Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

2

High severity catalytic reforming process  

Science Conference Proceedings (OSTI)

A high-severity catalytic reforming process is described comprising: (a) passing a mixture comprising a catalytic reforming feed stream and a recycle stream into a catalytic reforming reaction zone which is maintained at high-severity reforming conditions; (b) cooling an effluent stream comprising hydrogen and hydrocarbonaceous catalytic reforming reaction products which is withdrawn from the reaction zone; (c) passing the cooled effluent stream into a vapor-liquid separation zone and recovering therefrom a liquid stream comprising hydrocarbons and a hydrogen-rich gas stream; (d) passing the hydrogen-rich gas stream through an adsorption zone wherein the gas is contacted with a treating material which removes polycyclic aromatic compounds from the gas stream, the compounds remaining in the adsorption zone; (e) mixing a portion of the hydrogen-rich gas stream, which is the recycle stream, with the feed stream to form the charge stock mixture and withdrawing the balance of the hydrogen-rich gas stream, which is denoted as net hydrogen, from the catalytic reforming area, all of the hydrogen-rich gas stream being substantially free of polycyclic aromatic compounds; and (f) fractionating the liquid stream and recovering an overhead product comprising light hydrocarbons and a bottoms product comprising reformate.

Bennett, R.W.; Cottrell, P.R.; Gilsdorf, N.L.; Winfield, M.D.

1988-03-22T23:59:59.000Z

3

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed in which substantially all of the heat requirements of the product stabilizer column is supplied by multiple indirect heat exchange.

Peters, K.D.

1983-10-11T23:59:59.000Z

4

Process for catalytic reforming  

Science Conference Proceedings (OSTI)

An improved catalytic reforming process is disclosed wherein hydrogen and light hydrocarbons generated in the catalytic reaction zone are passed to a hydrogen production/purification zone and and reacted and processed therein to produce substantially pure hydrogen. A portion of the hydrogen is then admixed with the charge stock to the catalytic reforming zone to provide the hydrogen requirements of the catalytic reforming reaction zone.

James, R. B. Jr.

1984-11-20T23:59:59.000Z

5

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed wherein the reboiler heat requirements of the stabilizer column are supplied by means of indirect heat exchange with hot combustion gases in the reforming reactants fired heater convection heating section. Heat in excess of the reboiler requirements is passed to the stabilizer column with control being effected by removal of excess heat from the column.

James, R.B. Jr.

1984-02-14T23:59:59.000Z

6

Security and Suitability Process Reform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security and Suitability Process Reform December 2008 Provided by the Joint Security and Suitability Reform Team EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET...

7

Multizone naphtha reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naphtha hydrocarbon at reforming conditions having at least two segregated catalyst zones. The improvement comprises contacting the hydrocarbon in a first zone with a first catalyst comprising tin and at least one platinum group metal deposited on a solid catalyst support followed by contacting in a second zone with a second catalyst comprising at least one metal selected from the group consisting of platinum group metals deposited on a solid catalyst support.

Fleming, B.

1987-05-05T23:59:59.000Z

8

Catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

1989-06-13T23:59:59.000Z

9

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: a first catalyst zone contains a first catalytic composite consisting essentially of a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a second catalyst zone contains a second catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from rhenium, rhodium, ruthenium, cobalt, nickel, and iridium, and mixtures thereof.

Moser, M.C.; Lawson, R.J.; Antos, G.J.; Wang, L.; Parulekar, V.N.

1990-05-29T23:59:59.000Z

10

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: an initial catalyst zone which is a fixed-bed system and contains an initial catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a terminal catalyst zone which is a moving-bed system with associated continuous catalyst regeneration and contains a terminal catalytic composite having the essential absence of germanium and comprising a platinum component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from one or more of the rhenium, tin, indium, rhodium, ruthenium, cobalt, nickel, and iridium.

Moser, M.; Lawson, R.J.; Wang, L.; Parulekar, V.; Peer, R.L.; Hamlin, C.R.

1991-01-15T23:59:59.000Z

11

Removal of sulfur from recycle gas streams in catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process for catalytically reforming a hydrocarbonaceous feedstock boiling in the gasoline range, wherein the reforming is conducted in the presence of hydrogen in a reforming process unit under reforming conditions, the process unit comprised of serially connected reactors, each of the reactors containing a reforming catalyst, and which process unit also includes a regeneration circuit for regenerating the catalyst after it becomes coked, the regeneration comprising treatment with a sulfur containing gas, and which process unit also includes a gas/liquid separator wherein a portion of the gas is recycled and the remaining portion is collected as make-gas. The improvement comprises using a sulfur trap, containing a catalyst comprised of about 10 to about 70 wt. % nickel dispersed on a support, between the gas/liquid separator and the first reactor.

Boyle, J.P.

1991-08-27T23:59:59.000Z

12

Study on Hydrogen-Enriching Gas Reforming in Smelting ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... For the two-step smelting reduction iron-making process, the advantages of hydrogen-enriching gas reforming are not only to lower the export ...

13

Olefins from High Yield Autothermal Reforming Process ...  

Isobutylene is used to produce fuel additives. The autothermal reforming process can produce isobutylene and requires no external energy input ...

14

Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and  

E-Print Network (OSTI)

Performance comparison between partial oxidation and methane steam reforming processes for solid recirculation are used along with steam methane reforming. Further Steam Methane Reforming process produces Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming

Liso, Vincenzo

15

Fundamental kinetic modeling of the catalytic reforming process  

Science Conference Proceedings (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing ...

Rogelio Sotelo-Boyas / Gilbert F. Froment; Rayford G. Anthony

2005-01-01T23:59:59.000Z

16

Autothermal Reforming of Natural Gas to Synthesis Gas  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct participation of CO2 in the oxidation chemistry.

Steven F. Rice; David P. Mann

2007-04-13T23:59:59.000Z

17

Synergize fuel and petrochemical processing plans with catalytic reforming  

Science Conference Proceedings (OSTI)

Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

NONE

1997-03-01T23:59:59.000Z

18

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

19

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

DOE Green Energy (OSTI)

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

Spath, P. L.; Mann, M. K.

2000-09-28T23:59:59.000Z

20

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

DOE Green Energy (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

22

Process Reform, Security and Suitability - December 17, 2008 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 December 17, 2008 This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year. In response to significant, continuing security clearance timeliness concerns, Congress called for improvements and established specific timeliness goals as part of the Intelligence Reform and Terrorism Prevention Act of 2004 (IRTPA). Since the enactment of IRTPA, average timeliness for 90 percent of all clearance determinations reported has been substantially improved, from 265 days (in 2005) to 82 days (4th Quarter,

23

New process model proves accurate in tests on catalytic reformer  

Science Conference Proceedings (OSTI)

A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-07-25T23:59:59.000Z

24

Reforming The Government Hiring Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reforming The Government Hiring Process Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita Franklin Rita Franklin Deputy Chief Human Capital Officer What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel Poneman and I met with leaders from across the Federal government to share our progress in the our Department's hiring reform efforts. Six months ago, President Obama called on all executive departments and federal agencies to overhaul the way we recruit and hire. As the President

25

Reforming The Government Hiring Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reforming The Government Hiring Process Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita Franklin Rita Franklin Deputy Chief Human Capital Officer What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel Poneman and I met with leaders from across the Federal government to share our progress in the our Department's hiring reform efforts. Six months ago, President Obama called on all executive departments and federal agencies to overhaul the way we recruit and hire. As the President

26

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

27

In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation  

DOE Green Energy (OSTI)

The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

2002-09-20T23:59:59.000Z

28

Sulfur-tolerant natural gas reforming for fuel-cell applications.  

E-Print Network (OSTI)

??An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has… (more)

Hennings, Ulrich

2010-01-01T23:59:59.000Z

29

Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system  

Science Conference Proceedings (OSTI)

A process is described for reforming a hydrocarbon in a multi-stage endothermic reforming series of catalytic reforming reactors where the hydrocarbon is passed through the series of catalytic reforming reactors to form a reformate. The hydrocarbon is heated prior to entry to the next catalytic reforming reactor in the series, which process comprises contact of the hydrocarbon intermediate from the series of catalytic reforming reactors containing reforming catalyst with a polynuclear aromatic adsorbent to adsorb at least a portion of the polynuclear aromatic content from the hydrocarbon prior to entry to each of the next catalytic reforming reactor in the series and recovering a reformate from the last catalytic reforming reactor in the series, the recovered reformate having a reduced content of polynuclear aromatics.

Ngan, D.Y.

1989-02-14T23:59:59.000Z

30

Microchannel Process Technology for Compact Methane Steam Reforming  

Science Conference Proceedings (OSTI)

The study of microchannel reaction engineering and applications to compact chemical reactors has expanded rapidly both academically and industrially in recent years. Velocys{reg_sign}, a spin-out company from Battelle Memorial Institute, is commercializing microchannel process technology for large-scale chemical processing. Hydrogen production at industrial rates in compact Velocys hardware is made possible through increases in both heat and mass transfer rates for highly active and novel catalysts. In one example, a microchannel methane steam reforming reactor is presented with integrated catalytic partial oxidation of methane prior to catalytic combustion with low excess air (25%) to generate the required energy for undothermic methane steam reforming in adjacent channels. Heat transfer rates from the exothermic reactions exceed 18 W/cm{sup 2} of interplanar heat transfer surface area and exceed 65 W/cm{sup 3} of total reaction volume for a methane steam reforming contact time near 4 milliseconds. The process intensity of the Velocys methane steam reformer well exceeds that of conventional steam reformers, which have a typical volumetric heat flux below 1 W/cm{sup 3}. The integration of multiple unit operations and improvements in process intensification result in significant capital and operating cost savings for commercial applications.

Tonkovich, A L.; Perry, Steve; Wang, Yong; Qiu, Dongming; LaPlante, Timothy J.; Rogers, William A.

2004-12-01T23:59:59.000Z

31

Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url FederalOnshore1987.jpg Description Another amendment to the Mineral Leasing Act, The Federal Onshore Oil and Gas Leasing Reform Act of 1987 granted the USDA Forest Service the authority to make decisions and implement regulations concerning the leasing of public domain minerals on National Forest System lands containing oil and gas. References Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)[1] Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) (30 U.S.C. § 181 et seq.) - Another amendment to the Mineral Leasing Act, The Federal

32

Gas-separation process  

DOE Patents (OSTI)

A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA); Baker, Richard W. (Palo Alto, CA)

1994-01-01T23:59:59.000Z

33

Biomass reforming processes in hydrothermal media  

E-Print Network (OSTI)

While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

Peterson, Andrew A

2009-01-01T23:59:59.000Z

34

THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS  

Science Conference Proceedings (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

Parks, II, James E [ORNL; Ponnusamy, Senthil [ORNL

2006-01-01T23:59:59.000Z

35

Gas-separation process  

DOE Patents (OSTI)

A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

Toy, L.G.; Pinnau, I.; Baker, R.W.

1994-01-25T23:59:59.000Z

36

Catalytic Reforming  

Science Conference Proceedings (OSTI)

Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

Little, D.M.

1985-01-01T23:59:59.000Z

37

Catalytic Reforming Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,563 2,667 2,739 2,807 2,705 2,609 2010-2013 PADD 1 176 178 180 173 156 167 2010-2013 East Coast 166 164 163 161 140 153 2010-2013 Appalachian No. 1 9 14 16 12 15 14 2010-2013 PADD 2 642 638 668 695 677 615 2010-2013 Ind., Ill. and Ky. 426 411 426 460 450 399 2010-2013 Minn., Wis., N. Dak., S. Dak. 67 62 70 72 72 57 2010-2013 Okla., Kans., Mo.

38

Catalytic reforming process using noble metal alkaline zeolites  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process wherein a gasoline boiling range hydrocarbonaceous feedstock is catalytically reformed in the presence of hydrogen in a reforming process unit comprised of serially connected reactors wherein each of the reactors contains a supported noble metal-containing catalyst. The improvement comprises the noble-metal catalyst of at least one reactor being selected from the group consisting of alkaline faujasite zeolite, L zeolite and zeolites isostructural thereto, which catalysts are prepared by a: contacting an alkaline faujasite zeolite, L zeolite, or zeolite isostructural thereto, with a noble metal composition selected from Pt(acetylacetonate){sub 2} or Pd(acetylacetonate){sub 2} for an effective amount of time to form a substantially homogeneous mixture and to incorporate the platinum and/or palladium into the near surface regions of the zeolite, but not to disperse the platinum and/or palladium throughout the entire zeolite; and calcining the so treated zeolite at a temperature from about 250 {degrees} C to about 600 {degrees} C for an effective amount of time.

Schweizer, A.E.

1991-02-12T23:59:59.000Z

39

Process for making substitute natural gas  

SciTech Connect

A process, having high thermal efficiency, is provided for the production of substitute natural gas from fossil fuels such as crude oil, by non-catalytic hydrogenation. High thermal efficiency is obtained by using cryogenic systems for separating hydrogen from (A) the product of the hydrogenation reaction and (B) from products produced by partial oxidation in the production of hydrogen required for the hydrogenation reactions. Other products from the partial oxidation reaction may be used either as fuel or as feedstocks for catalytic steam reforming to produce SNG.

Conway, H.L.; Hargis, J.A.; Stroud, H.J.

1980-06-24T23:59:59.000Z

40

Fundamental kinetic modeling of the catalytic reforming process  

E-Print Network (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing the various species by vectors and Boolean relation matrices. The algorithm is based on the fundamental chemistry occurring on both acid and metal sites of the catalyst. Rates are expressed for each of the elementary steps involved in the transformation of the intermediates. The Hougen-Watson approach is used to express the rates of the molecular reactions occurring on the metal sites of the catalyst. The single event approach is used to account for the effect of structure of reactant and activated complex on the rate coefficients of the elementary steps occurring on the acid sites. This approach recognizes that even if the number of elementary steps is very large they belong to a very limited number of types, and therefore it is possible to express the kinetics of elementary steps by a reduced number of parameters. In addition, the single event approach leads to rate coefficients that are independent of the feedstock, due to their fundamental chemical nature. The total number of parameters at isothermal conditions is 45. To estimate these parameters, an objective function based upon the sum of squares of the residuals was minimized through the Marquardt algorithm. Intraparticle mass transport limitations and deactivation of the catalyst by coke formation are considered in the model. Both the Wilke and the Stefan-Maxwell approaches were used to calculate the concentration gradients inside of the particle. The heterogeneous kinetic model was applied in the simulation of the process for typical industrial conditions for both axial and radial flow fixed bed reactors. The influence of the main process variables on the octane number and reformate volume was investigated and optimal conditions were obtained. Additional aspects studied with the kinetic model are the reduction of aromatics, mainly benzene. The results from the simulations agree with the typical performance found in the industrial process.

Sotelo-Boyas, Rogelio

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.  

DOE Green Energy (OSTI)

The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

1999-09-08T23:59:59.000Z

42

Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines  

SciTech Connect

The effect of reformer gas addition to gasoline in internal combustion engines is assessed based on in-cylinder measurement techniques. These include ion sensors, an optical spark plug and heat release analysis from the cylinder pressure. A detailed analysis of these measurements is presented, giving insight into the combustion process and into the energy release. The flame front shape and propagation in the combustion chamber are reconstructed and the flame speed is estimated. The laminar flame speed has been observed to increase linearly with the energy fraction of reformer gas in the fuel blend. From pure gasoline to pure reformer gas the laminar flame speed increases by a factor of 4.4. The relative increase in the turbulent flame speed is lower. These results confirm what can be observed from the heat release analysis, that reformer gas addition mainly shortens the first phase of the combustion process. Different reformer gas compositions were tested, varying the ratio of hydrogen to inert species. Finally, flame propagation and flame speed at EGR-burn limit and at lean-burn limit are investigated. (author)

Conte, Enrico; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory (LAV), ETH Zurich, CH-8092 (Switzerland)

2006-07-15T23:59:59.000Z

43

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

44

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

45

Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the direct participation of CO{sub 2} in the oxidation chemistry.

Mann, David (KBR, Houston, TX); Rice, Steven, D.

2007-04-01T23:59:59.000Z

46

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment of the requirements for the degree of  

E-Print Network (OSTI)

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment've missed over the past two years. #12;4 TABLE OF CONTENTS GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS 1.083 moles CH4, 0.083 moles CO2, and 0.834 moles Ar which are the inlet conditions for many of the catalytic

Columbia University

47

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

48

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

49

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

50

,"Catalytic Reforming Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Catalytic Reforming Downstream Processing of Fresh Feed Input" Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","9/2013","1/15/2010" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_a_(na)_ydr_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_a_(na)_ydr_mbblpd_m.htm" ,"Source:","Energy Information Administration"

51

Methanol synthesis gas from catalytic steam reforming of wood  

DOE Green Energy (OSTI)

Laboratory studies were successful in developing catalyst systems and operating conditions for generation of a methanol synthesis gas, a mixture of hydrogen, carbon monoxide and carbon dioxide. Some methane remained in the gas mixture. Wood was reacted with steam at a steam-to-wood weight ratio of about 0.9 and a temperature of 750/sup 0/C (1380/sup 0/F) in the presence of several catalysts. Results are presented for two different catalyst systems.

Mudge, L.K.; Mitchell, D.H.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

1981-01-01T23:59:59.000Z

52

Method for processing coke oven gas  

SciTech Connect

Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

Flockenhaus, C.; Meckel, J.F.; Wagener, D.

1980-11-25T23:59:59.000Z

53

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

54

Process gas solidification system  

DOE Patents (OSTI)

It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

Fort, William G. S. (Oak Ridge, TN); Lee, Jr., William W. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

55

Optimization models of gas recovery and gas condensate processing  

Science Conference Proceedings (OSTI)

We present a complex of mathematical models that formalize gas recovery and processing. Optimization problems for gas recovery and gas condensate processing are stated and corresponding solution algorithms are suggested. These mathematical models provide ...

M. Kh. Prilutskii; V. E. Kostyukov

2012-05-01T23:59:59.000Z

56

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor  

SciTech Connect

GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from NETL showed Pd80Cu20 with the highest flux, therefore it was chosen as the initial and eventually, final candidate membrane. The criteria for choice were high hydrogen flux, long-term stability, and H2S tolerance. Results from SCHOTT using glass membranes showed a maximum of 0.25 SCFH/ft2, that is an order of magnitude better than the ceramic membrane but still two orders of magnitude lower than the metallic membrane. A membrane module was designed to be tested with an actual biomass gasifier. Some parts of the module were ordered but the work was stopped when a no go decision was made by the DOE.

Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

2012-12-28T23:59:59.000Z

57

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 �������°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

58

Recovery of normally gaseous hydrocarbons from net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

59

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network (OSTI)

and energy balance, different types of fuel reforming including steam reforming, autothermal reforming technologies. Steam reforming, partial oxidation and autothermal reforming are the three major fuel of an activated carbon bed. Prior to enter the SOFC stack, the fuel is pre-reformed (methane is partially

Liso, Vincenzo

60

Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon  

DOE Patents (OSTI)

In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

62

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

63

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network (OSTI)

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

64

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

65

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

66

Microchannel steam-methane reforming under constant and variable surface temperature distributions.  

E-Print Network (OSTI)

??Steam-methane reforming is a well understood industrial process used for generating hydrogen and synthesis gas. The reaction is generally carried out with residence times on… (more)

[No author

2010-01-01T23:59:59.000Z

67

Applications of solar reforming technology  

DOE Green Energy (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

68

Catalytic reforming catalyst with modified pore size distribution and a process using the same  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naptha hydrocarbon at reforming conditions using a catalyst comprising at least one catalytic metal and alumina. The improvement comprises using a catalyst having the following properties in combination: a surface area above about 250 M/sup 2//gram of catalyst; a pore volume above about 0.44 cc/gram of catalyst in pores having diameters of from about 30 angstroms to about 38,000 angstroms; and a pore volume distribution wherein about 70 percent or less of the pore volume is in pores having diameters of from about 30 angstroms to about 400 angstroms. About 30 percent or more pore volume is in pores having diameters of from about 400 angstroms to about 38,000 angstroms.

Unmuth, E.E.; Fleming, B.A.

1987-05-12T23:59:59.000Z

69

Catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

Aldag, A.W. Jr.

1986-01-28T23:59:59.000Z

70

Thermally efficient melting and fuel reforming for glass making  

DOE Patents (OSTI)

An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

1991-10-15T23:59:59.000Z

71

Process for purifying natural gas  

SciTech Connect

This patent describes a process for separating water and carbon dioxide from a feedstream comprising hydrocarbons, water and carbon dioxide. It includes passing the feedstream to a first adsorption zone containing a solid adsorbent having selectivity for water at a first zone adsorption temperature effective to adsorb water and a first zone adsorption pressure and withdrawing a first zone adsorption effluent stream having a reduced concentration of water relative to the feedstream; passing at least a portion of the first zone adsorption effluent stream to a second adsorption zone containing a solid adsorbent having selectivity for carbon dioxide at a second zone adsorption temperature effective to adsorb carbon dioxide and a second zone adsorption pressure, the second zone adsorption temperature being lower than the first zone adsorption temperature, and withdrawing a second zone adsorption effluent stream having a reduced concentration of carbon dioxide relative to the first effluent stream; passing a first purge gas through the first adsorption zone at a first zone regeneration temperature.

Markovs, J.; James, F.E.

1992-02-18T23:59:59.000Z

72

Advanced Materials and Processes for Gas Turbines  

Science Conference Proceedings (OSTI)

Jul 1, 2003 ... Out of Print. Description These proceedings from the United Engineering Foundation's Advanced Materials and Processes for Gas Turbines ...

73

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

74

,"New Mexico Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

75

Mathematical modelling of diffusion-reaction, and solution algorithm for complex reaction networks in porous catalyst pellets-steam reforming of natural gas  

Science Conference Proceedings (OSTI)

Three models of different degrees of rigor are developed for diffusion and reaction in porous catalyst pellets for the industrially important multicomponents' system with a multiple reversible reaction for the steam reforming of natural gas. The more ...

M. E. Abashar; S. S. Elnashaie

1993-10-01T23:59:59.000Z

76

Process for the production of a chemical synthesis gas from coal  

SciTech Connect

A process is described for the production of a chemical synthesis product gas from a carbonaceous feed material and steam which comprises: (A) reacting said steam with said carbonaceous feed material in a reaction zone at a reaction temperature between about 1000F and about 1500/sup 0/F and at a reaction pressure in excess of about 100 psia, in the presence of a carbon-alkali metal catalyst and sufficient added hydrogen and carbon monoxide to provide substantially equilibrium quantities of hydrogen and carbon monoxide in said reaction zone at said reaction temeperature and said reaction pressure; (B) withdrawing from said reaction zone an effluent gas containing substantially equilibrium quantities, at said reaction temperature and pressure, of methane, carbon dioxide, steam, hydrogen and carbon monoxide; (C) treating said effluent gas for the removal of steam and acid gases to produce a treated gas containing primarily carbon monoxide, hydrogen and methane; (D) recovering substantially all of the carbon monoxide and hydrogen from said treated gas as a chemical synthesis product gas, thereby producing a gas comprised substantially of methane; (E) contacting the gas produced in step (D) comprised substantially of methane with steam in a steam reforming zone under conditions such tat at least a portion of the methane present reacts with said steam to produce hydrogen and carbon monoxide; and (F) passing the effluent from said steam reforming zone into said reaction zone without substantial cooling, thereby supplying said added hydrogen and carbon monoxide required in said reaction zone and wherein said reforming zone is operated at conditions such that the heat content of said effluent from said steam reforming zone is sufficient to supply substantially all of the heat needed to preheat said carbonaceous feed material to said reaction temperature.

Eakman, J.; Kalina, T.; Marshall, H.

1980-07-08T23:59:59.000Z

77

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

78

Process for treatment of residual gas  

SciTech Connect

A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

Nolden, K.

1980-01-01T23:59:59.000Z

79

Exhaust gas clean up process  

DOE Patents (OSTI)

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

80

Internal natural gas reformer-dividers for a solid oxide fuel cell generator configuration  

Science Conference Proceedings (OSTI)

This patent describes a fuel cell generator configuration. It comprises electrically connected, axially elongated, fuel cells, each cell having an outer and inner electrode with solid oxide electrolyte therebetween; where elongated dividers separate and are positioned between fuel cells, and where at least one of the elongated dividers is hollow, the hollow divider having solid elongated walls, a reformable fuel mixture entrance, and an exit allowing passage of reformed fuel to the fuel cells, and where the cross-section of the divider contains a catalytic reforming material.

Reichner, P.

1992-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Influence of support material on Ni catalysts for propane dry reforming to synthesis gas.  

E-Print Network (OSTI)

??Ni/SiO2 and Ni/Mg(Al)O catalysts with difference metal loadings have been prepared. The activity, selectivity and stability of supported Ni catalysts for propane dry reforming to… (more)

Dai, Xin

2008-01-01T23:59:59.000Z

82

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

83

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

84

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

85

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network (OSTI)

as compared to conventional steam-methane reforming and furnace black processing. Introduction by the furnace black process. For steam reforming, steam is reacted with methane over a reforming catalyst. Currently, hydrogen is produced through the steam reforming of natural gas and carbon black is produced

86

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

87

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

88

UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES  

SciTech Connect

The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

S.A.Stern; P.A. Rice; J. Hao

2000-03-01T23:59:59.000Z

89

Process for the desulfurization of flue gas  

SciTech Connect

A process for the removal of sulfur oxides from gases is described that is comprised of the steps of contacting the gas with a cerium oxide sorbent at conditions whereby the sulfur oxides present in the gas are sorbed by the cerium oxide sorbent and regenerate the cerium oxide sorbent by contacting it with a reducing atmosphere at conditions whereby the sorbent is substantially converted to a sulfur-free state. The gas may be an exhaust gas, e.g., from an automobile or a flue gas. This invention is especially preferred for treating flue gas. In this preferred embodiment, the flue gas may be contacted with the cerium oxide sorbent at a temperature of from 300/sup 0/ to 800/sup 0/C, to form cerium sulfate and/or sulfite and the sorbent is regenerated by contacting with a reducing gas, for example, hydrogen in admixture with steam or other inert gases at a temperature of from 500/sup 0/ to 800/sup 0/C to convert the cerium sulfate or sulfite to cerium oxide. During the regeneration step, the desorbed species is initially sulfur dioxide. However, when about 50% of the sulfur is removed from the sorbent, the desorbed species becomes H/sub 2/S. Thus, the instant invention provides SO/sub 2/ and H/sub 2/S in admixture with the excess reducing gas, which can be fed conveniently to the Claus plant for conversion into elemental sulfur.

Longo, J.M.

1977-01-04T23:59:59.000Z

90

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

91

Illinois Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Illinois Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 483,902 483,336 478,291 1970's 429,691 341,750 376,310 358,142 342,046 322,393 305,441 275,060 327,451 1980's 150,214 152,645 166,568 156,791 153,419 146,463 106,547 757 509 1990's 607 951 942 809 685 727 578 500 468 358 2000's 271 233 299 306 328 280 242 235 233 164 2010's 5,393 15,727 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Illinois Natural Gas Plant Processing

92

Florida Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 375,090 409,248 765,597 854,064 886,147 859,996 1980's 279,690 272,239 270,004 265,840 247,870 218,288 228,721 226,028 260,627 1990's 258,984 222,893 226,254 207,975 10,265 9,061 8,514 8,364 8,174 8,439 2000's 7,844 7,186 6,063 5,771 4,805 3,584 3,972 2,422 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Processed Florida Natural Gas Plant Processing

93

Separation and recovery of hydrogen and normally gaseous hydrocarbons from net excess hydrogen from a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

94

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

95

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

96

U.S. natural gas processing capacity expands rapidly - Today ...  

U.S. Energy Information Administration (EIA)

... EIA tracks shut-in natural gas processing capacity through the emergency schedule on the survey of natural gas processing plants, Form EIA-757B.

97

Recovery of C/sub 3/. sqrt. hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

This invention relates to a hydrocarbon conversion process effected in the presence of hydrogen, especially a hydrogenproducing hydrocarbon conversion process. More particularly, this invention relates to the catalytic reforming of a naphtha feedstock, and is especially directed to an improved recovery of the net excess hydrogen, and to an improved recovery of a C/sub 3/..sqrt.. normally gaseous hydrocarbon conversion product and a C/sub 5/..sqrt.. hydrocarbon conversion product boiling in the gasoline range.

Degraff, R.R.; Peters, K.D.

1982-12-21T23:59:59.000Z

98

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts  

E-Print Network (OSTI)

The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

99

Utah Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Utah Natural Gas Plant Processing

100

Pennsylvania Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Pennsylvania Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,247 2,390 1,708 1970's 1,418 1,112 1,711 0 0 0 0 0 0 1980's 2,001 2,393 5,432 6,115 5,407 6,356 6,459 6,126 6,518 1990's 6,613 10,244 11,540 10,263 7,133 10,106 10,341 11,661 11,366 11,261 2000's 7,758 9,928 7,033 9,441 9,423 11,462 12,386 13,367 18,046 22,364 2010's 56,162 131,959 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Pennsylvania Natural Gas Plant Processing

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Montana Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Montana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 60,500 59,058 57,793 1970's 59,193 57,105 61,757 56,960 146,907 156,203 0 0 0 1980's 11,825 13,169 15,093 16,349 19,793 16,212 14,177 15,230 15,475 1990's 14,629 14,864 12,697 11,010 10,418 9,413 10,141 8,859 8,715 5,211 2000's 5,495 5,691 6,030 6,263 6,720 10,057 12,685 13,646 13,137 12,415 2010's 12,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Montana Natural Gas Plant Processing

102

Mississippi Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Mississippi Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,068 44,510 0 1970's 50,509 44,732 29,538 29,081 24,568 29,694 0 0 0 1980's 34,337 38,315 29,416 29,705 23,428 21,955 12,131 9,565 8,353 1990's 7,887 7,649 4,822 4,892 5,052 4,869 4,521 4,372 3,668 135,773 2000's 205,106 239,830 263,456 283,675 283,763 292,023 278,436 224,596 174,573 215,951 2010's 218,840 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Mississippi Natural Gas Plant Processing

103

Alabama Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Alabama Natural Gas Plant Processing

104

Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel  

SciTech Connect

The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

2006-02-01T23:59:59.000Z

105

Process for production desulfurized of synthesis gas  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

1993-01-01T23:59:59.000Z

106

Fluidized Bed Steam Reforming Technology Overview  

Coal added as reductant and for energy • What happens inside the reformer? Water evaporates Nitrates reduced to nitrogen gas

107

Louisiana Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Louisiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,383,334 3,728,717 4,465,379 1970's 5,237,519 5,994,431 6,337,328 6,524,729 6,273,136 5,831,487 5,749,783 5,709,535 5,561,040 1980's 5,197,429 4,770,095 4,190,105 4,439,430 3,811,852 3,794,464 3,880,364 3,918,236 4,002,843 1990's 4,220,068 4,340,531 4,466,425 4,315,312 4,200,126 4,604,292 4,652,677 4,767,965 4,610,969 4,687,261 2000's 4,316,127 4,206,470 3,771,001 3,391,870 3,244,850 2,527,636 2,511,802 2,857,443 2,208,920 2,175,026 2010's 2,207,760 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

108

Large bore natural gas engine performance improvements and combustion stabilization through reformed natural gas precombustion chamber fueling.  

E-Print Network (OSTI)

??Lean combustion is a standard approach used to reduce NOx emissions in large bore natural gas engines. However, at lean operating points, combustion instabilities and… (more)

Ruter, Matthew D.

2010-01-01T23:59:59.000Z

109

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network (OSTI)

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

110

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network (OSTI)

. GTI has been developing high-efficiency steam methane reformers and fuel processing technology looks to introduce innovative, compact natural gas steam reforming system and appliance quality hydrogen system integration for efficient operation of the unit. High- Efficiency Natural Gas Steam Reformer

111

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

1993-01-01T23:59:59.000Z

112

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

113

DC-Pulsed Plasma for Dry Reforming of Methane to Synthesis Gas  

Science Conference Proceedings (OSTI)

utilization of biogas and natural gas with a high concentration of CO2, (3) this reaction possesses a theoretical H2/CO ratio of 1, which is suitable for further ...

114

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

115

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

116

Modular pebble-bed reactor reforming plant design for process heat  

Science Conference Proceedings (OSTI)

This report describes a preliminary design study of a Modular Pebble-Bed Reactor System Reforming (MPB-R) Plant. The system uses one pressure vessel for the reactor and a second pressure vessel for the components, i.e., reformer, steam generator and coolant circulator. The two vessels are connected by coaxial pipes in an arrangement known as the side-by-side (SBS). The goal of the study is to gain an understanding of this particular system and to identify any technical issues that must be resolved for its application to a modular reformer plant. The basic conditions for the MPB-R were selected in common with those of the current study of the MRS-R in-line prismatic fuel concept, specifically, the module core power of 250 MWt, average core power density of 4.1 w/cc, low enriched uranium (LEU) fuel with a /sup 235/U content of 20% homogeneously mixed with thorium, and a target burnup of 80,000 MWD/MT. Study results include the pebble-bed core neutronics and thermal-hydraulic calculations. Core characteristics for both the once-through-then-out (OTTO) and recirculation of fuel sphere refueling schemes were developed. The plant heat balance was calculated with 55% of core power allotted to the reformer.

Lutz, D.E.; Cowan, C.L.; Davis, C.R.; El Sheikh, K.A.; Hui, M.M.; Lipps, A.J.; Wu, T.

1982-09-01T23:59:59.000Z

117

Natural gas conversion process. Sixth quarterly report  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-12-01T23:59:59.000Z

118

Catalytic partial oxidation reforming of hydrocarbon fuels.  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as in buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.

Ahmed, S.

1998-09-21T23:59:59.000Z

119

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Ratio Parameters in Steam-Reforming Hydrogen productionan Insufficient Parameter in the Steam-Reforming Process,”Impurities on the Methanol Steam-Reforming Process for Fuel

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

120

Applications for a high temperature gas cooled nuclear reactor in oil shale processing  

SciTech Connect

Results are presented of a study concerning possible applications for a high temperature gas cooled reactor as a process heat source in oil shale retorting and upgrading. Both surface and in situ technologies were evaluated with respect to the applicability and potential benefits of introducing an outside heat source. The primary focus of the study was to determine the fossil resource which might be conserved, or freed for higher uses than furnishing process heat. In addition to evaluating single technologies, a centralized upgrading plant, which would hydrotreat the product from a 400,000 bbl/day regional shale oil industry was also evaluated. The process heat required for hydrogen manufacture via steam reforming, and for whole shale oil hydrotreating would be supplied by an HTGR. Process heat would be supplied where applicable, and electrical power would be generated for the entire industry.

Sinor, J.E.; Roe, D.E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Michigan Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Michigan Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 171,531 156,996 143,802 1970's 139,571 141,784 94,738 37,384 45,106 79,154 151,318 172,578 199,347 1980's 155,984 151,560 137,364 148,076 151,393 142,255 137,687 125,183 123,578 1990's 134,550 170,574 186,144 201,985 196,000 179,678 117,119 86,564 83,052 67,514 2000's 58,482 50,734 47,292 41,619 37,977 34,545 33,213 29,436 30,008 23,819 2010's 22,405 21,518 21,243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

122

Arkansas Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Arkansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 93,452 88,011 56,190 1970's 37,816 31,387 17,946 26,135 19,784 17,918 20,370 18,630 18,480 1980's 29,003 31,530 33,753 34,572 258,648 174,872 197,781 213,558 228,157 1990's 272,278 224,625 156,573 198,074 218,710 100,720 219,477 185,244 198,148 179,524 2000's 207,045 207,352 12,635 13,725 10,139 16,756 13,702 11,532 6,531 2,352 2010's 9,599 5,611 6,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

123

Texas Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Texas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,018,237 7,239,621 7,613,234 1970's 7,808,476 7,938,550 8,139,408 7,683,830 7,194,453 6,509,132 6,253,159 6,030,131 5,621,419 1980's 4,563,931 4,507,771 4,258,852 4,377,799 4,164,382 4,199,501 3,997,226 3,813,727 3,842,395 1990's 3,860,388 4,874,718 4,231,145 4,301,504 4,160,551 4,132,491 4,180,062 4,171,967 4,073,739 3,903,351 2000's 4,096,535 3,876,399 3,861,114 3,658,929 3,748,670 3,781,565 3,990,862 4,187,358 4,431,574 4,478,331 2010's 4,534,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

124

Alaska Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034 2010's 2,731,803 2,721,396 2,788,997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

125

Colorado Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Colorado Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 112,440 96,397 85,171 1970's 82,736 97,420 104,116 110,662 118,686 136,090 175,624 171,233 167,959 1980's 201,637 220,108 173,894 181,150 191,625 163,614 180,290 178,048 196,682 1990's 208,069 234,851 256,019 307,250 353,855 345,441 493,963 374,728 425,083 444,978 2000's 494,581 497,385 534,295 555,544 703,804 730,948 751,036 888,705 1,029,641 1,233,260 2010's 1,434,003 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

126

Oklahoma Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Oklahoma Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,038,103 1,122,692 1,167,150 1970's 1,183,273 1,123,614 1,116,872 1,175,548 1,092,487 1,033,003 1,072,992 1,057,326 1,069,293 1980's 1,063,256 1,112,740 1,023,057 1,118,403 1,137,463 1,103,062 1,127,780 1,301,673 1,145,688 1990's 1,102,301 1,100,812 1,071,426 1,082,452 1,092,734 1,015,965 1,054,123 1,014,008 947,177 892,396 2000's 963,464 957,665 854,220 804,029 839,366 865,411 908,055 964,709 1,047,643 1,112,510 2010's 1,110,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

127

California Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) California Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 505,063 476,596 455,692 1970's 444,700 431,605 386,664 359,841 252,402 213,079 216,667 206,981 204,693 1980's 169,812 261,725 263,475 276,209 281,389 263,823 276,969 270,191 254,286 1990's 263,667 246,335 243,692 246,283 228,346 226,548 240,566 243,054 235,558 259,518 2000's 260,049 258,271 249,671 238,743 236,465 226,230 223,580 206,239 195,272 198,213 2010's 204,327 180,648 169,203 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

128

Wyoming Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124 1,399,570 1,278,439 1,507,142 2010's 1,642,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

129

Gas purification facilities at Purex: Process study  

SciTech Connect

This report provides a summary of the results of a process study, requested by the Atomic Energy Commission an the recovery of krypton and xenon from irradiated uranium at the Hanford Purex Plant. This request was prompted by original Commission forecasts of the expanded requirements for Krypton-85 for commercial phosphorescent signal lights and markers and for xenon isotopes of low neutron cross-section for use in liquid xenon scintillation counters, in connection with D.M.A., government and university-sponsored work. It was requested that both Hanford and Savannah River submit order of magnitude cost estimates for recovery facilities at the respective sites for three separate design cases. The cost information developed, along with market survey information obtained-through the A. D. Little Company and Department of Defense market surveys, would serve as the basis for scheduling of the Hanford and Savannah River participation in the Commission`s overall fission rare gas recovery program.

Michels, L.R.; Gerhart, J.M.

1958-12-31T23:59:59.000Z

130

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

131

Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform  

SciTech Connect

Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

1993-09-01T23:59:59.000Z

132

Troubleshooting natural gas processing: Wellhead to transmission  

Science Conference Proceedings (OSTI)

This book describes practical, day-to-day problems of natural gas handling. This book combines field experience with technical principles on natural gas production treating and transmission. This volume is dominated by illustrative case histories and rules of thumb. The book also provides a checklist of distillation problems which is a summary of causes and cures of the problems encountered in the fractionation of propane, butane and natural gasoline. A glossary of terms used in natural gas transmission is another good part of this book. The author has avoided complex mechanical details in favor of simple line drawings. Among the topics discussed are; wellhead pressure and gas flow, vapor-liquid separation at the wellhead, wellhead compression, corrosion in gathering systems, gas sweetening using amines, sulfur recovery, dehydration, centrifugal gas compression, reciprocal gas compression, hydrates, gas cooling and condensate recovery.

Lieberman, N.

1987-01-01T23:59:59.000Z

133

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

134

Heat exchanger for fuel cell power plant reformer  

DOE Patents (OSTI)

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

135

Effect of reformer conditions on catalytic reforming of biomass-gasification tars  

Science Conference Proceedings (OSTI)

Parametric tests on catalytic reforming of tars produced in biomass gasification are performed using a bench-scale, fluid-bed catalytic reformer containing a commercial nickel-based catalyst. The product gas composition and yield vary with reformer temperature, space time, and steam: biomass ratio. Under certain catalytic tar reforming conditions, the gas yield increases by 70%; 97% of the tars are cracked into gases; and benzene and naphthalene, the predominant tar species, are virtually eliminated from the product gas.

Kinoshita, C.M.; Wang, Y.; Zhou, J. [Univ. of Hawaii, Honolulu, HI (United States)

1995-09-01T23:59:59.000Z

136

Treatment of gas from an in situ conversion process  

SciTech Connect

A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

2011-12-06T23:59:59.000Z

137

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming. National Renewable Energy Laboratory  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Pamela L. Spath; Margaret K. Mann; Pamela L. Spath; Margaret K. Mann

2000-01-01T23:59:59.000Z

138

Managing the National Greenhouse Gas Inventory Process | Open Energy  

Open Energy Info (EERE)

Managing the National Greenhouse Gas Inventory Process Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary Name: Managing the National Greenhouse Gas Inventory Process Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme, Global Environment Facility Topics: GHG inventory Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: ncsp.undp.org/document/managing-national-greenhouse-gas-inventory-proc Managing the National Greenhouse Gas Inventory Process Screenshot References: Managing the National Greenhouse Gas Inventory Process[1] The objective of the handbook is to provide non-AnnexI Parties with a strategic and logical approach to a sustainable inventory process. About "The handbook was developed by United Nations Development Programme with

139

Autothermal Cyclic Reforming Based H2 Generating & Dispensing System  

E-Print Network (OSTI)

Pressure Reforming Comp- ressor 100 psig 100 psig Reformer H2 PSA SyngasNatural Gas Low Pressure Reforming CMP Syngas 5 psig5 psig Reformer CMP 100 psig H2 PSA Natural Gas Syngas CMP HX CMP HX Thermal Reliability (Eliminates Syngas Compressor) Advantages 70-80%70-80%Thermal Efficiency (Excludes Electricity

140

Sales and Use Tax Exemption for Gas Processing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Process Optimization of Cast Alloy 718 for Water Cooled Gas ...  

Science Conference Proceedings (OSTI)

FOR WATER COOLED GAS TURBINE APPLICATION. G.K. Bouse+ and P.W. Schilke*. Gene@ Electric Company+ Materials and Processes Laboratory, and.

142

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

143

Natural Gas Liquefaction Process for Small-scale LNG Project  

Science Conference Proceedings (OSTI)

In the field of natural gas liquefaction, the small-scale natural gas liquefier has been attracting more and more attentions home and abroad, thanks to its small volume, mobile transportation, easy start-up and shut-down, as well as skid-mounted package. ... Keywords: Natural gas, Small-scale, LNG, Liquefaction process

Cao Wensheng

2012-03-01T23:59:59.000Z

144

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

Cha, C.Y.

1993-09-21T23:59:59.000Z

145

WHEC 16 / 13-16 June 2006 Lyon France Plasma assisted fuel reforming for on-board hydrogen rich gas production  

E-Print Network (OSTI)

through hydrogen on-board storage. The main reforming technology is catalytic reforming, which has been points are challenges for automotive applications. In parallel with research on catalytic reforming assisted reforming could be used complementary to catalytic reforming to ensure dynamics performance (start

Paris-Sud XI, Université de

146

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

147

Process to Accomplish Autothermal or Steam Reforming Via a Reciprocating Compression Device  

DOE Patents (OSTI)

The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

Lyons, David K.; James, Robert; Berry, David A.; Gardern, Todd

2004-09-21T23:59:59.000Z

148

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

DOE Green Energy (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

149

Process for recovering condensible components from a gas stream  

SciTech Connect

A method is described for adsorbing the condensible components out of the inlet gas stream in one of a number of stationary adsorption beds, while simultaneously cooling one or more of the other adsorption beds with the residue gas stream from the adsorbing bed. At the same time, one or more other adsorption beds are heated by a regeneration gas stream in a closed cycle, thereby stripping and vaporizing the condensible components. A special main gas-flow pattern is utilized at the beginning of each cycle to prevent condensible components, remaining in the bed or beds just heated, from being lost, with the gas stream leaving the process. (6 claims)

McMinn, R.E.; Loomer, J.A.; Sellars, A.I.

1970-09-08T23:59:59.000Z

150

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

151

Adsorption process producing chronologically constant amount of a residual gas  

SciTech Connect

An adsorption process is disclosed for purifying or fractionating a gaseous feed mixture comprises an adsorption phase, at least one expansion phase, a purging phase and at least one pressure buildup phase. The expansion phase(S) and the purging phase produce residual process gas fractions. The sum total of volume, and/or mass streams of the residual process gas fractions comprises a residual gas stream which is maintained chronologically substantially constant by controlling the volume and/or gas streams of the gas entering the purging phase and maintaining the gas leaving the expansion phase(S) at a substantially constant value, dependent on the desired mass and/or volume quantity of the residual gas stream. The length of the purging phase and of the expansion phase(S) is adjusted accordingly so that the relationship of the length of time of the purging phase to the length of time of the expansion phase(S) is substantially the same as the relationship of the volume and/or mass of the gas fractions obtained during the purging to those obtained during the expansion phase(S), respectively. The control of the purging and of the expansion phase(S) can also be varied in response to a flow rate of a feed gas entering the process.

Benkmann, C.

1982-02-16T23:59:59.000Z

152

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

153

Oil and Gas Environmental Review and Approval Processes (New Brunswick,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Environmental Review and Approval Processes (New Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) < Back Eligibility Commercial Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State New Jersey Program Type Environmental Regulations Provider New Brunswick Natural Resources Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact Assessment (EIA) process. The process will identify potential environmental impacts at the early stages before a project is implemented so that negative environmental impacts can be avoided.

154

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

155

Humidification Processes in Gas Turbine Cycles.  

E-Print Network (OSTI)

??The global climate change caused by emissions of greenhouse gases from combustion processes has been recognized as a continuously growing problem and much research focuses… (more)

Thern, Marcus

2005-01-01T23:59:59.000Z

156

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

157

Process for producing dimethyl ether form synthesis gas  

DOE Green Energy (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

158

Process for producing dimethyl ether from synthesis gas  

DOE Patents (OSTI)

This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

Pierantozzi, R.

1985-06-04T23:59:59.000Z

159

Investigation of Flue Gas Desulfurization Chemical Process Problems  

Science Conference Proceedings (OSTI)

An understanding of flue gas desulfurization process chemistry is crucial in troubleshooting problems in operating FGD systems. This report discusses a variety of problems and solutions associated with process chemistry for 25 different wet FGD systems, including lime/limestone and double alkali processes. Among the problems addressed are SO2 removal, mist eliminator scaling, poor solids dewatering, and water management.

1990-09-10T23:59:59.000Z

160

Portfolio-Based Planning Process for Greenhouse Gas Mitigation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation Portfolio-Based Planning Process for Greenhouse Gas Mitigation October 7, 2013 - 10:10am Addthis The portfolio-based planning process for greenhouse gas (GHG) mitigation offers an approach to: Evaluating the GHG reduction potential at the site, program, and agency level Identifying strategies for reducing those emissions Prioritizing activities to achieve both GHG reduction and cost objectives. Portfolio-based management for GHG mitigation helps agencies move from "peanut-butter-spreading" obligations for meeting GHG reduction targets evenly across all agency operating units to strategic planning of GHG reduction activities based on each operating unit's potential and cost to reduce emissions. The result of this prioritization will lay the foundation

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thief Process Removal of Mercury from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for the Removal of Mercury from Flue Gas Process for the Removal of Mercury from Flue Gas Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 6,521,021 entitled "Thief Process for the Removal of Mercury from Flue Gas." Disclosed in this patent is a novel process in which partially combusted coal is removed from the combustion chamber of a power plant using a lance (called a "thief"). This partially combusted coal acts as a thermally activated adsorbent for mercury. When it is in- jected into the duct work of the power plant downstream from the exit port of the combustion chamber, mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury

162

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

163

Permeation: A new competitive process for offshore gas dehydration  

SciTech Connect

Usual process for gas dehydration implement absorption (glycol chemical process) or adsorption (molecular sieves). The new dehydration process as described in this paper will be a strong competitor with these usual processes, especially for offshore applications, due to its simplicity and space and weight saving. This new membrane based process is discussed along major constraints of the application, suitable characteristics of the adapted permeation membranes and gain versus conventional gylcol in offshore application.

Fournie, F.; Agostini, J.P.

1984-05-01T23:59:59.000Z

164

Multifuel reformer R D  

DOE Green Energy (OSTI)

The on-board fuel for fuel cell powered vehicles may be one or more of hydrogen, methanol, ethanol, natural gas, propane, or other liquified petroleum gases. To use hydrogen as the fuel, suitable means of storing, and subsequently delivering, adequate quantities of the gas must be developed. For all other fuels suitable reformers must be developed to convert the fuel to hydrogen or a hydrogen-rich gas mixture at rates corresponding to the varying power demand rates of the automotive system; this is especially true for the lower temperature fuel cells, such as the polymer electrolyte fuel cell which operates at 80{degrees}C and the phosphoric acid fuel cell which operates at 190{degrees}C. This paper discusses the key design and performance characteristics of such hydrogen storage and fuel reformer systems for use in stand-alone fuel cell automotive applications.

Kumar, R.; Ahmed, S.

1991-01-01T23:59:59.000Z

165

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact on the United States chemical industry and present many opportunities for new capital investments and industry growth. As in conventional natural gas, shale gas contains primarily methane, but some formations contain significant amounts of higher molecular weight hydrocarbons and inorganic gases such as nitrogen and carbon dioxide. These differences present several technical challenges to incorporating shale gas with current infrastructure designed to be used with natural gas. However, each shale presents opportunities to develop novel chemical processes that optimize its composition in order to more efficiently and profitably produce valuable chemical products. This paper is aimed at process synthesis, analysis, and integration of different processing pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process simulation and published data were used to construct a base-case scenario in Aspen Plus. The impact of different processing pathways was analyzed. Key performance indicators were assessed. These include overall process targets for mass and energy, economic performance, and environmental impact. Finally, the impact of several factors (e.g., feedstock composition, design and operating variables) is studied through a sensitivity analysis. The results show a profitable process above a methanol selling price of approximately $1.50/gal. The sensitivity analysis shows that the ROI depends much more heavily on the selling price of methanol than on the operating costs. Energy integration leads to a savings of $30.1 million per year, or an increase in ROI of 2% points. This also helps offset some of the cost required for the oxygen necessary for syngas generation through partial oxidation. For a sample shale gas composition with high levels of impurities, preprocessing costs require a price differential of $0.73/MMBtu from natural gas. The process is also environmentally desirable because shale gas does not lead to higher GHG emissions than conventional natural gas. More water is required for hydraulic fracturing, but some of these concerns can be abated through conservation techniques and regulation.

Ehlinger, Victoria M.

2013-05-01T23:59:59.000Z

166

Bringing electricity reform to the Philippines  

SciTech Connect

Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

Fe Villamejor-Mendoza, Maria

2008-12-15T23:59:59.000Z

167

Biogas upgrade through exhaust gas reforming process for use in CI engines.  

E-Print Network (OSTI)

??Biogas is not ideal for combustion in diesel engines mainly due to its low energy content. The upgrading of biogas into high quality syngas through… (more)

Lau, Chia Sheng

2012-01-01T23:59:59.000Z

168

Evaluate reformer performance at a glance  

Science Conference Proceedings (OSTI)

Catalytic reforming is becoming increasingly important in replacing octane lost as the removal of lead from worldwide gasoline pools continues. A method has been developed that can quickly evaluate the performance of any catalytic reformer. The catalytic naphtha reforming process primarily involves three well-known reactions. These are aromatization of naphthenes, cyclization of paraffins and hydrocracking of paraffins. Hydrogen is produced in the process of aromatization and dehydrocyclization of paraffins. Reformer performance is normally evaluated with a reformate analysis (PONA) and yield of C{sub 5{sup +}} reformate. This method of quick evaluation of reformer performance is based upon the main assumption that the increase in hydrocarbon moles in the process is equal to the number of C{single_bond}C bond ruptures and one mole of hydrogen is absorbed to saturate the same. This new method calculates aromatization efficiency, paraffin conversion, aromatic selectivity and finally the paraffin, naphthene and aromatic content of C{sub 5{sup +}} reformate.

Nag, A. [Indian Oil Corporation Ltd., Gujarat (India)

1996-02-01T23:59:59.000Z

169

Predictive LPV control of a liquid-gas separation process  

Science Conference Proceedings (OSTI)

The problem of controlling a liquid-gas separation process is approached by using LPV control techniques. An LPV model is derived from a nonlinear model of the process using differential inclusion techniques. Once an LPV model is available, an LPV controller ... Keywords: BMIs, LMIs, LPV controllers, LPV systems, Nonlinear systems, Predictive control

J. V. Salcedo; M. Martínez; C. Ramos; J. M. Herrero

2007-07-01T23:59:59.000Z

170

Simulation and integration of liquefied natural gas (lng) processes  

E-Print Network (OSTI)

The global use of natural gas is growing quickly. This is primarily attributed to its favorable characteristics and to the environmental advantages it enjoys over other fossil fuels such as oil and coal. One of the key challenges in supplying natural gas is the form (phase) at which it should be delivered. Natural gas may be supplied to the consumers as a compressed gas through pipelines. Another common form is to be compressed, refrigerated and supplied as a liquid known as liquefied natural gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting the global energy demands. This work addresses the simulation and optimization of an LNG plant. First, the process flowsheet is constructed based on a common process configuration. Then, the key units are simulated using ASPEN Plus to determine the characteristics of the various pieces of equipment and streams in the plant. Next, process integration techniques are used to optimize the process. Particular emphasis is given to energy objectives through three activities. First, the synthesis and retrofitting of a heat-exchange network are considered to reduce heating and cooling utilities. Second, the turbo-expander system is analyzed to reduce the refrigeration consumption in the process. Third, the process cogeneration is introduced to optimize the combined heat and power of the plant. These activities are carried out using a combination of graphical, computeraided, and mathematical programming techniques. A case study on typical LNG facilities is solved to examine the benefits of simulation and integration of the process. The technical, economic, and environmental impact of the process modifications are also discussed.

Al-Sobhi, Saad Ali

2007-12-01T23:59:59.000Z

171

Carbon Dioxide Hydrate Process for Gas Separation from a Shifted Synthesis Gas Stream  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration and Sequestration and Gasification Technologies Carbon DioxiDe HyDrate ProCess for Gas seParation from a sHifteD syntHesis Gas stream Background One approach to de-carbonizing coal is to gasify it to form fuel gas consisting predominately of carbon monoxide and hydrogen. This fuel gas is sent to a shift conversion reactor where carbon monoxide reacts with steam to produce carbon dioxide (CO 2 ) and hydrogen. After scrubbing the CO 2 from the fuel, a stream of almost pure hydrogen stream remains, which can be burned in a gas turbine or used to power a fuel cell with essentially zero emissions. However, for this approach to be practical, it will require an economical means of separating CO 2 from mixed gas streams. Since viable options for sequestration or reuse of CO

172

Catalytic reforming of liquid fuels: Deactivation of catalysts  

Science Conference Proceedings (OSTI)

The catalytic reforming of logistic fuels (e.g., diesel) to provide hydrogen-rich gas for various fuel cells is inevitably accompanied by deactivation. This deactivation can be caused by various mechanisms, such as carbon deposition, sintering, and sulfur poisoning. In general, these mechanisms are, not independent—e.g., carbon deposition may affect sulfur poisoning. However, they are typically studied in separate experiments, with relatively little work reported on their interaction at conditions typical of liquid fuel reforming. Recent work at the U.S. Dept. of Energy/NETL and Louisiana State University has shown progress in understanding the interaction of these deactivation processes, and catalysts designed to minimize them.

Spivey, J.J.; Haynes, D.J.; Berry, D.A.; Shekhawat, Dushyant; Gardner, T.H.

2007-10-01T23:59:59.000Z

173

Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier  

SciTech Connect

The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.

1995-08-01T23:59:59.000Z

174

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

175

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

176

Gas permeation carbon capture --- Process modeling and optimization  

SciTech Connect

A multi-staged gas permeation carbon capture process model was developed in Aspen Custom Modeler{reg_sign} (ACM) and optimized in the context of the retrofit of a 550 MW subcritical pulverized coal (PC) power plant. The gas permeation stages in the process are described by a custom multi-component, hollowfiber membrane model. Gas transport across the asymmetric membrane was modeled according to the solution-diffusion model for the selective skin layer and the assumption of negligible flux resistance by the porous support. Counter-current, one-dimensional plug flow was assumed with permeate pressure drop in the fiber lumen side due to capillary constrained flow. A modular optimization framework was used to minimize the levelized cost of electricity (LCOE) by optimizing a set of key process variables. The framework allows the external control of multiple simulation modules from different software packages from a common interface.

Morinelly, Juan; Miller, David

2011-01-01T23:59:59.000Z

177

Coke oven gas desulphurization by the Carl Still process  

SciTech Connect

The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

Knight, R.E.

1981-01-01T23:59:59.000Z

178

Structural and regulatory reform of the European natural gas market : does the current approach secure the public service obligations?.  

E-Print Network (OSTI)

??The European natural gas market is in a state of flux. In order to better secure the public service obligations – supply security, competitiveness and… (more)

Spanjer, Abdelkader Rainaldo

2008-01-01T23:59:59.000Z

179

SECA Fuel Processing Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

180

Solar-Thermal Fluid-Wall Reaction Processing  

Currently most hydrogen is produced through a process of heating natural gas with water vapor called steam reforming. This process requires energy to heat the gasses and produces greenhouse gases such as CO2 as its byproducts. These conditions confine ...

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

182

Cost Analysis of Bio-Derived Liquids Reforming  

E-Print Network (OSTI)

) steam reforming C2H5OH + H2O Ã? 2CO + 4H2 6) Water gas shift 7) Methanation 8) Coking from CH4 (methane Ethanol Reforming Options Gas Phase Liquid Phase Virent Steam Partial Oxidation Reforming GE (SCPO) decomposition C2H5OH Ã? CH4 + CO + H2 steam reforming CH4 + 2H2O Ã? 4H2 + CO2 3) C2H5OH dehydrogenation

183

Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission  

DOE Green Energy (OSTI)

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hynol Corp., New York, NY (United States)

1993-10-01T23:59:59.000Z

184

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

185

Takahax-Hirohax process for coke oven gas desulfurization  

SciTech Connect

This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

Gastwirth, H.; Miner, R.; Stengle, W.

1981-01-01T23:59:59.000Z

186

Michigan Natural Gas Plant Processing - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processed (Million Cubic Feet) 33,213: 29,436: 30,008: 23,819: 22,405: 21,518: 1967-2011: Total Liquids Extracted (Thousand Barrels) 2,335: 2,547: 2,840 ...

187

DRY FLUE GAS CLEANING PROCESSES FOR ACHIEVING AIR POLLUTANT EMISSIONS  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

188

Experimental Evaluation of SI Engine Operation Supplemented by Hydrogen Rich Gas from a Compact Plasma Boosted Reformer  

DOE Green Energy (OSTI)

It is well known that hydrogen addition to spark-ignited (SI) engines can reduce exhaust emissions and increase efficiency. Micro plasmatron fuel converters can be used for onboard generation of hydrogen-rich gas by partial oxidation of a wide range of fuels. These plasma-boosted microreformers are compact, rugged, and provide rapid response. With hydrogen supplement to the main fuel, SI engines can run very lean resulting in a large reduction in nitrogen oxides (NO x ) emissions relative to stoichiometric combustion without a catalytic converter. This paper presents experimental results from a microplasmatron fuel converter operating under variable oxygen to carbon ratios. Tests have also been carried out to evaluate the effect of the addition of a microplasmatron fuel converter generated gas in a 1995 2.3-L four-cylinder SI production engine. The tests were performed with and without hydrogen-rich gas produced by the plasma boosted fuel converter with gasoline. A one hundred fold reduction in NO x due to very lean operation was obtained under certain conditions. An advantage of onboard plasma-boosted generation of hydrogen-rich gas is that it is used only when required and can be readily turned on and off. Substantial NO x reduction should also be obtainable by heavy exhaust gas recirculation (EGR) facilitated by use of hydrogen-rich gas with stoichiometric operation.

J. B. Green, Jr.; N. Domingo; J. M. E. Storey; R.M. Wagner; J.S. Armfield; L. Bromberg; D. R. Cohn; A. Rabinovich; N. Alexeev

2000-06-19T23:59:59.000Z

189

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

190

North Dakota Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 42,828 41,318 37,818 1970's 36,830 33,252 32,131 0 0 0 0 0 0 1980's 50,900 57,608 71,745 77,524 81,008 72,678 86,329 67,867 59,841 1990's 62,042 59,228 50,462 51,713 55,150 49,861 47,942 51,657 52,777 52,191 2000's 54,738 58,536 59,894 58,479 60,261 63,240 65,575 69,653 76,762 87,977 2010's 91,539 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed North Dakota Natural Gas Plant Processing

191

Reactive gas atomization processing for Fe-based ODS alloys  

Science Conference Proceedings (OSTI)

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe-Cr-Y-Hf). During this process a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal-mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Odette, G.R.; Stergarc, E.; Haney, E.

2011-08-08T23:59:59.000Z

192

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network (OSTI)

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

193

Process for production of synthesis gas with reduced sulfur content  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

194

1M. Panahi, S. Skogestad ' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process' Controlled Variables Selection for a  

E-Print Network (OSTI)

to Liquids (GTL) process' Auto-thermal reformer (ATR) reactions 2n Oxidation of methane: Steam reforming unit · Pre-reformer · Auto-thermal reformer (ATR) · Fired heater CO2 removal (optional) Fischer of methane: Shift Reaction: 4 2 2 3 2 2 CH O CO H O 4 2 23CH H O CO H 2 2 2CO H O CO H ( ) 2 n m 2 2 m

Skogestad, Sigurd

195

Desulphurization of coke oven gas by the Stretford Process  

SciTech Connect

The Stretford process is probably the most effective means available for removing hydrogen sulphide from gas streams. For streams which do not contain hydrogen cyanide or excessive oxygen it should be nearly ideal. However, the large volume of waste liquor generated by fixation of hydrogen cyanide has prevented its widespread adoption for coke oven gas treatment. Investigations of various proposals for treating the waste liquor indicate that the only practicable way of dealing with it is by reductive incineration. Although attempts to apply the Peabody-Holmes reductive incineration process have been disappointing, significant progress in overcoming some of its deficiencies has been made. The Zimpro wet oxidation process will provide a convenient method of treating the HCN scrubber effluent at No. 1 Plant. However, it will not treat the sodium based liquor from the Stretford plant. Its application to Stretford waste treatment is limited to situations where ammonium liquors and ammonium sulphate recovery facilities are available. Commissioning of this plant has been delayed while a defect in the air compressor supplied for the plant is being remedied. When the problem of liquid effluent disposal has been overcome, and if reagent chemicals continue to be available at reasonable prices, the Stretford process will be a good choice for coke oven gas desulphurization. 8 figures.

Plenderleith, J.

1981-01-01T23:59:59.000Z

196

The Thief Process for Mercury Removal from Flue Gas  

E-Print Network (OSTI)

The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/hr pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. Independent verification of the sorbent activity at a pilot-plant that uses a slipstream from a Wisconsin utility has been accomplished. A patent for the process was issued in February 2003 [1]. The Thief sorbents are cheaper than commerciallyavailable activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas [1-4].

Evan J. Granite; Mark C. Freeman; Richard A. Hargis; William J. O’dowd; Henry W. Pennline

2004-01-01T23:59:59.000Z

197

Method for treating a nuclear process off-gas stream  

DOE Patents (OSTI)

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01T23:59:59.000Z

198

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

199

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

200

Fuel processing requirements and techniques for fuel cell propulsion power  

DOE Green Energy (OSTI)

Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

Kumar, R.; Ahmed, S.; Yu, M.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Multiphase Mechanisms and Fluid Dynamics in Gas Injection Enhanced Oil Recovery Processes.  

E-Print Network (OSTI)

??Currently, the Water-Alternating-Gas (WAG) process is the most widely practiced horizontal mode gas injection process in the industry. Although this process is conceptually sound, it… (more)

Kulkarni, Madhav M.

2005-01-01T23:59:59.000Z

202

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

203

The Hy-C process (thermal decomposition of natural gas): Potentially the lowest cost source of hydrogen with the least CO{sub 2} emission  

SciTech Connect

The abundance of natural gas as a natural resource and its high hydrogen content make it a prime candidate for a low cost supply of hydrogen. The thermal decomposition of natural gas by methane pyrolysis produces carbon and hydrogen. The process energy required to produce one mol of hydrogen is only 5.3% of the higher heating value of methane. The thermal efficiency for hydrogen production as a fuel without the use of carbon as a fuel, can be as high as 60%. Conventional steam reforming of methane requires 8.9% process energy per mole of hydrogen even though 4 moles of hydrogen can be produced per mole of methane, compared to 2 moles by methane pyrolysis. When considering greenhouse global gas warming, methane pyrolysis produces the least amount of CO{sub 2} emissions per unit of hydrogen and can be totally eliminated when the carbon produced is either sequestered or sold as a materials commodity, and hydrogen is used to fuel the process. Conventional steam reforming of natural gas and CO shifting produces large amounts of CO{sub 2} emissions. The energy requirement for non-fossil, solar, nuclear, and hydropower production of hydrogen, mainly through electrolysis, is much greater than that from natural gas. From the resource available energy and environmental points of view, production of hydrogen by methane pyrolysis is most attractive. The by-product carbon black, when credited as a saleable material, makes hydrogen by thermal decomposition of natural gas (the Hy-C process) potentially the lowest cost source of large amounts of hydrogen.

Steinberg, M.

1994-12-01T23:59:59.000Z

204

Development of advanced hot-gas desulfurization processes  

SciTech Connect

Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

Jothimurugesan, K.

2000-04-17T23:59:59.000Z

205

Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non-thermal arc discharge for syngas production  

E-Print Network (OSTI)

-thermal arc discharge for syngas production A. Lebouvier1,2 , F. Fresnet2 , F. Fabry1 , V. Boch2 , V. Rohani1% and a conversion rate of 95% have been reached which correspond to a syngas dry molar fraction of 25%. For the most and promote H2O and CO2 production. Keywords: Plasma reformer, syngas, diesel fuel reforming, NOx trap. 1

Paris-Sud XI, Université de

206

Hydrogen generation utilizing integrated CO2 removal with steam reforming  

DOE Patents (OSTI)

A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

Duraiswamy, Kandaswamy; Chellappa, Anand S

2013-07-23T23:59:59.000Z

207

Hiring Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hiring Reform Hiring Reform Hiring Reform President Obama's Memorandum dated May 11, 2010, Improving the Federal Recruitment and Hiring Process, is Phase I of the Administration's comprehensive initiative to address major, long-standing impediments to recruiting and hiring the best and the brightest into the Federal civilian workforce. The Memorandum is based on issues that DOE and others brought to the attention of OPM, and it is designed to help Agencies build the workforce you need to achieve your goals. The Presidential Memorandum launches the Obama Administration's flagship personnel policy reform initiative. It builds on a nearly year-long collaboration between OPM and Agencies aimed at streamlining the hiring process and recruiting top talent, especially for mission-critical jobs.

208

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

209

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

Science Conference Proceedings (OSTI)

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

210

Distributed Reforming of Biomass Pyrolysis Oils (Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas (0.5% H 2 ) System Definition (1500 kgday station used for H2A analysis) Capital Costs Bio-Oil Reforming H2A Analysis Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank...

211

Catalytic reforming catalyst  

Science Conference Proceedings (OSTI)

An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

Buss, W.C.; Kluksdahl, H.E.

1980-12-09T23:59:59.000Z

212

Reactive gas atomization processing for Fe-based ODS alloys  

SciTech Connect

Gas atomization reaction synthesis was employed as a simplified method for processing oxide dispersion forming precursor Fe-based powders (e.g., Fe–Cr–Y–Hf). During this process a reactive atomization gas (i.e., Ar–O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 50 nm) metastable Cr-enriched oxide shell that was used as a vehicle to transport oxygen into the consolidated microstructure. Subsequent elevated temperature heat treatment promoted thermodynamically driven oxygen exchange reactions between trapped films of Cr-enriched oxide and internal (Y, Hf)-enriched intermetallic precipitates, resulting in highly stable nano-metric mixed oxide dispersoids (i.e., Y–Hf–O) that were identified with X-ray diffraction. Transmission electron microscopy and atom probe tomography results also revealed that the size and distribution of the dispersoids were found to depend strongly on the original rapidly solidified microstructure. To exploit this, several oxide dispersion strengthened microstructures were engineered from different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. Additionally, preliminary thermal–mechanical processing was used to develop a fine scale dislocation substructure for ultimate strengthening of the alloy.

Rieken, Joel R [Ames Laboratory; Anderson, Iver E [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Odette, G R [University of California; Stergar, E [University of California; Haney, E [University of California

2011-08-24T23:59:59.000Z

213

NETL's Gas Process Development Unit for Hot/Warm Gas Cleanup  

SciTech Connect

The long-term objectives for the GPDU project are to: (1) assess transport and fluidized bed reactor control and performance to determine the most suitable mode for continuous gas desulfurization, and (2) evaluate candidate sorbents for bulk removal of sulfurous compounds from syngas to assess the readiness of sorbents for commercial scale. The DOE has funded desulfurization and sorbent research for over 20 years and extensive laboratory-scale and bench-scale work has been conducted by government, academia and industry on the development and testing of regenerable sorbents for bulk sulfur removal from syngas (Cicero, et.al, 2000; Mitchell, 1998; Lew, 1989). However, the technologies still need to be proven in controlled conditions at a larger scale. Several Clean Coal Technology projects (i.e, the Toms Creek IGCC Demonstration Project, the Pinon Pine IGCC Power Project and the Tampa Electric Integrated Gasification Combined-Cycle Project) had proposed demonstrations of hot-gas desulfurization technology, but were not seen to completion (Clean Coal Technology Compendium website, 2002). As a result, there is a lack of data on sorbent and reactor performance under longer-term continuous conditions at a large scale. For commercial acceptance of hot- or warm-gas desulfurization, technology reliability is a question yet to be answered. The GPDU will fill the gap and has the objective to provide the proof-of-concept that is needed to foster commercialization of hot (greater than 538 C (1,000 F)) and/or warm (260 to 427 C (500 to 800 F)) gas desulfurization for IGCC processes. The GPDU facility, which includes a separate Syngas Generator (SGG) that supplies a simulated coal gas to the GPDU, is in the shakedown phase of operations with an initial reactor configuration of transport absorber-transport regenerator. The status and preliminary results of shakedown activities are presented to provide insight into startup and operations of a continuous transport desulfurization process.

Everitt, E.; Bissett, L.A.

2002-09-20T23:59:59.000Z

214

Confinement Ventilation and Process Gas Treatment Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . NOT MEASUREMENT SENSITIVE DOE-STD-1168-2013 October 2013 DOE STANDARD CONFINEMENT VENTILATION AND PROCESS GAS TREATMENT FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1168-2013 This document is available on the Department of Energy Technical Standards Program Website at http://energy.gov/hss/information-center/department-energy-technical-standards-program ii DOE-STD-1168-2013 INTENTIONALLY BLANK iv DOE-STD-1168-2013 TABLE OF CONTENTS ACKNOWLEDGMENT...................................................................................................................vii

215

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

216

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

217

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

218

Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades  

DOE Patents (OSTI)

This invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas

Dyer, Robert H. (Oak Ridge, TN); Fowler, Andrew H. (Oak Ridge, TN); Vanstrum, Paul R. (Oak Ridge, TN)

1977-01-01T23:59:59.000Z

219

New model accurately predicts reformate composition  

Science Conference Proceedings (OSTI)

Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-01-31T23:59:59.000Z

220

Advanced Materials and Processes for Gas Turbines TABLE OF ...  

Science Conference Proceedings (OSTI)

Materials Issues for the Design of Industrial Gas Turbines [pp. 3-13] ... French Developments of Superalloys for Gas Turbine Disks and Blades [pp. 17-28

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas Interactions In Nonferrous Metals Processing II - TMS  

Science Conference Proceedings (OSTI)

SOME GENERAL CHARACTERISTICS OF CONTINUOUS GAS-STIRRED ... the bulk liquid phase, as well as the chemical reaction at the gas/liquid interface, ...

222

Extraction Loss of Natural Gas at Processing Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

223

Economic assessment of advanced flue gas desulfurization processes. Final report  

Science Conference Proceedings (OSTI)

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

224

NEPA Contracting Reform Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

225

Novel Reforming Catalysts  

Science Conference Proceedings (OSTI)

Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

Pfefferle, Lisa D; Haller, Gary L

2012-10-16T23:59:59.000Z

226

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

227

U.S. Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) U.S. Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,641,633 16,316,674 17,655,108 1970's 18,509,309 19,252,807 19,947,740 19,679,291 18,684,480 17,748,426 17,717,951 17,569,835 17,012,234 1980's 14,816,393 14,163,667 13,173,129 13,946,385 13,434,644 12,949,592 12,874,263 12,794,932 12,810,246 1990's 14,610,303 16,229,684 16,045,855 16,396,894 16,459,516 16,930,662 17,470,017 16,836,795 16,557,779 16,662,873 2000's 16,998,687 16,511,427 15,920,911 14,697,316 15,190,200 14,915,680 14,682,188 15,663,381 15,316,804 15,904,517 2010's 16,267,757 16,566,883 17,538,026 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

228

West Virginia Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) West Virginia Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 235,832 210,058 185,937 1970's 169,695 145,206 324,381 0 0 0 0 0 0 1980's 86,348 67,341 72,404 102,219 106,740 104,310 105,848 106,885 109,793 1990's 107,210 111,635 115,260 115,963 113,865 116,792 70,709 69,092 70,641 66,388 2000's 131,681 125,537 127,044 116,761 127,384 130,255 129,334 133,422 138,601 143,468 2010's 137,740 189,278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

229

New Mexico Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) New Mexico Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 923,202 1,058,587 1,079,492 1970's 1,101,442 1,124,139 1,126,192 1,101,341 1,060,491 1,037,160 1,066,104 1,136,254 1,040,098 1980's 948,680 799,990 735,882 747,412 709,601 561,369 605,035 591,837 638,498 1990's 665,232 646,116 722,433 804,536 800,836 809,893 1,129,598 851,305 868,209 873,801 2000's 880,463 966,882 994,953 987,762 940,295 893,586 817,261 811,312 853,470 769,783 2010's 737,187 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

230

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

231

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

1.5 hours" 1.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule B: Emergency Status Report" "This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the confidentiality of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction."

232

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

233

Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films  

E-Print Network (OSTI)

Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient barrier for goods requiring long shelf life. Current gas barrier technologies like plasma-enhanced vapor deposition (PECVD) often create high barrier metal oxide films, which are prone to cracking when flexed. Bulk composites composed of polymer and impermeable nanoparticles show improved barrier, but particle aggregation limits their practical utility for applications requiring high barrier and transparency. Layer-by-layer (LbL) assemblies allow polymers and nanoparticles to be mixed with high particle loadings, creating super gas barrier thin films on substrates normally exhibiting high gas permeability. Branched polyethylenimine (PEI) and poly (acrylic acid) (PAA) were deposited using LbL to create gas barrier films with varying pH combinations. Film thickness and mass fraction of each component was controlled by their combined charge. With lower charge density (PEI at pH 10 and PAA at pH 4), PEI/PAA assemblies exhibit the best oxygen barrier relative to other pH combinations. An 8 BL PEI/PAA film, with a thickness of 451 nm, has an oxygen permeability lower than 4.8 x 10^-21 cm^3 * cm/cm^2 * s * Pa, which is comparable to a 100 nm SiOx nanocoating. Crosslinking these films with glutaraldehyde (GA), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDC) or heating forms covalent bonds between PEI and/or PAA. Oxygen transmission rates (OTR) of 8 BL films crosslinked with 0.1M GA or 0.01M EDC show the best oxygen barrier at 100% RH. Graphene oxide (GO) sheets and PEI were deposited via LbL with varying GO concentration. The resulting thin films have an average bilayer thickness from 4.3 to 5.0 nm and a GO mass fraction from 88 to 91wt%. Transmission electron microscopy and atomic force microscopy images reveal a highly-oriented nanobrick wall structure. A 10 BL PEI/GO film that is 91 nm thick, made with a 0.2 wt% GO suspension, exhibits an oxygen permeability of 2.5 x 10^-20 cm^3 * cm/cm^2 * s * Pa. Finally, the influence of deposition time on thin film assembly was examined by depositing montmorillonite (MMT) or laponite (LAP) clays paired with PEI. Film growth and microstructure suggests that smaller aspect ratio LAP clay is more dip-time dependent than MMT and larger aspect ratio MMT has better oxygen barrier. A 30 BL PEI/MMT film made with 10 second dips in PEI has the same undetectable OTR as a film with 5 minute dips (with dips in MMT held at 5 minutes in both cases), indicating LbL gas barrier can be made more quickly than initially thought. These high barrier recipes, with simple and efficient processing conditions, are good candidates for a variety of packaging applications.

Yang, You-Hao

2012-08-01T23:59:59.000Z

234

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena  

E-Print Network (OSTI)

Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

Skogestad, Sigurd

235

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd Skogestad*  

E-Print Network (OSTI)

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd variables (CVs) for a natural gas to hydrocarbon liquids (GTL) process based on the idea of self of operation are studied. In mode I, where the natural gas flow rate is given, there are three unconstrained

Skogestad, Sigurd

236

Octane Number Prediction in a Reforming Plant  

Science Conference Proceedings (OSTI)

In this work a neural network for the prediction of the complex and non-linear behavior of a Catalytic Reforming of a refinery has been developed. In a fuel, refinery reforming is a conversion process to increase octane number (RON) of the desulphurated ...

E. Chibaro

2000-07-01T23:59:59.000Z

237

Solar Reforming of Carbon Dioxide to Produce Diesel Fuel  

SciTech Connect

This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

Dennis Schuetzle; Robert Schuetzle

2010-12-31T23:59:59.000Z

238

Utilization of natural gas in large-scale separation processes. Final report, September 1987-August 1988  

SciTech Connect

Several industrial separation processes were identified which could be operated in a cost-effective manner utilizing pipeline natural gas as a processing fluid. In one such process, natural gas stripping, hazardous materials are transferred from hazardous water to the natural gas phase. When the natural gas phase is later burned as fuel, the heating value is realized and hazardous materials are destroyed. The combination of extraction, natural gas stripping, and incineration may be used to remove and destroy hazardous material contained in soil. It is possible for this system to be portable so that it could be used for the treatment of contaminated soils at remote sites. Natural gas may also be used to flush hazardous materials from adsorbents and thus regenerate adsorption beds used to remove hazardous materials from water or gas streams. The regenerant gas stream, containing natural gas and hazardous materials, would be used as boiler fuel where the hazardous material would be destroyed.

Humphrey, J.L.

1989-02-01T23:59:59.000Z

239

New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes  

E-Print Network (OSTI)

A broad program to identify and evaluate new types of hardware and processes to conserve oil and gas in chemical plants and petroleum refineries has been completed. During the course of this program, which was sponsored by the Office of Industrial Programs of the U.S. Department of Energy, Argonne interacted with 130 industrial companies to help define and evaluate appropriate areas of technology. The initial step was to assemble a master list of technologies that promised to conserve oil and gas. These technologies were then screened on the basis of quantity of energy saved, capital and operating costs, industry attitude, market potential, and special barriers to implementation such as environmental issues and other special types of problems. One approach used to determine industry attitudes on technologies was to poll several key energy-conservation groups. These included the Gulf Coast Energy Society, Golden Triangle Energy Society, CMA Energy Committee, and the Energy Conservation Committee of the American Petroleum Institute. This paper will summarize some of the results of this program in terms of the following areas of technology: Energy-efficient methods of separation ; Alternative fuels and feed stocks ; Recovery of low-level heat; Advanced Concepts Although the above technologies were identified and evaluated in terms of their application specifically to chemical plants and petroleum refineries, they have the potential of conserving oil and gas across a broad spectrum of industrial processes.

Humphrey, J. L.

1982-01-01T23:59:59.000Z

240

Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process  

DOE Green Energy (OSTI)

This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

Randy Cortright

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

242

Thermochemical Fuel Reformer Development Project  

Science Conference Proceedings (OSTI)

Thermochemical Fuel Reforming (TCFR) is the recovery of internal combustion engine exhaust heat to chemically convert natural gas into a higher calorific flow fuel stream containing a significant concentration of hydrogen. This technique of recycling the engine exhaust heat can reduce fuel use (heat rate). In addition, the hydrogen enhanced combustion also allows stable engine operation at a higher air-fuel ratio (leaner combustion) which results in very low NOx production. This interim report covers two...

2006-12-11T23:59:59.000Z

243

Controlling Activity and Stability of Ni-YSZ Catalysts for On-Anode Reforming  

DOE Green Energy (OSTI)

The purposes of the project are to develop an effective Ni-YSZ-based anode for on-anode reforming of methane and natural gas and develop methods to control endothermic steam reforming activity.

King, D.L.; Wang, Y.; Chin, Y-H.; Lin, Y.; Roh, H-S.; Rozmiarek, B.

2005-01-27T23:59:59.000Z

244

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

Office of Scientific and Technical Information (OSTI)

Timothy C. Merkel (Primary Contact) Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC 27709 bst@rti.org Tel (919) 541-8024 Fax (919) 541-8000 Daniel C. Cicero U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 daniel.cicero@netl.doe.gov Tel (304) 285-4826 Fax (304) 285-4403 A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

245

Global gas processing will strengthen to meet expanding markets  

SciTech Connect

The worldwide LPG industry continues to expand faster than the petroleum industry -- 4%/year for LPG vs. 2%/year for petroleum in 1995 and less than 1%/year in the early 1990s. This rapid expansion of LPG markets is occurring in virtually every region of the world, including such developing countries as China. The Far East is the focus of much of the LPG industry`s attention, but many opportunities exist in other regions such as the Indian subcontinent, Southeast Asia, and Latin America. The investment climate is improving in all phases of downstream LPG marketing, including terminaling, storage, and wholesale and retail distribution. The world LPG supply/demand balance has been relatively tight since the Gulf War and should remain so. Base demand (the portion of demand that is not highly price-sensitive) is expanding more rapidly than supplies. As a result, the proportion of total LPG supplies available for price-sensitive petrochemical feedstock markets is declining, at least in the short term. The paper discusses importers, price patterns, world LPG demand, world LPG supply, US NGL supply, US gas processing, ethane and propane supply, butane, isobutane, and natural gasoline supply, and US NGL demand.

Haun, R.R. [Purvin and Gertz Inc., Dallas, TX (United States); Otto, K.W.; Whitley, S.C.; Gist, R.L. [Purvin and Gertz Inc., Houston, TX (United States)

1996-07-01T23:59:59.000Z

246

Rapid Gas Hydrate Formation Process - Energy Innovation Portal  

This invention may have utility in natural gas / CH4 storage and transport, CO2 sequestration, cold energy storage, ... (CH4) or carbon dioxide (CO2).

247

NETL: Development of a Novel Gas Pressurized Stripping Process...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 2013 NETL CO2 Capture Technology Meeting. Preliminary Technical and Economic Feasibility Study - Topical Report PDF-381KB (October 2012) Development of a Novel Gas...

248

Gas Interactions In Nonferrous Metals Processing I - TMS  

Science Conference Proceedings (OSTI)

GAS-METAL REACTIONS DURING DEBINDING AND SINTERING OF ... Less well-defined are the corresponding liquid phase reaction and reactions which ...

249

Oil and Gas Environmental Review and Approval Processes (New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Program Type Environmental Regulations Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the...

250

Developing a water treatment system for Subsea Gas processing plant.  

E-Print Network (OSTI)

??The petroleum industry is currently moving to meet the ever-rising demand for oil and gas production. As onshore fields become depleted and decline in production,… (more)

Honer Badi M Nazhat, Dana

2006-01-01T23:59:59.000Z

251

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

This past summer, EIA activated the baseline survey (EIA-757, Schedule A), the results of which are published in EIA's Natural Gas Annual Respondent Query System.

252

Natural Gas Processing Plants in the United States: 2010 Update...  

Annual Energy Outlook 2012 (EIA)

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and...

253

NATURAL GAS PROCESSING PLANT SURVEY FORM EIA-757 INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

Schedule B is the “Emergency Status Report,” which will only be activated during an emergency situation that impacts the supply of natural gas to ...

254

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

The EIA-757 survey has a baseline portion, Schedule A, to track the country's population of natural gas plants, and an emergency activation portion, ...

255

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

256

Gas conditioning and processing. Volume II. Absorption and fractionation; pumping, compression and expansion; refrigeration; hydrate inhibition, dehydration and process control  

SciTech Connect

Volume II of a two volume publication is presented in which aspects of conditioning and/or processing of natural gas for sale are examined. Chapters are included on absorption and fractionation, compression and expansion of fluids, refrigeration systems, liquefaction processes, water-hydrocarbon system behavior, dehydration and sweetening, adsorption processing, sulfur recovery, process control, and cost estimation. (JRD)

Campbell, J.M.

1976-01-01T23:59:59.000Z

257

Silica Exposure Assessment of Oil And Gas Drilling Workers During Hydraulic Fracking Process.  

E-Print Network (OSTI)

??The problem investigated in this study was that of identifying the silica exposure to the employees of an oil gas company during the fracking process… (more)

Li, Jigang

2011-01-01T23:59:59.000Z

258

Process for off-gas particulate removal and apparatus therefor  

DOE Patents (OSTI)

In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

Carl, D.E.

1997-10-21T23:59:59.000Z

259

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2 sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments, corefloods were conducted at 1,500 psig and 70??C, in which flue gas was injected into an Austin chalk core containing initially methane. Two types of flue gases were injected: dehydrated flue gas with 13.574 mole% CO2 (Gas A), and treated flue gas (N2, O2 and water removed) with 99.433 mole% CO2 (Gas B). The main results of this study are as follows. First, the dispersion coefficient increases with concentration of ??impurities??. Gas A exhibits the largest dispersion coefficients, 0.18-0.25 cm2/min, compared to 0.13-0.15 cm2/min for Gas B, and 0.15 cm2/min for pure CO2. Second, recovery of methane at breakthrough is relatively high, ranging from 86% OGIP for pure CO2, 74-90% OGIP for Gas B, and 79-81% for Gas A. Lastly, injection of Gas A would sequester the least amount of CO2 as it contains about 80 mole% nitrogen. From the view point of sequestration, Gas A would be least desirable while Gas B appears to be the most desirable as separation cost would probably be cheaper than that for pure CO2 with similar gas recovery. For UCS tests, corefloods were conducted at 1,700 psig and 65??C in such a way that the cell throughput of CO2 simulates near-wellbore throughput. This was achieved through increasing the injection rate and time of injection. Corefloods were followed by porosity measurement and UCS tests. Main results are presented as follows. First, the UCS of the rock was reduced by approximately 30% of its original value as a result of the dissolution process. Second, porosity profiles of rock samples increased up to 2.5% after corefloods. UCS test results indicate that CO2 injection will cause weakening of near-wellbore formation rock.

Nogueira de Mago, Marjorie Carolina

2005-08-01T23:59:59.000Z

260

New process for coke-oven gas desulfurization  

SciTech Connect

With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effects of the catalyst and reaction conditions on the integrated process of coal pyrolysis with CO{sub 2} reforming of methane  

Science Conference Proceedings (OSTI)

Our previous works showed that the tar yield of coal pyrolysis can obviously be improved by integrated CO{sub 2} reforming of methane to coal pyrolysis in a fixed-bed reactor consisting of an upper catalyst layer and a lower coal layer. In this work, the effects of catalyst supports (MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, and NaY) and reaction conditions on tar and water yields, CH{sub 4} conversion in pyrolysis of Chinese Pingshuo coal, and the carbon deposition on different catalysts were investigated. The results indicated that the catalyst support has an important effect on the integrated process and MgO is the best among the studied supports. A higher tar yield, lower water yield, and lower carbon deposition can be obtained with Ni/MgO as the catalyst. The tar yield increases with the increase of the pyrolysis temperature, holding time, CO{sub 2}/CH{sub 4} ratio, and CH{sub 4} flow rate, respectively, while the char yield decreases with an increasing pyrolysis temperature. 22 refs., 7 figs., 1 tab.

Jiahe Liu; Haoquan Hu; Lijun Jin; Pengfei Wang [Dalian University of Technology, Dalian (China). State Key Laboratory of Fine Chemicals

2009-09-15T23:59:59.000Z

262

S. 625: Natural Gas Regulatory Reform Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, March 16, 1989  

Science Conference Proceedings (OSTI)

S. 625 would eliminate artificial distortions in the natural gas marketplace to promote competition in the natural gas industry. It would do this by amending certain sections of the Natural Gas Policy Act of 1978. Title I: Decontrol of Natural Gas describes provisions for elimination of wellhead price controls; coordination with the Natural Gas Act; application to first sales; technical and conforming amendments; effective date (January 1, 1993). Title II: Transitional Provisions describes the decontrol of natural gas subject to a newly executed contract, a renegotiated contract, a terminated contract, or to a contract which expires; coordination with the Natural Gas Act; and effective date (enactment of this bill).

Not Available

1989-01-01T23:59:59.000Z

263

Catalytic reforming optimization  

Science Conference Proceedings (OSTI)

The authors have previously examined correlations between catalytic reforming parameters for an L-35-6 unit at the Gor'knefteorgsintez Industrial Association. Experimental design was used to derive polynomial equations describing the correlations for each reactor. Further research on optimizing the reforming has been based on these results. They adopted the following strategy to define the best working parameters: they define a temperature that would provide the maximum target-product yield while maintaining a given working life. Most of the aromatic hydrocarbons are formed by the naphthene dehydrogenation, which is endothermic, so the greater the temperature drop over the height, the more rapid the process. The temperature difference thus indicates the current catalyst activity. To increase the target-product yield, one must raise the inlet temperature and ensure the largest drop across the catalyst. They examined an algorithm with fixed inlet conditions as regards flow rate and raw material composition. This algorithm provides the basis of software for the automatic control of the L-35-6 reactor unit at the Gor'knefteorgsintez Industrial Association. The system has been checked out and put into experimental operation.

Mazina, S.G.; Rybtsov, V.V.; Priss-Titarenko, T.A.

1988-11-10T23:59:59.000Z

264

A process for off-gas particulate removal  

DOE Patents (OSTI)

This paper describes an off-gas system for the removal of radioactive particulates from a melter for the vitrification of radioactive wastes to form glass waste forms. A diagram is provided.

Carl, D.E.

1998-04-01T23:59:59.000Z

265

SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR  

E-Print Network (OSTI)

SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR Khalid Al-Ali 1 process of a solar reformer of dry methane reforming was proposed to operate in a temperature range of 600:2:2 fulfills our requirements for the direct contact bubble reactor of the solar reformer, in which a CO2-rich

Recanati, Catherine

266

Method and apparatus for processing exhaust gas with corona discharge  

DOE Patents (OSTI)

The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

1999-06-22T23:59:59.000Z

267

Microwave off-gas treatment apparatus and process  

DOE Patents (OSTI)

The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Wicks, George G. (North Aiken, SC)

2003-01-01T23:59:59.000Z

268

Thief process for the removal of mercury from flue gas  

DOE Patents (OSTI)

A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O' Dowd, William J. (Charleroi, PA)

2003-02-18T23:59:59.000Z

269

An update on catalytic reforming  

Science Conference Proceedings (OSTI)

The UOP Platforming process is a catalytic reforming process in widespread use throughout the petroleum and petrochemical industries. Since the first unit went onstream in 1949, the process has become a standard feature in refineries worldwide. Over the years, significant improvements have been made in process catalysts and process design. The most recent improvement is the combination of a catalyst called R-72 with a new patented flow scheme, R-72 staged loading, which gives significantly higher yields and provides increased catalyst stability. In this article, the authors describe two types of Platforming processes and the new R-72 staged loading scheme.

Wei, D.H.; Moser, M.D.; Haizmann, R.S.

1996-10-01T23:59:59.000Z

270

Plasma-catalyzed fuel reformer  

DOE Patents (OSTI)

A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

2013-06-11T23:59:59.000Z

271

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

272

PHYSICS PROCESSES IN DISRUPTION MITIGATION USING MASSIVE NOBLE GAS INJECTION  

SciTech Connect

Methods for detecting imminent disruptions and mitigating disruption effects using massive injection of noble gases (He, Ne, or Ar) have been demonstrated on the DIII-D tokamak [1]. A jet of high injected gas density (> 10{sup 24} m{sup -3}) and pressure (> 20 kPa) penetrates the target plasma at the gas sound speed ({approx}300-500 m/s) and increases the atom/ion content of the plasma by a factor of > 50 in several milliseconds. UV line radiation from the impurity species distributes the plasma energy uniformly on the first wall, reducing the thermal load to the divertor by a factor of 10. Runaway electrons are almost completely eliminated by the large density of free and bound electrons supplied by the gas injection. The small vertical plasma displacement before current quench and high ratio of current decay rate to vertical growth rate result in a 75% reduction in peak halo current amplitude and attendant forces.

D.A. HUMPHREYS; D.G. WHYTE; T.C. JERNIGAN; T.E.EVANS; D.S. GRAY; E.M. HOLLMANN; A.W. HYATT; A.G. KELLMAN; C.J. LASNIER; P.B. PARKS; P.L. TAYLOR

2002-07-01T23:59:59.000Z

273

Compatibility of selected ceramics with steam-methane reformer environments  

DOE Green Energy (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

274

Evaluation of the NeuStream-S™ Flue Gas Desulfurization Process  

Science Conference Proceedings (OSTI)

Harris Group Inc. (HGI) of Denver, Colorado, was contracted by the Electric Power Research Institute (EPRI) to monitor, evaluate, and prepare this report on a dual-alkali flue gas desulfurization (FGD) process developed by Neumann Systems Group, Inc. (NSG). The process is being demonstrated in a nominal 20-MW demonstration plant, treating a slip stream of flue gas from the Colorado Springs Utilities 142-MW Drake Unit 7. HGI evaluated performance, operability, and readiness for scale-up of the process. Co...

2011-05-31T23:59:59.000Z

275

Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology  

E-Print Network (OSTI)

by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas primary fuel sources from existing production and distribution networks ­ i.e. natural gas, gasoline gas -- optimize catalyst composition and evaluate reforming conditions. · Hydrogen purification using

276

Systemic Reform Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

(5) support local initiatives and model sites; (6) align state policy; (7) reform higher education and teacher preparation; and (8) mobilize public and professional...

277

Page iManaging Investment Climate Reforms: Viet Nam Case Study Table of Contents  

E-Print Network (OSTI)

The primary objective of this study is to learn about Viet Nam’s experience with reforms aimed at facilitating private entry into businesses, and in particular to understand how the reform process itself was managed, what have been the results or outcomes of the reforms, and what lessons have been learned. The focus of the analysis is the Enterprise Law reform episode and related reforms to promote domestic private sector development in Viet Nam.

Viet Nam; Raymond Mallon; Economic Consultant

2004-01-01T23:59:59.000Z

278

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

279

U.S., Canada continue dominance of world`s gas processing  

Science Conference Proceedings (OSTI)

Gas plants in the US and Canada continued to lead the rest of the world in processing capacity, throughput, and NGL production in 1996. The consolidation of gas-processing assets that has been rolling through US companies in recent years continued to limit growth in new capacity. Canadian liquids producers, on the other hand, will likely benefit from increased gas production and export sales to the US when a clutch of pipeline expansions in the next 18--30 months eases the capacity constraints on gas movements southward. And, markets and suppliers around the world continue to become more closely dependent on each other, stimulating new capacity and production. US capacity stood at slightly more than 678 bcfd as of January 1, 1997; throughput for 1996 averaged 48.8 bcfd; and NGL production exceeded 76,000 gpd. Canadian gas-processing capacity last year approached 40 bcfd. Gas-processing throughput there averaged more than 30.8 bcfd; NGL production fell to slightly more than 42,000 gpd. Oil and Gas Journal`s most recent exclusive, plant-by-plant, worldwide gas-processing survey and its international survey of petroleum-derived sulfur recovery reflect these trends. This report supplements operator-supplied capacity and production data for Alberta with figures from the (1) Alberta Energy and Utilities Board (AEUB), formerly the Energy Resources Conservation Board (ERBC), (2) British Columbia Ministry of Employment and Investment`s Engineering and Operations Branch, and (3) Saskatchewan Ministry of Energy and Mines.

True, W.R.

1997-06-02T23:59:59.000Z

280

DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES  

Science Conference Proceedings (OSTI)

The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

K. Jothimurugesan; Santosh K. Gangwal

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's Engineering group has found a new site for the project at a Duke Energy gas processing plant in Milfay, Oklahoma.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

282

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

283

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

284

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

285

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

DOE Green Energy (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

286

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

287

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

288

Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process  

Science Conference Proceedings (OSTI)

Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.

Klint, V.W.; Dale, P.R.; Stephenson, C.

1997-10-01T23:59:59.000Z

289

Development of a tar decomposition model for application in a Chemical-Looping Reformer operated with raw gas from a biomass gasifier.  

E-Print Network (OSTI)

??The production of Synthetic Natural Gas (SNG) represents one of the promising alternatives for biofuel manufacture. The transport sector is where SNG has been identified… (more)

Pestana, Maria Inês

2011-01-01T23:59:59.000Z

290

Gas-assisted gravity drainage (GAGD) process for improved oil ...  

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing ...

291

Process for removal of hydrogen halides or halogens from incinerator gas  

DOE Patents (OSTI)

A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

Huang, H.S.; Sather, N.F.

1987-08-21T23:59:59.000Z

292

Aeroengine turbine exhaust gas temperature prediction using process support vector machines  

Science Conference Proceedings (OSTI)

The turbine exhaust gas temperature (EGT) is an important parameter of the aeroengine and it represents the thermal health condition of the aeroengine. By predicting the EGT, the performance deterioration of the aeroengine can be deduced in advance and ... Keywords: aeroengine, condition monitoring, process support vector machines, time series prediction, turbine exhaust gas temperature

Xu-yun Fu, Shi-sheng Zhong

2013-07-01T23:59:59.000Z

293

Copyright reform step zero  

Science Conference Proceedings (OSTI)

'A reasonable person might well think it's a fool's errand to contemplate a [copyright] reform project of any sort.' The US Copyright Act of 1976 and its subsequent amendments is contained in over 200 pages of incomprehensible, sometimes inconsistent, ... Keywords: US copyright law, administrative law, copyright reform, institutional frameworks

Terry Hart

2010-06-01T23:59:59.000Z

294

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

295

Biomass gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas.  

E-Print Network (OSTI)

??A novel study on biomass-air gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas has been conducted. The study was designed… (more)

Legonda, Isack Amos

2012-01-01T23:59:59.000Z

296

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing ...  

U.S. Energy Information Administration (EIA)

U.S. Normal Butane-Butylene Stocks at Natural Gas Processing Plants (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: ...

297

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

298

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents (OSTI)

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

299

Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process  

SciTech Connect

A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

2011-02-01T23:59:59.000Z

300

Reduce Natural Gas Use in Your Industrial Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

Not Available

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mathematical modeling of wet magnesia flue gas desulphurization process  

Science Conference Proceedings (OSTI)

Desulphurization of flue gases from various chemical industries in a techno-econo-enviro manner is a demanding technology. The concentrations of sulphur dioxide in and around these plants overshoot the danger point. In recent years, the process analysis ...

M. K. Mondal

2008-01-01T23:59:59.000Z

302

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

303

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

304

Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur  

SciTech Connect

The Topsoe Wet gas Sulfuric Acid (WSA) process is a catalytic process which produces concentrated sulfuric acid from refinery streams containing sulfur compounds such as H{sub 2}S (Claus plant feed), Claus plant tail gas, SO{sub 2} (FCC off-gas, power plants), and spent sulfuric acid (alkylation acid). The WSA process recovers up to 99.97% of the sulfur value in the stream as concentrated sulfuric acid (93--98.5 wt%). No solid waste products or waste water is produced and no chemicals are consumed in the process. The simple process layout provides low capital cost and attractive operating economy. Twenty four commercial WSA plants have been licensed. The WSA process is explained in detail and comparisons with alternative sulfur management technology are presented. Environmental regulations applying to SO{sub x} abatement and sulfuric acid production plants are explained in the context of WSA plant operation.

Ward, J.W. [Haldor Topsoe, Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

305

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

306

Oxygen sensor for monitoring gas mixtures containing hydrocarbons  

DOE Patents (OSTI)

A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

Ruka, R.J.; Basel, R.A.

1996-03-12T23:59:59.000Z

307

Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen  

E-Print Network (OSTI)

Crude glycerol is the major byproduct from biodiesel industry. In general, for every 100 pounds of biodiesel produced, approximately 10 pounds of crude glycerol are produced as a by-product. As the biodiesel industry rapidly expands in the U.S., the market is being flooded with this low quality waste glycerol. Due to its high impurities, it is expensive to purify and use in food, pharmaceutical, and cosmetics industries. Biodiesel producers should seek an alternative method which is economically and environmentally friendly. This research contains reforming process to covert waste glycerol from a biodiesel industry into sellable hydrogen. This process consists of 850oC reformer, 350oC and 210oC shift reactors for water gas shift reaction, flash tanks, and a separator. It is considered to be the least expensive method. At 850oC and 1 atm pressure, glycerol reacts with superheated steam to produce gaseous mixture of hydrogen, carbon dioxide, carbon monoxide, and methane. Reformer is a batch process where only 68% of waste glycerol is converted into gaseous mixture. The excess glycerol is recycled back as a feedstock. Water gas shift (WGS) reaction, further convert carbon monoxide into hydrogen and carbon dioxide which is further subjected to separation process to isolate hydrogen from CO2 and any other impurities. The final product stream consists of 68% of hydrogen, and 27% of CO2 based on molar flow rate.

Joshi, Manoj

2009-06-09T23:59:59.000Z

308

Rapid Gas Hydrate Formation Processes: Will They Work?  

SciTech Connect

Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

2010-01-01T23:59:59.000Z

309

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-22T23:59:59.000Z

310

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is now working with the company's Randall Gas Technology Group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group first found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produced about 1 MMscfd of gas containing 24% nitrogen. The membrane unit was built to bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid was built by ABB. NTE ordered the required compressor and MTR made the membrane modules for a December 2004 delivery. However, the gas supply was not steady enough for field testing, and MTR/ABB have now located other sites for field testing and commercial development.

Kaaeid Lokhandwala

2005-12-15T23:59:59.000Z

311

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd nitrogen removal/gas treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project field test at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2005-02-28T23:59:59.000Z

312

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

DOE Green Energy (OSTI)

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

313

Partial oxidation fuel reforming for automotive power systems.  

DOE Green Energy (OSTI)

For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

1999-09-07T23:59:59.000Z

314

Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the  

E-Print Network (OSTI)

. Keywords: Energy, Biofuels, Shale gas, Alternative fuels, Diesel, Fisher ­ Tropsch 1 Corresponding author. The process is based on Fischer- Tropsch technology in which the shale gas is reformed with steam, while and industry; e.g. ExxonMobil announced a $600 million program [10-12]. However, the use of Fischer-Tropsch

Grossmann, Ignacio E.

315

Reformer assisted lean NO.sub.x catalyst aftertreatment system and method  

DOE Patents (OSTI)

A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

Kalyanaraman, Mohan (Media, PA); Park, Paul W. (Peoria, IL); Ragle, Christie S. (Havana, IL)

2010-06-29T23:59:59.000Z

316

Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust  

DOE Patents (OSTI)

A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

2012-05-15T23:59:59.000Z

317

Catalytic reforming methods  

DOE Patents (OSTI)

A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

Tadd, Andrew R; Schwank, Johannes

2013-05-14T23:59:59.000Z

318

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-09-01T23:59:59.000Z

319

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. Our target is to have the unit installed and optimized by mid-January.

Kaaeid Lokhandwala

2004-11-15T23:59:59.000Z

320

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1-MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technologies group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The system has been installed in the field and initial startup activities have been completed. The system has not yet produced the flow rate required for continuous stable operation. NTE, the company hosting this test site/pilot plant, will drill additional wells to increase the inlet flow rate. The system is expected to be in full continuous operation by May 2004.

Kaaeid Lokhandwala

2004-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. The membrane skid is scheduled to be completed by December 29. The target is to have the unit installed and optimized by mid-January.

Andre Da Costa

2003-11-24T23:59:59.000Z

322

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPERATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2004-01-30T23:59:59.000Z

323

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group has found a new site for the project at a North Texas Exploration (NTE) gas processing plant. The plant produces about 1 MMscfd of gas containing 24% nitrogen. The membrane unit will bring this gas to 4% nitrogen for delivery to the pipeline. The membrane skid is being built by ABB. NTE has ordered the required compressor and MTR is making the membrane modules. System fabrication was completed in January 2004 and the membrane inserts were loaded. Additional pressure testing and verification will be completed prior to shipment, which is expected in early February 2004.

Kaaeid Lokhandwala

2003-12-31T23:59:59.000Z

324

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

SciTech Connect

Over the past 14 years, the Gas Technology Institute and jointly with Uhde since 1997 developing Morphysorb{reg_sign} a new physical solvent-based acid gas removal process. Based on extensive laboratory, bench, pilot-plant scale experiments and computer simulations, DEGT Gas Transmission Company, Canada (DEGT) has chosen the process for use at its Kwoen processing facility near Chetwynd, British Columbia, Canada as the first commercial application for the Morphysorb process. DOE co-funded the development of the Morphysorb process in various stages of development. DOE funded the production of this report to ensure that the results of the work would be readily available to potential users of the process in the United States. The Kwoen Plant is designed to process 300 MMscfd of raw natural gas at 1,080-psia pressure. The sour natural gas contains 20 to 25 percent H{sub 2}S and CO{sub 2}. The plant reduces the acid gas content by about 50% and injects the removed H{sub 2}S and CO{sub 2} into an injection well. The Kwoen plant has been operating since August 2002. Morphysorb{reg_sign} is a physical solvent-based process used for the bulk removal of CO{sub 2} and/or H{sub 2}S from natural gas and other gaseous streams. The solvent consists of N-Formyl morpholine and other morpholine derivatives. This process is particularly effective for high-pressure and high acid-gas applications and offers substantial savings in investment and operating cost compared to competitive physical solvent-based processes. GTI and DEGT first entered into an agreement in 2002 to test the Morphysorb process at their Kwoen Gas Treating Plant in northern BC. The process is operating successfully without any solvent related problems and has between DEGTC and GTI. As of December 2003, about 90 Bcf of sour gas was processed. Of this about 8 Bcf of acid gas containing mainly H{sub 2}S and CO{sub 2} was injected back into the depleted reservoir and 82 Bcf sent for further processing at DEGTC's Pine River Plant. This report discusses the operational performance at Kwoen plant during the performance test as well as the solvent performance since the plant started up. The Morphysorb performance is assessed by Duke Energy according to five metrics: acid gas pickup, recycle gas flow, total hydrocarbon loss in acid gas stream, Morphysorb solvent losses and foaming related problems. Plant data over a period of one year show that the Morphysorb solvent has performed extremely well in four out of five of these categories. The fifth metric, Morphysorb solvent loss, is being evaluated over a longer-term period in order to accurately assess it. However, the preliminary indications based on makeup solvent used to date are that solvent losses will also be within expectations. The analysis of the solvent samples indicates that the solvent is very stable and did not show any sign of degradation. The operability of the solvent is good and no foaming related problems have been encountered. According to plant operators the Morphysorb unit runs smoothly and requires no special attention.

Nagaraju Palla; Dennis Leppin

2004-02-01T23:59:59.000Z

325

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

Science Conference Proceedings (OSTI)

GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

Nagaraju Palla; Dennis Leppin

2003-09-30T23:59:59.000Z

326

TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS  

Science Conference Proceedings (OSTI)

GTI and Krupp Uhde have been jointly developing advanced technology for removing high concentrations of acid gas from high-pressure natural gas for over a decade. This technology, the Morphysorb{reg_sign} process, based on N-formyl and N-acetyl morpholine mixtures, has now been tested in a large-scale facility and this paper presents preliminary results from acceptance testing at that facility. Earlier publications have discussed the bench-scale and pilot plant work that led up to this important milestone. The site was Duke Energy's new Kwoen sour gas upgrader near Chetwynd B.C., Canada. This facility has a nameplate capacity of 300 MMscfd of sour natural gas. The objective of the Morphysorb process at this site was to remove 33 MMscfd of acid gas (H{sub 2}S and CO{sub 2}) for reinjection downhole. This represents about half the acid gas present in the feed to the plant. In so doing, proportionately more of the plant ''sales'' gas, which is sent for final processing at the nearby Pine River plant, can be sent down the line without coming up against the sulfur removal capacity limits of Pine River plant, than could with other solvents that were evaluated. Other benefits include less loss of methane downhole with the rejected acid gas and lower circulation and recycle compression horsepower than with competitive solvents. On the downside, the process is expected to have higher solvent vaporization losses than competitive solvents, but this is a comparatively minor drawback when weighed against the value of the benefits. These benefits (and drawbacks) were developed into quantitative ''acceptance'' criteria, which will determine if the solvent will continue to be used at the site and for award of monetary bonuses to the process developer (GTI).

Nagaraju Palla; Dennis Leppin

2003-06-30T23:59:59.000Z

327

Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications  

Science Conference Proceedings (OSTI)

This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

Lee Nelson

2011-09-01T23:59:59.000Z

328

Advances in the chemistry of catalytic reforming of naphtha  

Science Conference Proceedings (OSTI)

Catalytic reforming of naphtha remains the key process for production of high octane gasoline and aromatics (BTX) which are used as petrochemicals feedstocks. The increased demand for these products has led refiners to investigate ways for improving the performance of the reforming process and its catalysts. Moreover, in order to comply with environmental restrictions, the reduction in lead content would require further increase in the reformate octane number. In response to these requirements, refiners and catalyst manufacturers are examining the role of the catalysts in improving the selectivity to aromatics and in octane enhancement. By understanding the chemistry and the mechanism of the reforming process, higher performance catalysts with longer life on stream and lower cost can be developed. This review covers recent developments in reforming catalysts, process reaction chemistry and mechanism. It also highlights prospective areas of research.

Anabtawi, J.A.; Redwan, D.S.; Al-Jarallah, A.M.; Aitani, A.M. (Petroleum and Gas Technology Div., Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (SA))

1991-01-01T23:59:59.000Z

329

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) has started to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

330

FIELD DEMONSTRATION OF A MEMBRANE PROCESS TO SEPARATE NITROGEN FROM NATURAL GAS  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) continued to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.

Dr. Andre Da Costa

2003-04-10T23:59:59.000Z

331

Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992  

Science Conference Proceedings (OSTI)

Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term ( 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.

Francis, A.J.; Gillow, J.B.

1993-09-01T23:59:59.000Z

332

Novel cost allocation framework for natural gas processes: methodology and application to plan economic optimization  

E-Print Network (OSTI)

Natural gas plants can have multiple owners for raw natural gas streams and processing facilities as well as for multiple products. Therefore, a proper cost allocation method is necessary for taxation of the profits from natural gas and crude oil as well as for cost sharing among gas producers. However, cost allocation methods most often used in accounting, such as the sales value method and the physical units method, may produce unacceptable or even illogical results when applied to natural gas processes. Wright and Hall (1998) proposed a new approach called the design benefit method (DBM), based upon engineering principles, and Wright et al. (2001) illustrated the potential of the DBM for reliable cost allocation for natural gas processes by applying it to a natural gas process. In the present research, a rigorous modeling technique for the DBM has been developed based upon a Taylor series approximation. Also, we have investigated a cost allocation framework that determines the virtual flows, models the equipment, and evaluates cost allocation for applying the design benefit method to other scenarios, particularly those found in the petroleum and gas industries. By implementing these individual procedures on a computer, the proposed framework easily can be developed as a software package, and its application can be extended to large-scale processes. To implement the proposed cost allocation framework, we have investigated an optimization methodology specifically geared toward economic optimization problems encountered in natural gas plants. Optimization framework can provide co-producers who share raw natural gas streams and processing plants not only with optimal operating conditions but also with valuable information that can help evaluate their contracts. This information can be a reasonable source for deciding new contracts for co-producers. For the optimization framework, we have developed a genetic-quadratic search algorithm (GQSA) consisting of a general genetic algorithm and a quadratic search that is a suitable technique for solving optimization problems including process flowsheet optimization. The GQSA inherits the advantages of both genetic algorithms and quadratic search techniques, and it can find the global optimum with high probability for discontinuous as well as non-convex optimization problems much faster than general genetic algorithms.

Jang, Won-Hyouk

2005-05-01T23:59:59.000Z

333

World`s gas-processing expands; Canada, U.S. lead remains steady  

SciTech Connect

Worldwide gas-processing capacity increased in 1997, led by expansions in North America, Latin America, and the Middle East. Canada and the US continued to dominate the rest of the world in capacity, but those countries` combined share of world capacities and production was kept steady in 1997 by expansions elsewhere. The paper discusses prices of natural gas in the US, Canadian plans, North American activity, world activity, and sulfur recovery capacity.

True, W.R.

1998-06-08T23:59:59.000Z

334

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. MTR then located an alternative testing opportunity and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, CA, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; the units will be delivered in mid-2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

335

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we are now negotiating with Atmos Energy for a final test of the project demonstration unit. Several commercial sales have also resulted from the partnership with ABB, and sales of nitrogen/natural gas membrane separation units now total $2.3 million.

Kaaeid Lokhandwala

2006-03-20T23:59:59.000Z

336

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, and we continue, but have as yet been unsuccessful in our attempts, to negotiate with Atmos Energy for a final test of the original project demonstration unit. In the meantime, MTR has located an alternative testing opportunity and signed a contract with Towne Exploration for a demonstration plant in Rio Vista, CA, to be run through May 2007. Several commercial sales have resulted from the partnership with ABB, and total sales of nitrogen/natural gas membrane separation units are now approaching $2.6 million.

Kaaeid Lokhandwala

2006-09-30T23:59:59.000Z

337

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents (OSTI)

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

338

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network (OSTI)

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

339

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

340

Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing  

E-Print Network (OSTI)

There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries as they confront rapid changes and new realities. New policy and economic considerations, brought on by changes in environmental and business regulations and new compressor/driver technology, are causing these gas industry companies to consider electric motors for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered because of their improved operating efficiencies and lower costs. The Electric Power Research Institute (EPRI), working through the EPRI Chemicals and Petroleum Office, is providing leadership in the efforts to further dialogue among gas companies, electric utilities, and vendors. EN strategists is working closely with EPRI, the electric utilities, and the gas transmission companies to promote consideration of The Electric Option.

Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

342

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

343

Reforming naphtha with boron-containing large-pore zeolites  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process. It comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising larger-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms containing less that 1000 parts per million aluminum.

Zones, S.I.; Holtermann, D.L.; Rainis, A.

1992-05-19T23:59:59.000Z

344

Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery  

SciTech Connect

This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

2006-09-30T23:59:59.000Z

345

6000 tpd SRC-I Demonstration Plant gas systems. Design baseline package, Volume 8. [DEA process  

SciTech Connect

Volume 8 contains the design of the fuel gas desulfurization process (DEA) and of the liquefied petroleum gases (LPG) section of the plant. The removal of acid gases is accomplished by intimately contacting the feed stream with the descending DEA solution. A partially regenerated semi-lean DEA solution is fed to an intermediate tray of the column for the bulk removal of H/sub 2/S and CO/sub 2/ while a fully regenerated lean DEA solution is fed at the top tray for the removal of the remaining acid gases in the top section of the absorber. The lean solution stream temperature is maintained at 10 to 15/sup 0/F above the absorber feed gas temperature to prevent hydrocarbon condensation in the column with consequent foaming and flooding of the column. The overhead gas (Stream 6305) leaving the H.P. DEA absorber is cooled and passed through the Sweet Gas K.O. Drum (bottom section of V-15305) to separate any condensate. The gas leaving the drum is further contacted with a 3 weight percent caustic solution in the bottom section of the Treated Gas Wash Column (T-15303) for removal of residual acid gases in order to comply with the sweet gas specifications of 1 ppMv H/sub 2/S and 10 ppMv CO/sub 2/. The LPG Recovery Unit is designed to process 15.95 MMSCFD of low pressure fuel reject gas from the HPU to recover approximately 60 percent of the propane and most of the heavier hydrocarbons. The recovered hydrocarbons are produced as liquefied petroleum gas (LPG) product. Specifications for the LPG product are: (1) Ethane/Propane (Vol/Vol) 0.02; and (2) LPG product should meet GPA Publication 2140-77 Commercial B-P mixture specifications.

1983-01-27T23:59:59.000Z

346

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

347

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

348

Simulation, integration, and economic analysis of gas-to-liquid processes  

E-Print Network (OSTI)

Gas-to-liquid (GTL) process involves the chemical conversion of natural gas (or other gas sources) into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. A leading GTL technology is the Fischer Tropsch process. The objective of this work is to provide a techno-economic analysis of the GTL process and to identify optimization and integration opportunities for cost saving and reduction of energy usage and environmental impact. First, a basecase flowsheet is synthesized to include the key processing steps of the plant. Then, computer-aided process simulation is carried out to determine the key mass and energy flows, performance criteria, and equipment specifications. Next, energy and mass integration studies are performed to address the following items: (a) heating and cooling utilities, (b) combined heat and power (process cogeneration), (c) management of process water, (c) optimization of tail-gas allocation, and (d) recovery of catalystsupporting hydrocarbon solvents. Finally, an economic analysis is undertaken to determine the plant capacity needed to achieve the break-even point and to estimate the return on investment for the base-case study. After integration, 884 million $/yr is saved from heat integration, 246 million $/yr from heat cogeneration, and 22 million $/yr from water management. Based on 128,000 barrels per day (BPD) of products, at least 68,000 BPD capacity is needed to keep the process profitable, with the return on investment (ROI) of 5.1%. Compared to 8 $/1000 SCF natural gas, 5 $/1000 SCF price can increase the ROI to 16.2%.

Bao, Buping

2008-12-01T23:59:59.000Z

349

Selective Removal of Ethylene, a Deposit Precursor, from a "Dirty" Synthesis Gas Stream via Gas-Phase Partial Oxidation  

E-Print Network (OSTI)

. The process is based on Fischer- Tropsch technology in which the shale gas is reformed with steam, while and industry; e.g. ExxonMobil announced a $600 million program [10-12]. However, the use of Fischer-Tropsch the gap between current fuels and biofuels by using Fischer-Tropsch (FT) technology with a hybrid source

Dean, Anthony M.

350

Gasification Evaluation of Gas Turbine Combustion  

DOE Green Energy (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

351

Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems  

Science Conference Proceedings (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

Nick Soelberg; Joe Enneking

2011-05-01T23:59:59.000Z

352

Evaluation of a Combined Cyclone & Gas Filtration System for Particulate Removal in the Gasification Process  

Science Conference Proceedings (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas™ Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas™ char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas™ gasification process. These reductions would help to keep the E-Gas™ technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas™ gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction. 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation. 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design. 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit. 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit. 6. Develop operating procedures for the cyclone-filtration hybrid unit. 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey

2010-04-30T23:59:59.000Z

353

Predicted nuclear heating and temperatures in gas-cooled nuclear reactors for process heat applications  

SciTech Connect

The high-temperature gas-cooled nuclear reactor (HTGR) is an attractive potential source of primary energy for many industrial and chemical process applications. Significant modification of current HTGR core design will be required to achieve the required elevations in exit gas temperatures without exceeding the maximum allowable temperature limits for the fuel material. A preliminary evaluation of the effects of various proposed design modifications by predicting the resulting fuel and gas temperatures with computer calculational modeling techniques is reported. The design modifications evaluated are generally those proposed by the General Atomic Company (GAC), a manufacturer of HTGRs, and some developed at the LASL. The GAC modifications do result in predicted fuel and exit gas temperatures which meet the proposed design objectives. (auth)

Cort, G.E.; Vigil, J.C.; Jiacoletti, R.J.

1975-09-01T23:59:59.000Z

354

Process for hydrogen isotope concentration between liquid water and hydrogen gas  

DOE Patents (OSTI)

A process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas, wherein liquid water and hydrogen gas are contacted, in an exchange section, with one another and with at least one catalyst body comprising at least one metal selected from Group VIII of the Periodic Table and preferably a support therefor, the catalyst body has a liquid-water-repellent, gas permeable polymer or organic resin coating, preferably a fluorinated olefin polymer or silicone coating, so that the isotope concentration takes place by two simultaneously occurring steps, namely, ##EQU1## WHILE THE HYDROGEN GAS FED TO THE EXCHANGE SECTION IS DERIVED IN A REACTOR VESSEL FROM LIQUID WATER THAT HAS PASSED THROUGH THE EXCHANGE SECTION.

Stevens, William H. (Deep River, CA)

1976-09-21T23:59:59.000Z

355

Survey of processes for high temperature-high pressure gas purification. [52 references  

SciTech Connect

In order to ensure the optimum operating efficiency of a combined-cycle electric power generating system, it is necessary to provide gas treatment processes capable of operating at high temperatures (> 1000/sup 0/F) and high pressures (> 10 atm (absolute)). These systems will be required to condition the inlet stream to the gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) to be compatible with both environmental and machine constraints. A survey of the available and developmental processes for the removal of these various contaminant materials has been conducted. Based on the data obtained from a variety of sources, an analysis has been performed to evaluate the performance of a number of potential cleanup processes in view of the overall system needs. The results indicate that commercially available, reliable, and economically competitive hot-gas cleanup systems (for the removal of H/sub 2/S, particulate matter, alkali, and nitrogen compounds) capable of conditioning raw product gas to the levels required for turbine use will not be available for some time.

Meyer, J.P.; Edwards, M.S.

1978-11-01T23:59:59.000Z

356

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

357

Field Demonstration of a Membrane Process to Separate Nitrogen from Natural Gas  

Science Conference Proceedings (OSTI)

The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During pre-commissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Since that time, Membrane Technology and Research, Inc. (MTR) has signed a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR is working with the company's Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry. Randall's engineering group found a new site for the project at a North Texas Exploration (NTE) gas processing plant, which met with limited success. However, a small test system was installed at a Twin Bottoms Energy well in Kentucky. This unit operated successfully for six months, and demonstrated the technology's reliability on a small scale. MTR then located an alternative test site with much larger gas flow rates and signed a contract with Towne Exploration in the third quarter of 2006, for a demonstration plant in Rio Vista, California, to be run through May 2007. The demonstration for Towne has already resulted in the sale of two commercial skids to the company; both units will be delivered by the end of 2007. Total sales of nitrogen/natural gas membrane separation units from the partnership with ABB are now approaching $4.0 million.

Kaaeid Lokhandwala

2007-03-31T23:59:59.000Z

358

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C@emn.fr ABSTRACT In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases

359

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

360

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

SciTech Connect

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

362

English-Spanish glossary: offshore exploration and production, gas processing, and valves  

Science Conference Proceedings (OSTI)

This series of articles contains 3 different English-Spanish glossaries of related terms used in the oil industry. The glossary of the offshore exploration and production involves a summary of terms used in the offshore oil activity. It also includes names of singular equipment used in offshore drilling, as well as several navigation terms in relation to the floating oil structures. With the help of the Gas Processors Association it was possible to compile a glossary of gas processing with a concise selection of common terms of the industry of gas processing. The glossary of valves includes more than 200 terms of the industry of valves in a specialized glossary, and several explanations about the application and operation of valves.

Not Available

1981-12-01T23:59:59.000Z

363

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

364

Process for removal of hydrogen halides or halogens from incinerator gas  

DOE Patents (OSTI)

A process for reducing the amount of halogens and halogen acids in high temperature combustion gases and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

Huang, Hann S. (Darien, IL); Sather, Norman F. (Naperville, IL)

1988-01-01T23:59:59.000Z

365

Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process  

DOE Patents (OSTI)

A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

1987-01-01T23:59:59.000Z

366

Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process  

DOE Patents (OSTI)

A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

Abrevaya, H.; Targos, W.M.

1987-12-22T23:59:59.000Z

367

Membrane Process to Capture CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

368

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Roberts (Primary Contact), Razima Souleimanova Gas Technology Institute (GTI) 1700 South Mount prospect Rd, Des Plaines, IL 60018 Phone: (847) 768-0518 Email: roberts@gastechnology.org DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17001 Subcontractors: * National Energy Technology Laboratory (NETL), Pittsburgh, PA * Schott North America, Duryea, PA * ATI Wah Chang, Albany, OR Project Start Date: February 1, 2007 Project End Date: June 30, 2013

369

NETL: Development of a Novel Gas Pressurized Stripping Process-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Project No.: DE-FE0007567 Carbon Capture Scientific is developing and testing a novel, proprietary, Gas Pressurized Stripping (GPS) process-based technology for CO2 capture from post-combustion flue gases. GPS process-based technology has many advantages. For the solvent based process it will be able to: Reduce the energy penalty associated with solvent regeneration Increase the CO2 desorption pressure Integrate CO2 capture and compression into one step Reduce CO2 compression needs Reduce solvent degradation These advantages could potentially eliminate CO2 compression entirely, hence reducing the total parasitic power load of a CO2 capture process to about 0.14kWh/kgCO2. This power load is a 60 percent reduction compared to the baseline case of 0.38kWh/kgCO2. The economic impact of this parasitic power reduction is a reduction in the incremental cost of electricity (COE) by about 21 mills/kWh.

370

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents (OSTI)

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

371

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents (OSTI)

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

372

DNDC: A process-based model of greenhouse gas fluxes from agricultural soils Donna L. Giltrap a,  

E-Print Network (OSTI)

DNDC: A process-based model of greenhouse gas fluxes from agricultural soils Donna L. Giltrap a complex feedbacks and interactions. Understanding the impacts of human activities on greenhouse gas to feed the Earth's increasing population. As greenhouse gas emissions from soils are the result

373

Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities  

E-Print Network (OSTI)

The release of flammable and toxic chemicals in petrochemical facilities is a major concern when designing modern process safety systems. While the proper selection of the necessary types of gas detectors needed is important, appropriate placement of these detectors is required in order to have a well-functioning gas detection system. However, the uncertainty in leak locations, gas composition, process and weather conditions, and process geometries must all be considered when attempting to determine the appropriate number and placement of the gas detectors. Because traditional approaches are typically based on heuristics, there exists the need to develop more rigorous optimization based approaches to handling this problem. This work presents several mixed-integer programming formulations to address this need. First, a general mixed-integer linear programming problem is presented. This formulation takes advantage of precomputed computational fluid dynamics (CFD) simulations to determine a gas detector placement that minimizes the expected detection time across all scenarios. An extension to this formulation is added that considers the overall coverage in a facility in order to improve the detector placement when enough scenarios may not be available. Additionally, a formulation considering the Conditional-Value-at-Risk is also presented. This formulation provides some control over the shape of the tail of the distribution, not only minimizing the expected detection time across all scenarios, but also improving the tail behavior. In addition to improved formulations, procedures are introduced to determine confidence in the placement generated and to determine if enough scenarios have been used in determining the gas detector placement. First, a procedure is introduced to analyze the performance of the proposed gas detector placement in the face of “unforeseen” scenarios, or scenarios that were not necessarily included in the original formulation. Additionally, a procedure for determine the confidence interval on the optimality gap between a placement generated with a sample of scenarios and its estimated performance on the entire uncertainty space. Finally, a method for determining if enough scenarios have been used and how much additional benefit is expected by adding more scenarios to the optimization is proposed. Results are presented for each of the formulations and methods presented using three data sets from an actual process facility. The use of an off-the-shelf toolkit for the placement of detectors in municipal water networks from the EPA, known as TEVA-SPOT, is explored. Because this toolkit was not designed for placing gas detectors, some adaptation of the files is necessary, and the procedure for doing so is presented.

Legg, Sean W

2013-08-01T23:59:59.000Z

374

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

375

,"South Dakota Natural Gas Processed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Processed (Million Cubic Feet)" Processed (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Processed (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_ygp_ssd_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_ygp_ssd_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 7:02:45 AM"

376

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

DOE Green Energy (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

377

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

378

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network (OSTI)

The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process of sintering billets which are made from a broad range of materials such as PTFE and other fluoropolymers, elastomers, themosets, themoplastics and composites. The purpose of this study was to compare the process parameters under similar conditions for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost savings of about $10,000 per oven can be achieved, with a simple payback period of less than two years. The results also show that additional energy savings will be realized if the oven size and exhaust flow are carefully selected. The data obtained from these experiments were used to calculate process efficiency. Design features and environmental issues are discussed.

Kosanovic, D.; Ambs, L.

2000-04-01T23:59:59.000Z

379

Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992  

SciTech Connect

Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.

Francis, A.J.; Gillow, J.B.

1993-09-01T23:59:59.000Z

380

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

Gas injection in oil reservoirs offers huge potential for improved oil recovery. However, successful design of a gas injection process requires a detailed understanding of a variety of different significant processes, including the phase behavior of multicomponent mixtures and the approach to multi-contact miscibility in the reservoir, the flow of oil, water and gas underground, and the interaction of phase behavior reservoir heterogeneity and gravity on overall performance at the field scale. This project attempts to tackle all these issues using a combination of theoretical, numerical and laboratory studies of gas injection. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) Theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of the development of a CT scanning technique which can measure compositions in a two-phase, three-component system in-situ.

Thomas A. Hewett; Franklin M. Orr Jr.

2000-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

382

NREL: Hydrogen and Fuel Cells Research - Thermochemical Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Thermochemical Processes Photo of a researcher wearing a hardhat and examining a catalytic steam reformer. Catalytic steam reforming increases the overall yield of fuel gas from biomass. NREL's researchers have investigated the thermochemical conversion of renewable energy feedstocks since the lab's inception. Researchers are developing gasification and pyrolysis processes to convert biomass and its residues to hydrogen, fuels, chemicals, and power. Building on past successes, biomass is increasingly one of the best near-term options for renewable hydrogen production. Thermochemical Process R&D Research and development at NREL provides a fundamental understanding of the chemistry of biomass pyrolysis. This R&D includes stabilizing and

383

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

384

Purification of reformer streams by catalytic hydrogenation  

Science Conference Proceedings (OSTI)

Catalytic Reforming is one of the most important processes to produce high grade motor gasolines. Feedstocks are mainly gasoline and naphtha streams from the crude oil distillation boiling in the range of 212 F to 350 F. By catalytic reforming the octane number of these gasoline components is increased from 40--60 RON to 95--100 RON. Besides isomerization and dehydrocyclization reactions mainly formation of aromatics by dehydrogenation of naphthenes occur. Thus, catalytic reformers within refineries are an important source of BTX--aromatics (benzene, toluene, xylenes). Frequently, high purity aromatics are recovered from these streams using modern extractive distillation or liquid extraction processes, e.g. the Krupp-Koppers MORPHYLANE{reg_sign} process. Aromatics product specifications, notably bromine index and acid wash color, have obligated producers to utilize clay treatment to remove trace impurities of diolefins and/or olefins. The conventional clay treatment is a multiple vessel batch process which periodically requires disposal of the spent clay in a suitable environmental manner. BASF, in close cooperation with Krupp-Koppers, has developed a continuous Selective Catalytic Hydrogenation Process (SCHP) as an alternative to clay treatment which is very efficient, cost effective and environmentally compatible. In the following the main process aspects including the process scheme catalyst and operating conditions is described.

Polanek, P.J. [BASF Corp., Geismar, LA (United States); Hooper, H.M. [Krupp Wilputte Corp., Bridgeville, PA (United States); Mueller, J.; Walter, M. [BASF AG, Ludwigshafen (Germany); Emmrich, G. [Krupp Koppers GmbH, Essen (Germany)

1996-12-01T23:59:59.000Z

385

Hydrocarbon Reformers for Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Several new or emerging technologies are vying to compete in the distributed resources market; notably, fuel cells and microturbines. Fuel cells represent an idealized power generation technology with tremendous long-term promise. As a hydrogen-fueled system, however, fuel cells need either a hydrogen fuel supply infrastructure or fuel processing (reforming and clean-up) technology to convert conventional fossil fuels to a hydrogen-rich energy source. This report provides an overview of fuel processing t...

2000-11-30T23:59:59.000Z

386

Gasoline from natural gas by sulfur processing. Quarterly report No. 10, October--December 1995  

DOE Green Energy (OSTI)

This report presents the work performed at the Institute of Gas Technology (IGT) during the tenth program quarter from October 1 to December 31, 1995. The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process consists of two steps that each use catalysts and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline-range liquids. Experimental data will be generated to demonstrate the potential of catalysts and the overall process. During this quarter, progress in the following areas has been made: Short duration activity test on catalyst IGT-MS-103 showed no deactivation over a 6 hour period and preliminary data of CS{sub 2} reaction with H{sub 2} at 400 {minus} 410{degree}C and at atmospheric pressure indicates that IGT-HS-103 is an active catalyst for hydrocarbon synthesis from CS{sub 2} and H{sub 2}.

Erekson, E.J.; Gopalakrishnan, R.

1996-01-01T23:59:59.000Z

387

Gasoline from natural gas by sulfur processing. Quarterly progress report, June--September 1993  

DOE Green Energy (OSTI)

The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process consists of two steps that each utilize catalysts and sulfur containing intermediates: (1) to convert natural gas to CS{sub 2}, and (2) to convert CS{sub 2} to gasoline range liquids. Experimental data will be generated to demonstrate the potential of catalysts and the overall process. During this first quarter, progress in the following areas has been made. One high surface area molybdenum catalyst has been prepared. An existing unit at IGT is being modified to accommodate the sulfur feedstocks and the higher temperatures(> 1300{degrees}K) required for studying the reactions of hydrogen sulfide and methane as proposed in Tasks 2 through 5. An HP 5890 gas chromatograph with a TCD(thermal conductivity detector) for detecting fixed gases including hydrogen and an FPD(flame photometric detector) for detecting sulfur compounds was purchased using SMP funds and has been received.

Erekson, E.J.; Miao, F.Q.

1993-10-01T23:59:59.000Z

388

Reduction of NO[sub x] emissions coke oven gas combustion process  

SciTech Connect

The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

1993-01-01T23:59:59.000Z

389

Determining the locus of a processing zone in an oil shale retort by effluent off gas heating value  

SciTech Connect

A processing zone advances through a fragmented permeable mass of particles containing oil shale in an in situ oil shale retort in a subterranean formation containing oil shale. The retort has an effluent gas passing therefrom. The effluent gas has a heating value which is dependent on the kerogen content of the oil shale then in contact with the processing zone. To determine the locus of the processing zone, the formation is assayed at selected locations in the retort for kerogen content before processing the selected locations, and effluent gas from the retort is monitored for its heating value.

Cha, C.Y.

1981-07-21T23:59:59.000Z

390

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

DOE Green Energy (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

391

Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock, preferably to produce high quality gasoline boiling range products, is disclosed. Relatively impure hydrogen is separated from the reforming zone effluent, compressed, and recontacted with at least a portion of the liquid reformate product to provide relatively pure hydrogen, a portion of which is recycled to the reforming zone. The balance is further compressed and recontacted with at least a portion of the liquid reformate product to provide an improved recovery of normally gaseous hydrocarbons as well as an improved recovery of purified hydrogen at a pressure suitable for use in the relatively high pressure hydrotreating of sulfur-containing feedstocks.

Coste, A.C.

1982-06-08T23:59:59.000Z

392

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

ReceiVed August 2, 2007 The development of robust desulfurizers and new reforming catalysts for fuel cells: the desulfurization of jet fuel and the development of sulfur-tolerant reforming catalysts/C) ratios. The water gas shift reaction is then used to convert additional CO into CO2. Nickel has been

Azad, Abdul-Majeed

393

Catalytic coal hydrogasification process  

SciTech Connect

In Exxon Research and Engineering Co.'s new approach, methane is produced by a thermoneutral process in which finely divided coal or other carbonaceous material is reacted with steam and hydrogen in the presence of an alkali-metal catalyst (1 to 50 wt percent based on carbonaceous material) in a fluidized bed at a temperature of 1200/sup 0/ to 1500/sup 0/F. The hydrogen and reactant steam concentrations are controlled so that the exothermic hydrogasification reactions provide sufficient heat for the endothermic steam reactions, reactant preheat, and reactor heat losses. The overhead gas from the gasifier is steam-reformed in the presence of an alkali-metal catalyst at a temperature of 1300/sup 0/ to 1700/sup 0/F. Acid constituents such as CO/sub 2/ and H/sub 2/S are removed from the reformed gas, which is then cryogenically separated into hydrogen, CO, and methane. The hydrogen is recycled to the hydrogasification zone and the CO used to fire the steam-reformer furnace. The high-purity methane from the cryogenic unit can be employed as a pipeline gas without further treatment.

Kalina, T.; Moore, R.E.

1974-11-12T23:59:59.000Z

394

A Mixed-Dimensionality Modeling Approach for Interaction of Heterogeneous Steam Reforming Reactions and Heat Transfer.  

E-Print Network (OSTI)

??Hydrogen is most often produced on an industrial scale by catalytic steam methane reforming, an equilibrium-limited, highly endothermic process requiring the substantial addition of heat… (more)

Valensa, Jeroen

2009-01-01T23:59:59.000Z

395

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris™ membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

396

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

397

Natural Gas Processing Plants in the United States: 2010 Update / Table 1  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Processing Plant Capacity by State 1. Natural Gas Processing Plant Capacity by State Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State 2009 Percent of U.S. Total 2009 Percent of U.S. Total 2004 2009 Capacity (Percent) Number of Plants Texas 19,740 25.5 163 33.1 95 121 24.7 -3 Louisiana 18,535 23.9 60 12.2 271 309 12.3 -1 Wyoming 7,273 9.4 37 7.5 154 197 5.1 -8 Colorado 3,791 4.9 44 8.9 49 86 81.1 1 Oklahoma 3,740 4.8 58 11.8 58 64 8.8 -1 New Mexico 3,022 3.9 24 4.9 137 126 -11.8 -1 Mississippi 2,273 2.9 4 0.8 262 568 44.6 -2 Illinois 2,102 2.7 2 0.4 1101 1,051 -4.6 0 Kansas 1,250 1.6 6 1.2 353 208 -64.6 -4 Alabama 1,248 1.6 12 2.4 87 104 -4.7 -3 Utah 1,185 1.5 12 2.4 61 99 22.2 -4 Michigan 977 1.3 10 2.0 30 98 102.2 -6 California 876 1.1 20 4.1 43 44 -15.5 -4 Arkansas 710 0.9 4 0.8 10 178

398

H[sub 2]S in EOR--1: Gas processing for CO[sub 2] EOR involves sulfur removal  

SciTech Connect

A design study for a new West Texas gas processing plant for a CO[sub 2] EOR project provides for installation of H[sub 2]S removal processes to be delayed for 3 years after completion of the plant. During this delay, a more precise produced gas composition will be obtained so that the process equipment for removing H[sub 2]S can be properly selected and sized to handle the gas stream that at the peak will reach about 30 MMscfd. The new plant's processing components include inlet separation, sulfur removal and recovery, compression, dehydration, and NGL recovery. The new plant will be capable of processing CO[sub 2]-contaminated associated gas, recovering valuable propane-plus NGLs,a nd producing a miscible CO[sub 2] for reinjection. The first in a series of two articles details the process and configuration options. The concluding part will discuss in greater detail the sulfur recovery alternatives.

Johnson, J.E. (Pritchard Corp., Overland Park, KS (United States)); Tzap, S.J.; Kelley, R.E. (Raytheon Engineers and Constructors, Denver, CO (United States)); Laczko, L.P. (OXY USA Inc., Midland, TX (United States))

1993-11-15T23:59:59.000Z

399

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate- Ammonium Bicarbonate Process Description Current commercial processes to remove carbon dioxide (CO 2 ) from conventional power plants are expensive and energy intensive. The objective of this project is to reduce the cost associated with the capture of CO 2 from coal based gasification processes, which convert coal and other carbon based feedstocks to synthesis gas.

400

Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.  

DOE Green Energy (OSTI)

Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

1999-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

Franklin M. Orr, Jr.

2001-03-31T23:59:59.000Z

402

Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993  

SciTech Connect

The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate, and transport an amine plant and dehydration plant. Accomplishment for this period are presented.

Not Available

1993-12-01T23:59:59.000Z

403

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

DOE Patents (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

404

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

Science Conference Proceedings (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

405

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

406

Investigation of carbon-formation mechanisms and fuel-conversion rates in the adiabatic reformer. Annual report, March 19, 1980-March 19, 1981  

Science Conference Proceedings (OSTI)

Fuel cell power plants may be required to use coal derived liquid fuels or heavy petroleum distillates as fuels. Among the fuel processor candidates, the adiabatic reformer is at the most advanced state of development. The objective of the present program is to establish a reactor model for the adiabatic reformer which will predict process stream compositions and include carbon formation processes. Four subordinate tasks were proposed to achieve the objective. These are: 1) to determine on selected catalysts rate expressions for catalytic reactions occurring in the entrance section of the adiabatic reformer; 2) to determine with microbalance experiments critical conditions for carbon formation on selected catalysts; 3) to establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for catalytic reactions and data from the literature for homogeneous gas phase reactions; and 4) to establish a model to predict carbon formation by combination of the model for process stream composition from Task 3 and data for carbon formation from Task 2. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

407

The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line  

E-Print Network (OSTI)

In this paper we find explicit formulas for: (1) Green's function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.

Tracy, Craig A

2012-01-01T23:59:59.000Z

408

Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping  

DOE Patents (OSTI)

Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

Rochelle, Gary T. (Austin, TX); Oyenekan, Babatunde A. (Katy, TX)

2011-03-08T23:59:59.000Z

409

Composite Membranes for Coal Gas Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

steps 8-10; melting and rolling alloy foils, cleaning, deposition of Pd, and welding into a tubular shape. High purity (99.9%) powders were mixed and electron beam (e-...

410

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

411

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

412

Upgrading Fischer-Tropsch LPG (liquefied petroleum gas) with the Cyclar process  

SciTech Connect

The use of the UOP/BP Cyclar{reg sign} process for upgrading Fischer-Tropsch (F-T) liquefied petroleum gas (LPG) was studied at UOP{reg sign}. The Cyclar process converts LPG into aromatics. The LPG derived from F-T is highly olefinic. Two routes for upgrading F-T LPG were investigated. In one route, olefinic LPG was fed directly to a Cyclar unit (Direct Cyclar). The alternative flow scheme used the Huels CSP process to saturate LPG olefins upstream of the Cyclar unit (Indirect Cyclar). An 18-run pilot plant study verified that each route is technically feasible. An economic evaluation procedure was designed to choose between the Direct and Indirect Cyclar options for upgrading LPG. Four situations involving three different F-T reactor technologies were defined. The main distinction between the cases was the degree of olefinicity, which ranged between 32 and 84 wt % of the fresh feed. 8 refs., 80 figs., 44 tabs.

Gregor, J.H.; Gosling, C.D.; Fullerton, H.E.

1989-04-28T23:59:59.000Z

413

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

414

OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.  

DOE Green Energy (OSTI)

THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

2002-08-01T23:59:59.000Z

415

Gasoline from natural gas by sulfur processing. Quarterly progress report, January 1994--March 1994, final version  

DOE Green Energy (OSTI)

This report presents the work performed at the Institute of Gas Technology (IGT) during the third program quarter from January 1, 1994 to March 31, 1994, under Department of Energy (DOE) Contract No. DE-AC22-93PC92114. This program has coordinated funding for Task I from IGT`s Sustaining Membership Program(SMP), while DOE is funding Tasks 2 through 8. Progress in all tasks is reported here. The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process consists of two steps that each utilize catalysts and sulfur containing intermediates: (1) to convert natural gas to CS{sub 2}, and (2) to convert CS{sub 2} to gasoline range liquids. Experimental data will be generated to demonstrate the potential of catalysts and the overall process. During this quarter, progress in the following areas has been made. Five catalysts for step I have been prepared. A total of thirty runs with catalysts, IGT-MS-103 and IGT-MS-105, were performed. At 5 seconds residence time and above 1000 {degrees}C the hydrogen sulfide decomposition approached equilibrium. H{sub 2}S conversion was 80% at 1131 {degrees}C. A total of fourteen runs were performed for carbon deposition/regeneration studies. Six catalysts as well as quartz wool were used in these studies. During the methane decomposition runs, carbon formation was found on the catalyst surface. During the subsequent hydrogen sulfide regeneration runs, a significant amount of carbon disulfide was detected in the product stream. Equilibrium calculations for the reaction of carbon with sulfur and with hydrogen sulfide were also performed in this quarter. At 1227{degrees}C, 1 atm, as high as 80% carbon conversion can be obtained at equilibrium.

Erekson, E.J.; Miao, F.Q.

1994-06-01T23:59:59.000Z

416

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

417

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

418

Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.  

DOE Green Energy (OSTI)

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

2002-01-11T23:59:59.000Z

419

Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products  

DOE Patents (OSTI)

Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

2000-01-01T23:59:59.000Z

420

Modeling the fast fill process in natural gas vehicle storage cylinders  

DOE Green Energy (OSTI)

The on-board storage capacity of natural gas vehicles (NGVs) is a critical issue to the wide spread marketing of these alternate fueled vehicles. Underfilling of NGV cylinders, during fast fill (< 5 min.) charging operations, can occur at fueling stations, at ambient temperatures greater than 50{degrees}F or 60{degrees}F. The resulting reduced driving range of the vehicle is a serious obstacle which the gas industry is striving to overcome, without resorting to unnecessarily high fueling station pressures, or by applying extensive overpressurization of the cylinder during the fueling operation. Undercharged storage cylinders are a result of the elevated temperature which occurs in the NGV storage cylinder, due to compression and other processes which have not, to the author`s knowledge, been analyzed and documented to date. This paper presents a model and solution methodology which quantifies the cylinder undercharging phenomena which occurs during rapid (< 5 min.) fueling. The effects of heat transfer from the cylinder gas to its constraining walls and ambient are considered in the model analysis. The ramifications of the results on fueling station and cylinder designs are discussed. Suggestions are made for controlled experimental programs to verify the theoretical results, and for fueling station design studies which could minimize or eliminate cylinder underfilling.

Kountz, K.J.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming process gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report  

DOE Green Energy (OSTI)

This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

Not Available

1994-03-01T23:59:59.000Z

422

Patent Counsel - Patent Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patent Counsel - Patent Reform Patent Counsel - Patent Reform America invents Act 20112.pdf More Documents & Publications PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS Office of...

423

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect

This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

2004-10-01T23:59:59.000Z

424

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

Science Conference Proceedings (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

425

Separation of hydrogen from a catalytic reforming zone effluent stream  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock at reforming conditions including a pressure of from about 50 to about 250 psig. Is disclosed. A portion of the hydrogen-rich vapor phase recovered from the reforming zone effluent at a relatively low pressure is compressed and recycled to the reforming zone without further purification. The balance of said hydrogen-rich vapor phase, or the net hydrogen, is compressed to a relatively high pressure and recontacted with at least a portion of the liquid hydrocarbon phase recovered from said low pressure separation to effect a further purification of said net hydrogen and to maximize the recovery of C/sub 3/-C/sub 6/+ the liquid phase.

Schmelzer, E.; Tagamolila, C.P.

1983-02-22T23:59:59.000Z

426

Process for simultaneous removal of SO.sub.2 and NO.sub.x from gas streams  

SciTech Connect

A process for simultaneous removal of SO.sub.2 and NO.sub.x from a gas stream that includes flowing the gas stream to a spray dryer and absorbing a portion of the SO.sub.2 content of the gas stream and a portion of the NO.sub.x content of the gas stream with ZnO by contacting the gas stream with a spray of an aqueous ZnO slurry; controlling the gas outlet temperature of the spray dryer to within the range of about a 0.degree. to 125.degree. F. approach to the adiabatic saturation temperature; flowing the gas, unreacted ZnO and absorbed SO.sub.2 and NO.sub.x from the spray dryer to a fabric filter and collecting any solids therein and absorbing a portion of the SO.sub.2 remaining in the gas stream and a portion of the NO.sub.x remaining in the gas stream with ZnO; and controlling the ZnO content of the aqueous slurry so that sufficient unreacted ZnO is present in the solids collected in the fabric filter to react with SO.sub.2 and NO.sub.x as the gas passes through the fabric filter whereby the overall feed ratio of ZnO to SO.sub.2 plus NO.sub.x is about 1.0 to 4.0 moles of ZnO per of SO.sub.2 and about 0.5 to 2.0 moles of ZnO per mole of NO.sub.x. Particulates may be removed from the gas stream prior to treatment in the spray dryer. The process further allows regeneration of ZnO that has reacted to absorb SO.sub.2 and NO.sub.x from the gas stream and acid recovery.

Rosenberg, Harvey S. (Columbus, OH)

1987-01-01T23:59:59.000Z

427

Process for simultaneous removal of SO[sub 2] and NO[sub x] from gas streams  

DOE Patents (OSTI)

A process is described for simultaneous removal of SO[sub 2] and NO[sub x] from a gas stream that includes flowing the gas stream to a spray dryer and absorbing a portion of the SO[sub 2] content of the gas stream and a portion of the NO[sub x] content of the gas stream with ZnO by contacting the gas stream with a spray of an aqueous ZnO slurry; controlling the gas outlet temperature of the spray dryer to within the range of about a 0 to 125 F approach to the adiabatic saturation temperature; flowing the gas, unreacted ZnO and absorbed SO[sub 2] and NO[sub x] from the spray dryer to a fabric filter and collecting any solids therein and absorbing a portion of the SO[sub 2] remaining in the gas stream and a portion of the NO[sub x] remaining in the gas stream with ZnO; and controlling the ZnO content of the aqueous slurry so that sufficient unreacted ZnO is present in the solids collected in the fabric filter to react with SO[sub 2] and NO[sub x] as the gas passes through the fabric filter whereby the overall feed ratio of ZnO to SO[sub 2] plus NO[sub x] is about 1.0 to 4.0 moles of ZnO per of SO[sub 2] and about 0.5 to 2.0 moles of ZnO per mole of NO[sub x]. Particulates may be removed from the gas stream prior to treatment in the spray dryer. The process further allows regeneration of ZnO that has reacted to absorb SO[sub 2] and NO[sub x] from the gas stream and acid recovery. 4 figs.

Rosenberg, H.S.

1987-02-03T23:59:59.000Z

428

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam a