    Energy Savers [EERE]

    American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) ...

  2. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL...

    Office of Environmental Management (EM)

    HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document ...

  3. 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning...

  4. Air Conditioning Heating and Refrigeration Institute Comment | Department

    Energy Savers [EERE]

    of Energy Air Conditioning Heating and Refrigeration Institute Comment Air Conditioning Heating and Refrigeration Institute Comment These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the July 3, 2014 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. PDF icon DOE Reg Burden

  5. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory

    Energy Savers [EERE]

    Burden RFI | Department of Energy Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) in response to the U.S. Department of Energy's (DOE) notice in the August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its

  6. American Society of Heating, Refrigeration, and Air Condition Engineers

    Energy Savers [EERE]

    (ASHRAE) 2016 Annual Conference | Department of Energy American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference American Society of Heating, Refrigeration, and Air Condition Engineers (ASHRAE) 2016 Annual Conference June 25, 2016 9:00AM EDT to June 29, 2016 5:00PM EDT

  7. 2016 American Society of Heating, Refrigerating, and Air-Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineers (ASHRAE) Winter Conference | Department of Energy 2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference 2016 American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Winter Conference January 23, 2016 9:00AM EST to January 27, 2016 5:00PM EST Orlando Hilton, Orlando, Florida

  8. HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL

    Energy Savers [EERE]

    (HARDI) | Department of Energy HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) OE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat Pumps. PDF icon DOE EX Parte Memo.pdf More Documents & Publications Ex Parte Memo on CAC/Dry Charged Units 3rd Semi-Annual Report to Congress on

  9. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  10. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  11. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  12. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Air Conditioning, Heating and Refrigeration Institute (AHRI) regarding the Energy Star Verification Testing Program

  14. Air-Conditioning, Heating, and Refrigeration Institute Ex Parte Memo

    Broader source: Energy.gov [DOE]

    On Friday, February 13, 2015, AHRI staff met telephonically with the Department of Energy to discuss issues pertaining to the ongoing efficiency standards rulemaking for single package vertical air...

  15. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  16. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  17. Memorandum To: GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION

    Office of Environmental Management (EM)

    GENERAL COUNSEL, DEPARTMENT OF ENERGY (DOE) From: JONATHAN MELCHI, HEATING, AIR-CONDITIONING AND REFRIGERATION DISTRIBUTORS INTERNATIONAL (HARDI) Date: 1/12/2012 Subject: EX PARTE COMMUNICATION MEMO DOE ATTENDEES: Ashley Armstrong, John Cymbalsky, David Case, Laura Barhydt HARDI ATTENDEES: Talbot Gee, Jonathan Melchi AREAS OF DISCUSSION: DOE Framework Document and Stakeholder Meeting regarding the Enforcement of the updated Energy Conservation Standards for Air Conditioners, Furnaces and Heat

  18. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Broader source: Energy.gov [DOE]

    This document provides Public Information for Convening Interviews for US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

  19. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  20. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  1. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    SciTech Connect (OSTI)

    Chen, Haijun; Cui, Qun; Wu, Juan; Zhu, Yuezhao; Li, Quanguo; Zheng, Kai; Yao, Huqing

    2014-04-01

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%.

  2. Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control

    SciTech Connect (OSTI)

    D. Subbaram Naidu; Craig G. Rieger

    2011-02-01

    A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology “hard” and “soft” computing/control has nothing to do with the “hardware” and “software” that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

  3. US Department of Energys Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US Department of Energy's Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews I. What are the substantive issues DOE seeks to address? Strategies for grouping various basic models for purposes of certification; Identification of non-efficiency attributes, which do not impact the measured consumption of the equipment as tested by DOE's test procedure; The information that

  4. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  5. Miniaturized Air to Refrigerant Heat Exchangers

    Broader source: Energy.gov [DOE]

    This project is developing a miniaturized air-to-refrigerant heat exchanger that is more compact and more energy efficient than current market designs. The heat exchanger will feature at least 20% less volume, material volume, and approach temperature compared to current multiport flat tube designs, and it will be in production within five years. The heat exchanger, which acts as both an evaporator and a condenser, can be applied to commercial and residential air-conditioning or heat pump systems with various capacity scales. Prototype 1-kilowatt (kW) and 10 kW designs will be tested and then improved as necessary for final tests and demonstration in a 3-ton heat pump.

  6. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect (OSTI)

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires intrusion into the system to measure the refrigerant high-side and low-side pressures. Once the pressures are known, based on the equipment's refrigerant charging chart? or in most cases, based on the technician's experience? the refrigerant charging status is determined. However, there is a catch: by the time a refrigeration technician is called, most of the refrigerant has already escaped into the atmosphere. The new technology provides a real-time warning so that when, say, 20% of the refrigerant has leaked, the equipment users will be warned, even though the equipment is still functioning properly at rated capacity. Temperature sensors are becoming very accurate and very low in cost, compared with pressure sensors. Using temperature sensors to detect refrigerant charge status is inherently nonintrusive, inexpensive, and accurate. With the addition of two temperature sensors for detecting dirty air filters, the capability of the diagnostic equipment is further enhanced with very little added cost. This report provides laboratory test data on the change of indoor coil refrigerant temperature and subcooling as a function of refrigerant charge for a 2-ton split heat pump system. The data can be used in designing the indicators for refrigerant loss and dirty air filter sensors.

  7. Miniaturized Air to Refrigerant Heat Exchangers | Department of Energy

    Energy Savers [EERE]

    Miniaturized Air to Refrigerant Heat Exchangers Miniaturized Air to Refrigerant Heat Exchangers The University of Maryland used direct metal printing-a 3D printing technology-to manufacture a unique miniaturized air-to-refrigerant heat exchanger as a single, continuous piece. Image: University of Maryland, Center for Environmental Energy Engineering. The University of Maryland used direct metal printing-a 3D printing technology-to manufacture a unique miniaturized air-to-refrigerant heat

  8. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Miniaturized Air-to-Refrigerant Heat Exchangers 2015 Building Technologies Office Peer Review Reinhard Radermacher raderm@umd.edu 20%+ Better University of Maryland College Park Project Summary Timeline: Start date: 3/1/2013 Planned end date: 2/29/2016 Key Milestones 1. Design optimization, 3/30/14 2. Fabrication/testing, 1kW prototype, 1/30/2015 3. Fabrication/testing, 10kW prototype, 9/30/2015 Budget: Total Budget: $1500K Total UMD: $1050K Total DOE $ to date for UMD: $881K Total future DOE $

  9. NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on

  10. Miniaturized Air to Refrigerant Heat Exchangers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in ORNL's Building Technologies Research & Integration Center. Working Fluids Low Global Warming Potential Refrigerants Improving Data Center Efficiency with Rack or Row...

  11. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  12. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  13. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  14. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  15. Liquid over-feeding air conditioning system and method

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  16. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect (OSTI)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  17. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  18. Miniaturized Air-to-Refrigerant Heat Exchangers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Contribution to Energy Efficiency : Comparison of predicted air-side performance to ... Future Plans: Complete prototype fabrication Conduct pressure tests on prototype ...

  19. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  20. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  3. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOE Patents [OSTI]

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  4. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  5. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    that the newly installed air conditioner has the exact refrigerant charge and airflow rate specified by the manufacturer Locates the thermostat away from heat sources, such as...

  6. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  7. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  8. Alternative non-CFC mobile air conditioning

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  9. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  10. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOE Patents [OSTI]

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  11. Compatibility of refrigerants and lubricants with electrical sheet insulation under retrofit conditions

    SciTech Connect (OSTI)

    Doerr, R.G.; Waite, T.D.

    1996-11-01

    To determine whether exposure to the original refrigerant/mineral oil would affect compatibility of sheet insulation with alternative refrigerant/lubricant after retrofit, sheet insulation was exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Most of the sheet insulation materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant at high temperature. This was attributed to incompatibility of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) sheet was initially observed, but 2048 subsequent tests under extremely dry conditions showed that embrittlement of the PET materials was attributed to moisture present during the exposure.

  12. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  13. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  14. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect (OSTI)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance degradation of R410A at higher temperatures was greater than R22. However, the R22 and R410A systems both operated normally during all tests. Visual observations of the R410A system provided no indication of vibrations or TXV hunting at high ambient outdoor test conditions with the compressor operating in the transcritical regime.

  15. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  16. ARTI refrigerant database

    SciTech Connect (OSTI)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  17. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    SciTech Connect (OSTI)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-29

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  18. Thermoacoustic refrigeration

    SciTech Connect (OSTI)

    Garrett, S.L.; Hofler, T.J. )

    1992-12-01

    Shortly after their introduction, chlorofluorocarbons (CFCs) used as working fluids in a vapor compression (Rankine) refrigeration cycle became dominant in almost all small and medium-scale food refrigerator/freezer and building/residential air-conditioning applications. That situation is about to change dramatically and, at this moment, unpredictably. Two recent events are responsible for the new era in refrigeration that will dawn before the beginning of the 21st Century. The most significant of these is the international ban on the production of CFCs which were found to be destroying the Earth's protective ozone layer. The second event was the discovery of high temperature superconductors and the development of high speed and high density electronic circuits that require active cooling. It is the purpose of this article to introduce an entirely new approach to refrigeration that was first discovered in the early 1980s. This new approach-thermoacoustic refrigeration-uses high intensity sound waves to pump heat, with inert gases as the working fluid.

  19. Air Conditioning | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    serpentine tubing surrounded by aluminum fins. This tubing is usually made of copper. A pump, called the compressor, moves a heat transfer fluid (or refrigerant) between the...

  20. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  1. Central Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  2. Common Air Conditioner Problems | Department of Energy

    Office of Environmental Management (EM)

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of iStockphotoBanksPhotos. A...

  3. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air

  4. Heating Ventilation and Air Conditioning Efficiency

    Broader source: Energy.gov [DOE]

    This presentation covers common pitfalls that lead to wasted energy in industrial heating ventilation and air conditioning (HVAC) systems.

  5. History of Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Air Conditioning History of Air Conditioning July 20, 2015 - 3:15pm Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs MORE ON AIR CONDITIONING Check out our Energy Saver 101 infographic to learn how air conditioners work. Go to Energy Saver for more tips and advice on home cooling. Stay up-to-date on how the Energy Department is working to improve air conditioning technology. We take the air conditioner for granted, but imagine what life would be

  6. Air-Conditioning, Heating, and Refrigeration Institute (AHRI...

    Broader source: Energy.gov (indexed) [DOE]

    August 8, 2012 Federal Register requesting information to assist DOE in reviewing existing regulations and in making its regulatory program more effective and less burdensome. PDF ...

  7. History of Air Conditioning | Department of Energy

    Energy Savers [EERE]

    Efficiency Standards Drive Improvements As air conditioning use soared in the 1970s, the energy crisis hit. In response, lawmakers passed laws to reduce energy consumption across...

  8. Refrigerant recovery system

    SciTech Connect (OSTI)

    Abraham, A.W.

    1991-08-20

    This patent describes improvement in a refrigerant recovery apparatus of the type having inlet means for connecting to a refrigerant air system to withdraw refrigerant from the system, expansion means for converting refrigerant received from the system in liquid phase to a gaseous refrigerant, a compressor having a suction chamber with a suction inlet for receiving and pressurizing the gaseous refrigerant, the compressor having a housing containing oil for lubricating the compressor, a condenser for receiving the pressurized gaseous refrigerant and condensing it to liquid refrigerant, and a storage chamber for storing the liquid refrigerant. The improvement comprises in combination: oil separator means mounted exterior of the housing to one end of an inlet line, which has another end connected to the suction inlet of the compressor for receiving the flow of refrigerant from the refrigerated air system for separating out oil mixed with the refrigerant being received from the refrigerated air system prior to the refrigerant entering the suction inlet of the compressor; and the oil separator means being mounted at a lower elevation than the suction inlet of the compressor, the inlet line being unrestricted for allowing refrigerant flow to the compressor and oil from the compressor for draining oil in the housing of the compressor above the suction inlet back through the inlet line into the oil separator means when the compressor is not operating.

  9. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect (OSTI)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  10. Membrane Based Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Based Air Conditioning Membrane Based Air Conditioning Lead Performer: Dais Analytic Corporation - Odessa, FL Partners: - Oak Ridge National Laboratory - Oak Ridge, TN - Xergy Inc. - Seaford, DE DOE Total Funding: $1,500,000 Cost Share: $300,000 Project Term: October 1, 2015 - September 30, 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation (BENEFIT) - 2015 Project Objective NanoAir HVAC technology transfers water molecules through a patented nanostructured

  11. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect (OSTI)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  12. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  13. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel waywith heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  14. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Cain, J.M. , Great Falls, VA )

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  15. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions

    SciTech Connect (OSTI)

    Doerr, R.; Waite, T.

    1995-01-12

    Motor materials were exposed to original refrigerants R-11, R-12, R-22 and R-502 in the presence of mineral oil for 500 hours. These same materials were then exposed to alternative refrigerants R-123, R-134a, R-407C (R-32/R-125/R-134a) and R-404A (R-125/R-143a/R-134a), respectively, in the presence of the appropriate lubricant for 500 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1,000 hours. These tests were conducted to determine whether exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials with the alternative refrigerant/lubricant after retrofit. Motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concerns were embrittlement of the polyethylene terephthalate (PET) sheet and sleeving insulations, and delamination and blistering of the Nomex sheet insulation in the R-22, R-502, and R-12. Embrittlement of the PET materials was attributed to moisture present during the exposure. Separation of the 475 varnish from metal surfaces in the R-123 was also a concern. The sheet and sleeving insulations were affected by the original refrigerant/mineral oil to a greater extent than by the alternative refrigerant and lubricant.

  16. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL compiles state-of-the-art review on membrane processes for air conditioning to identify future research opportunities. Researchers are pursuing alternatives to conventional heating, ventilating, and air-conditioning (HVAC) practices, especially cool- ing and dehumidification, because of high energy use, environmentally harmful refrigerants, and a need for better humidity control. Advancements in membrane technology enable new possibilities in this area. Membranes are traditionally used for

  17. Common Air Conditioner Problems | Department of Energy

    Energy Savers [EERE]

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  18. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This tubing is usually made of copper. A pump, called the compressor, moves a heat transfer fluid (or refrigerant) between the evaporator and the condenser. The pump forces the ...

  19. Saving Money During the Air Conditioning Season | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving Money During the Air Conditioning Season Saving Money During the Air Conditioning Season June 4, 2014 - 4:00pm Addthis Keeping your air conditioner maintained can help save ...

  20. Aggregated Modeling and Control of Air Conditioning Loads for...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Aggregated Modeling and Control of Air Conditioning Loads for Demand Response Citation Details In-Document Search Title: Aggregated Modeling and Control of Air...

  1. Central Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Air supply and return ducts come from indoors through the home's exterior wall or roof to connect with the packaged air conditioner, which is usually located outdoors....

  2. Advances in refrigeration and heat transfer engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  3. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-01-01

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  4. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  5. Floor-supply displacement air-conditioning: Laboratory experiments

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Tanabe, Shinichi; Kimura, Kenichi

    1999-07-01

    The results of laboratory measurements on the performance of a floor-supply displacement air-conditioning system in comparison to a displacement ventilation system with a side-wall-mounted diffuser and a ceiling-based distribution system are described. Thermal stratification was observed, as there were greater vertical air temperature differences in both of the displacement systems than in the ceiling-based system. The floor-supply displacement air-conditioning system produced a uniformly low air velocity at each measurement height, while a rather high air velocity near the floor was observed for the displacement ventilation system with a sidewall-mounted diffuser. Local mean age of air of the floor-supply displacement air-conditioning system was lower than that of the other systems, especially in the lower part of the room. According to the simulation results, the floor-supply displacement air-conditioning system with outdoor air cooling requires 34% less energy than the conventional air-conditioning system with outdoor air cooling.

  6. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning Eric Kozubal, Jason Woods, Jay Burch, Aaron Boranian, and Tim Merrigan NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5500-49722 January 2011 Contract No. DE-AC36-08GO28308 Desiccant Enhanced Evaporative Air-Conditioning (DEVap):

  7. International Refrigeration: Order (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  8. Research and Development Roadmap For Next-Generation Low-Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    none,

    2011-07-01

    The Department of Energy commissioned this roadmap to establish a set of high-priority research and development (R&D) activities that will accelerate the transition to low-GWP refrigerants across the entire heating, ventilation, air-conditioning and refrigeration (HVAC&R) industry. The schedule of R&D activities occurs within an accelerated five-year timeframe, and covers several prominent equipment types. The roadmap is organized around four primary objectives to: assess and mitigate safety risks, characterize refrigerant properties, understand efficiency and environmental tradeoffs, and support new refrigerant and equipment development.

  9. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-Es BEETIT Project, short for Building Energy Efficiency Through Innovative Thermodevices, are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  10. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-01-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  11. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect (OSTI)

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  12. Heating, Ventilation, and Air Conditioning Projects | Department of Energy

    Office of Environmental Management (EM)

    Heating, Ventilation, and Air Conditioning Projects Heating, Ventilation, and Air Conditioning Projects Credit: Oak Ridge National Lab 13-Energy Efficiency Ratio Window Air Conditioner Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT Three new/under-utilized ground loop designs being evaluated for their ground loop cost reduction potential<br /> Credit: Oak Ridge National Lab Advanced Ground Source Heat Pump Technology for

  13. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  14. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  15. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  16. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  17. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air

    Energy Savers [EERE]

    Conditioning, Heating and Refrigeration | Department of Energy Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Lead Performer: Sandia National Laboratories, Livermore, CA Partners: Creative Thermal Solutions, Urbana, IL DOE Funding: $860,000 Cost Share: $86,000 Project Term: October 1, 2014 to September 30,

  18. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  19. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residential air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.

  20. Quantum Well Thermoelectric Truck Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Truck Air Conditioning Quantum Well Thermoelectric Truck Air Conditioning Discusses advantages of quantum-well TE cooler, including no moving parts, no gases, performance on par with conventional, and easy switching to heat pump mode PDF icon bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Fabrication of A Quantum Well Based System for Truck HVAC Recent Progress in the Development of High Efficiency

  1. Malone refrigeration

    SciTech Connect (OSTI)

    Swift, G.W.

    1993-06-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  2. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  3. Refrigeration Recovery for Experiment Hall High Target Loads

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni, Errol Yuksek, Jonathan Creel

    2010-04-01

    The Qweak experiment at Jefferson Lab (JLab) is a 3000 W hydrogen target scheduled for the summer of 2010 and running for two years until the planned shut-down for 12GeV. The End Station Refrigerator (ESR) supports the three experiment halls, two of which may normally have a hydrogen target. The refrigerator for the ESR is a CTI/Helix 1500 W 4.5-K refrigerator nominally capable of supporting a 1250 W target load at 12 bar and 15-K (plus 1100 W of 4.5-K refrigeration). As such, this refrigerator is not capable of supporting the Qweak experiment target load in its present condition. Additionally, since the installation of an ambient air vaporizer for a single use, two week run duration of a high target load in the summer of 2003 there has been a consistent usage of the Central Helium Liquefier’s (CHL’s) 3 bar 4.5-K helium, supplied via an existing transfer-line to the ESR, for other high target loads. By the fall of 2004, it was apparent that this continued use of CHL’s supercritical helium was routinely being sought by the hall experimenters. As such, a method of refrigeration recovery was proposed to reduce the support required of CHL for these high target loads, including the anticipated Qweak experiment, while utilizing the recovered CHL refrigeration from the target to increase ESR’s 12 bar 15-K capacity.

  4. Development of Versatile Compressor Modeling using Approximation Techniques for Alternative Refrigerants Evaluation

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S

    2014-01-01

    Refrigerants are the life-blood of vapor compression systems that are widely used in Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) applications. The HVAC&R community is currently transitioning from main-stream refrigerants that have high Global Warming Potential (GWP) to alternative lower-GWP refrigerants. During this transition, it is important to account for the life cycle climate performance of alternative refrigerants since their performance will be different than that of higher-GWP refrigerants. This requires the evaluation of the system performance with the new refrigerants. Unfortunately, it is extremely difficult to predict the realistic performance of new alternative refrigerants without experimental validation. One of the main challenges in this regard is modeling the compressor performance with high fidelity due to the complex interaction of operating parameters, geometry, boundary conditions, and fluid properties. High fidelity compressor models are computationally expensive and require significant pre-processing to evaluate the performance of alternative refrigerants. This paper presents a new approach to modeling compressor performance when alternative refrigerants are used. The new modeling concept relies on using existing compressor performance to create an approximate model that captures the dependence of compressor performance on key operating parameters and fluid properties. The model can be built using a myriad of approximation techniques. This paper focuses on Kriging-based techniques to develop higher fidelity approximate compressor models. Baseline and at least one alternative refrigerant performance data are used to build the model. The model accuracy was evaluated by comparing the model results with compressor performance data using other refrigerants. Preliminary results show that the approximate model can predict the compressor mass flow rate and power consumption within 5%.

  5. Keeping Cool Without Air Conditioning | Department of Energy

    Office of Environmental Management (EM)

    Keeping Cool Without Air Conditioning Keeping Cool Without Air Conditioning August 2, 2013 - 9:50am Addthis Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Trees can save you energy by blocking sunlight in the summer and letting it through in the winter. | Photo courtesy of ©iStockphoto/blackie Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Check out these

  6. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  7. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect (OSTI)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  8. Refrigeration in a world without CFCs

    SciTech Connect (OSTI)

    Garland, R.W.; Adcock, P.W.

    1996-09-01

    In an era of heightened awareness of energy efficiency and the associated environmental impacts, many industries, worldwide, are exploring ``environmentally friendly`` technologies that provide equivalent or improved performance while reducing or eliminating harmful side effects. The refrigeration and air conditioning industry, due to its reliance on CFCs and HCFCs has invested in research in alternatives to the industry standard vapor compression machines. One alternative technology with great promise is chemical absorption. Absorption chillers offer comparable refrigeration output with reduced SO{sub 2}, CO{sub 2}, and NO{sub x} emissions. Additionally, absorption chillers do not use CFCs or HCFCs, refrigerants that contribute to ozone depletion and global warming. The purpose of this paper is to provide an introduction for those new to absorption technology as well as a discussion of selected high efficiency cycles and environmental impacts for those familiar with absorption. The introduction will include a brief history of absorption and a description of the basic refrigeration cycle, while the advanced sections will discuss triple-effect technology and a life-cycle or ``systems`` approach to evaluating global warming impacts.

  9. International Refrigeration: Order (2012-CE-1510) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Refrigeration: Order (2012-CE-1510) International Refrigeration: Order (2012-CE-1510) July 20, 2012 DOE ordered International Refrigeration Products to pay an $8,000 civil penalty after finding International Refrigeration had failed to certify that certain room air conditioners comply with the applicable energy conservation standard. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and International Refrigeration. PDF icon International

  10. Do residential air-conditioning rebates miss the mark?

    SciTech Connect (OSTI)

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  11. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  12. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect (OSTI)

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  13. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  14. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  15. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  16. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  17. Stirling Air Conditioner for Compact Cooling (Program Document...

    Office of Scientific and Technical Information (OSTI)

    The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To...

  18. Fluorescent refrigeration

    DOE Patents [OSTI]

    Epstein, Richard I. (Santa Fe, NM); Edwards, Bradley C. (Los Alamos, NM); Buchwald, Melvin I. (Santa Fe, NM); Gosnell, Timothy R. (Santa Fe, NM)

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  19. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    SciTech Connect (OSTI)

    Dieckmann, John

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  20. Refrigerant directly cooled capacitors

    DOE Patents [OSTI]

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  1. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: ...

  2. Fluorescent refrigeration

    DOE Patents [OSTI]

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  3. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  4. International Refrigeration: Proposed Penalty (2012-CE-1510)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that International Refrigeration Products failed to certify a various room air conditioners as compliant with the applicable energy conservation standards.

  5. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji )

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  6. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    SciTech Connect (OSTI)

    Cavestri, R.C.

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  7. Refrigeration system

    SciTech Connect (OSTI)

    Pagani, R.F.; Clarke, K.J.; Avon, E.J.

    1986-11-11

    This patent describes a chamber including an expandable refrigerant system associated therewith. The system comprises reservoir containing an expandable refrigerant coolant and lead piping connecting the reservoir to conduits carrying the coolant therein. The chamber comprises top, bottom and side walls, accordingly defining an interior and an exterior to the chamber, one of the walls comprises a door affording access into the chamber, each of the walls being insulated with insulating material. At least one of the walls comprises a first layer of the insulating material extending thereover adjacent the exterior and a second layer of the insulating material extending thereover adjacent the interior. The reservoir, lead piping and conduits are disposed intermediate the first and second layers of insulating material thereby isolating them from both the interior and exterior. Heat transferring through the at least one wall is substantially absorbed by the coolant and the insulating material cooled by the coolant, before it is able to penetrate through the at least one wall, permitting a product placed in the chamber to effectively maintain or substantially maintain a selected even temperature.

  8. Counterflow absorber for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  9. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect (OSTI)

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the full storage mode was about equal to what could be expected through a simple rooftop efficiency upgrade, the operating costs for the Roofberg system could be much more favorable depending on the utility rate structure. The ability of Roofberg to move much of the cooling load to off-peak periods enables it to take advantage of on-peak demand charges and time-of-use electricity rates. The Roofberg system, as installed, was able to reduce the on-peak energy use of the cooling system to 35% of the on-peak energy consumption of the baseline system. A comparative analysis of a rooftop replacement and Roofberg indicated that the Roofberg system on Building 2518 would be the better economic choice over a range of demand charges and on-off peak energy prices which are typical of utility rate tariffs for commercial buildings.

  10. Retrofitting Doors on Open Refrigerated Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases William Goetzler Navigant Consulting, Inc. wgoetzler@navigant.com (781) 270-8351 April 4, 2013 BBA Refrigeration Project Team Images courtesy of REMIS AMERICA, LLC. 2 | Building Technologies Office eere.energy.gov Technology Overview Image from Investigation of Energy- Efficient Supermarket Display Cases. 2004, Oak Ridge National Laboratory. Background and Motivation * Adding doors to open cases (retrofits) greatly reduces cold air loss - 50-80% load

  11. ARTI Refrigerant Database

    SciTech Connect (OSTI)

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  12. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect (OSTI)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  13. Pilot Testing of Commercial Refrigeration-Based Demand Response

    SciTech Connect (OSTI)

    Hirsch, Adam; Clark, Jordan; Deru, Michael; Trenbath, Kim; Doebber, Ian; Studer, Daniel

    2015-10-08

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certain DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.

  14. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  15. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  16. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  17. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect (OSTI)

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  18. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  19. DOE EPCA Commercial Refrigeration Standards - EERE-2010-BT-STD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All other anti-sweat heater controls are old technology that has algorithm's to estimate store conditions inaccurately. PDF icon EPCA Commercial Refrigeration Standards.pdf More ...

  20. System and method for conditioning intake air to an internal combustion engine

    DOE Patents [OSTI]

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  1. ARTI Refrigerant Database. [Quarterly progress report, 1 July 1993--30 September 1993

    SciTech Connect (OSTI)

    Calm, J.M.

    1993-11-28

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R134a, R-141b, R-142b, R-143a, R-152a, R-227ea, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyol ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  2. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect (OSTI)

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  3. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  4. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint

    SciTech Connect (OSTI)

    Rugh, J.

    2010-02-01

    A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

  5. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  6. Magnetocaloric Refrigerator Freezer

    Office of Environmental Management (EM)

    Magnetocaloric Refrigerator Freezer 2014 Building Technologies Office Peer Review CRADA PARTNER General Electric P.I: Ayyoub M. Momen, momena@ornl.gov R&D Staff, Oak Ridge National Laboratory Project Summary Timeline: Start date: Aug 1 st , 2013 (FY14) Planned end date: Sept 30 th , 2016 Key Milestones 1. Determine requirements for refrigeration circuit seals and hydraulics; 31-March-2014 2. Develop breadboard refrigerator-freezer design; Achieve target goals with breadboard design;

  7. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  8. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  9. Maximizing NGL recovery by refrigeration optimization

    SciTech Connect (OSTI)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity of the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.

  10. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  11. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  12. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  13. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  14. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  15. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Office of Environmental Management (EM)

    | Department of Energy and Evaluation of a Sandia Cooler-based Refrigerator Condenser Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air-bearing supported rotating heat-sink impeller. The project included baseline performance testing of a residential refrigerator, analysis, and design development of a Sandia Cooler condenser assembly including a spiral channel

  16. Magnetocaloric Refrigeration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    compression cycle and thus reduce greenhouse gas emissions by eliminating the use of high-global-warming-potential refrigerants. Refrigeration technologies based on MCE are...

  17. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  18. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  19. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  20. "Table HC11.6 Air Conditioning Characteristics by Northeast Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Air Conditioning Characteristics",,,"Middle Atlantic","New England" "Total",111.1,20.6,15.1,5.5 "Do Not Have Cooling Equipment",17.8,4,2.4,1.7 "Have Coolling

  1. "Table HC13.6 Air Conditioning Characteristics by South Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Air Conditioning Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Cooling Equipment",17.8,1.4,0.8,0.2,0.3 "Have

  2. Alternative technologies for cooling and refrigeration equipment

    SciTech Connect (OSTI)

    Matchett, J.

    1995-12-01

    Significant national and international attention has focused on the role that chlorofluorocarbons (CFCs) play in stratospheric ozone depletion. The Clean Air Act of 1990 calls for the production of the most harmful CFCs to completely cease by December 31, 1995. This production phaseout affects many CFC-refrigerants which are commonly used in commercial, residential, and industrial cooling processes. The production phaseout of CFCs will require owners of CFC-based refrigeration equipment to make plans to replace their equipment. Many equipment owners find themselves in a {open_quotes}rut{close_quotes}replacing CFCs with another chemical coolant, rather than a new cooling process. Since many of the chemical alternatives are structurally similar to CFCs (i.e., HCFCs, HFCs, and blends) they require minimal changes to current equipment. However, these substances are also believed to affect the global climate. Hence, they may not be the most environmentally sound alternative and probable are subject to other Federal regulations. There are other HVAC/R alternatives which are less environmentally damaging than these chemicals and may actually be more cost-effective and energy efficient and than the {open_quotes}traditional{close_quotes} CFC chemical substitutes. Alternative cooling technologies include absorption systems, desiccant cooling, evaporative cooling, and ammonia vapor compression. These alternative technologies are proven alternatives and are commercially available. Further, significant technological developments in recent years have made these technologies feasible alternatives for applications previously believed to be unacceptable. This paper describes these alternative technologies and the conditions in which they are viable alternatives to CFC-based equipment. Additionally, energy efficiency and life-cycle cost analysis considerations are addressed to provide a more completes analysis of cooling equipment alternatives.

  3. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  4. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOE Patents [OSTI]

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  5. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  6. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  7. International Refrigeration: Order (2012-CE-1510) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Refrigeration: Order (2012-CE-1510) International Refrigeration: Order (2012-CE-1510) July 20, 2012 DOE ordered International Refrigeration Products to pay an 8,000 ...

  8. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  9. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  10. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  11. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  12. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic refrigeration is being investigated as an alternative to conventional gas ... materials may thus have improved properties for magnetic refrigeration. ...

  13. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  14. Adsorption Refrigeration System

    SciTech Connect (OSTI)

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  15. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  16. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  17. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  18. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  19. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  20. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect (OSTI)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  1. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  2. Modeling Supermarket Refrigeration Systems with EnergyPlus

    SciTech Connect (OSTI)

    Stovall, Therese K; Baxter, Van D

    2010-01-01

    Supermarket refrigeration capabilities were first added to EnergyPlus in 2004. At that time, it was possible to model a direct expansion (DX) rack system with multiple refrigerated cases. The basic simulation software handles all the building energy uses, typically on a 5 to 10 minute time step throughout the period of interest. The original refrigeration module included the ability to model the sensible and latent interactions between the refrigerated cases and the building HVAC system, along with some basic heat recovery capabilities. Over the last few years, the refrigeration module has been expanded to handle more complex systems, such as secondary loops, shared condensers, cascade condensers, subcoolers, and walk-in coolers exchanging energy with multiple conditioned zones.

  3. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  4. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  5. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect (OSTI)

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be easily scaleable for this larger load.

  6. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL)

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  7. Frost sensor for use in defrost controls for refrigeration

    DOE Patents [OSTI]

    French, Patrick D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Butz, James R. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); Veatch, Bradley D. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107); O'Connor, Michael W. (ADA Technologies, Inc. 8100 Shaffer Pkwy., Suite 130, Littleton, CO 80127-4107)

    2002-01-01

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  8. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    SciTech Connect (OSTI)

    Todd Salamon

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned ?¢????phase change?¢??? or ?¢????two-phase?¢??? pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature. Results of a 100 kW prototype data center installation of the refrigerant-based modular cooling technology were dramatic in terms of energy efficiency and the ability to cool high-heat-density equipment. The prototype data center installation consisted of 10 racks each loaded with 10 kW of high-heat-density IT equipment with the racks arranged in a standard hot-aisle/cold-aisle configuration with standard cabinet spacing. A typical chilled-water CRAC unit would require approximately 16 kW to cool such a heat load. In contrast, the refrigerant-based modular cooling technology required only 2.3 kW of power for the refrigerant pump and shelf-level fans, a reduction of 85 percent. Differences in hot-aisle and cold-aisle temperature were also substantially reduced, mitigating many issues that arise in purely air-based cooling systems, such as mixing of hot and cold air streams, or from placing high-heat-density equipment in close proximity. The technology is also such that it is able to retro-fit live equipment without service interruption, which is particularly important to the large installed ICT customer base, thereby providing a means of mitigating reliability and performance concerns during the installation, training and validation phases of product integration. Moreover, the refrigerant used in our approach, R134a, is a widely-used, non-toxic dielectric liquid which, unlike water, is non-conducting and non-corrosive and will not damage electronics in the case of a leak?¢????a triple-play win over alternative water-based liquid coolant technologies. Finally, through use of a pumped refrigerant, pressures are modest (~60 psi), and toxic lubricants and oils are not required, in contrast to compressorized refrigerant systems?¢????another environmental win. Project Activities - The ARCTIC project goal was to further develop and dramatically accelerate the commercialization of this game-changing, refrigerant-based, liquid-cooling technology and achieve a revolutionary increase in energy efficiency and carbon footprint reduction for our nation?¢????s Information and Communications Technology (ICT) infrastructure. The specific objectives of the ARCTIC project focused in the following three areas: i) advanced research innovations that dramatically enhance the ability to deal with ever-increasing device heat densities and footprint reduction by bringing the liquid cooling much closer to the actual heat sources; ii) manufacturing optimization of key components; and iii) ensuring rapid market acceptance by reducing cost, thoroughly understanding system-level performance, and developing viable commercialization strategies. The project involved participants with expertise in all aspects of commercialization, including research & development, manufacturing, sales & marketing and end users. The team was lead by Alcatel-Lucent, and included subcontractors Modine and USHose.

  9. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  10. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  11. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  12. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect (OSTI)

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  13. Table HC15.7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Four Most Populated States, 2005 Total.................................................................................. 111.1 7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment.................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................. 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment.................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use

  14. Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005

    Gasoline and Diesel Fuel Update (EIA)

    7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it......................

  15. Table HC9.6 Air Conditioning Characteristics by Climate Zone, 2005

    Gasoline and Diesel Fuel Update (EIA)

    6 Air Conditioning Characteristics by Climate Zone, 2005 Million U.S. Housing Units Total......................................................................... 111.1 10.9 26.1 27.3 24.0 22.8 Do Not Have Cooling Equipment........................... 17.8 3.2 4.7 3.6 5.5 0.9 Have Cooling Equipment........................................ 93.3 7.7 21.4 23.7 18.5 21.9 Use Cooling Equipment......................................... 91.4 7.6 21.0 23.4 17.9 21.7 Have Equipment But Do Not Use

  16. Compact acoustic refrigerator

    SciTech Connect (OSTI)

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  17. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  18. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  19. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  20. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  1. Energy Conservation Program: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  2. Solubility modeling of refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs where structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.

  3. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  4. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  5. Extension of a Virtual Refrigerant Charge Sensor

    SciTech Connect (OSTI)

    Kim, Woohyun; Braun, J.

    2015-07-01

    The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. To evaluate the accuracy of the VRC, data were first collected from previous laboratory tests for different systems and over a wide range of operating conditions. In addition, new laboratory tests were performed to consider conditions not available within the existing data set. The systems for the new laboratory tests were two residential ductless split heat pump systems that employ a variable-speed compressor and R-410a as the refrigerant. Based on the evaluations, the original virtual charge sensor (termed model I) was found to work well in estimating the refrigerant charge for systems with a variable-speed compressor under many operating conditions. However, for extreme test conditions such as low outdoor temperatures and low compressor speed, the VRC needed to be improved. To overcome the limitations, the model associated with the VRC sensor was modified to include a term involving the inlet quality to the evaporator estimated from the condenser outlet condition (termed model II). Both model I and II showed good performance in terms of predicting charge levels for systems with a constant speed compressor, but model II gave better performance for systems with a variable-speed compressor. However, when the superheat of the compressor was zero, neither model I nor II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. This model improved performance for a laboratory-tested system that included a number of points with no superheat entering the compressor.

  6. New Advanced Refrigeration Technology Provides Clean Energy,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ORNL and Hillphoenix, found solutions to both challenges-the refrigerant leakage and high-global warming potential refrigerants-by using CO2 as the refrigerant and confining it to ...

  7. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect (OSTI)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  8. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect (OSTI)

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  9. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect (OSTI)

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  10. Expert system for the design of heating, ventilating, and air-conditioning systems. Master's thesis

    SciTech Connect (OSTI)

    Camejo, P.J.

    1989-12-01

    Expert systems are computer programs that seek to mimic human reason. An expert system shelf, a software program commonly used for developing expert systems in a relatively short time, was used to develop a prototypical expert system for the design of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Because HVAC design involves several related knowledge domains, developing an expert system for HVAC design requires the integration of several smaller expert systems known as knowledge bases. A menu program and several auxiliary programs for gathering data, completing calculations, printing project reports, and passing data between the knowledge bases are needed and have been developed to join the separate knowledge bases into one simple-to-use program unit.

  11. New Energy Efficiency Standards for Commercial Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

  12. Patent: Thermoacoustic refrigerators and engines comprising cascading

    Office of Scientific and Technical Information (OSTI)

    stirling thermodynamic units | DOEpatents Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units Citation Details Title: Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

  13. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Description Magnetic refrigeration is being investigated as an alternative to conventional ... These materials may thus have improved properties for magnetic refrigeration. As part of ...

  14. DOE Closes Investigation of Arcelik's Blomberg Refrigerator ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arcelik's Blomberg Refrigerator DOE Closes Investigation of Arcelik's Blomberg Refrigerator September 1, 2010 - 4:37pm Addthis The Department of Energy has closed its investigation...

  15. DOE Closes Investigation of Whirlpool's Maytag Refrigerator ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Whirlpool's Maytag Refrigerator DOE Closes Investigation of Whirlpool's Maytag Refrigerator July 8, 2010 - 3:12pm Addthis The Department of Energy has closed its investigation...

  16. Multi-stage Cascaded Stirling Refrigerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Multi-stage Cascaded Stirling Refrigerator Multi-stage Cascaded Stirling Refrigerator Los Alamos National Laboratory (LANL) researchers have developed a multi-stage...

  17. Semiconductor-based optical refrigerator

    DOE Patents [OSTI]

    Epstein, Richard I. (Santa Fe, NM); Edwards, Bradley C. (Nekoosa, WI); Sheik-Bahae, Mansoor (Albuquerque, NM)

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  18. Magnetocaloric Refrigeration | Department of Energy

    Energy Savers [EERE]

    Magnetocaloric Refrigeration Magnetocaloric Refrigeration Researchers demonstrate General Electric's magnetocaloric system. <br /> Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. Photo courtesy of General Electric Researchers demonstrate General Electric's magnetocaloric system. <br /> Photo courtesy of General Electric Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: General Electric - Fairfield, CT DOE

  19. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  20. Helium dilution refrigeration system

    DOE Patents [OSTI]

    Roach, Patrick R. (Darien, IL); Gray, Kenneth E. (Naperville, IL)

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  1. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect (OSTI)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  2. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect (OSTI)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two naphthenic mineral oils (NMO), four polyolesters (POE), and two polyvinyl ether (PVE) fluids. These fluids represented viscosity grades of ISO 32 and ISO 68 and are shown in a table. Refrigerants studied included R-22, R-134a, and R-410A. Film thickness measurements were conducted at 23 C, 45 C, and 65 C with refrigerant concentrations ranging from zero to 60% by weight.

  3. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  4. Cryogenic refrigeration apparatus

    DOE Patents [OSTI]

    Crunkleton, James A. (Cambridge, MA)

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  5. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetocaloric Materials Chill Next-Generation Refrigerators Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Magnetocaloric Materials Chill Next-Generation Refrigerators You've seen them. You may even decorate with them. The ubiquitous "sticker-uppers" that cover your refrigerator, helping to keep your

  6. "Table HC10.6 Air Conditioning Characteristics by U.S. Census Region, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Air Conditioning Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Cooling Equipment",17.8,4,2.1,1.4,10.3 "Have Cooling Equipment",93.3,16.5,23.5,39.3,13.9 "Use Cooling

  7. "Table HC15.6 Air Conditioning Characteristics by Four Most Populated States, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Air Conditioning Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Cooling Equipment",17.8,1.8,"Q","Q",4.9 "Have Cooling Equipment",93.3,5.3,7,7.8,7.2

  8. "Table HC3.6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Owner-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  9. "Table HC4.6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Air Conditioning Characteristics by Renter-Occupied Housing Units, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Air Conditioning Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile

  10. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  11. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  12. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  13. Solar heat pump systems with refrigerant-filled collectors

    SciTech Connect (OSTI)

    O'Dell, M.P.; Beckman, W.A.; Mitchell, J.W.

    1983-01-01

    The heat pump system with a refrigerant-filled evaporator consists of a standard air-to-air or air-to-liquid heat pump that utilizes a solar panel as the evaporator. A combination of solar energy and convection heat transfer acts as the ''free'' energy absorbed by the collector/evaporator. In this paper, the seasonal performance of such systems for industrial applications will be presented. Performance of collector/evaporator heat pumps will be compared with alternative heat pump and solar systems. The benefits of covered and coverless collector/evaporators will be discussed. Results to date have shown that refrigerant-filled collector heat pumps do not perform as well as conventional heat pumps at small collector areas but have as much as 15% performance improvement over conventional heat pumps at an appropriate collector area.

  14. Investigation of techniques to improve continuous air monitors under conditions of high dust loading in environmental setting

    SciTech Connect (OSTI)

    Huang, Suilou; Schery, Stephen D.; Rodgers, John

    2000-06-01

    Improvement in understanding the deposition of ambient dust particles on environmental continuous air monitor (ECAM) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  15. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  16. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  17. Study of Air Ingress Across the Duct During the Accident Conditions

    SciTech Connect (OSTI)

    Hassan, Yassin

    2013-05-06

    The goal of this project is to study the fundamental physical phenoena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a nupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefor, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that mimimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlaying phenomena. The combination of interdiffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. THis project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses Perform computational fluid dynamics analysis of air ingress phenomena

  18. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  19. DEVELOPMENT OF A REFRIGERANT DISTRIBUTION SECTION FOR ASHRAE STANDARD 152.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2001-09-07

    In a recent draft report titled ''Impacts of Refrigerant Line Length on System Efficiency in Residential Heating and Cooling Systems Using Refrigerant Distribution,'' (Andrews 2000) some baseline calculations were performed to estimate various impacts on system efficiency of long refrigerant distribution lines. Refrigerant distribution refers to ''mini-splits'' and other types of space beating and cooling equipment that utilize refrigerant lines, rather than ducts or pipes, to transport heat and cooling effect from the outdoor unit to the building spaces where this heat or cooling is used. Five factors affecting efficiency were studied in each of the space conditioning modes (heating and cooling) for a total of ten factors in all. Temperature changes and pressure drops in each of the two refrigerant lines accounted for four of the factors, with the remaining one being elevation of the indoor unit relative to the outdoor unit. Of these factors, pressure drops in the suction line in cooling showed by far the largest effect. This report builds on these baseline calculations to develop a possible algorithm for a refrigerant distribution section of ASHRAE Standard 152. It is based on the approximate treatment of the previous report, and is therefore subject to error that might be corrected using a more detailed analysis, possibly including computer modeling and field testing. However, because the calculated efficiency impacts are generally small (a few percent being typical) it may be that the approximate treatment is sufficient. That question is left open for discussion. The purpose of this report is not to advocate the adoption of the methodology developed, but rather to present it as an option that could either be adopted as-is or used as a starting point for further analysis. It is assumed that the reader has available and is familiar with ASHRAE Standard 152P and with the previous analysis referred to above.

  20. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    SciTech Connect (OSTI)

    Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.; Zimmerman, Mark D.; Li, Manjie; Du, Yilin; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  1. High Efficiency Motors for Refrigerated Open Display Cases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with support from commercial refrigeration OEMs, retrofit contractors, utilities ... from commercial refrigeration OEMs, retrofit contractors, utilities and grocery sites. ...

  2. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  3. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  4. Cospolich Refrigerator: Order (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE ordered Cospolich Refrigerator Co, Inc. to pay a $8,000 civil penalty after finding Cospolich Refrigerator had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  5. DOE Proposes Higher Efficiency Standards for Refrigerators

    Broader source: Energy.gov [DOE]

    New Proposed Standards for Residential Refrigerators and Freezers to Lower Energy Use by as much as Twenty-Five Percent

  6. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  7. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  8. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  9. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  10. Method and apparatus for desuperheating refrigerant

    DOE Patents [OSTI]

    Zess, James A. (Kelso, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Richland, WA)

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  11. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  12. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  13. A recuperative superfluid stirling refrigerator

    SciTech Connect (OSTI)

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  14. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  15. Investigation of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    SciTech Connect (OSTI)

    Suilou Huang; Stephen D. Schery; John C. Rodgers

    2002-07-23

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures.

  16. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  17. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technologys applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  18. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  19. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

  20. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect (OSTI)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  1. On eddy accumulation with limited conditional sampling to measure air-surface exchange

    SciTech Connect (OSTI)

    Wesely, M.L.; Hart, R.L.

    1994-01-01

    An analysis of turbulence data collected at a height of 12.3 m above grasslands was carried out to illustrate some of the limitations and possible improvements in methods to compute vertical fluxes of trace substances by the eddy accumulation technique with conditional sampling. The empirical coefficient used in the technique has a slight dependence on atmospheric stability, which can be minimized by using a threshold vertical velocity equal to approximately 0.75{sigma}{sub w}, below which chemical sampling is suspended. This protocol results in a smaller chemical sample but increases the differences in concentrations by approximately 70%. For effective conditional sampling when mass is being accumulated in a trap or reservoir, the time of sampling during updrafts versus downdrafts should be measured and used to adjust estimates of the mean concentrations.

  2. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect (OSTI)

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  3. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, Richard T. (Worthington, OH); Middleton, Marc G. (West Jefferson, OH)

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  4. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  5. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect (OSTI)

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  6. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-06-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  7. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-01-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  8. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.<br /> Credit: Whirlpool Embraco's high efficiency, oil-free linear compressor. Credit: Whirlpool ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL project aimed at building a more energy-efficient refrigerator. ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL

  9. Commercial Refrigeration Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Refrigeration Equipment Commercial Refrigeration Equipment The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Commercial Refrigeration Equipment -- v2.0 More

  10. Covered Product Category: Commercial Refrigerators and Freezers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerators and Freezers Covered Product Category: Commercial Refrigerators and Freezers The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Efficiency Requirements for Commercial

  11. Covered Product Category: Refrigerated Beverage Vending Machines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerated Beverage Vending Machines Covered Product Category: Refrigerated Beverage Vending Machines The Federal Energy Management Program (FEMP) provides acquisition guidance for refrigerated beverage vending machines, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Efficiency Requirements

  12. Working Fluids: Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Fluids: Low Global Warming Potential Refrigerants 2014 Building Technologies Office Peer Review Omar Abdelaziz, abdelazizoa@ornl.gov Oak Ridge National Laboratory Honeywell University of Maryland Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2016 Key Milestones 1. Data analysis and reporting of supermarket system: baseline and alternative refrigerants; 12/31/2014 2. Perform initial field testing of alternative refrigerant in 3 rd party installation; 9/30/2014

  13. Everest Refrigeration: Noncompliance Determination (2015-SE-42001) |

    Office of Environmental Management (EM)

    Department of Energy Noncompliance Determination (2015-SE-42001) Everest Refrigeration: Noncompliance Determination (2015-SE-42001) April 24, 2015 DOE issued a Notice of Noncompliance Determination to Bu Sung America Corporation (dba Everest Refrigeration) finding that commercial refrigeration equipment model number ESGR3 does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing. Bu Sung must immediately notify each person (or

  14. Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) |

    Energy Savers [EERE]

    Department of Energy Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) Refrigerators and Refrigerator-Freezers (Appendix A1 after May 2, 2011) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement

  15. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market- ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology- retrofitting rooftop air- conditioning units with an advanced rooftop control system-was identified as a

  16. Natural Refrigerant (R-729) Heat Pump

    Broader source: Energy.gov (indexed) [DOE]

    Natural Refrigerant (R-729) Heat Pump 2014 Building Technologies Office Peer Review New Project Lee Jestings (lee@S-RAM.com), Project Summary Timeline: Key Partners: Start date:...

  17. Covered Product Category: Commercial Refrigerators and Freezers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, which are covered by the ENERGY STAR program.

  18. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. ...

  19. Experimental study and analysis on components of a thermoacoustic refrigerator and thermoacoustic prime mover

    SciTech Connect (OSTI)

    Nohtomi, Makoto; Katsuta, Masafumi

    1999-07-01

    A thermoacoustic refrigerator and a thermoacoustic prime mover, due to its simple structure, would serve as very desirable systems because thermoacoustic prime movers can be driven with the waste heat such as an exhaust gas from engines, and with heat from the nature such as sunlight and a geothermal heat. The thermoacoustic refrigerator and the thermoacoustic prime mover combined would serve as a perfect cooling system without moving parts, CFC's and HFC's. Thus this Thermoacoustic-driven Thermoacoustic Refrigerator will replace the previous paper compression refrigeration system. The authors set up the thermoacoustic refrigerator and thermoacoustic prime mover to investigate the fundamental characteristics. On the refrigerator tests, dimensions of the stack are varied as a parameter of experiments. As a result, influences of the stack configuration on the performance are confirmed, so the design method for the optimum dimension to attain the large temperature difference can be indicated. About the prime mover tests, fundamental characteristics of stack dimensions is checked. The way to improve the thermal efficiency of the prime mover is mentioned in terms of the operating condition. Numerical calculations about the refrigerator are made which is based on the enthalpy flow model by Radebaugh. The result of calculations has a good agreement in quality with the experimental results, so the propriety of this model is confirmed.

  20. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect (OSTI)

    Huang, J.; Bushe, W.K.

    2006-01-01

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  1. Copper contamination effects on hydrogen-air combustion under SCRAMJET (supersonic combustion ramjet) testing conditions

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1990-01-01

    Two forms of copper catalytic reactions (homogeneous and heterogeneous) in hydrogen flames were found in a literature survey. Hydrogen atoms in flames recombine into hydrogen molecules through catalytic reactions, and these reactions which affect the timing of the combustion process. Simulations of hydrogen flames with copper contamination were conducted by using a modified general chemical kinetics program (GCKP). Results show that reaction times of hydrogen flames are shortened by copper catalytic reactions, but ignition times are relatively insensitive to the reactions. The reduction of reaction time depends on the copper concentration, copper phase, particle size (if copper is in the condensed phase), and initial temperature and pressure. The higher the copper concentration of the smaller the particle, the larger the reduction in reaction time. For a supersonic hydrogen flame (Mach number = 4.4) contaminated with 200 ppm of gaseous copper species, the calculated reaction times are reduced by about 9%. Similar reductions in reaction time are also computed for heterogeneous copper contamination. Under scramjet testing conditions, the change of combustion timing appears to be tolerable (less than 5%) if the Mach number is lower than 3 or the copper contamination is less than 100 ppm. The higher rate the Mach number, the longer the reaction time and the larger the copper catalytic effects. 7 tabs., 8 figs., 34 refs.

  2. Refrigerator Standards Save Consumers $ Billions | Department of Energy

    Energy Savers [EERE]

    Refrigerator Standards Save Consumers $ Billions Refrigerator Standards Save Consumers $ Billions March 5, 2013 - 10:35am Addthis Refrigerator Standards Refrigerator Standards Refrigerator technology has come a long way since Dr. John Gorrie (1803 - 1855), a forward-looking inventor, was granted U. S. Patent #8080 for mechanical refrigeration in 1851. In those days, ice was expensive, if it was even available: Blocks of natural ice were carved from frozen lakes and rivers and stored in special

  3. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  4. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect (OSTI)

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  5. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration...

    Office of Environmental Management (EM)

    0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document ...

  6. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration...

    Office of Environmental Management (EM)

    1-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration ...

  7. 2014-08-01 Issuance: Test Procedure for Refrigerated Bottled...

    Energy Savers [EERE]

    Test Procedure for Refrigerated Bottled or Canned Beverage Vending Machines; Notice of Proposed Rulemaking and public meeting 2014-08-01 Issuance: Test Procedure for Refrigerated ...

  8. Pecharsky talks magnetic refrigeration with Forbes | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pecharsky talks magnetic refrigeration with Forbes In a May 6 article, Forbes contributor Hillary Brueck writes about the race to develop magnetic refrigeration and interviewed...

  9. Development and Evaluation of a Sandia Cooler-based Refrigerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Evaluation of a Sandia Cooler-based Refrigerator Condenser Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser This report describes the first design of...

  10. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative ...

  11. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies ...

  12. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of Standards and Technology - ...

  13. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for ...

  14. DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm Addthis...

  15. REA Refrigerated Display Case LED Lighting Performance Specification...

    Office of Environmental Management (EM)

    REA Refrigerated Display Case LED Lighting Performance Specification REA Refrigerated Display Case LED Lighting Performance Specification A Retailer Energy Alliances (REA) Project ...

  16. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration ...

  17. Ames Lab-based consortium to research improving refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Lab-based consortium to research improving refrigeration technology Ames Tribune ... alternative environmentally-friendly and energy- efficient technologies in refrigeration. ...

  18. Ames Laboratory to lead new consortium to advance refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  19. CBEI: Virtual Refrigerant Charge Sensing and Load Metering -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant...

  20. DOE Closes Investigation into Energy Efficiency of Viking Refrigerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Energy Efficiency of Viking Refrigerator DOE Closes Investigation into Energy Efficiency of Viking Refrigerator November 9, 2010 - 7:30pm Addthis The Department of Energy has...

  1. WPN 00-5: Approval of Replacement Refrigerators and Electric...

    Energy Savers [EERE]

    WPN 00-5: Approval of Replacement Refrigerators and Electric Water Heaters as Allowable Weatherization Measures WPN 00-5: Approval of Replacement Refrigerators and Electric Water...

  2. Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...

    Open Energy Info (EERE)

    Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators...

  3. Product Standards for Refrigerators (Japan) | Open Energy Information

    Open Energy Info (EERE)

    Refrigerators (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Refrigerators (Japan) Focus Area: Appliances & Equipment Topics: Policy...

  4. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  5. Seven-effect absorption refrigeration

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  6. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  7. Commercial Refrigerator Door: Order (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Refrigerator Door Company, Inc. to pay a $8,000 civil penalty after finding Commercial Refrigerator Door had failed to certify that a variety of models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  8. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  9. North Star Refrigerator: Order (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE ordered North Star Refrigerator Co., Inc. to pay a $8,000 civil penalty after finding North Star Refrigerator had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  10. CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA

    SciTech Connect (OSTI)

    Sharma, Vishaldeep; Fricke, Brian A; Bansal, Pradeep

    2014-01-01

    This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regions of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.

  11. CBEI - Virtual Refrigerant Charge Sensing and Load Metering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Refrigerant Charge Sensing and Load Metering 2015 Building Technologies Office Peer Review Jim Braun, jbraun@purdue.edu CBEI/Purdue University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Accuracy of virtual charge sensor, 4/30/15 2. Accuracy of virtual BTU meter, 4/30/15 Budget: Total DOE $ to date: $400,000 Total future DOE $: $140,000 Target Market/Audience: Commercial buildings with either rooftop units (RTUs) or built-up air-handling

  12. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  13. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  14. Novel materials for laser refrigeration

    SciTech Connect (OSTI)

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  15. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  16. PROCESS STUDY OF NOMINAL 2 K REFRIGERATION RECOVERY

    SciTech Connect (OSTI)

    Knudsen, Peter; Ganni, Venkatarao

    2008-03-01

    There is an increased interest in the nominal 2-K helium refrigeration systems (below lambda) for various test stands and applications at the present time. This paper presents the process parameter choices and their influence on the system performance of various noncold compressor configurations. This study is intended to facilitate the adoption of this process in conjunction with commercially-available small 4.5-K helium liquefaction systems. By way of an introduction, the efficiency of some commonly employed (but inefficient) 2-K process configurations are analyzed. Then the analyses of three nominal 2-K refrigeration-recovery process configurations are presented. The effect of the process parameters, such as flow imbalance, heat-exchanger size, supply pressure and 4.5-K plant interaction location(s) are investigated so that the optimum conditions yielding the required performance can be determined.

  17. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect (OSTI)

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  18. Development of vehicle magnetic air conditioner (VMAC) technology. Final

    Office of Scientific and Technical Information (OSTI)

    report (Technical Report) | SciTech Connect Development of vehicle magnetic air conditioner (VMAC) technology. Final report Citation Details In-Document Search Title: Development of vehicle magnetic air conditioner (VMAC) technology. Final report The objective of Phase I was to explore the feasibility of the development of a new solid state refrigeration technology - magnetic refrigeration - in order to reduce power consumption of a vehicle air conditioner by 30%. The feasibility study was

  19. DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a supplemental proposed determination regarding miscellaneous residential refrigeration products.

  20. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    SciTech Connect (OSTI)

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses a P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)

  1. Bearing construction for refrigeration compresssor

    DOE Patents [OSTI]

    Middleton, Marc G. (Wyoming, MI); Nelson, Richard T. (Worthington, OH)

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  2. Dual-circuit, multiple-effect refrigeration system and method

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN)

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  3. Method and apparatus for passive refrigerant retrieval and storage

    SciTech Connect (OSTI)

    Squire, D.C.

    1991-12-17

    This patent describes a method of retrieving and storing refrigerant from a cooling system being serviced of the type having a compressor for circulating a compressible refrigerant in a closed, pressurized system between a condenser and an evaporator to provide a cooling effect. It comprises: connecting one end of a refrigerant collector tube contained within a housing to the cooling system at the condenser outlet; connecting the interior of the housing to the compressor inlet; operating the cooling system compressor to pressurize refrigerant in the cooling system and pump the refrigerant into the collector tube; and discharging refrigerant from the collector tube into the housing interior through a metering valve where the refrigerant pressure is reduced and evaporates and cools the refrigerant remaining in the tube and the evaporated refrigerant is drawn into the compressor inlet whereby the refrigerant becomes trapped within the housing.

  4. Refrigerant charge management in a heat pump water heater

    DOE Patents [OSTI]

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  5. High power thermoacoustic refrigeration. Annual summary report, 1 June 1995-31 May 1996

    SciTech Connect (OSTI)

    Garrett, S.L.

    1996-06-15

    The purpose of this research project is to study the fundamental physical processes which are involved in production of high cooling powers from electrically driven thermoacoustic refrigeration. The results of these experimental investigations are then utilized to produce improved designs for the next generation of high power thermoacoustic refrigerators, chillers, and air conditioners. These research objectives are achieved by an integrated combination of experimental measurements on thermoacoustic components and subsystems, as well as complete refrigeration systems. Comparison of the measured performance to analytic models based on differential equations (low amplitude) and similitude (high amplitude) and to numerical models based on the Los Alamos National Laboratory Design Environment for Low-Amplitude ThermoAcoustic Engines (DELTA-E), are then made.

  6. High frequency thermoacoustic refrigerator. Annual summary report, 2 September 1993-31 May 1994

    SciTech Connect (OSTI)

    Symko, O.G.

    1994-06-16

    A small thermoacoustic refrigerator was developed for operation at 5 kHz. Its main components are a piezoelectric driver of the bimorph type, a cotton wool stack, a 1/2-wave resonator (operated at its 3rd harmonic), and photolithographically processed copper heat exchangers. Tests with air at 1 atmosphere as the working gas produced a temperature difference Delta T across the stack of 32 deg C in 4 seconds for an acoustic power input level of 160 dB. The refrigerator did not have thermal insulation. Improved performance is expected with pressurized helium gas and helium-xenon mixtures. The performance of this refrigerator and its small size make it attractive for applications in high speed electronics and possibly IR detectors.

  7. High frequency thermoacoustic refrigerator. Annual summary report, 1 June 1994-31 May 1995

    SciTech Connect (OSTI)

    Symko, O.G.

    1995-08-15

    Results are presented on the development of a high frequency thermoacoustic refrigerator and its performance. The device consists of a piezoelectric driver, operated around 5kHz, which is coupled to a cylindrical resonator containing air at 1 atmosphere as the compressible fluid. For sound levels of 155dB at the stack, a maximum T of 41 C was reached across a cotton wool stack 4mm long. A cooling power of 1.2 watt was achieved with a coefficient of performance of 3. This simple and lightweight refrigerator shows promise for cooling of small samples and electronic components. The performance of this type of refrigerator at high frequencies leads to high efficiency and power density. Research is aimed at improving its performance by optimizing some of the critical parameters such as the sound level and the thermal interface between stack and heat exchangers.

  8. DOE Reaches Settlements with Three Commercial Refrigeration Equipment

    Energy Savers [EERE]

    Manufacturers | Department of Energy Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers DOE Reaches Settlements with Three Commercial Refrigeration Equipment Manufacturers March 1, 2016 - 6:20pm Addthis DOE settled enforcement actions against Utility Refrigerator, True Manufacturing, and Victory Refrigeration for distributing commercial refrigeration equipment in the United States that do not meet applicable energy conservation standards. As a part of the

  9. Cospolich Refrigerator: Proposed Penalty (2013-CE-5314)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Cospolich Refrigerator Co, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  10. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  11. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOE Patents [OSTI]

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  12. Defrost Temperature Termination in Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Sharma, Vishaldeep

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  13. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  14. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, Donald P. (Southold, NY)

    1985-01-01

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  15. Combined cold compressor/ejector helium refrigerator

    DOE Patents [OSTI]

    Brown, D.P.

    1984-06-05

    A refrigeration apparatus having an ejector operatively connected with a cold compressor to form a two-stage pumping system. This pumping system is used to lower the pressure, and thereby the temperature of a bath of boiling refrigerant (helium). The apparatus as thus arranged and operated has substantially improved operating efficiency when compared to other processes or arrangements for achieving a similar low pressure.

  16. Working Fluids Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Fluids Low GWP Refrigerants - CRADA Ed Vineyard Oak Ridge National Laboratory vineyardea@ornl.gov (865) 574-0576 3 April 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: - High GWP refrigerants increase CO 2 equivalent emissions for HVAC&R equipment - Low GWP alternatives may increase energy consumption, introduce safety risks, require significant modifications to equipment, and have higher costs Impact of Project: - Primary market

  17. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect (OSTI)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  18. Performance prediction of refrigerant-DMF solutions in a single-stage solar-powered absorption refrigeration system at low generating temperatures

    SciTech Connect (OSTI)

    He, L.J.; Tang, L.M.; Chen, G.M.

    2009-11-15

    A theoretical analysis of the coefficient of performance was undertaken to examine the efficiency characteristics of R22 + DMF, R134a + DMF, R32 + DMF as working fluids, respectively, for a single-stage and intermittent absorption refrigerator which allows the use of heat pipe evacuated tubular collectors. The modeling and simulation of the performance considers both solar collector system and the absorption cooling system. The typical meteorological year file containing the weather parameters for Hangzhou is used to simulate the system. The results show that the system is in phase with the weather. In order to increase the reliability of the system, a hot water storage tank is essential. The optimum ratio of storage tank per solar collector area for Hangzhou's climate for a 1.0 kW system is 0.035-0.043L. Considering the relative low pressure and the high coefficient of performance, R134a + DMF mixture presents interesting properties for its application in solar absorption cycles at moderate condensing and absorbing temperatures when the evaporating temperatures in the range from 278 K to 288 K which are highly useful for food preservation and for air-conditioning in rural areas. (author)

  19. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  20. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  1. ISSUANCE 2015-06-30: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards and Test Procedures for Commercial Heating, Air-Conditioning, and Water-Heating Equipment, Final Rule

  2. Air-Source Heat Pump Basics | Department of Energy

    Energy Savers [EERE]

    Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another

  3. Evaluation of EHD enhancement and thermoacoustic refrigeration for naval applications. Technical report, Jul-Sep 91

    SciTech Connect (OSTI)

    Memory, S.B.

    1991-12-01

    An evaluation has been made of two different techniques which could prove valuable for Naval refrigeration needs in the future. The first is electrohydrodynamic (EHD) enhancement of pool boiling and condensation heat transfer; this has been shown to provide significant enhancements for both modes of heat transfer under certain conditions and could provide increases in efficiency of present vapor-compression systems. EHD techniques are quite advanced and prototype condenser and evaporator bundles are currently being tested. The second technique is an alternative refrigeration technology called thermoacoustic refrigeration; alternative technologies have become increasingly attractive over recent years due to environmental concerns over CFCs. Thermoacoustic refrigeration uses acoustic power to pump heat from a low temperature source to a high temperature sink. It is still in the early stages of development and can presently accommodate only small thermal loads. However, its general principles of operation have been proven and its resent capacity and efficiency limitations are not seen as a problem in the long term. Electrohydrodynamic Enhancement, Boiling and Condensation, Thermoacoustic Refrigeration.

  4. VEE-0079- In the Matter of Diversified Refrigeration, Inc.

    Broader source: Energy.gov [DOE]

    Diversified Refrigeration, Inc. (DRI) requests a six-month exception from the 2001 energy appliance efficiency standards for built-in refrigerators that become effective July 1, 2001. As explained...

  5. Refrigerant pressurization system with a two-phase condensing ejector

    DOE Patents [OSTI]

    Bergander, Mark (Madison, CT)

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  6. Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)

    SciTech Connect (OSTI)

    Deru, M.

    2011-02-01

    This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

  7. Could You Save Money on Your Refrigerator? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Could You Save Money on Your Refrigerator? Could You Save Money on Your Refrigerator? July 20, 2012 - 4:35pm Addthis Earlier this week, Amanda wrote about how you can save energy...

  8. DOE Resolves Avanti Refrigerator and Freezer Civil Penalty Case

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy announced that it has resolved the civil penalty action against Mackle Company for its failure to certify that refrigerators and refrigerator-freezers sold under the...

  9. Toxicity Data to Determine Refrigerant Concentration Limits

    SciTech Connect (OSTI)

    Calm, James M.

    2000-09-30

    This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa, R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.

  10. High-Performance Refrigerator Using Novel Rotating Heat Exchanger |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Refrigerator Using Novel Rotating Heat Exchanger High-Performance Refrigerator Using Novel Rotating Heat Exchanger Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Sandia-developed rotating heat exchanger

  11. EERE Success Story-New Advanced Refrigeration Technology Provides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor ... Oak Ridge National Laboratory (ORNL) and leading refrigeration systems manufacturer ...

  12. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling (Program Document)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Elastic Metal Alloy Refrigerants: Thermoelastic Cooling Citation Details In-Document Search Title: Elastic Metal Alloy Refrigerants: Thermoelastic Cooling BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic

  13. EERE Success Story-New Refrigerant Boosts Energy Efficiency of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supermarket Display Cases | Department of Energy Refrigerant Boosts Energy Efficiency of Supermarket Display Cases EERE Success Story-New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases February 20, 2015 - 4:55pm Addthis EERE Success Story—New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases Research supported by the Energy Department's Building Technologies Office has led to a major breakthrough in refrigeration systems' efficiency, and the result may

  14. Everest Refrigeration: Order (2015-SE-42001) | Department of Energy

    Office of Environmental Management (EM)

    Order (2015-SE-42001) Everest Refrigeration: Order (2015-SE-42001) June 9, 2015 DOE ordered Bu Sung America Corporation (dba Everest Refrigeration) to pay a $12,080 civil penalty after finding Bu Sung had manufactured and distributed in commerce in the U.S. at least 64 units of noncompliant commercial refrigerator basic model ESGR3. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Bu Sung. PDF icon Everest Refrigeration: Order (2015-SE-42001) More

  15. New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Refrigerant Boosts Energy Efficiency of Supermarket Display Cases New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases February 20, 2015 - 4:55pm Addthis New Refrigerant Boosts Energy Efficiency of Supermarket Display Cases Research supported by the Energy Department's Building Technologies Office has led to a major breakthrough in refrigeration systems' efficiency, and the result may yield big energy savings for supermarkets nationwide and greatly

  16. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  17. Helium refrigeration considerations for cryomodule design

    SciTech Connect (OSTI)

    Ganni, V.; Knudsen, P.

    2014-01-29

    Many of the present day accelerators are based on superconducting radio frequency (SRF) cavities, packaged in cryo-modules (CM), which depend on helium refrigeration at sub-atmospheric pressures, nominally 2 K. These specialized helium refrigeration systems are quite cost intensive to produce and operate. Particularly as there is typically no work extraction below the 4.5-K supply, it is important that the exergy loss between this temperature level and the CM load temperature(s) be minimized by the process configuration choices. This paper will present, compare and discuss several possible helium distribution process arrangements to support the CM loads.

  18. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  19. Retrofitting Doors on Open Refrigerated Cases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofitting Doors on Open Refrigerated Cases Retrofitting Doors on Open Refrigerated Cases Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs18_goetzler_040413.pdf More Documents & Publications Better Buildings Alliance - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer

  20. Method and apparatus for de-superheating refrigerant

    DOE Patents [OSTI]

    Zess, J.A.; Drost, M.K.; Call, C.J.

    1997-11-25

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

  1. Control method for mixed refrigerant based natural gas liquefier

    DOE Patents [OSTI]

    Kountz, Kenneth J. (Palatine, IL); Bishop, Patrick M. (Chicago, IL)

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  2. High Efficiency Room Air Conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  3. High Performance Sustainable Building Design RM

    Office of Environmental Management (EM)

    ... ASHRAE American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. ... ANSI, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. ...

  4. 2014-04-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding test procedures for residential refrigerators and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014.

  5. Measurements with a recuperative superfluid Stirling refrigerator

    SciTech Connect (OSTI)

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1995-08-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9% {sup 3}He- {sup 4}He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed.

  6. Covered Product Category: Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  8. Dilution cycle control for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  9. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  10. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  11. SCREW COMPRESSOR CHARACTERISTICS FOR HELIUM REFRIGERATION SYSTEMS

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Knudsen, Peter; Creel, Jonathan; Arenius, Dana; Casagrande, Fabio; Howell, Matt

    2008-03-01

    The oil injected screw compressors have practically replaced all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, minimal vibration, reliability and capability of handling helium's high heat of compression.At the present state of compressor system designs for helium systems, typically two-thirds of the lost input power is due to the compression system. Therefore it is important to understand the isothermal and volumetric efficiencies of these machines to help properly design these compression systems to match the refrigeration process. This presentation summarizes separate tests that have been conducted on Sullair compressors at the Superconducting Super-Collider Laboratory (SSCL) in 1993, Howden compressors at Jefferson Lab (JLab) in 2006 and Howden compressors at the Spallation Neutron Source (SNS) in 2006. This work is part of an ongoing study at JLab to understand the theoretical basis for these efficiencies and their loss

  12. Measurements of the efficiency and refrigeration power of pulse-tube refrigerators

    SciTech Connect (OSTI)

    Herrmann, S.; Radebaugh, R.

    1986-09-01

    Pulse-tube or thermoacoustic refrigerators have the potential for high reliability since they require only one moving part - an oscillating piston or diaphragm at room temperature. If a tube is closed at one end and connected to a pressure-wave generator at the open end, and if the phase angle between mass flow and pressure is shifted from 90/sup 0/, then refrigeration occurs at the open end. The shift in phase angle can be realized by thermal relaxation between the gas and the tube walls or by an orifice at the closed end. A low temperature of 60 K using helium gas in a one-stage orifice pulse tube has been achieved at NBS. The report describes the first measurements of the efficiency, refrigeration power, and refrigeration power per unit mass flow, for three pulse-tube refrigerators. Three tube sizes, differing in length and diameter, were studied over a frequency range of 3 to 11.5 Hz. Cooling efficiencies as high as 90% of the Carnot efficiency were obtained when compressor and regenerator losses are neglected.

  13. Tapered pulse tube for pulse tube refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  14. High Efficiency Low Emission Refrigeration System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Low Emission Refrigeration System 2014 Building Technologies Office Peer Review Brian Fricke, frickeba@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Start date: 1 October 2011 Planned end date: 30 September 2016 Key Milestones 1. Evaluate System Design Strategies; March 2013 2. Develop Prototype System; March 2013 3. Fabricate Prototype System; March 2014 Budget: Total DOE $ to date: $700k Total future DOE $: $1,000k Target Market/Audience: The primary market

  15. Thermodynamic Evaluation of Low-GWP Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Fluid Modeling Cycle Modeling Final Candidates Optimum Thermo Parameters Thermodynamic Evaluation of Low-GWP Refrigerants 2014 Building Technologies Office Peer Review Piotr A. Domanski National Institute of Standards and Technology piotr.domanski@nist.gov Project Summary Timeline: Start date: February 1, 2011 Planned end date: March 31, 2015 Key Milestones 1. Selection of top 20 candidate low-GWP fluids; Sep 30, 2014 2. Complete simulations of top 20 candidate fluids February 28,

  16. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  17. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  18. Method of reducing chlorofluorocarbon refrigerant emissons to the atmosphere

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN); Fairchild, Phillip D. (Clinton, TN); Biermann, Wendell J. (Fayetteville, NY)

    1990-01-01

    A method is disclosed for reducing chloroflurocarbon (CFC) refrigerant emissions during removal or transfer or refrigerants from a vapor compression cooling system or heat pump which comprises contacting the refrigerant with a suitable sorbent material. The sorbent material allows for the storage and retention or the chlorofluorocarbon in non-gaseous form so that it does not tend to escape to the atmosphere where it would cause harm by contributing to ozone depletion. In other aspects of the invention, contacting of CFC refrigerants with sorbent material allows for purification and recycling of used refrigerant, and a device containing stored sorbent material can be employed in the detection of refrigerant leakage in a cooling system or heat pump.

  19. Experimental investigation of an advanced adsorption refrigeration cycle

    SciTech Connect (OSTI)

    Saha, B.B.; Kashiwagi, Takao

    1997-12-31

    Experimental measurements are made for a silica gel-water advanced absorption refrigeration chiller (1.2-kW [4,095-Btu/h] cooling capacity) to evaluate its performance under different temperature and adsorption/desorption cycle time conditions. This paper describes the operating principle of the chiller, outlines the experimental hardware, and discusses results obtained by varying the cooling and hot water inlet temperatures and adsorption/desorption cycle times, as well as their agreement with the simulated results given by a lumped parameter model. The chiller performance is analyzed in terms of cooling capacity and coefficient of performance (COP). Excellent qualitative agreement was obtained between the experimental data and simulated results. The results showed the advanced three-stage cycle to be particularly well suited for operation with low-grade-temperature waste heat as the driving source, since it worked with small regenerating temperature lifts (heat source-heat sink temperature) of 10 to 30 K.

  20. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  1. Ames Laboratory to lead new consortium to advance refrigeration technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | The Ames Laboratory Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will be the home of a new research consortium for the discovery and development of more environmentally friendly and energy-efficient refrigeration technologies, sponsored by DOE's Office of Energy Efficiency and Renewable Energy (EERE). The consortium, named CaloriCoolTM, will pursue the development of alternative forms of refrigeration technologies, called caloric cooling, in

  2. 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment; Final Rule | Department of Energy 0 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule 2014-04-10 Issuance: Test Procedures for Commercial Refrigeration Equipment; Final Rule This document is a pre-publication Federal Register final rule regarding test procedures for commercial refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on April 10, 2014. Though it is not intended or expected, should any discrepancy occur

  3. 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products; Notice of Proposed Rulemaking | Department of Energy 6 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking 2014-11-26 Issuance: Test Procedures for Miscellaneous Refrigeration Products; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for miscellaneous refrigeration products, as issued by the Deputy Assistant Secretary for Energy Efficiency on

  4. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review | Department of Energy Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech13_mclinden_040213.pdf More Documents & Publications Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming

  5. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of Standards and Technology - Gaithersburg, MD Partners: -- Catholic University of America - Washington, DC -- George Mason University - Fairfax, VA DOE Funding: $1,750,000 Cost Share: N/A Project Term: 2/1/2011 - 3/31/2015 Project Objective This project evaluates alternative refrigerants with low global warming potential (GWP) to

  6. Ames Lab-based consortium to research improving refrigeration technology |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ames Laboratory Ames Lab-based consortium to research improving refrigeration technology Ames Tribune reporter Julie Erickson writes about a new consortium may soon help bring an improved refrigerator into your home, saving you significant amounts on your cooling bills. The U.S. Department of Energy's Ames Laboratory will lead a consortium, called CaloriCoolTM, to find alternative environmentally-friendly and energy- efficient technologies in refrigeration. The consortium, sponsored by

  7. Process Options for Nominal 2-K Helium Refrigeration System Designs

    SciTech Connect (OSTI)

    Peter Knudsen, Venkatarao Ganni

    2012-07-01

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  8. Hydrophilic structures for condensation management in refrigerator appliances

    SciTech Connect (OSTI)

    Kuehl, Steven John; Vonderhaar, John J; Wu, Guolian; Wu, Mianxue

    2014-10-21

    A refrigerator appliance that includes a freezer compartment having a freezer compartment door, and a refrigeration compartment having at least one refrigeration compartment door. The appliance further includes a mullion with an exterior surface. The mullion divides the compartments and the exterior surface directs condensation toward a transfer point. The appliance may also include a cabinet that houses the compartments and has two sides, each with an exterior surface. Further, at least one exterior surface directs condensation toward a transfer point.

  9. EERE Success Story-New Advanced Refrigeration Technology Provides Clean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Low Utility Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets EERE Success Story-New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center

  10. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster

  11. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters | Department of Energy Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active Diesel Particulate Filters This presentation discusses the TRU temperature profile. PDF icon deer08_bruenke.pdf More Documents & Publications Verifying TRU Passive DPF Cold Ambient Performance Active Diesel Emission Control Technology for Transport Refrigeration Units Engine-External

  12. 6 Energy Saving Tips for Commercial Refrigerators and Freezers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6 Energy Saving Tips for Commercial Refrigerators and Freezers 6 Energy Saving Tips for Commercial Refrigerators and Freezers February 28, 2014 - 6:11pm Addthis Dale Linkous carries pizza out of the walk-in freezer in the kitchen at the National Renewable Energy Laboratory in Golden, Colorado. The Energy Department <a href="http://energy.gov/articles/new-energy-efficiency-standards-commercial-refrigeration-equipment-cut-businesses-energy">announced new energy

  13. Everest Refrigeration: Proposed Penalty (2015-SE-42001) | Department of

    Office of Environmental Management (EM)

    Energy Proposed Penalty (2015-SE-42001) Everest Refrigeration: Proposed Penalty (2015-SE-42001) June 3, 2015 DOE alleged in a Notice of Proposed Civil Penalty that Bu Sung America Corporation (dba Everest Refrigeration) manufactured and distributed noncompliant commercial refrigeration equipment model ESGR3 in the U.S. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do not meet applicable energy conservation

  14. New Advanced Refrigeration Technology Provides Clean Energy, Low Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bills for Supermarkets | Department of Energy Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets July 16, 2015 - 2:23pm Addthis Oak Ridge National Laboratory's (ORNL's) Brian Fricke tests Hillphoenix's Advansor Refrigeration System in ORNL's state-of-the-art Building Technologies Research & Integration Center (BTRIC) user facility; Photo Credit: Oak

  15. Covered Product Category: Residential Refrigerators | Department of Energy

    Office of Environmental Management (EM)

    Refrigerators Covered Product Category: Residential Refrigerators The Federal Energy Management Program (FEMP) provides acquisition guidance for residential refrigerators, a product category covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products in all product categories covered by this program and any acquisition actions that are not specifically exempted by law. MEETING EFFICIENCY REQUIREMENTS FOR FEDERAL PURCHASES The

  16. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    SciTech Connect (OSTI)

    Reis, Chuck; Nelson, Eric; Armer, James; Johnson, Tim; Hirsch, Adam; Doebber, Ian

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  17. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect (OSTI)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  18. Retrofitting Doors on Open Refrigerated Cases | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2013 BTO Peer Review Better Buildings Alliance Equipment Performance Specifications - 2013 BTO Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013...

  19. Acoustic recovery of lost power in pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.; Gardner, D.L.; Backhaus, S.

    1999-02-01

    In an efficient Stirling-cycle cryocooler, the cold piston or displacer recovers power from the gas. This power is dissipated into heat in the orifice of an orifice pulse tube refrigerator, decreasing system efficiency. Recovery of some of this power in a pulse tube refrigerator, without sacrificing the simplicity and reliability inherent in a system with no cold moving parts, is described in this paper. In one method of such power recovery, the hot ends of both the regenerator and the pulse tube are connected to the front of the piston driving the refrigerator. Experimental data is presented demonstrating this method using a thermoacoustic driver instead of a piston driver. Control of time-averaged mass flux through the refrigerator is crucial to this power recovery, lest the refrigerator{close_quote}s cooling power be overwhelmed by a room-temperature mass flux. Two methods are demonstrated for control of mass flux: a barrier method, and a hydrodynamic method based on turbulent irreversible flow. At {minus}55{degree}C, the refrigerator provided cooling with 9{percent} of the Carnot coefficient of performance. With straightforward improvements, similar refrigerators should achieve efficiencies greater than those of prior pulse tube refrigerators and prior standing-wave thermoacoustic refrigerators, while maintaining the advantages of no moving parts. {copyright} {ital 1999 Acoustical Society of America.}

  20. Working Fluids Low Global Warming Potential Refrigerants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL's Building Technologies Research & Integration Center. ... and Refrigeration (HVAC&R) market through leadership in Life ... Furthermore, best practice guidelines for supermarket low ...

  1. DOE Opens Three Investigations into Alleged Refrigerator Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    submit detailed information about the design, marketing and U.S. sales of its Blomberg brand refrigerator-freezer, model "BRFB1450." The Department also requested testing data...

  2. Test results on a supercharged compressor for commercial refrigeration

    SciTech Connect (OSTI)

    Andrews, J.W.; Butcher, T.A.; Wilhelm, W.G. )

    1989-01-01

    This paper reports on a project whose objective was to quantify the technical benefits of using refrigerant R-502 in a supercharged reciprocating compressor for commercial refrigeration applications. The supercharged compressor concept used a special heat exchanger that subcools the major portion of the liquid refrigerant leaving the condenser. This subcooling is achieved by flashing the remaining portion of the condensed liquid through an expansion valve, thereby cooling it, and using it to absorb heat from the rest of the refrigerant. This supercharged stream is then fed to the cylinders through ports in the cylinder walls that are uncovered when the piston reaches bottom dead center.

  3. EERE Success Story-New Refrigerant Boosts Energy Efficiency of...

    Office of Environmental Management (EM)

    EERE Success StoryNew Refrigerant Boosts Energy Efficiency of Supermarket Display Cases Research supported by the Energy Department's Building Technologies Office has led to ...

  4. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  5. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  6. Transportation Refrigeration Unit (TRU) Retrofit with HUSS Active...

    Broader source: Energy.gov (indexed) [DOE]

    Verifying TRU Passive DPF Cold Ambient Performance Active Diesel Emission Control Technology for Transport Refrigeration Units Engine-External HC-Dosing for Regeneration of Diesel ...

  7. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  8. New Regenerative Cycle for Vapor Compression Refrigeration

    Office of Scientific and Technical Information (OSTI)

    SCIENTIFIC REPORT Title Page Project Title: New Regenerative Cycle for Vapor Compression Refrigeration DOE Award Number: DE-FG36-04GO14327 Document Title: Final Scientific Report Period Covered by Report: September 30, 2004 to September 30, 2005 Name and Address of Recipient Organization: Magnetic Development, Inc., 68 Winterhill Road, Madison, CT 06443, phone: 203-214-7247, fax: 203-421-7948, e-mail: mjb1000@aol.com Contact Information: Mark J. Bergander, Ph.D., P.E., Principal Investigator,

  9. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  10. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  11. Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model

    SciTech Connect (OSTI)

    Sharma, Chandan; Raustad, Richard

    2013-06-01

    Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

  12. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  13. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  14. Low-Cost Electrochemical Compressor Utilizing Green Refrigerants for HVAC

    Office of Environmental Management (EM)

    Applications | Department of Energy Low-Cost Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications Low-Cost Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications Individual electrochemical compressor cells are arranged in stacks. (Image: Cary Zachary, 2015) Individual electrochemical compressor cells are arranged in stacks. (Image: Cary Zachary, 2015) Electrochemical compressor research unit designed to test component properties. (Image:

  15. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less

  16. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    SciTech Connect (OSTI)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features of the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.

  17. Chapter 7, Refrigerator Recycling Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Refrigerator Recycling Evaluation Protocol Doug Bruchs and Josh Keeling, The Cadmus Group, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 7 - 1 Chapter 7 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  18. Design issues of a thermoacoustic refrigerator and its heat exchangers

    SciTech Connect (OSTI)

    Wetzel, M.; Herman, C.

    1996-12-31

    Thermoacoustic refrigeration is a fast advancing new refrigeration technology. Performance calculations indicate remarkable values for the thermoacoustic core of a thermoacoustic refrigerator. The thermoacoustic core is responsible for pumping heat from a cold to a hot temperature reservoir. However, the systems necessary to support the thermoacoustic core, such as heat exchangers and acoustic drivers are the weak points of this refrigeration technology. Particularly, heat exchangers were designed so far without any optimization. A reason for this is the lack of knowledge of the flow structures and heat transfer phenomena at the interface between the thermoacoustic core and the heat exchangers. For the purpose of gaining better insight, the authors built a thermoacoustic refrigerator model and applied visualization techniques, such as smoke injection and holographic interferometry, to visualize the flow and temperature fields at the interface.

  19. New technologies for refrigeration without CFCs

    SciTech Connect (OSTI)

    Swift, G.W.

    1992-09-01

    Today the appliance industry and other cooling industries are facing the double challenge of eliminating environmentally harmful CFCs while simultaneously improving energy efficiency. These challenges will force this industry to make tremendous changes and to work out many difficult problems, ranging from choice of technology through production-line retooling to product-liability concerns. Three new cooling technologies--sonic compression, thermoacoustic refrigeration, and Malone refrigeration--have been developed at least in part at Los Alamos National Laboratory. We will discuss the principles, features, and status of each of these three technologies. With these three examples we hope to show that mechanical compression and subsequent evaporation of CFCs is not the only potentially practical way to produce cooling. These examples are only three of many alternative cooling technologies. No new technology can be guaranteed a success before development is complete, from either an economic or engineering point of view. But enough alternative cooling technologies exist, and the probability for success of each technology is high enough, that one or more of these technologies can almost certainly be produced at reasonable cost, eliminate CFCS, and reduce the consumption of electricity.

  20. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  1. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    SciTech Connect (OSTI)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  2. A modified heat leak test facility employing a closed-cycle helium refrigerator

    SciTech Connect (OSTI)

    Boroski, W.N.

    1996-01-01

    A Heat Leak Test Facility (HLTF) has been in use at Fermilab for many years. The apparatus has successfully measured the thermal performance of a variety of cryostat components under simulated operating conditions. While an effective tool in the cryostat design process, the HLTF has several limitations. Temperatures are normally fixed at cryogen boiling points and run times are limited to cryogen inventory. Moreover, close personnel attention is required to maintain system inventories and sustain system equilibrium. To provide longer measurement periods without perturbation and to minimize personnel interaction, a new heat leak measurement facility (HLTF-2) has been designed that incorporates a closed-cycle helium refrigerator. The two-stage refrigerator provides cooling to the various temperature stations of the HLTF while eliminating the need for cryogens. Eliminating cryogen inventories has resulted in a reduction of the amount of direct personnel attention required.

  3. Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Bansal, Pradeep; Zha, Shitong

    2013-01-01

    This paper presents energy and life cycle climate performance (LCCP) analyses of a variety of supermarket refrigeration systems to identify designs that exhibit low environmental impact and high energy efficiency. EnergyPlus was used to model refrigeration systems in a variety of climate zones across the United States. The refrigeration systems that were modeled include the traditional multiplex DX system, cascade systems with secondary loops and the transcritical CO2 system. Furthermore, a variety of refrigerants were investigated, including R-32, R-134a, R-404A, R-1234yf, R-717, and R-744. LCCP analysis was used to determine the direct and indirect carbon dioxide emissions resulting from the operation of the various refrigeration systems over their lifetimes. Our analysis revealed that high-efficiency supermarket refrigeration systems may result in up to 44% less energy consumption and 78% reduced carbon dioxide emissions compared to the baseline multiplex DX system. This is an encouraging result for legislators, policy makers and supermarket owners to select low emission, high-efficiency commercial refrigeration system designs for future retrofit and new projects.

  4. ISSUANCE 2015-10-20: Energy Conservation Program: Energy Conservation Standards for Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Refrigerated Beverage Vending Machines

  5. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  6. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  7. Investigation of techniques to improve continuous air monitors under conditions of high dust loading in environmental setting. 1998 annual progress report

    SciTech Connect (OSTI)

    Schery, S.D.; Wasiolek, P.T. [New Mexico Inst. of Mining and Technology, Socorro, NM (US); Rodgers, J. [Los Alamos National Lab., NM (US)

    1998-06-01

    'Improvement in understanding of the deposition of ambient dust particles on ECAM (Environmental Continuous Air Monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAM''s with increased sensitivity under dusty outdoor conditions. As of May 1, 1998 (1/2 year into the project) the research-prototype 30-cm pulsed ionization chamber (PIC) is assembled and operational with an alpha particle energy resolution of better than 45 keV for 5-MeV alpha particles. Measurements of spectral resolution for alpha particles from radon decay products have been made as a function of filter type and dust loading conditions. So far, a study of ten filter types has found that the best combination of resolution and throughput is obtained with 3.0 \\265m Millipore fluoropore and 1.0 \\265m Corning FNMB filters. Experiments with gypsum and Portland cement dust in the size range 1 to 20 \\265m indicate significant degradation in alpha particle resolution for dust loading above about 0.5 mg cm{sup -2}. Study of metalized films for possible use as a PIC window indicate a minimum broadening of 5-MeV alpha particle peaks from 43 (no film) to 301 keV (with film) for AVR film type B8 (0.20 mg cm{sup -2} polycarbonate). A modified ECAM sampling head, equipped with an optical microscopy system feeding data to a high resolution video data capture and logging instrument, was constructed. This system will enable time-lapse study of dust build-up on ECAM filters and formation of dendrite structures that can reduce alpha-particle resolution.'

  8. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOE Patents [OSTI]

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.

  9. Property:Building/SPElectrtyUsePercRefrigeration | Open Energy...

    Open Energy Info (EERE)

    yUsePercRefrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  10. Commercial Refrigerator Door: Proposed Penalty (2013-CE-5351)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Refrigerator Door Company, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  11. DOE Opens Three Investigations into Alleged Refrigerator Efficiency Violations

    Broader source: Energy.gov [DOE]

    The Department of Energy has issued one subpoena and two data requests to three companies in response to allegations that the companies are selling refrigerator-freezers that failed to meet federal...

  12. Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Duracold Refrigeration Manufacturing Company, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  13. DOE Reaches Settlements with Three Commercial Refrigeration Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    paid a civil penalty of 1,600 after manufacturing and distributing 8 units of commercial refrigerator-freezer model RFS-1D-S1-EW-PT-HD. True agreed to a 36,400 civil penalty ...

  14. Synchronous temperature rate control for refrigeration with reduced energy consumption

    DOE Patents [OSTI]

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  15. North Star Refrigerator: Proposed Penalty (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that North Star Refrigerator Co., Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  16. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    SciTech Connect (OSTI)

    Lima Sharma, Ana L.; Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  17. Commissioning and operation of the CEBAF end station refrigeration system

    SciTech Connect (OSTI)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.; Kashy, D.; Keesee, M.; Wilson, J. Jr.

    1996-08-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1,500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned fin 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance.

  18. Thermoacoustic Engines and Refrigerators: A Short Course (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Thermoacoustic Engines and Refrigerators: A Short Course Citation Details In-Document Search Title: Thermoacoustic Engines and Refrigerators: A Short Course × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  19. Active Diesel Emission Control Technology for Transport Refrigeration Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration technology for smal diesel engines PDF icon deer09_guzman.pdf More Documents & Publications Diesel Particulate Filters and NO2 Emission Limits RYPOS - An Actively Regenerated DPF that Demonstrates Significant NO2 Reduction 2005_deer_dePetrillo.pdf

  20. Advanced Refrigerant-Based Cooling Technologies for Information &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communications Infrastructure | Department of Energy Refrigerant-Based Cooling Technologies for Information & Communications Infrastructure Advanced Refrigerant-Based Cooling Technologies for Information & Communications Infrastructure Data Center Heat Exchanger with Increased Cooling Efficiency Reduces Energy Usage Between 2005 and 2010 electricity consumption in the information and communication technology (ICT) sector rose by 36% in the United States. The energy consumed by a data

  1. Refrigerator-Freezers (multiple defrost waiver) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigerator-Freezers (multiple defrost waiver) Refrigerator-Freezers (multiple defrost waiver) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Residential

  2. Residential Refrigerators-Freezers (Appendix A1) | Department of Energy

    Energy Savers [EERE]

    Refrigerators-Freezers (Appendix A1) Residential Refrigerators-Freezers (Appendix A1) The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Residential

  3. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Evaluation of Low-GWP Refrigerants Mark O. McLinden National Institute of Standards and Technology markm@boulder.nist.gov; 303-497-3580 April 3, 2013 Optimization Fluid Modeling Cycle Modeling Final Candidates Optimum Thermo Parameters 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: HFC refrigerants face restrictions: U.S./Canada/Mexico proposal to Montreal Protocol (85 % cut) EU regulations likely on all application areas (79 % cut)

  4. BTO Partners are Revolutionizing Refrigerators and Clothes Dryers |

    Energy Savers [EERE]

    Department of Energy Partners are Revolutionizing Refrigerators and Clothes Dryers BTO Partners are Revolutionizing Refrigerators and Clothes Dryers April 14, 2015 - 3:18pm Addthis Oak Ridge National Lab’s Ayyoub Momen demonstrates ultrasonic clothes dryer technology for David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy (EERE) Oak Ridge National Lab's Ayyoub Momen demonstrates ultrasonic clothes dryer technology for David Danielson, Assistant Secretary for

  5. REA Refrigerated Display Case LED Lighting Performance Specification |

    Energy Savers [EERE]

    Department of Energy REA Refrigerated Display Case LED Lighting Performance Specification REA Refrigerated Display Case LED Lighting Performance Specification A Retailer Energy Alliances (REA) Project PDF icon rea_refrig_display_spec.pdf More Documents & Publications CBEA LED Site Lighting Specification - Version 1.3, Released 2/15/2012 Model Specification for LED Roadway Luminaires, V2.0 CBEA High-Efficiency Parking Structure Lighting Specification

  6. New Energy Efficiency Standards for Commercial Refrigeration Equipment to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cut Businesses' Energy Bills and Carbon Pollution | Department of Energy Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution February 28, 2014 - 10:45am Addthis News Media Contact (202) 586-4940 WASHINGTON - Building on President Obama's State of the Union address and the Administration's Climate Action Plan, the Energy Department

  7. Parameter spaces and design optimization of thermoacoustic refrigerators

    SciTech Connect (OSTI)

    Wetzel, M.; Herman, C.

    1996-12-31

    In the last two decades thermoacoustic refrigerators were developed in research laboratories with the goal to understand the basic physics and thermodynamics of thermoacoustic heat pumping. These research efforts led to a good understanding of this new environmentally safe refrigeration technology that employs acoustic power to pump heat. Consequently the next step is to improve and optimize the performance of thermoacoustic refrigerators and seek commercial applications. For this purpose, the need for fast and simple engineering estimates arises. By implementing the simplified linear model of thermoacoustic refrigerators--the short stack boundary layer approximation--such design estimates were derived and presented in this paper in the form of a design algorithm. Calculations obtained with this algorithm predict values for the Coefficient Of Performance (COP) of the order of 5 to 6. These values cannot be achieved at this time because of loss mechanisms in key parts of the thermoacoustic refrigerator, which are not quite understood yet. Nevertheless, these values are encouraging and gaining a better understanding of these loss mechanisms will be a big step towards the commercial market for this new environmentally safe refrigeration technology.

  8. Heat exchanger bypass system for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  9. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOE Patents [OSTI]

    Spauschus, Hans O. (Stockbridge, GA); Starr, Thomas L. (Roswell, GA)

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  10. Enforcement Policy Statement Regarding Walk-in Cooler/Walk-in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Air-Conditioning, Heating and Refrigeration Institute filed a petition for review ... applicable to dedicated condensing refrigeration systems operating at medium ...

  11. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Environmental Management (EM)

    for 15 products, including commercial refrigeration equipment, electric motors, general ... the Air-Conditioning, Heating, and Refrigeration Institute. 3 Represents undiscounted ...

  12. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Lead Performer: Sandia ...

  13. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  14. Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation

    SciTech Connect (OSTI)

    Anwar, Mahmood; Ghazali, Normah Mohd

    2010-06-28

    Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3 deg. C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

  15. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect (OSTI)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  16. Modeling Improvements for Air Source Heat Pumps using Different Expansion Devices at Varied Charge Levels Part II

    SciTech Connect (OSTI)

    Shen, Bo [ORNL

    2011-01-01

    This paper describes steady-state performance simulations performed on a 3-ton R-22 split heat pump in heating mode. In total, 150 steady-state points were simulated, which covers refrigerant charge levels from 70 % to 130% relative to the nominal value, the outdoor temperatures at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C), indoor air flow rates from 60% to 150% of the rated air flow rate, and two types of expansion devices (fixed orifice and thermostatic expansion valve). A charge tuning method, which is to calibrate the charge inventory model based on measurements at two operation conditions, was applied and shown to improve the system simulation accuracy significantly in an extensive range of charge levels. In addition, we discuss the effects of suction line accumulator in modeling a heat pump system using either a fixed orifice or thermal expansion valve. Last, we identify the issue of refrigerant mass flow mal-distribution at low charge levels and propose an improved modeling approach.

  17. The Hall D solenoid helium refrigeration system at JLab

    SciTech Connect (OSTI)

    Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.; Ganni, Venkatarao; Martin, Floyd D.; Norton, Robert O.; Radovic, Sasa

    2014-01-01

    Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields with liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.

  18. DOE Collects Civil Penalties for Failure to Certify Consumer Refrigeration Products

    Broader source: Energy.gov [DOE]

    The Office of Enforcement recently resolved enforcement actions against seven companies that failed to submit required reports to certify that their refrigerators, refrigerator-freezers, and/or freezers comply with federal energy conservation standards.

  19. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  20. The Proof is in the Pudding: How Refrigerator Standards Have Saved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers $Billions | Department of Energy The Proof is in the Pudding: How Refrigerator Standards Have Saved Consumers $Billions The Proof is in the Pudding: How Refrigerator Standards Have Saved Consumers $Billions July 11, 2011 - 12:33pm Addthis Today’s refrigerators have been designed to save energy and money without detriment to capacity, functionality, or extra features. | Image source: Building Technologies Program Today's refrigerators have been designed to save energy and money

  1. DOE Publishes Notice of Proposed Rulemaking for Commercial Refrigeration Equipment Test Procedure

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for commercial refrigeration equipment.

  2. QM Power, Inc: Commercial Refrigeration Fan Applications | Department of

    Energy Savers [EERE]

    Energy QM Power, Inc: Commercial Refrigeration Fan Applications QM Power, Inc: Commercial Refrigeration Fan Applications Q-Sync High Efficiency 9-12 Watt Fan Motors Q-Sync High Efficiency 9-12 Watt Fan Motors Performer: QM Power, Inc. - Lee's Summit, MO Partners: Oak Ridge National Labs - Oak Ridge, TN DOE Funding: $1,004,653 Cost Share: $1,004,653 Project Term: 10/1/14-3/31/18 Funding Opportunity: DE-FOA-0001084 - Commercial Building Technology Demonstrations PROJECT OBJECTIVE QM Power's

  3. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  4. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  5. Commissioning of helium refrigeration system at JLab for 12 GeV upgrade

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Knudsen, Peter N.; Norton, Robert O.; Creel, Jonathan D.

    2014-01-01

    The new 4.5 K refrigerator system added to the Jefferson Lab (JLab) Central Helium Liquefier (CHL) for the 12 GeV upgrade will double its previous capacity. It includes a 4.5 K cold box system and compressor system with associated oil removal and gas management systems. At its maximum capacity condition, this new system supports an additional 238 g/s 30 K 1.16 bar cold compressor return flow, a 15 g/s 4.5 K liquefaction load and a 12.6 kW 35–55 K shield load. Five more design conditions, ranging from liquefaction to refrigeration and a stand-by/reduced load state, were specified for the sizing and selection of its components. The cold box system is comprised of a 300–60 K vertical cold box that incorporates a liquid nitrogen pre-cooler and a 60–4.5 K horizontal cold box housing seven turbines that are configured in four expansion stages including one Joule-Thompson expander. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will briefly review the salient 4.5 K system design features and discuss the recent commissioning results.

  6. Offshore refrigerated LPG loading/unloading terminal using a CALM buoy

    SciTech Connect (OSTI)

    Bonjour, E.L.; Simon, J.M.

    1985-03-01

    In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

  7. 2014-07-10 Issuance: Test Procedures for Refrigerators, Refrigerator-Freezers, and Freezers; Final Rule Correction

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule correction regarding test procedures for refrigerators, refrigerator-freezers, and freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on July 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  8. Purchasing Energy-Efficient Refrigerated Beverage Vending Machines

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including refrigerated beverage vending machines, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Purchasing Energy-Efficient Commercial Refrigerators and Freezers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial refrigerators and freezers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  10. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  11. Superefficient Refrigerators: Opportunities and Challenges for Efficiency Improvement Globally

    SciTech Connect (OSTI)

    Shah, Nihar; Park, Won Young; Bojda, Nicholas; McNeil, Michael A.

    2014-08-01

    As an energy-intensive mainstream product, residential refrigerators present a significant opportunity to reduce electricity consumption through energy efficiency improvements. Refrigerators expend a considerable amount of electricity during normal use, typically consuming between 100 to 1,000 kWh of electricity per annum. This paper presents the results of a technical analysis done for refrigerators in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative. Beginning from a base case representative of the average unit sold in India, we analyze efficiency improvement options and their corresponding costs to build a cost-versus-efficiency relationship. We then consider design improvement options that are known to be the most cost effective and that can improve efficiency given current design configurations. We also analyze and present additional super-efficient options, such as vacuum-insulated panels. We estimate the cost of conserved electricity for the various options, allowing flexible program design for market transformation programs toward higher efficiency. We estimate ~;;160TWh/year of energy savings are cost effective in 2030, indicating significant potential for efficiency improvement in refrigerators in SEAD economies and China.

  12. Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech12_vineyard_040313.pdf More Documents & Publications Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Working Fluids Low Global Warming Potential Refrigerants Workshop 2: Advanced HVAC&R Research Effort

  13. High-Efficiency, Low-Emission Refrigeration System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Low-Emission Refrigeration System High-Efficiency, Low-Emission Refrigeration System Image of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Image of the compressor rack and system diagram for the CO2 refrigeration system. Credit: Oak Ridge National Lab Diagram of the compressor rack and system diagram for the CO2 refrigeration system.<br /> Credit: Oak Ridge National Lab Diagram of the compressor rack and

  14. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore »R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  15. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  16. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. March 17, 2015 Real-time data monitoring for particulate matter An air monitoring field team member tests one of LANL's tapered element oscillating microbalance samplers, which collects real-time particulate matter data. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email LANL monitors air

  17. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  18. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  19. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

  20. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and Air-Conditioning (HVAC) Systems Laboratory. The testing provided unique...

  1. Building America Webinar: High Performance Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Distribution Retrofit Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies ...

  2. Free displacer and Ringbom displacer for a Malone refrigerator

    SciTech Connect (OSTI)

    Swift, G.W.; Brown, A.O.

    1994-05-01

    Malone refrigeration uses a liquid near its critical point (instead of the customary gas) as the working fluid in a Stirling, Brayton, or similar regenerative or recuperative cycle. Thus far, we have focused on the Stirling cycle, to avoid the difficult construction of the high-pressure-difference counterflow recuperator required for a Brayton machine. Our first Malone refrigerator used liquid propylene (C{sub 3}H{sub 6}) in a double-acting 4-cylinder Stirling configuration. First measurements with a free displacer used in a liquid working fluid are presented. The displacer was operated both in harmonic mode and in Ringbom mode, in liquid carbon dioxide. The results are in reasonable agreement with expectations.

  3. Heat powered refrigeration compressor. Semi-annual technical report

    SciTech Connect (OSTI)

    Goad, R.R.

    1981-01-01

    The objective of this program is to develop and improve the design of previously started prototypes of the Heat Powered Refrigeration Compressor. To build this prototype and ready it for testing by the University of Evansville is another goal. This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system. Work performed in the past four months has consisted of: engineering of HX-1; comparisons of specifications from different companies to ensure state of the art applications of parts for project; coordinating project requirements with machine shop; designing condenser; and partial assembly of HX-1.

  4. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    SciTech Connect (OSTI)

    Venkatarao Ganni, James Fesmire

    2012-06-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  5. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  6. U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect (OSTI)

    Baker, S.K., Westinghouse Hanford

    1996-12-10

    This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF and proper storage of the vessel containing the SNF. Figures I and 2 contain map locations of the Hanford Site and the HCS Annex.

  7. Tunable Magnetic Regenerator/Refrigerant - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Tunable Magnetic Regenerator/Refrigerant Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Magnetic regenerators utilize the magnetocaloric effect--the ability of a magnetic field to reduce the magnetic part of a solid materials entropy, generating heat,

  8. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  9. Unified HVAC and Refrigeration Control Systems for Small Footprint Supermarkets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unified HVAC and Refrigeration Control Systems for Small Footprint Supermarkets Teja Kuruganti, David Fugate, James Nutaro, Jibonananda Sanyal, Brian Fricke Oak Ridge National Laboratory John Wallace Emerson Climate Technologies Presented at: Technical Meeting on Software Framework for Transactive Energy: VOLTTRON 23 rd - 24 th July, 2015 2 Presentation_name Motivation and Objective * Supermarket Energy Consumption - 37,000 supermarkets in the US * 2,000,000 kWh per year per store * 1,000,000

  10. A novel solar bi-ejector refrigeration system and the performance of the added injector with different structures and operation parameters

    SciTech Connect (OSTI)

    Wang, Fei; Shen, Shengqiang

    2009-12-15

    A novel solar bi-ejector refrigeration system was investigated, whose difference compared to the traditional system is that the circulation pump is replaced by a thermal injector. The new system works more stably and needs less maintenance work than the old one, and the whole system can more fully utilize the solar energy. The mathematical models for calculating the performance of the injector and the whole solar refrigeration system were established. The pressure rise performance of injector under different structure and operation parameters and the performance of solar bi-ejector refrigeration system were studied with R123. The results show that the discharged pressure of injector is affected by structure dimensions of injector and operation conditions. With increasing generation temperature, the entrainment ratio of ejector becomes better while that of injector becomes worse and the overall thermal efficiency of the solar bi-ejector refrigeration system first increases and then decreases with an optimum value of 0.132 at generation temperature of 105 C, condensation temperature of 35 C and evaporation temperature of 10 C. (author)

  11. Potential of the tractor-trailer and container segments as entry markets for a proposed refrigeration technology

    SciTech Connect (OSTI)

    Smith, S.A.; Davis, L.J.; Garrett, B.A.

    1987-05-01

    The refrigerated trailer and container segments of the transportation industry are evaluated as potential entry markets for a proposed absorption refrigeration technology. To perform this analysis the existing transportation refrigeration industry is characterized; this includes a description of the current refrigeration technology, rating systems, equipment manufacturers, maintenance requirements, and sales trends. This information indicates that the current transportation refrigeration industry is composed of two major competitors, Thermo King and Carrier. In addition, it has low profit potential, some barriers to entry and low growth potential. Data are also presented that characterize the transportation refrigeration consumers, specifically, major groups, market segmentation, consumer decision process, and buying criteria. This consumer information indicates that the majority of refrigerated trailer consumers are private carriers, and that the majority of refrigerated container consumers are shipping companies. Also, these consumers are primarily interested in buying reliable equipment at a low price, and are quite satisfied with existing refrigeration equipment.

  12. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOE Patents [OSTI]

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  13. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  14. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect (OSTI)

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  15. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOE Patents [OSTI]

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  16. Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy |

    Office of Environmental Management (EM)

    Department of Energy Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy Walk-in Cooler/Walk-in Freezer Refrigeration Systems - Enforcement Policy February 1, 2016 DOE will not seek civil penalties or injunctive relief concerning violations of certain energy conservation standards applicable to refrigeration systems of walk-in coolers/walk-in freezers. PDF icon Enforcement Policy - WICF (02/01/2016) PDF icon Enforcement Policy - WICF (8/31/2015 - OBSOLETE) PDF icon

  17. The superfluid Stirling refrigerator, a new method for cooling below 0.5 K

    SciTech Connect (OSTI)

    Brisson, J.G.; Kotsubo, V.; Swift, G.W.

    1993-04-09

    A new subkelvin refrigerator, the superfluid Stirling cycle refrigerator, uses a working fluid of {sup 3}He-{sup 4}He mixture in a Stirling cycle. The thermodynamically active components of the mixture are the {sup 3}He, which behaves like a Boltzman gas, and the phonon-roton gas in the {sup 4}He. The superfluid component of the liquid is inert. Two refrigerators have been built and temperatures of 340 mK have been achieved.

  18. The superfluid Stirling refrigerator, a new method for cooling below 0. 5 K

    SciTech Connect (OSTI)

    Brisson, J.G.; Kotsubo, V.; Swift, G.W.

    1993-04-09

    A new subkelvin refrigerator, the superfluid Stirling cycle refrigerator, uses a working fluid of [sup 3]He-[sup 4]He mixture in a Stirling cycle. The thermodynamically active components of the mixture are the [sup 3]He, which behaves like a Boltzman gas, and the phonon-roton gas in the [sup 4]He. The superfluid component of the liquid is inert. Two refrigerators have been built and temperatures of 340 mK have been achieved.

  19. 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Establish an ASRAC Working Group | Department of Energy : Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group 2015-03-26: Miscellaneous Refrigeration Products; Notice of Intent to Establish an ASRAC Working Group This document is a pre-publication Federal Register Notice of Intent regarding establishment of an ASRAC Working Group for Miscellaneous Refrigeration Products, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 26,

  20. A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard A.

    2013-01-01

    This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.