National Library of Energy BETA

Sample records for reforming treatability study

  1. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    ROBBINS RA

    2011-02-11

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  2. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF

  3. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    SciTech Connect (OSTI)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

  4. Energetic component treatability study

    SciTech Connect (OSTI)

    Gildea, P.D.; Brandon, S.L.; Brown, B.G. [and others

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  5. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect (OSTI)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  6. Treatability study for WAG 6 (SWSA 6) trench water

    SciTech Connect (OSTI)

    Taylor, P.A.

    1991-08-01

    The Environmental Restoration Program at Oak Ridge National Laboratory (ORNL) is examining methods for remediation and final closure of Waste Area Grouping 6 (WAG 6) under a Resource Conservation and Recovery Act (RCRA) closure plan. WAG 6 consists primarily of Solid Waste Storage Area 6 (SWSA 6), where solid low- level radioactive waste (and some hazardous waste) was buried from 1968 to 1985 in shallow trenches. To support the feasibility study that is being prepared for closure of WAG 6, lab-scale treatability tests were performed on the water from selected trenches in SWSA 6 to determine if the trench water could be treated at the existing wastewater treatment plants at ORNL. Water from 23 of the 500 trenches in SWSA 6 has been sampled and analyzed to date, and the 4 most highly contaminated trenches identified thus far supplied the water used in the treatability tests. The softening and ion-exchange processes used in the Process Wastewater Treatment Plant (PWTP) reduced the {sup 90}Sr concentration, which was the only radionuclide present in the trench water at above the discharge limits, from 260 to 0.2 Bq/L. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant (NRWTP) removed volatile and semivolatile organics (mostly toluene, xylene, and naphthalene), which were the main contaminants in the trench water, to below detection limits. The trench water treated in the lab-scale equipment easily met all discharge limits for the PWTP and the NRWTP. 6 refs., 2 figs., 9 tabs.

  7. Treatability study Number PDC-1-O-T. Final report

    SciTech Connect (OSTI)

    1998-04-22

    Los Alamos National Laboratory provided treatability study samples from four waste streams, designated Stream {number_sign}1, Stream {number_sign}3, Stream {number_sign}6, and Stream {number_sign}7. Stream {number_sign}1 consisted of one 55-gallon drum of personal protective equipment (PPE), rags, and neutralizing agent (bicarbonate) generated during the cleanup of a sodium dichromate solution spill. Stream {number_sign}3 was one 55-gallon drum of paper, rags, lab utensils, tools, and tape from the decontamination of a glovebox. The sample of Stream {number_sign}6 was packaged in three 30-gallon drums and a 100 ft{sup 3} wooden box. It consisted of plastic sheeting, PPE, and paper generated from the cleanup of mock explosive (barium nitrate) from depleted uranium parts. Stream {number_sign}7 was scrap metal (copper, stainless and carbon steel joined with silver solder) from the disassembly of gas manifolds. The objective of the treatability study is to determine: (1) whether the Perma-Fix stabilization/solidification process can treat the waste sample to meet Land Disposal Restrictions and the Waste Acceptance Criteria for LANL Technical Area 54, Area G, and (2) optimum loading and resulting weight and volume of finished waste form. The stabilized waste was mixed into grout that had been poured into a lined drum. After each original container of waste was processed, the liner was closed and a new liner was placed in the same drum on top of the previous closed liner. This allowed an overall reduction in waste volume but kept waste segregated to minimize the amount of rework in case analytical results indicated any batch did not meet treatment standards. Samples of treated waste from each waste stream were analyzed by Perma-Fix Analytical Services to get a preliminary approximation of TCLP metals. Splits of these samples were sent to American Environmental Network`s mixed waste analytical lab in Cary, NC for confirmation analysis. Results were all below applicable

  8. Treatability studies with low-temperature thermal desorption on low-level mixed-waste solids

    SciTech Connect (OSTI)

    Bloom, R.; Stelmach, J.

    1995-12-31

    Under a program sponsored by the U.S. Department of Energy Albuquerque 0perations Office (DOE-AL), the DOE Grand Junction Projects Office, (GJPO) conducted treatability studies with a low-temperature, vacuum-assisted thermal desorption unit on low-level mixed-waste solids generated at Los Alamos National Laboratory, Kansas City Plant, Sandia National Laboratories/New Mexico and GJPO. The process extracts the volatile compounds from the matrix and condenses them into a treatable nonmixed waste liquid stream yielding a treated matrix that may be managed as a radioactive waste. The feed streams consisted of soils, sludge, and organic debris with various amount of moisture and organic compounds. The treatability test results indicate that Land Disposal Restriction standards for Resource Conservation and Recovery Act-listed compounds were met. These results are being used to design 3 mobile treatment unit for use at DOE-AL sites.

  9. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    SciTech Connect (OSTI)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advanced oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.

  10. New treatability tests

    SciTech Connect (OSTI)

    Roy, K.A.

    1993-01-01

    EPA, under its Superfund Innovative Technology Evaluation (SITE) program, recently announced results from treatability tests on Thorneco Inc.'s (Payson, Ariz.) Enzyme-Activated Cellulose Technology. The technology relies on cellulose coated with a proprietary enzyme to remove metals and organic compounds from aqueous solutions. Following enzyme treatment, cellulose is placed in one or more towers that operate in series. Contaminated water enters the towers from the bottom and flows upward through the enzyme-activated cellulose to a discharge pipe at the top. The technology can remove metals and organic compounds from aqueous solutions in the form of ions, particulates or colloidal compounds. The treatability study was conducted between Aug. 26 and Sept. 30, 1991, at the Engineering Science treatability lab in Atlanta. Contaminated groundwater came from Stream A at the Stringfellow Superfund site in Glen Avon, Calif. A bench-scale treatability study was performed because of a lack of complete background data and uncertainty concerning the technology's removal mechanisms.

  11. TREATABILITY STUDIES USED TO TEST FOR EXOTHERMIC REACTIONS OF PLUTONIUM DECONTAMINATION CHEMICALS

    SciTech Connect (OSTI)

    EWALT, J.R.

    2005-06-06

    , and sequestering agents. As part of the treatability study, Fluor and the Pacific Northwest National Laboratory (PNNL) personnel have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials. Exothermic reactions that release significant heat and off-gas have been discovered for both the cerium nitrate, as seen in a fire at Rocky Flats, and proprietary solutions developed for decontamination purposes. From the treatability studies, certain limiting conditions have been defined that will aid in assuring safe operations and waste packaging during the decommissioning process.

  12. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.; Tixier, J.S.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  13. Stabilization of liquid low-level and mixed wastes: a treatability study

    SciTech Connect (OSTI)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  14. Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Peeler, D.K.; Gilliam, T.M.; Bleier, A.; Spence, R.D.

    1996-05-06

    Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

  15. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect (OSTI)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  16. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    Strontium-90 (90Sr) is present both in the aquifer near the river and in the vadose and riparian zones of the river’s shore at 100-NR-2. Phytoextraction of 90Sr is being considered as a potential remediation system along the riparian zone of the Columbia River. Phytoextraction would employ coyote willow (Salix exigua). Past studies have shown that willow roots share uptake mechanisms for Sr with Ca, a plant macronutrient as well as no discrimination between Sr and 90Sr. Willow 90Sr concentration ratios [CR’s; (pCi 90Sr/g dry wt. of new growth tissue)/(pCi 90Sr/g soil porewater)] were consistently greater than 65 with three-quarters of the assimilated label partitioned into the above ground shoot. Insect herbivore experiments also demonstrated no significant potential for bioaccumulation or food chain transfer from their natural activities. The objectives of this field study were three-fold: (1) to demonstrate that a viable, “managed” plot of coyote willows can be established on the shoreline of the Columbia River that would survive the same microenvironment to be encountered at the 100-NR-2 shoreline; (2) to show through engineered barriers that large and small animal herbivores can be prevented from feeding on these plants; and (3) to show that once established, the plants will provide sufficient biomass annually to support the phytoextraction technology. A field treatability demonstration plot was established on the Columbia River shoreline alongside the 100-K West water intake at the end of January 2007. The plot was delimited by a 3.05 m high chain-link fence and was approximately 10 x 25 m in size. A layer of fine mesh metal small animal screening was placed around the plot at the base of the fencing to a depth of 45 cm. A total of sixty plants were placed in six slightly staggered rows with 1-m spacing between plants. The actual plot size was 0.00461 hectare (ha). At the time of planting (March 12, 2007), the plot was located about 10 m from the

  17. Sampling and analysis plan for phase II of the Bear Creek Valley treatability study Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study, and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that impact ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of media testing. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetlands. This plan will be implemented as part of the BCV Phase II Treatability Study Best Management Practices Plan and in conjunction with the BCV Phase II Treatability Study Health and Safety Plan and the BCV Phase II Treatability Study Waste Management Plan.

  18. 118-B-1 excavation treatability test plan

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Hanford 118-B-1 Burial Ground Treatability Study has been required by milestone change request {number_sign}M-15-93-04, dated September 30, 1993. The change request requires that a treatability test be conducted at the 100-B Area to obtain additional engineering information for remedial design of burial grounds receiving waste from 100 Area removal actions. This treatability study has two purposes: (1) to support development of the Proposed Plan (PP) and Record of Decision (ROD), which will identify the approach to be used for burial ground remediation, and (2) to provide specific engineering information for receiving waste generated from the 100 Area removal actions. Data generated from this test also will provide critical performance and cost information necessary for remedy evaluation in the detailed analysis of alternatives during preparation of the focused feasibility study (FFS). This treatability testing supports the following 100 Area alternatives: (1) excavation and disposal, and (2) excavation, sorting, (treatment), and disposal.

  19. Feasibility/treatability studies for removal of heavy metals from training range soils at the Grafenwoehr Training Area, Germany

    SciTech Connect (OSTI)

    Peters, R.W.

    1995-05-01

    A feasibility/treatability study was performed to investigate the leaching potential of heavy metals (particularly lead) from soils at the Grafenw6hr Training Area (GTA) in Germany. The study included an evaluation of the effectiveness of chelant extraction to remediate the heavy-metal-contarninated soils. Batch shaker tests indicated that ethylenediaminetetraacetic acid (EDTA) (0.01M) was more effective than citric acid (0.01M) at removing cadmium, copper, lead, and zinc. EDTA and citric acid were equally effective in mobilizing chromium and barium from the soil. The batch shaker technique with chelant extraction offers promise as a remediation technique for heavy-metal-contaninated soil at the GTA. Columnar flooding tests conducted as part of the study revealed that deionized water was the least effective leaching solution for mobilization of the heavy metals; the maximum solubilization obtained was 3.72% for cadmium. EDTA (0.05M) achieved the greatest removal of lead (average removal of 17.6%). The difficulty of extraction using deionized water indicates that all of the heavy metals are very tightly bound to the soil; therefore, they are very stable in the GTA soils and do not pose a serious threat to the groundwater system. Columnar flooding probably does not represent a viable remediation technique for in-situ cleanup of heavy-metal-contaminated soils at the GTA.

  20. Phase 1 report on the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-04-01

    Bear Creek Valley (BCV) is located within the US Department of Energy (DOE) Oak Ridge Reservation and encompasses multiple waste units containing hazardous and radioactive wastes associated with past operations at the adjacent Oak Ridge Y-12 Plant. The BCV Remedial Investigation determined that disposal of wastes at the S-3 Site, Boneyard/Burnyard (BYBY), and Bear Creek Burial Grounds (BCBG) has caused contamination of both deep and shallow groundwater. The primary contaminants include uranium, nitrate, and VOCs, although other metals such as aluminum, magnesium, and cadmium persist. The BCV feasibility study will describe several remedial options for this area, including both in situ and ex situ treatment of groundwater. This Treatability Study Phase 1 Report describes the results of preliminary screening of treatment technologies that may be applied within BCV. Four activities were undertaken in Phase 1: field characterization, laboratory screening of potential sorbents, laboratory testing of zero valent iron products, and field screening of three biological treatment systems. Each of these activities is described fully in technical memos attached in Appendices A through G.

  1. Monitored Natural Attenuation of ino9rganic Contaminants Treatability Study Final Report

    SciTech Connect (OSTI)

    Crapse, K

    2004-05-19

    The identification and quantification of key natural attenuation processes for inorganic contaminants at D-Area is detailed herein. Two overarching goals of this evaluation of monitored natural attenuation (MNA) as a remediation strategy were (1) to better define the availability of inorganic contaminants as potential sources for transport to groundwater and uptake by environmental receptors and (2) to understand the site-specific mechanisms controlling attenuation of these inorganic contaminants through tandem geochemical and biological characterization. Data collected in this study provides input for more appropriate site groundwater transport models. Significant natural attenuation is occurring at D-Area as evidenced by relatively low aqueous concentrations of constituents of concern (COCs) (Be, Ni, U, and As) at all locations characterized and the decrease in groundwater concentrations with increasing distance from the source. The observed magnitude of decrease in groundwater concentrations of COCs with distance from the D-Area Coal Pile Runoff Basin (DCPRB) could not be accounted for by the modeled physical attenuation processes of dilution/dispersion. This additional attenuation, i.e., the observed difference between the groundwater concentrations of COCs and the modeled physical attenuation, is due to biogeochemical processes occurring at the D-Area. In tandem geochemical and microbiological characterization studies designed to evaluate the mechanisms contributing to natural attenuation, pH was the single parameter found to be most predictive of contaminant attenuation. The increasing pH with distance from the source is likely responsible for increased sorption of COCs to soil surfaces within the aquifer at D-Area. Importantly, because the sediments appear to have a high buffering capacity, the acid emanating from the DCPRB has been neutralized by the soil, and these conditions have led to large Kd values at the site. Two major types of soils are present at

  2. Sampling and analysis plan for Phase II of the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatment technologies applicable to contaminated groundwater and surface water. This project directly supports Alternative 5 of the base action in the BCV Feasibility Study and indirectly supports other alternatives through proof of concept. In that role, the ultimate goal is to install a treatment system that will remove uranium and nitrate from groundwater before it reaches Bear Creek. A secondary goal is the concurrent removal of technetium and several metals that affect ecological risk. This project is intended to produce hydraulic and treatment performance data required to design the treatment system to reach those goals. This project will also generate information that can be applied at other facilities within the Oak Ridge Reservation. This report is the sampling and analysis plan (SAP) for the field work component of Phase II of the BCV Treatability Study. Field work for this phase of the BCV Treatability Study consists of environmental and media testing. The SAP addresses environmental sampling at the S-3 Site at the Oak Ridge Y-12 Plant. Samples will be taken from groundwater, surface water, seeps, effluent from test columns, effluent from an algal mat reactor, and effluent from a pilot-scale wetland. Groundwater, surface water, and seeps will be monitored continuously for field parameters and sampled for analytical parameters during pump tests conducted periodically during the investigation. In-field continuous flow tests will be conducted over an extended time period (5 weeks) to generate data on long-term treatment effects on potential treatment effects on potential treatment media including sorbents and zero valent iron, over 28 weeks for constructed wetlands treatment, and over 24 weeks for algal mats treatment.

  3. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    SciTech Connect (OSTI)

    Loyola, V.M.; Reber, S.D.

    1996-02-01

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  4. Sulfur Polymer Stabilization/Solidification Treatability Study of Mercury Contaminated Soil from the Y-12 Site

    SciTech Connect (OSTI)

    Kalb P.; Milian, L.; Yim, S. P.

    2012-11-30

    As a result of past operations, the Department of Energy’s (DOE) Oak Ridge Y-12 National Security Complex (Y-12 Plant) has extensive mercury-contamination in building structures, soils, storm sewer sediments, and stream sediments, which are a source of pollution to the local ecosystem. Because of mercury’s toxicity and potential impacts on human health and the environment, DOE continues to investigate and implement projects to support the remediation of the Y-12 site.URS and #9122;CH2M Oak Ridge LLC (UCOR) under its prime contract with DOE has cleanup responsibilities on the DOE Oak Ridge Reservation and is investigating potential mercury-contaminated soil treatment technologies through an agreement with Babcock and Wilcox (B and W) Y-12, the Y-12 operating contractor to DOE. As part of its investigations, UCOR has subcontracted with Brookhaven National Laboratory (BNL) to conduct laboratory-scale studies evaluating the applicability of the Sulfur Polymer Stabilization/Solidification (SPSS) process using surrogate and actual mixed waste Y-12 soils containing mercury (Hg) at 135, 2,000, and 10,000 ppm.SPSS uses a thermoplastic sulfur binder to convert Hg to stable mercury sulfide (HgS) and solidifies the chemically stable product in a monolithic solid final waste form to reduce dispersion and permeability. Formulations containing 40 – 60 dry wt% Y-12 soil were fabricated and samples were prepared in triplicate for Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP) testing by an independent laboratory. Those containing 50 and 60 wt% soil easily met the study criteria for maximum allowable Hg concentrations (47 and 1 ppb, respectively compared with the TCLP limit of 200 ppb Hg). The lowest waste loading of 40 wt% yielded TCLP Hg concentrations slightly higher (240 ppb) than the allowable limit. Since the Y-12 soil tended to form clumps, the improved leaching at higher waste loadings was probably due to reduction in particle size

  5. Decomposition of PCBs in Oils Using Gamma Radiolysis A Treatability Study - Final Report

    SciTech Connect (OSTI)

    B. J. Mincher; R. E. Arbon

    1996-08-01

    Several legacy hydraulic oil waste streams contaminated with Aroclor 1260 and small amounts of Cesium-137 have been in storage at the Idaho National Engineering Laboratory (INEL) due to the lack of appropriate treatment facilities. The goal of this study was to demonstrate that polychlorinated biphenyls (PCBs) could be selectively decomposed in the oils. Removal of the PCB component to less than the 2 mg/L treatment standard should result in a waste oil that is not regulated by the Toxic Substances Control Act. Irradiation of the oils with high gamma-ray doses produces free electrons in the solution that react with PCBs. The reaction results in dechlorination of the PCBs to produce biphenyl. The gamma-ray source was spent reactor fuel stored in the Advanced Test Reactor canal at the INEL. A dry tube extends into the canal which allowed for positioning of samples in the proximity of the fuel. The gamma-ray dose rates at the samples varied from 10 to 30 kGy/h. This was measured using commercially available FWT-60 dosimeters. Irradiation of samples in a series of progressively increasing absorbed doses allowed the generation of rate constants used to predict absorbed doses necessary to meet the 2 mg/kg treatment standard. Three separate irradiation experiments were performed. The first irradiation used a maximum absorbed dose of 183 kGy. This experiment demonstrated that the PCB concentration decreased and allowed calculation of preliminary rate constants. The second irradiation used a maximum absorbed dose of 760 kGy. From this experiment, accurate rate constants were calculated, and the necessary absorbed dose to achieve the treatment standard was calculated. In the third irradiation of 2,242 kGy, all three waste streams were adequately decontaminated.

  6. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  7. In-Situ Grouting Treatability Study for the Idaho National Engineering and Environmental Laboratory Subsurface Disposal Area-Transuranic Pits and Trenches

    SciTech Connect (OSTI)

    Loomis, G. G.; Jessmore, J. J.; Sehn, A. L.; Miller, C. M.

    2002-02-27

    At the Idaho National Engineering and Environmental Laboratory (INEEL), a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) treatability study is being performed to examine the technology of in situ grouting for final in situ disposal of buried mixed transuranic (TRU) waste. At the INEEL, there is over 56,000 cubic meters of waste commingled with a similar amount of soil in a shallow (3-5 m) land burial referred to as Waste Area Group 7-13/14. Since this buried waste has been declared on the National Priorities List under CERCLA, it is being managed as a superfund site. Under CERCLA, options for this waste include capping and continued monitoring, retrieval and ex situ management of the retrieved waste, in situ stabilization by vitrification or grouting, in situ thermal dissorption, or some combination of these options. In situ grouting involves injecting grout at high pressures (400 bars) directly into the waste to create a solid monolith. The in situ grouting process is expected to both stabilize the waste against subsidence and provide containment against migration of waste to the Snake River Plain Aquifer lying 150-200 m below the waste. The treatability study involves bench testing, implementability testing, and field testing. The bench testing was designed to pick three grouts from six candidate grouts for the implementability field testing in full scale which were designed to down-select from those three grouts to one grout for use in a full-scale field demonstration of the technology in a simulated test pit. During the bench testing, grouts were evaluated for durability using American Nuclear Society 16.1 Leach Protocol as well as evaluating the effect on physical parameters such as hydraulic conductivity and compressive strength due to the presence of interferences such as soil, organic sludge, and nitrate salts. During full-scale implementability testing, three grouts were evaluated for groutability and monolith formation

  8. Treatability study for Hill AFB`s Operable Unit-1: Enhanced microaerobic dechlorination using various electron donors. MasMajor report

    SciTech Connect (OSTI)

    Breed, P.G.

    1999-05-13

    A treatability study of the microaerobic biodegradation of cis-dichloroethene (c-DCE) was completed using a series of eight continuously operated columns filled with contaminated soils from Hill Air Force Base`s Operable Unit 1. Columns were supplied groundwater from the site, vitamins and yeast, and an electron donor solution containing one of the following donors: n-butyric acid, benzoic acid, lactic acid, propionic acid, n-propanol, or toluene. Concentrations of c-DCE varied over six months and ranged from 2736 micrograms/L to 30 micrograms/L. Though attempted as an anaerobic study, the ability to continuously eliminate oxygen from an active system proved difficult and columns operated as microaerobic systems. In all columns the degradation of c-DCE was observed, however, the removal efficiencies determined by comparing the influent and effluent concentrations were highly inconsistent throughout the experiment. By comparing the background columns to the columns supplied electron donors, it does not appear the addition of vitamins or electron donors enhance the indigenous microorganism`s ability to remove c-DCE. While c-DCE removal within the background column averaged 17%, the vitamin amended control column averaged only 7% c-DCE removal within the column and the electron donor supplied columns averaged between 7% removal and 5% apparent production. Of the electron donors supporting c-DCE removal, benzoic acid demonstrated 7% removal followed closely by propionic acid and n-propanol, both showing 5% c-DCE removal.

  9. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  10. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Kalb, P.D.; Milian, L.W.; Yim, S.P.; Dyer, R.S.; Michaud, W.R.

    1997-12-01

    The Republic of Kazakhstan generates significant quantities of excess elemental sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the US and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loadings of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing.

  11. Treatability study on the use of by-product sulfur in Kazakhstan for the stabilization of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Yim, Sung Paal; Kalb, P.D.; Milian, L.W.

    1997-08-01

    The Republic of Kazakhstan generates significant quantities of excess sulfur from the production and refining of petroleum reserves. In addition, the country also produces hazardous, and radioactive wastes which require treatment/stabilization. In an effort to find secondary uses for the elemental sulfur, and simultaneously produce a material which could be used to encapsulate, and reduce the dispersion of harmful contaminants into the environment, BNL evaluated the use of the sulfur polymer cement (SPC) produced from by-product sulfur in Kazakhstan. This thermoplastic binder material forms a durable waste form with low leaching properties and is compatible with a wide range of waste types. Several hundred kilograms of Kazakhstan sulfur were shipped to the U.S. and converted to SPC (by reaction with 5 wt% organic modifiers) for use in this study. A phosphogypsum sand waste generated in Kazakhstan during the purification of phosphate fertilizer was selected for treatment. Waste loading of 40 wt% were easily achieved. Waste form performance testing included compressive strength, water immersion, and Accelerated Leach Testing. 14 refs., 7 figs., 6 tabs.

  12. 183-H Basin sludge treatability test report

    SciTech Connect (OSTI)

    Biyani, R.K.

    1995-12-31

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  13. Evaporative oxidation treatability test report

    SciTech Connect (OSTI)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  14. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    SciTech Connect (OSTI)

    LUECK, K.J.

    2001-06-07

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF.

  15. 100-N Area Strontium-90 Treatability Demonstration Project: Food Chain Transfer Studies for Phytoremediation Along the 100-N Columbia River Riparian Zone

    SciTech Connect (OSTI)

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.

    2009-04-01

    Strontium-90 (90Sr) exceeds the U.S. Environmental Protection Agencys drinking water standards for groundwater (8 picocuries/L) by as much as a factor of 1000 at several locations within the Hanford 100-N Area and along the 100-N Area Columbia River shoreline). Phytoextraction, a managed remediation technology in which plants or integrated plant/rhizosphere systems are employed to phytoextract and/or sequester 90Sr, is being considered as a potential remediation system along the riparian zone of the Columbia River as part of a treatment train that includes an apatite barrier to immobilize groundwater transport of 90Sr. Phytoextraction would employ coyote willow (Salix exigua) to extract 90Sr from the vadose zone soil and aquifer sediments (phytoextraction) and filter 90Sr (rhizofiltration) from the shallow groundwater along the riparian zone of the Columbia River. The stem and foliage of coyote willows accumulating 90Sr may present not only a mechanism to remove the contaminant but also can be viewed as a source of nutrition for natural herbivores, therefore becoming a potential pathway for the isotope to enter the riparian food chain. Engineered barriers such as large and small animal fencing constructed around the field plot will control the intrusion of deer, rodents, birds, and humans. These efforts, however, will have limited effect on mobile phytophagous insects. Therefore, this study was undertaken to determine the potential for food chain transfer by insects prior to placement of the remediation technology at 100-N. Insect types include direct consumers of the sap or liquid content of the plants vascular system (xylem and phloem) by aphids as well as those that would directly consume the plant foliage such as the larvae (caterpillars) of Lepidoptera species. Heavy infestations of aphids feeding on the stems and leaves of willows growing in 90Sr-contaminated soil can accumulate a small amount (~0.15 0.06%) of the total label removed from the soil by the

  16. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-07-21

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the Hanford 100 Areas. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at Hanford.

  17. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    SciTech Connect (OSTI)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.

  18. Treatability Test Plan for an In Situ Biostimulation Reducing Barrier

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.; Brockman, Fred J.; Oostrom, Mart; Hubbard, Susan; Borden, Robert C.; Fruchter, Jonathan S.

    2007-10-26

    This treatability test plan supports a new, integrated strategy to accelerate cleanup of chromium in the 100 Areas at the Hanford Site. This plan includes performing a field-scale treatability test for bioreduction of chromate, nitrate, and dissolved oxygen. In addition to remediating a portion of the plume and demonstrating reduction of electron acceptors in the plume, the data from this test will be valuable for designing a full-scale bioremediation system to apply at this and other chromium plumes at the Hanford Site.

  19. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2003-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts.

  20. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  1. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2004-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  2. Ab Initio Studies of Coke Formation on Ni Catalysts During Methane Reforming

    SciTech Connect (OSTI)

    David S. Sholl

    2006-03-05

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  3. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect (OSTI)

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  4. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    SciTech Connect (OSTI)

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  5. Hanford 100-D Area Biostimulation Treatability Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Elmore, Rebecca P.; Mitroshkov, Alexandre V.; Sklarew, Deborah S.; Johnson, Christian D.; Oostrom, Martinus; Newcomer, Darrell R.; Brockman, Fred J.; Bilskis, Christina L.; Hubbard, Susan S.; Peterson, John E.; Williams, Kenneth H.; Gasperikova, E.; Ajo-Franklin, J.

    2009-09-30

    Pacific Northwest National Laboratory conducted a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. In situ biostimulation has been extensively researched and applied for aquifer remediation over the last 20 years for various contaminants. In situ biostimulation, in the context of this project, is the process of amending an aquifer with a substrate that induces growth and/or activity of indigenous bacteria for the purpose of inducing a desired reaction. For application at the 100-D Area, the purpose of biostimulation is to induce reduction of chromate, nitrate, and oxygen to remove these compounds from the groundwater. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier previously installed in the Hanford 100-D Area and thereby increase the longevity of the ISRM barrier. Substrates for the treatability test were selected to provide information about two general approaches for establishing and maintaining an in situ permeable reactive barrier based on biological reactions, i.e., a biobarrier. These approaches included 1) use of a soluble (miscible) substrate that is relatively easy to distribute over a large areal extent, is inexpensive, and is expected to have moderate longevity; and 2) use of an immiscible substrate that can be distributed over a reasonable areal extent at a moderate cost and is expected to have increased longevity.

  6. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  7. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  8. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  9. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  10. Slab reformer

    DOE Patents [OSTI]

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  11. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  13. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect (OSTI)

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C.

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  14. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  15. In situ, energy-dispersive X-ray diffraction study of natural gas conversion by CO[sub 2] reforming

    SciTech Connect (OSTI)

    Ashcroft, A.T. ); Cheetham, A.K. ); Jones, R.H.; Natarajan, S.; Thomas, J.M.; Waller, D. ); Clark, S.M. )

    1993-04-01

    The selective CO[sub 2] reforming of methane to synthesis gas over a rare-earth iridate pyrochlore, Ln[sub 2]Ir[sub 2]O[sub 7] (Ln = Eu), and rare-earth ruthenate pyrochlores, Ln[sub 2]Ru[sub 2]O[sub 7] (Ln = Nd, Sm, Eu, Gd), has been studied in situ by using energy-dispersive X-ray diffraction with synchrotron radiation. Analysis of the diffraction data shows that the oxides are activated by reduction to the platinum group metal, the iridate by a second-order kinetic reaction, and the ruthenates by a first-order process. Temperature programmed reductions under carbon monoxide, hydrogen, and methane establish that the iridates proceed directly to the metal, whereas the ruthenates reduce via an oxygen deficient pyrochlore. 18 refs., 7 figs., 1 tab.

  16. Promoting energy efficiency in reforming electricity markets

    SciTech Connect (OSTI)

    Clinton, J.; Kozloff, K.

    1998-07-01

    Many developing countries are initiating power sector reforms to stimulate private investment, increase operation and management efficiencies, and recover the full costs of power. Reforms may include unbundling generation, transmission, distribution and retail services; commercial management; competition; and private ownership. This paper draws upon six country case studies--Argentina, Chile, New Zealand, Norway, the United Kingdom, and the US--to identify major models of power reforms and their implications for energy efficiency--both positive and negative. There are both structural and institutional features of reform that may discourage commercial offerings of end-use efficiency services. Valuable lessons are discussed regarding what reforms and policies have worked to promote energy efficiency and which have not. Several models are offered for how developing countries can promote energy efficiency under some of the more common forms of power sector restructuring. Conclusions and recommendations are directed at key decision-makers in developing countries contemplating power sector reforms.

  17. Pilot-scale treatability test plan for the 200-BP-5 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

  18. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  19. 100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.

    2009-12-16

    100-NR-2 Apatite Treatability Test FY09 Status: High Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization INTERIM LETTER REPORT

  20. CX-004173: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Steam Reforming Treatability Study with Savannah River Site Low Activity Waste (LAW) ... on Savannah River Site Low Activity Waste (LAW) modified to simulate Hanford waste. ...

  1. Development of a treatability variance guidance document for US DOE mixed-waste streams

    SciTech Connect (OSTI)

    Scheuer, N.; Spikula, R. ); Harms, T. . Environmental Guidance Div.); Triplett, M.B. )

    1990-03-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a treatability variance guidance document was prepared. The guidance manual is for use by DOE facilities and operations offices. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA (LDRs). A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. The manual, Guidance For Obtaining Variance From the Treatment Standards of the RCRA Land Disposal Restrictions (1), leads the reader through the process of evaluating whether a variance from the treatment standard is a viable approach and through the data-gathering and data-evaluation processes required to develop a petition requesting a variance. The DOE review and coordination process is also described and model language for use in petitions for DOE radioactive mixed waste (RMW) is provided. The guidance manual focuses on RMW streams, however the manual also is applicable to nonmixed, hazardous waste streams. 4 refs.

  2. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  3. Non-catalytic recuperative reformer

    SciTech Connect (OSTI)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  4. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  5. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  6. Treatability Test Report: Characterization of Vadose Zone Carbon Tetrachloride Source Strength Using Tomographic Methods at the 216-Z-9 Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.; Rohay, Virginia J.; Mackley, Rob D.; Parker, Kyle R.

    2012-09-28

    A treatability test was conducted in 2011 at the 216-Z-9 Trench to evaluate methods for collecting characterization information that supports refined assessment of SVE performance goals based on impact to groundwater. The characterization information can also provide input to operational strategies for continued SVE operation and decisions regarding closure of the SVE system or transition to other remedies, if necessary.

  7. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  8. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  9. Treatability Test for Removing Technetium-99 from 200-ZP-1 Groundwater, Hanford Site

    SciTech Connect (OSTI)

    Byrnes, M.E.; Petersen, S.W. [Fluor Hanford, Inc., Soil and Groundwater Remediation Project, Richland, WA (United States); Tortoso, A. [U.S. Department of Energy, Richland Operations Office, Richland, WA (United States); Elliott, W.S. [Environmental Quality Management, Inc., Richland, WA (United States)

    2008-07-01

    The 200-ZP-1 Groundwater Operable Unit (OU) is one of two groundwater OUs located within the 200 West groundwater aggregate area of the Hanford Site. The primary risk-driving contaminants within the 200-ZP-1 OU include carbon tetrachloride and technetium-99 (Tc-99). A pump-and-treat system for this OU was initially installed in 1995 to control the 0.002 kg /m{sup 3} (2000 {mu}g/L) contour of the carbon tetrachloride plume. Carbon tetrachloride is removed from groundwater with the assistance of an air-stripping tower. Ten extraction wells and three injection wells operate at a combined rate of approximately 0.017m{sup 3}/s (17.03 L/s). In 2005, groundwater from two of the extraction wells (299-W15-765 and 299-W15-44) began to show concentrations greater than twice the maximum contaminant level (MCL) of Tc-99 (33,309 beq/m{sup 3} or 900 pCi/L). The Tc-99 groundwater concentrations from all ten of the extraction wells when mixed were more than one-half of the MCL and were slowly increasing. If concentrations continued to rise and the water remained untreated for Tc-99, there was concern that the water re-injected into the aquifer could exceed the MCL standard. Multiple treatment technologies were reviewed for selectively removing Tc-99 from the groundwater. Of the treatment technologies, only ion exchange was determined to be highly selective, commercially available, and relatively low in cost. Through research funded by the U.S. Department of Energy, the ion-exchange resin Purolite{sup R} A-530E1 was found to successfully remove Tc-99 from groundwater, even in the presence of competing anions. For this and other reasons, Purolite{sup R} A-530E ion exchange resin was selected for treatability testing. The treatability test required installing resin columns on the discharge lines from extraction wells 299-W15-765 and 299-W15-44. Preliminary test results have concluded that the Purolite{sup R} A-530E1 resin is effective at removing Tc-99 from groundwater to below

  10. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Oostrom, Martinus; Johnson, Christian D.; Tartakovsky, Guzel D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  11. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  12. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    SciTech Connect (OSTI)

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC; Kovarik, Libor; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark A.; Rousseau, Roger J.; Dagle, Robert A.

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh and ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the

  13. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  14. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  15. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  16. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  17. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  18. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  19. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  20. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  1. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  2. Before House Committee on Oversight and Government Reform | Department...

    Office of Environmental Management (EM)

    House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform By: Secretary...

  3. Distributed Bio-Oil Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming Distributed Bio-Oil Reforming Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  4. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect (OSTI)

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh

  5. Bringing electricity reform to the Philippines

    SciTech Connect (OSTI)

    Fe Villamejor-Mendoza, Maria

    2008-12-15

    Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

  6. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  7. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  8. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  9. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    SciTech Connect (OSTI)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  10. CX-005511: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Steam Reforming Treatability Study with Hanford Sample ECX(s) Applied: B3.6Date: 02/10/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  11. Plasma-catalyzed fuel reformer

    DOE Patents [OSTI]

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  12. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect (OSTI)

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  13. Before the House Oversight and Government Reform Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Information Policy, Intergovernmental Relations, and Procurement Reform | Department of Energy Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the Subcommittee on Technology, Information Policy, Intergovernmental Relations and Procurement

  14. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  15. Unfunded Mandates Reform Act; Intergovernmental Consultation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) ...

  16. Federal Information Technology Acquisition Reform Act (FITARA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Information Technology Acquisition Reform Act (FITARA) Data Resources FITARA Resources Available for Download: DOE IT Policy Archive: ZIP IT Leadership Directory: HTML | ...

  17. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  18. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    , concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended

  19. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  20. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  1. Cost Analysis of Bio-Derived Liquids Reforming (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bio-Derived Liquids Reforming (Presentation) Cost Analysis of Bio-Derived Liquids Reforming (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 03_dti_cost_analysis_bio-derived_liquids_reforming.pdf (471.59 KB) More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Working

  2. Recuperative Reforming (RR) for H2 Enhanced Combustion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recuperative Reforming (RR) for H2 Enhanced Combustion Recuperative Reforming (RR) for H2 Enhanced Combustion 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations ...

  3. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government...

  4. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Environmental Management (EM)

    Meeting - November 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  5. Diesel Reformers for On-board Hydrogen Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformers for On-board Hydrogen Applications Diesel Reformers for On-board Hydrogen ... More Documents & Publications On-Board Ammonia Generation Using Delphi Diesel Fuel ...

  6. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Broader source: Energy.gov (indexed) [DOE]

    The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and ...

  7. Diesel Reforming for Fuel Cell Auxiliary Power Units

    SciTech Connect (OSTI)

    Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

    2005-01-27

    This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

  8. Design, Modeling, and Validation of a Flame Reformer for LNT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration ...

  9. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling ...

  10. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements EAS ...

  11. Hearing Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations Hearing Before the House Oversight and Government Reform ...

  12. High Pressure Ethanol Reforming for Distributed Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the ...

  13. Olefins from High Yield Autothermal Reforming Process

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The autothermal reforming method employs an improved dehydrogenation process for olefin production, utilizing platinum based dehydrogenation catalysts in the presence of oxygen. The autothermal process requires no external energy input following ignition and produces high conversions and yields from the gaseous hydrocarbon feeds. Autothermal reforming is an effective solution that meets the high demands of the chemical market industry by producing high yields...

  14. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  15. New model accurately predicts reformate composition

    SciTech Connect (OSTI)

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  16. Evaluation of Partial Oxidation Reformer Emissions

    SciTech Connect (OSTI)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  17. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

    SciTech Connect (OSTI)

    Szybist, James P; Steeper, Richard R.; Splitter, Derek A; Kalaskar, Vickey B; Pihl, Josh A; Daw, C Stuart

    2014-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed. The other experimental facility, located at Sandia National Laboratories, uses a dump valve to capture the exhaust from a single NVO event for analysis. Results from the two experiments are in excellent trend-wise agreement and indicate that the reforming process under low-O2 conditions produces substantial concentrations of H2, CO, methane, and other short-chain hydrocarbon species. The concentration of these species is found to be strongly dependent on fuel injection timing and injected fuel type, with weaker dependencies on NVO duration and initial temperature, indicating that NVO reforming is kinetically slow. Further, NVO reforming does not require a large energy input from the engine, meaning that it is not thermodynamically expensive. The implications of these results on HCCI and other forms of combustion are discussed in detail.

  18. Bench-scale treatability testing of biological, UV oxidation, distillation, and ion-exchange treatment of trench water from a low-level radioactive waste disposal area at West Valley, New York

    SciTech Connect (OSTI)

    Sundquist, J.A.; Gillings, J.C.; Sonntag, T.L.; Denault, R.P.

    1993-03-01

    Ecology and Environment, Inc. (E and E), under subcontract to Pacific Nuclear Services (PNS), conducted for the New York State Energy Research and Development Authority (NYSERDA) treatability tests to support the selection and design of a treatment system for leachate from Trench 14 of the West Valley State-Licensed, Low-Level Radioactive Waste Disposal Area (SDA). In this paper E and E presents and discusses the treatability test results and provides recommendations for the design of the full-scale treatment system.

  19. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  20. Diesel Reforming for Solid Oxide Fuel Cell Application

    SciTech Connect (OSTI)

    Liu, D-J.; Sheen, S-H.; Krumpelt, M.

    2005-01-27

    This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

  1. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  2. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    SciTech Connect (OSTI)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL.

  3. Internal reforming fuel cell assembly with simplified fuel feed

    SciTech Connect (OSTI)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  4. Bio-Derived Liquid Distributed Reforming Outcomes Map | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Liquid Distributed Reforming Outcomes Map Bio-Derived Liquid Distributed Reforming Outcomes Map This is a "pre-decisional draft of the Bio-Derived Liquid Distributed Reforming Outcomes Map. biliwg06_schlasner.pdf (36.88 KB) More Documents & Publications Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Bio-Derived Liquids to

  5. Electricity reform abroad and US investment

    SciTech Connect (OSTI)

    1997-10-01

    This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

  6. Device for cooling and humidifying reformate

    DOE Patents [OSTI]

    Zhao, Jian Lian; Northrop, William F.

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  7. Distributed Reforming of Biomass Pyrolysis Oils (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting November 6 and 7 2007 R. J. Evans, NREL D. M. Steward, NREL Innovation / Overview Biomass pyrolysis produces a liquid product, bio-oil, which contains a wide spectrum of components that can be efficiently, stored, and shipped, to a site for renewable hydrogen production and converted to H2 at moderate severity

  8. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  9. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  10. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  11. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  12. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    SciTech Connect (OSTI)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

  13. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  14. Thermally integrated staged methanol reformer and method

    SciTech Connect (OSTI)

    Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  15. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  16. Agenda for the Derived Liquids to Hydrogen Distributed Reforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen ... Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ...

  17. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect (OSTI)

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  18. Hydrogen Production: Biomass-Derived Liquid Reforming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass-Derived Liquid Reforming Hydrogen Production: Biomass-Derived Liquid Reforming Photo of cylindrical reactor vessel and associated piping and equipment in the Thermochemical Process Development Unit at NREL Liquids derived from biomass resources-including ethanol and bio-oils-can be reformed to produce hydrogen in a process similar to natural gas reforming. Biomass-derived liquids can be transported more easily than their biomass feedstocks, allowing for semi-central

  19. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  20. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched

  1. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) ...

  2. Before House Committee on Oversight and Government Reform | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oversight and Government Reform Before House Committee on Oversight and Government Reform Testimony of Daniel Poneman, Deputy Secretary of Energy Before House Committee on Oversight and Government Reform 8-1-13_ Daniel_Pohema FT HOGR.pdf (42.28 KB) More Documents & Publications Email from BPA Acting Administrator Eliot Mainzer -- July 19, 2013 Gregory H. Friedman: Provided for The Committee on Oversight and Government Reform U.S. House of Representatives MANAGEMENT ALERT:

  3. Distributed Reforming of Biomass Pyrolysis Oils (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biomass Pyrolysis Oils (Presentation) Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 06_nrel_distributed_reforming_biomass_pyrolysis_oils.pdf (301.5 KB) More Documents & Publications Distributed Bio-Oil Reforming Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D

  4. High Pressure Ethanol Reforming for Distributed Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_ahmed_anl.pdf (638.37 KB) More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen

  5. Hydrogen from Biomass by Autothermal Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Biomass by Autothermal Reforming Hydrogen from Biomass by Autothermal Reforming Presentation by Lanny D. Schmidt at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_schmidt_umn.pdf (247.23 KB) More Documents & Publications Biofuels Report Final Integrated Short Contact Time Hydrogen Generator (SCPO) Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working

  6. DOE Safety and Security Reform Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Security Reform Meeting DOE Safety and Security Reform Meeting Meeting Date: August 13, 2010 HSS senior managers with lead responsibilities in DOE's safety and security reform activities met with labor union representatives to discuss approach and process for the engagement of worker stakeholders in the reform efforts. Documents Available for Download Meeting Agenda (74.42 KB) Meeting Summary (95.69 KB) More Documents & Publications Work Group Telecom (Draft Charters) Focus Group

  7. Utility Regulation and Business Model Reforms for Addressing the Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Distributed Solar on Utilities | Department of Energy Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Implementing a range of alternative utility-rate reforms could minimize solar

  8. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_bromberg.pdf (404.01 KB) More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Onboard

  9. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  10. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  11. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  12. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  13. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    SciTech Connect (OSTI)

    Nurhadi, N. Diniyati, Dahlia; Efendi, M. Ade Andriansyah; Istadi, I.

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the most promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.

  14. Autothermal hydrodesulfurizing reforming method and catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  15. Integrated solar thermochemical reaction system for steam methane reforming

    SciTech Connect (OSTI)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.

  16. Integrated solar thermochemical reaction system for steam methane reforming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  17. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect (OSTI)

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  18. Hiring Reform Memoranda and Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hiring Reform Memoranda and Action Plan Hiring Reform Memoranda and Action Plan Memoranda and Action Plan to support the President's mandate directing the improvement of the Federal recruitment and hiring process throughout the Federal government. Hiring Reform Memoranda and Action Plan (6.76 MB) Responsible Contacts Kenneth Venuto Director, Office of Human Capital Management E-mail kenneth.venuto@hq.doe.gov More Documents & Publications Chief Human Capital Officer Memo on Improving DOE

  19. Secretary Moniz to Present Project Management Reforms to the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Academy of Public Administration | Department of Energy to Present Project Management Reforms to the National Academy of Public Administration Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration January 12, 2015 - 10:30am Addthis News Media Contact 202-586-4940 Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration WASHINGTON- On Thursday, January 15, Energy Secretary Ernest Moniz will give a

  20. Intelligence Reform and Terrorism Prevention Act - December 17, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intelligence Reform and Terrorism Prevention Act - December 17, 2004 Intelligence Reform and Terrorism Prevention Act - December 17, 2004 December 17, 2004 To reform the intelligence community and the intelligence and intelligence-related activities of the United States Government, and for other purposes. SEC. 102. (a) DIRECTOR OF NATIONAL INTELLIGENCE.-(1) There is a Director of National Intelligence who shall be appointed by the President, by and with the advice and

  1. Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Membrane (OTM) (Presentation) | Department of Energy Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 11_anl_distributed_reforming_using_otm.pdf (809.59 KB) More Documents & Publications Cost

  2. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Fuel Cell Technologies Office (FCT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes individuals from DOE, the national laboratories, industry, and academia.

  3. Hydrogen generation from plasmatron reformers and use for diesel exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aftertreatment | Department of Energy generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003 DEER Conference Presentation: Massachusetts Institute of Technology 2003_deer_bromberg.pdf (739.71 KB) More Documents & Publications H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

  4. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Tank 48H Treatment Project (TTP) | Department of Energy Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System.

  5. Federal Information Technology Acquisition Reform Act (FITARA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Information Technology Acquisition Reform Act (FITARA) Data Resources Federal Information Technology Acquisition Reform Act (FITARA) Data Resources FITARA Resources Available for Download: DOE IT Policy Archive: ZIP IT Leadership Directory: HTML | JSON | PDF CIO Governance Board Membership List: HTML | JSON | PDF DOE IT Reform Cost Savings: JSON | PDF DOE IT Policies policyarchive.zip (1.36 MB) bureaudirectory.html (8.07 KB) bureaudirectory.json (10.48 KB)

  6. Hearing Before the House Oversight and Government Reform Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Technology and Subcommittee on Government Operations | Department of Energy Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations Hearing Before the House Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations 5-18-16_Michael_Johnson FT HOGR (383.24 KB) More Documents & Publications U.S. Department of Energy Federal Information Technology Acquisition Reform Act

  7. Cost Analysis of Bio-Derived Liquids Reforming (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or ...

  8. Regulatory and Financial Reform of Federal Research Policy: Recommenda...

    Office of Environmental Management (EM)

    for regulatory reform that would improve research universities' ability to carry out their missions without requiring a significant financial investment by the Federal government. ...

  9. New process model proves accurate in tests on catalytic reformer

    SciTech Connect (OSTI)

    Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )

    1994-07-25

    A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

  10. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07anlhighpressuresteamethanolref...

  11. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  12. Hydrogen generation from plasmatron reformers and use for diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Onboard Plasmatron ...

  13. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  14. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  15. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  16. Secretary Moniz to Present Project Management Reforms to the...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration WASHINGTON- On Thursday, January 15, Energy Secretary Ernest Moniz will give ...

  17. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    Broader source: Energy.gov [DOE]

    Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  18. Fuel Reformation: Catalyst Requirements in Microchannel Architectures

    SciTech Connect (OSTI)

    King, David L.; Brooks, Kriston P.; Fischer, Christopher M.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

    2005-09-06

    Microchannel reactors have unique capabilities for onboard hydrocarbon fuel processing, due to their ability to provide process intensification through high heat and mass transfer, leading to smaller and more efficient reactors. The catalyst requirements in microchannel devices are demanding, requiring high activity, very low deactivation rates, and strong adherence to engineered substrate. Each unit operation benefits from microchannel architecture: the steam reforming reactor removes heat transfer limitations, allowing the catalyst to operate at elevated temperatures at the kinetic limit; the water gas shift reactor uses unique temperature control to reduce catalyst volume requirements; the PROX reactor provides high CO conversion and minimizes H2 oxidation through effective control of reactor temperature.

  19. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007 ...

  20. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-09-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  1. Electricity Reform Abroad and U.S. Investment

    Reports and Publications (EIA)

    1997-01-01

    Reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom in an attempt to better understand how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries of Argentina, Australia, and the United Kingdom.

  2. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  3. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  4. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  5. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  6. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  7. Evaluation of Fluidized Bed Steam Reforming (FBSR) Technology for Sodium Bearing Wastes from Idaho and Hanford Using the Bench-Top Steam Reformer (BSR)

    SciTech Connect (OSTI)

    PAUL, BURKET

    2005-02-28

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes, but especially aqueous high sodium wastes at Hanford, Idaho National Engineering and Environmental Laboratory (INEEL), and the Savannah River Site (SRS). To help the Department of Energy (DOE) make informed decisions about this technology for sodium bearing wastes further experimental data are needed. All work described in this study has been performed with non-radioactive simulants and compared to non-radioactive pilot scale testing at other facilities. The desired plan is to provide a laboratory scale system that correlates to the pilot and plant scale systems such that the chemistry of Fluidized Bed Steam Reforming (FBSR) can be optimized on a small scale, then verified at the pilot scale. Once verified, this will enable laboratory scale demonstrations of actual radioactive wastes. The Savannah River National Laboratory (SRNL) developed the Bench-top Steam Reformer (BSR) to fill this need. The development of the BSR is the focus of this study. In addition, the characterization of the FBSR products produced in the BSR from simulants of the INEEL Sodium-Bearing Waste (SBW) stream and the Hanford Low Activity Waste (LAW) stream are documented and compared to pilot scale testing of these same simulants at the INEEL pilot-scale test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) Center in Idaho Falls, ID.

  8. Microstructure evolution in the fusion welding of heat-treatable Al-Cu-Li alloys. Ph.D. Thesis

    SciTech Connect (OSTI)

    Hou, K.

    1994-01-01

    Aluminum alloys 2090 and 2195 and Al-2.5Cu were welded autogenously using the gas tungsten-arc (GTA) and CO2 laser beam (LB) welding processes. Relationships between microstructure and mechanical properties in the fusion zone (FZ) and the heat-affected zone (HAZ) in both the as-welded and the postweld heat-treated conditions were studied. Solute segregation due to non-equilibrium solidification in the FZ and its effect on precipitation after postweld aging was quantitatively investigated. After aging treatment, precipitates were found surrounding eutectic regions where higher solute content was measured. Fast cooling LB weld exhibited narrower solute enriched regions and narrower precipitate segregation zones (PSZ`s) adjacent to the eutectic. A partial recovery of strength and hardness in the FZ`s was achieved by postweld aging at 160 C and 190 C for 16 hours. A higher Li/Cu ratio in 2090 promoted the formation of uniformly distributed delta(prime) precipitates in the as-welded HAZ. An evident reduction in the FZ ductility occurred in the 2195 LB welds due to the existence of porosity and shrinkage cavities, and the constraint effect from narrower FZ`s. GTA welds in both 2090 and 2195 alloys exhibited a hardness recovery in the near HAZ, which was not obvious in the LB welds. Postweld aging enhanced this hardness variation. Overaging, dissolution and reprecipitation of various strengthening precipitates occurred in the different regions of the HAZ, and consequently induced the hardness variation. Higher heat inputs increased the HAZ width and enhanced the hardness increase in the near HAZ. Aged HAZ microstructure was affected by the precipitation in the as-welded condition. The formation of Li-containing precipitates in the GTA HAZ, especially alpha(prime) in Li-lean 2195, consumed Li from the matrix. Consequently, the precipitation of T1 was affected.

  9. Reforming natural gas markets: the antitrust alternative

    SciTech Connect (OSTI)

    Lambert, J.D.; Gilfoyle, N.P.

    1983-05-12

    Although the centerpiece of the Department of Energy's proposed legislation is gradual decontrol of all wellhead natural gas prices by Jan. 1, 1986, it also addresses the structural problems that have contributed to the current market disorder. Intended to promote increased competition in the marketing of natural gas, the provisions are based on fundamental tenets of antitrust law. This review of relevant antitrust principles as they relate to the natural gas industry places the remedial features of the proposed legislation in legal context. These features concern the pipelines' contract carrier obligation, gas purchase contract modifications, and limitations on passthrough of purchase gas costs. Should the legislation fail to pass, private antitrust litigation will remain as an inducement to structural and economic reform in the gas industry.

  10. Hydrocarbon fuel reforming catalyst and use thereof

    DOE Patents [OSTI]

    Ming, Qimin; Healey, Todd; Irving, Patricia Marie

    2006-06-27

    The subject invention is a catalyst consisting of an oxide or mixed oxide support and bimetallic catalytically active compounds. The supporting oxide can be a single oxide, such as Al.sub.2O.sub.3; it also can be a mixture of oxides, such as Y.sub.2O.sub.3 stabilized ZrO.sub.2 (YSZ), Al.sub.2O.sub.3 with CeO.sub.2, Al.sub.2O.sub.3 with YSZ and others. The bimetallic compounds, acting as active components, are selected from platinum, and ruthenium, prepared in an appropriate ratio. The catalyst is used in the steam reforming of hydrocarbons to produce hydrogen for applications such as polymer electrolyte membrane fuel cells.

  11. Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf (2.66 MB) More Documents & Publications Intelligence Reform and Terrorism Prevention Act - December 17, 2004 Bond Amendment, Security Clearances - January 1, 2008 National Historic Preservation Act (1966, amended 2014)

  12. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  13. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  14. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  15. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 08_osu_bio-ethanol_steam_reforming.pdf (6.45 MB) More Documents & Publications Investigation of Reaction Networks and Active Sites In Bio-Ethanol Steam Reforming

  16. Coal pricing in China: Issues and reform strategy. World Bank discussion paper

    SciTech Connect (OSTI)

    Albouy, Y.

    1991-01-01

    The study assesses the magnitude of coal price distortions left in place by the dual track pricing approach to price reform implemented by China in the 1980s; it examines the economic and financial costs of these distortions and identifies the potential winners and losers of pricing improvements. Finally the report outlines a strategy for gradual price adjustments and liberalization in the coal sector. (Copyright (c) 1991 The International Bank for Reconstruction and Development/The World Bank.)

  17. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 01doebio-derivedliquidstoh2refor...

  18. Before the House Committee on Oversight and Government Reform...

    Broader source: Energy.gov (indexed) [DOE]

    on Oversight and Government Reform, U.S. House of Representatives By: Deputy Secretary Daniel Poneman, U.S. Department of Energy FinalTestimonyPoneman0922111.pdf More Documents...

  19. Process Reform, Security and Suitability- December 17, 2008

    Broader source: Energy.gov [DOE]

    This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year.

  20. Criterion buys Akzo`s naphtha reforming catalysts business

    SciTech Connect (OSTI)

    Rotman, D.

    1993-12-08

    In a move that further consolidates the refinery catalysts market, Criterion Catalyst (Houston) has bought Akzo`s reforming business for an undisclosed price. The acquisition gives Criterion-a joint venture between Shell and American Cyanamid-roughly 35% of the $50-million/year worldwide reforming market. Akzo says it is quitting the business to focus on larger refinery catalysts applications in hydroprocessing and fluid cracking catalysts.

  1. Regulatory and Financial Reform of Federal Research Policy: Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the NRC Committee on Research Universities | Department of Energy and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the

  2. Regulatory and Financial Reform of Federal Research Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory and Financial Reform of Federal Research Policy Recommendations to the NRC Committee on Research Universities January 21, 2011 Introduction At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research

  3. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  4. Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group (BILIWG) Hydrogen Production Technical Team Research Review | Department of Energy Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review This is the agenda for the working group sessions held in Laurel, Maryland on November 6, 2007. biliwg_agenda.pdf (145.59 KB) More Documents

  5. Comments on Request For Information regarding Reducing Regulatory Reform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). | Department of Energy Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). Comments on Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). I have reviewed the Request For Information

  6. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  7. Existing systems review of treatment media for the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-01-01

    In situ treatment has been proposed as a remediation alternative for surface water and groundwater contaminated with uranium and nitrate as a result of former waste disposal practices in the S-3 Ponds. Interceptor trenches containing reactive media have been proposed to treat groundwater, and constructed wetlands and/or algal mats are potential alternatives for treating surface water. This report presents the results from testing of ten different reactive media, and combinations of media, that are candidates for use in the proposed interceptor trenches to remove uranium and nitrate from groundwater. It also presents the results of testing and evaluation of algal mats and wetlands for removing uranium and nitrate from surface water.

  8. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  9. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  10. DOE regulatory reform initiative vitrified mixed waste

    SciTech Connect (OSTI)

    Carroll, S.J.; Holtzscheiter, E.W.; Flaherty, J.E.

    1997-12-31

    The US Department of Energy (DOE) is charged with responsibly managing the largest volume of mixed waste in the United States. This responsibility includes managing waste in compliance with all applicable Federal and State laws and regulations, and in a cost-effective, environmentally responsible manner. Managing certain treated mixed wastes in Resource Conservation and Recovery Act (RCRA) permitted storage and disposal units (specifically those mixed wastes that pose low risks from the hazardous component) is unlikely to provide additional protection to human health and the environment beyond that afforded by managing these wastes in storage and disposal units subject to requirements for radiological control. In October, 1995, the DOE submitted a regulatory reform proposal to the Environmental Protection Agency (EPA) relating to vitrified mixed waste forms. The technical proposal supports a regulatory strategy that would allow vitrified mixed waste forms treated through a permit or other environmental compliance mechanism to be granted an exemption from RCRA hazardous waste regulation, after treatment, based upon the inherent destruction and immobilization capabilities of vitrification technology. The vitrified waste form will meet, or exceed the performance criteria of the Environmental Assessment (EA) glass that has been accepted as an international standard for immobilizing radioactive waste components and the LDR treatment standards for inorganics and metals for controlling hazardous constituents. The proposal further provides that vitrified mixed waste would be responsibly managed under the Atomic Energy Act (AEA) while reducing overall costs. Full regulatory authority by the EPA or a State would be maintained until an acceptable vitrified mixed waste form, protective of human health and the environment, is produced.

  11. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    SciTech Connect (OSTI)

    Jantzen, C

    2006-01-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

  12. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  13. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  14. Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA...

    Open Energy Info (EERE)

    Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url...

  15. Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.

    SciTech Connect (OSTI)

    Rossignol, C.; Krause, T.; Krumpelt, M.

    2002-01-11

    For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

  16. Reforming The Government Hiring Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita R. Franklin Rita R. Franklin Director, Office of the Ombudsman What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel

  17. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  18. Hydrogen Production via Reforming of Bio-Derived Liquids | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production via Reforming of Bio-Derived Liquids Hydrogen Production via Reforming of Bio-Derived Liquids Presentation by Yong Wang and David King at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_wang_pnnl.pdf (841.57 KB) More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production

  19. Development of a selective oxidation CO removal reactor for methanol reformate gas

    SciTech Connect (OSTI)

    Okada, Shunji; Takatani, Yoshiaki; Terada, Seijo; Ohtani, Shinichi

    1996-12-31

    This report forms part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns laboratory-scale tests aimed at reducing by selective oxidation to a level below 10 ppm the carbon monoxide (CO) contained to a concentration of around 1% in reformate gas.

  20. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  1. Mexico`s economic reform: Energy and the Constitution

    SciTech Connect (OSTI)

    Rubio, L.

    1993-12-31

    Oil is a fundamental component of nationhood in Mexico. The 1938 expropriation of oil resources concluded a process of internal political consolidation and thus became the most important symbol of nationalism. Mexico has been undergoing a process of economic reform that has altered the country`s economic structure and has subjected it to international competition. Oil in particular and energy in general have been left untouched. There is recognition that without an equal reform of the energy industry, the potential for success will be significantly limited. While the Constitution allows private investment in the industry--with the exception of the resource properties themselves--the Regulatory Law bans any private participation. Because of its political sensitivity, however, amending the law in order to reform the oil industry will necessitate a domestic initiative rather than foreign pressure. In this perspective, NAFTA served to slow and postpone the reform of the industry, rather than the opposite. Once NAFTA is well in place, the industry will have to face competition.

  2. Understanding electricity market reforms and the case of Philippine deregulation

    SciTech Connect (OSTI)

    Santiago, Andrea; Roxas, Fernando

    2010-03-15

    The experience of the Philippines offers lessons that should be relevant to any country seeking to deregulate its power industry. Regardless of structure, consumers must face the real price of electricity production and delivery that is closer to marginal cost. Politically motivated prices merely shift the burden from ratepayers to taxpayers. And any reform should work within a reasonable timetable. (author)

  3. GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13 GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 This memorandum provides guidance on the application of the Federal Vacancies Reform Act of1998 to vacancies in Senate-confirmed offices within the executive branch. March 22, 1999 MEMORANDUM FOR AGENCY GENERAL COUNSELS On October 21, 1998, the Federal Vacancies Reform Act of 1998 ("Vacancies Reform Act" or "Act") was signed into law. ( ) The

  4. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  5. Development of a Rapid-Start On-Board Automotive Steam Reformer

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Fischer, Christopher M.; Davis, James M.

    2004-04-29

    The paper reports on the status of efforts to engineer a microchannel steam reforming system to enable a rapid cold start capability. The steam reformer is intended to be coupled with a WGS and PROX reactor to provide reformate to a PEM fuel cell for an automotive propulsion application. A compact and efficient microchannel steam reformer was previously developed that required ~15 minutes to accomplish a cold start. The objective of the current work was to reduce this start time to <30 seconds without sacrificing steady-state efficiency. The paper describes the changes made in the reforming system to enable cold start capability and presents data on reformate flow and temperature transients during cold start testing. The results demonstrate that the system is capable of producing reformate within 22 seconds after a cold start. A strategy for integrating the system with a WGS and PROX reactor to provide a rapid start fuel processing system is described.

  6. NNSA Contract Reform in Action: Supply Chain Management Center | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Contract Reform in Action: Supply Chain Management Center December 22, 2009 As part of NNSA's commitment to being a responsible steward of tax dollars, NNSA Administrator Thomas D'Agostino (then the head of Defense Programs) created the Supply Chain Management Center (SCMC) in 2006 and selected Honeywell, operator of the Kansas City Plant, as the lead contractor for managing the initiative. Since Management and Operating (M&O) contractors spend

  7. Cost Analysis of Bio-Derived Liquids Reforming (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or otherwise restricted information Objective * Assess cost of H 2 from bio-derived liquids * Looking at forecourt scale systems: 100-1500kg/day * Emphasis on Ethanol * Looking at both "conventional" and "advanced" systems * Interaction with the Researchers is bi-directional * Researchers help me with

  8. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team | Department of Energy Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team 2007 Annual and Merit Review Reports compiled for the

  9. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  10. Olefins from High Yield Autothermal Reforming Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Olefins from High Yield Autothermal Reforming Process DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Isobutylene is used to produce fuel additives.</span></span> Isobutylene is used to produce fuel additives. <span id="Caption"><span

  11. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C.

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  12. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, L.A.

    1991-09-10

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

  13. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, Larry A.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) to form a reformable mixture, where a reforming chamber (54) contains an outer portion containing reforming material (56), an inner portion preferably containing a mixer nozzle (50) and a mixer-diffuser (52), and a middle portion (64) for receiving spent fuel, where the mixer nozzle (50) and mixer-diffuser (52) are preferably both within the reforming chamber (54) and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material (56), and the mixer nozzle (50) can operate below 400.degree. C.

  14. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or

  15. U.S. Department of Energy Federal Information Technology Acquisition Reform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act (FITARA) Common Baseline Implementation Plan and Self-Assessment | Department of Energy S. Department of Energy Federal Information Technology Acquisition Reform Act (FITARA) Common Baseline Implementation Plan and Self-Assessment U.S. Department of Energy Federal Information Technology Acquisition Reform Act (FITARA) Common Baseline Implementation Plan and Self-Assessment The DOE Federal Information Technology Acquisition Reform Act (FITARA) Implementation Plan provides the framework

  16. Design, Modeling, and Validation of a Flame Reformer for LNT External

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Regeneration | Department of Energy Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_midlam-mohler.pdf (432.95 KB) More Documents & Publications Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines Diesel Reformers for On-board Hydrogen Applications

  17. Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are Unreformed CAFE standards for model years (MY) 2008 through 2010 using the same CAFE calculations as in the past, and there are Reformed CAFE standards

  18. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation 2004 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor 2004_deer_crane.pdf (430.54 KB) More Documents & Publications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Use of a Diesel Fuel Processor for Rapid and Efficient

  19. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  20. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  1. Understanding the Chemistry of H2 Production for 1-Propanol Reforming...

    Office of Scientific and Technical Information (OSTI)

    Chemistry of H2 Production for 1-Propanol Reforming: Pathway and Support Modification Effects Citation Details In-Document Search Title: Understanding the Chemistry of H2 ...

  2. Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Virent Energy Systems, Inc. at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  3. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of ... Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  4. The Lessons of Practice: Domestic Policy Reform as a Way to Address...

    Open Energy Info (EERE)

    Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Lessons of Practice: Domestic Policy...

  5. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    04 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor 2004deercrane.pdf (430.54 KB) More Documents & Publications Plasmatron Fuel Reformer Development and Internal ...

  6. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  7. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  8. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  9. Energy Reform: New Paradigm forMexico's Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    14th, 2014 Energy Reform: New Paradigm for Mexico's growth Gustavo Hernández-García General Director & CEO www. .com pep.pemex The information made available here is for information purposes only and does not imply any commitment to accept any suggestions.. The presentation of this information does not constitute an offer to submit a bid or to award any contract, nor does it imply that Pemex E&P assumes any kind of obligation whatsoever. Pemex E&P shall not be liable for any errors

  10. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect (OSTI)

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell