Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Catalytic Reforming  

Science Conference Proceedings (OSTI)

Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

Little, D.M.

1985-01-01T23:59:59.000Z

2

Catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

Aldag, A.W. Jr.

1986-01-28T23:59:59.000Z

3

Process for catalytic reforming  

Science Conference Proceedings (OSTI)

An improved catalytic reforming process is disclosed wherein hydrogen and light hydrocarbons generated in the catalytic reaction zone are passed to a hydrogen production/purification zone and and reacted and processed therein to produce substantially pure hydrogen. A portion of the hydrogen is then admixed with the charge stock to the catalytic reforming zone to provide the hydrogen requirements of the catalytic reforming reaction zone.

James, R. B. Jr.

1984-11-20T23:59:59.000Z

4

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed in which substantially all of the heat requirements of the product stabilizer column is supplied by multiple indirect heat exchange.

Peters, K.D.

1983-10-11T23:59:59.000Z

5

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed wherein the reboiler heat requirements of the stabilizer column are supplied by means of indirect heat exchange with hot combustion gases in the reforming reactants fired heater convection heating section. Heat in excess of the reboiler requirements is passed to the stabilizer column with control being effected by removal of excess heat from the column.

James, R.B. Jr.

1984-02-14T23:59:59.000Z

6

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: a first catalyst zone contains a first catalytic composite consisting essentially of a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a second catalyst zone contains a second catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from rhenium, rhodium, ruthenium, cobalt, nickel, and iridium, and mixtures thereof.

Moser, M.C.; Lawson, R.J.; Antos, G.J.; Wang, L.; Parulekar, V.N.

1990-05-29T23:59:59.000Z

7

Catalytic cracking process  

Science Conference Proceedings (OSTI)

Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

Lokhandwala, Kaaeid A. (Union City, CA); Baker, Richard W. (Palo Alto, CA)

2001-01-01T23:59:59.000Z

8

Catalytic reforming methods  

DOE Patents (OSTI)

A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

Tadd, Andrew R; Schwank, Johannes

2013-05-14T23:59:59.000Z

9

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

10

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: an initial catalyst zone which is a fixed-bed system and contains an initial catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a terminal catalyst zone which is a moving-bed system with associated continuous catalyst regeneration and contains a terminal catalytic composite having the essential absence of germanium and comprising a platinum component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from one or more of the rhenium, tin, indium, rhodium, ruthenium, cobalt, nickel, and iridium.

Moser, M.; Lawson, R.J.; Wang, L.; Parulekar, V.; Peer, R.L.; Hamlin, C.R.

1991-01-15T23:59:59.000Z

11

Catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

1989-06-13T23:59:59.000Z

12

Catalytic reforming catalyst  

Science Conference Proceedings (OSTI)

An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

Buss, W.C.; Kluksdahl, H.E.

1980-12-09T23:59:59.000Z

13

Effect of reformer conditions on catalytic reforming of biomass-gasification tars  

Science Conference Proceedings (OSTI)

Parametric tests on catalytic reforming of tars produced in biomass gasification are performed using a bench-scale, fluid-bed catalytic reformer containing a commercial nickel-based catalyst. The product gas composition and yield vary with reformer temperature, space time, and steam: biomass ratio. Under certain catalytic tar reforming conditions, the gas yield increases by 70%; 97% of the tars are cracked into gases; and benzene and naphthalene, the predominant tar species, are virtually eliminated from the product gas.

Kinoshita, C.M.; Wang, Y.; Zhou, J. [Univ. of Hawaii, Honolulu, HI (United States)

1995-09-01T23:59:59.000Z

14

Catalytic reforming optimization  

Science Conference Proceedings (OSTI)

The authors have previously examined correlations between catalytic reforming parameters for an L-35-6 unit at the Gor'knefteorgsintez Industrial Association. Experimental design was used to derive polynomial equations describing the correlations for each reactor. Further research on optimizing the reforming has been based on these results. They adopted the following strategy to define the best working parameters: they define a temperature that would provide the maximum target-product yield while maintaining a given working life. Most of the aromatic hydrocarbons are formed by the naphthene dehydrogenation, which is endothermic, so the greater the temperature drop over the height, the more rapid the process. The temperature difference thus indicates the current catalyst activity. To increase the target-product yield, one must raise the inlet temperature and ensure the largest drop across the catalyst. They examined an algorithm with fixed inlet conditions as regards flow rate and raw material composition. This algorithm provides the basis of software for the automatic control of the L-35-6 reactor unit at the Gor'knefteorgsintez Industrial Association. The system has been checked out and put into experimental operation.

Mazina, S.G.; Rybtsov, V.V.; Priss-Titarenko, T.A.

1988-11-10T23:59:59.000Z

15

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

16

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

17

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

18

High severity catalytic reforming process  

Science Conference Proceedings (OSTI)

A high-severity catalytic reforming process is described comprising: (a) passing a mixture comprising a catalytic reforming feed stream and a recycle stream into a catalytic reforming reaction zone which is maintained at high-severity reforming conditions; (b) cooling an effluent stream comprising hydrogen and hydrocarbonaceous catalytic reforming reaction products which is withdrawn from the reaction zone; (c) passing the cooled effluent stream into a vapor-liquid separation zone and recovering therefrom a liquid stream comprising hydrocarbons and a hydrogen-rich gas stream; (d) passing the hydrogen-rich gas stream through an adsorption zone wherein the gas is contacted with a treating material which removes polycyclic aromatic compounds from the gas stream, the compounds remaining in the adsorption zone; (e) mixing a portion of the hydrogen-rich gas stream, which is the recycle stream, with the feed stream to form the charge stock mixture and withdrawing the balance of the hydrogen-rich gas stream, which is denoted as net hydrogen, from the catalytic reforming area, all of the hydrogen-rich gas stream being substantially free of polycyclic aromatic compounds; and (f) fractionating the liquid stream and recovering an overhead product comprising light hydrocarbons and a bottoms product comprising reformate.

Bennett, R.W.; Cottrell, P.R.; Gilsdorf, N.L.; Winfield, M.D.

1988-03-22T23:59:59.000Z

19

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network (OSTI)

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

20

An update on catalytic reforming  

Science Conference Proceedings (OSTI)

The UOP Platforming process is a catalytic reforming process in widespread use throughout the petroleum and petrochemical industries. Since the first unit went onstream in 1949, the process has become a standard feature in refineries worldwide. Over the years, significant improvements have been made in process catalysts and process design. The most recent improvement is the combination of a catalyst called R-72 with a new patented flow scheme, R-72 staged loading, which gives significantly higher yields and provides increased catalyst stability. In this article, the authors describe two types of Platforming processes and the new R-72 staged loading scheme.

Wei, D.H.; Moser, M.D.; Haizmann, R.S.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Catalytic cracking. (Latest citations from the Compendex database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning applications of catalytic cracking processes in fluidized bed systems, moving beds, refineries, vacuum distillations, and reformers. Design aspects, modeling, control systems, and operating procedures are also discussed. (Contains a minimum of 149 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

22

Catalytic Reforming Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,563 2,667 2,739 2,807 2,705 2,609 2010-2013 PADD 1 176 178 180 173 156 167 2010-2013 East Coast 166 164 163 161 140 153 2010-2013 Appalachian No. 1 9 14 16 12 15 14 2010-2013 PADD 2 642 638 668 695 677 615 2010-2013 Ind., Ill. and Ky. 426 411 426 460 450 399 2010-2013 Minn., Wis., N. Dak., S. Dak. 67 62 70 72 72 57 2010-2013 Okla., Kans., Mo.

23

Optimal control of fluid catalytic cracking processes  

Science Conference Proceedings (OSTI)

An investigation was made of the applicability of optimal control theory to the design of control systems for non-linear, multivariable chemical processes. A hypothetical fluid catalytic cracking process was selected as a typical representative of such ...

L. A. Gould; L. B. Evans; H. Kurihara

1970-09-01T23:59:59.000Z

24

Fundamental kinetic modeling of the catalytic reforming process  

Science Conference Proceedings (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing ...

Rogelio Sotelo-Boyas / Gilbert F. Froment; Rayford G. Anthony

2005-01-01T23:59:59.000Z

25

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

26

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

27

Purification of reformer streams by catalytic hydrogenation  

Science Conference Proceedings (OSTI)

Catalytic Reforming is one of the most important processes to produce high grade motor gasolines. Feedstocks are mainly gasoline and naphtha streams from the crude oil distillation boiling in the range of 212 F to 350 F. By catalytic reforming the octane number of these gasoline components is increased from 40--60 RON to 95--100 RON. Besides isomerization and dehydrocyclization reactions mainly formation of aromatics by dehydrogenation of naphthenes occur. Thus, catalytic reformers within refineries are an important source of BTX--aromatics (benzene, toluene, xylenes). Frequently, high purity aromatics are recovered from these streams using modern extractive distillation or liquid extraction processes, e.g. the Krupp-Koppers MORPHYLANE{reg_sign} process. Aromatics product specifications, notably bromine index and acid wash color, have obligated producers to utilize clay treatment to remove trace impurities of diolefins and/or olefins. The conventional clay treatment is a multiple vessel batch process which periodically requires disposal of the spent clay in a suitable environmental manner. BASF, in close cooperation with Krupp-Koppers, has developed a continuous Selective Catalytic Hydrogenation Process (SCHP) as an alternative to clay treatment which is very efficient, cost effective and environmentally compatible. In the following the main process aspects including the process scheme catalyst and operating conditions is described.

Polanek, P.J. [BASF Corp., Geismar, LA (United States); Hooper, H.M. [Krupp Wilputte Corp., Bridgeville, PA (United States); Mueller, J.; Walter, M. [BASF AG, Ludwigshafen (Germany); Emmrich, G. [Krupp Koppers GmbH, Essen (Germany)

1996-12-01T23:59:59.000Z

28

Fuzzy modeling of fluidized catalytic cracking unit  

Science Conference Proceedings (OSTI)

The paper deals with the fuzzy system identification of reactor-regenerator-stripper-fractionator's (RRSF) section of a fluidized catalytic cracking unit (FCCU). The fuzzy system identification based on the data collected from an operating refinery of ... Keywords: Dynamic fuzzy model, FCCU models, Fuzzy clustering, Fuzzy inference systems, Fuzzy models, Hybrid learning, Mountain clustering, Supervised learning, Unsupervised learning

Mohammad Fazle Azeem; Nesar Ahmad; M. Hanmandlu

2007-01-01T23:59:59.000Z

29

IFP solutions for revamping catalytic reforming units  

Science Conference Proceedings (OSTI)

The decision-making process for the refiner considering a revamp of a catalytic reforming unit comprises many factors. These may be grouped in two broad areas: technical and economic. This paper presents the results of a study performed by IFP that illustrates catalytic reforming unit revamp options. Three IFP processes are described and operating conditions, expected yields, and economic data are presented. The following options are discussed: base case Conventional, fixed-bed, semi-regenerative catalytic reformer; Case 1--revamp using IFP Dualforming technology; Case 2--revamp using IFP Dualforming Plus technology; and Case 3--revamp to IFP Octanizing technology. The study illustrates various options for the refiner to balance unit performance improvements with equipment, site, and economic constraints. The study was performed assuming design feedrate of 98.2 tons/hour (20,000 BPSD) in all cases. Because of the increased need for octane in many refineries, the study assumed that operating severity was set at a design value of 100 research octane number clear (RON). In all of the cases in this study, it was assumed that the existing recycle compressor was reused. Operating pressure differences between the cases is discussed separately. Also, in all cases, a booster compressor was included in order to return export hydrogen pressure to that of the conventional unit.

Gendler, J.L. [HRI, Inc., Princeton, NJ (United States); Domergue, B.; Mank, L. [Inst. Francais du Petrole, Rueil Malmaison (France)

1996-12-01T23:59:59.000Z

30

Synergize fuel and petrochemical processing plans with catalytic reforming  

Science Conference Proceedings (OSTI)

Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

NONE

1997-03-01T23:59:59.000Z

31

Catalytic partial oxidation reforming of hydrocarbon fuels.  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as in buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.

Ahmed, S.

1998-09-21T23:59:59.000Z

32

Noble metal alkaline zeolites for catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes a method for producing a noble-metal containing zeolite suitable for catalytic reforming contacting a zeolite selected from alkaline faujasites and L zeolites and zeolites and zeolites isostructural thereto, with a noble-metal compound selected from Pt(acetylacetonate){sub 2} and Pd(acetylacetonate){sub 2} for a effective amount of time to incorporate Pt and/or Pd into the pore surface regions of the zeolite, but not to disperse the Pt and/or Pd throughout the entire zeolite; and calcining the so treated zeolite at a temperature from about 250 {degrees} C, to about 600 {degrees} C for an effective amount of time.

Schweizer, A.E.

1991-02-12T23:59:59.000Z

33

Catalytic cracking. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-09-01T23:59:59.000Z

34

Catalytic cracking. (Latest citations from the NTIS data base). Published Search  

SciTech Connect

The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-05-01T23:59:59.000Z

35

Catalytic cracking. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning applications of catalytic cracking in fluidized beds, moving beds, refineries, vacuum distillation, and reformers. Design criteria, models, controls, and operating procedures are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-02-01T23:59:59.000Z

36

New process model proves accurate in tests on catalytic reformer  

Science Conference Proceedings (OSTI)

A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-07-25T23:59:59.000Z

37

Catalytic reforming and hydrocracking of organic compounds employing promoted zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc, titanium and rhenium.

Drehman, L.E.; Farha, F.E.

1981-04-21T23:59:59.000Z

38

Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc and titanium.

Drehman, L.E.; Farha, F.E.; Walker, D.W.

1981-04-21T23:59:59.000Z

39

Removal of sulfur from recycle gas streams in catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process for catalytically reforming a hydrocarbonaceous feedstock boiling in the gasoline range, wherein the reforming is conducted in the presence of hydrogen in a reforming process unit under reforming conditions, the process unit comprised of serially connected reactors, each of the reactors containing a reforming catalyst, and which process unit also includes a regeneration circuit for regenerating the catalyst after it becomes coked, the regeneration comprising treatment with a sulfur containing gas, and which process unit also includes a gas/liquid separator wherein a portion of the gas is recycled and the remaining portion is collected as make-gas. The improvement comprises using a sulfur trap, containing a catalyst comprised of about 10 to about 70 wt. % nickel dispersed on a support, between the gas/liquid separator and the first reactor.

Boyle, J.P.

1991-08-27T23:59:59.000Z

40

Advances in the chemistry of catalytic reforming of naphtha  

Science Conference Proceedings (OSTI)

Catalytic reforming of naphtha remains the key process for production of high octane gasoline and aromatics (BTX) which are used as petrochemicals feedstocks. The increased demand for these products has led refiners to investigate ways for improving the performance of the reforming process and its catalysts. Moreover, in order to comply with environmental restrictions, the reduction in lead content would require further increase in the reformate octane number. In response to these requirements, refiners and catalyst manufacturers are examining the role of the catalysts in improving the selectivity to aromatics and in octane enhancement. By understanding the chemistry and the mechanism of the reforming process, higher performance catalysts with longer life on stream and lower cost can be developed. This review covers recent developments in reforming catalysts, process reaction chemistry and mechanism. It also highlights prospective areas of research.

Anabtawi, J.A.; Redwan, D.S.; Al-Jarallah, A.M.; Aitani, A.M. (Petroleum and Gas Technology Div., Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (SA))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Separation of hydrogen from a catalytic reforming zone effluent stream  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock at reforming conditions including a pressure of from about 50 to about 250 psig. Is disclosed. A portion of the hydrogen-rich vapor phase recovered from the reforming zone effluent at a relatively low pressure is compressed and recycled to the reforming zone without further purification. The balance of said hydrogen-rich vapor phase, or the net hydrogen, is compressed to a relatively high pressure and recontacted with at least a portion of the liquid hydrocarbon phase recovered from said low pressure separation to effect a further purification of said net hydrogen and to maximize the recovery of C/sub 3/-C/sub 6/+ the liquid phase.

Schmelzer, E.; Tagamolila, C.P.

1983-02-22T23:59:59.000Z

42

Catalytic reforming of liquid fuels: Deactivation of catalysts  

Science Conference Proceedings (OSTI)

The catalytic reforming of logistic fuels (e.g., diesel) to provide hydrogen-rich gas for various fuel cells is inevitably accompanied by deactivation. This deactivation can be caused by various mechanisms, such as carbon deposition, sintering, and sulfur poisoning. In general, these mechanisms are, not independent—e.g., carbon deposition may affect sulfur poisoning. However, they are typically studied in separate experiments, with relatively little work reported on their interaction at conditions typical of liquid fuel reforming. Recent work at the U.S. Dept. of Energy/NETL and Louisiana State University has shown progress in understanding the interaction of these deactivation processes, and catalysts designed to minimize them.

Spivey, J.J.; Haynes, D.J.; Berry, D.A.; Shekhawat, Dushyant; Gardner, T.H.

2007-10-01T23:59:59.000Z

43

Producing Clean Syngas via Catalytic Reforming for Fuels Production  

Science Conference Proceedings (OSTI)

Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

2012-01-01T23:59:59.000Z

44

Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi, Enrique Iglesia *  

E-Print Network (OSTI)

of pollutants, oxygen generation, and intermediate-temperature solid oxide fuel cells, as well as catalytic reforming. Sekine et al.56 investigated four catalytic reactions assisted with an electric field to promote

Iglesia, Enrique

45

Modelling and Experimental Study of Methane Catalytic Cracking as a Hydrogen Production Technology.  

E-Print Network (OSTI)

??Production of hydrogen is primarily achieved via catalytic steam reforming, partial oxidation,and auto-thermal reforming of natural gas. Although these processes are mature technologies, they are… (more)

Amin, Ashraf Mukhtar Lotfi

2011-01-01T23:59:59.000Z

46

Effect of reaction pressure on octane number and reformate and hydrogen yields in catalytic reforming  

Science Conference Proceedings (OSTI)

The effect of reaction pressure in catalytic reforming was studied in a pilot reactor with a commercial Pt-Re/Al{sub 2}O{sub 3} reforming catalyst and a hydrotreated naphtha from a North Sea crude. Reformate and hydrogen yields, research octane numbers (RON), and reformate composition at reactor pressures in the range of 12--25 bar were measured as a function of temperature in the range of 95--105 RON. Reformate and hydrogen yields increased as the pressure range. For the lower reaction pressures the hydrogen yields increased with increasing severity, but for the higher pressures the hydrogen yields started to decline above certain severities. RON was linearly dependent on the concentration of aromatics in the reformate, although the selectivity toward aromatics depends on both pressure and temperature. Less hydro dealkylation of C{sub 8} and heavier aromatics to benzene and toluene resulted in a shift toward xylenes and heavier aromatic components when pressure was lowered. Variations in the degree of paraffin isomerization did not influence RON significantly at those severities.

Moljord, K.; Hellenes, H.G.; Hoff, A.; Tanem, I. [SINTEF Applied Chemistry, Trondheim (Norway); Grande, K. [Statoil Research Centre, Trondheim (Norway); Holmen, A. [Univ. of Trondheim (Norway). Dept. Industrial Chemistry

1996-01-01T23:59:59.000Z

47

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish  

DOE Green Energy (OSTI)

The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

1990-01-01T23:59:59.000Z

48

Simulation and Optimization of the Stabilizer Tower Operation at Catalytic Reforming of Esfahan Oil Refining Company  

Science Conference Proceedings (OSTI)

Production of gasoline with low RVP specifications have made the operators of the catalytic reforming unit of Esfahan Oil refining company in Iran to apply new operating conditions. RVP is an abbreviation for Reid Vapor Pressure which is the vapor pressure ... Keywords: RVP, platformate, initial boiling point, catalytic reforming, distillation curve

Ali Izadyar; Bahram Hashemi Shahraki; Ahmad Shariati

2010-01-01T23:59:59.000Z

49

Catalytic reforming process using noble metal alkaline zeolites  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process wherein a gasoline boiling range hydrocarbonaceous feedstock is catalytically reformed in the presence of hydrogen in a reforming process unit comprised of serially connected reactors wherein each of the reactors contains a supported noble metal-containing catalyst. The improvement comprises the noble-metal catalyst of at least one reactor being selected from the group consisting of alkaline faujasite zeolite, L zeolite and zeolites isostructural thereto, which catalysts are prepared by a: contacting an alkaline faujasite zeolite, L zeolite, or zeolite isostructural thereto, with a noble metal composition selected from Pt(acetylacetonate){sub 2} or Pd(acetylacetonate){sub 2} for an effective amount of time to form a substantially homogeneous mixture and to incorporate the platinum and/or palladium into the near surface regions of the zeolite, but not to disperse the platinum and/or palladium throughout the entire zeolite; and calcining the so treated zeolite at a temperature from about 250 {degrees} C to about 600 {degrees} C for an effective amount of time.

Schweizer, A.E.

1991-02-12T23:59:59.000Z

50

Fundamental kinetic modeling of the catalytic reforming process  

E-Print Network (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing the various species by vectors and Boolean relation matrices. The algorithm is based on the fundamental chemistry occurring on both acid and metal sites of the catalyst. Rates are expressed for each of the elementary steps involved in the transformation of the intermediates. The Hougen-Watson approach is used to express the rates of the molecular reactions occurring on the metal sites of the catalyst. The single event approach is used to account for the effect of structure of reactant and activated complex on the rate coefficients of the elementary steps occurring on the acid sites. This approach recognizes that even if the number of elementary steps is very large they belong to a very limited number of types, and therefore it is possible to express the kinetics of elementary steps by a reduced number of parameters. In addition, the single event approach leads to rate coefficients that are independent of the feedstock, due to their fundamental chemical nature. The total number of parameters at isothermal conditions is 45. To estimate these parameters, an objective function based upon the sum of squares of the residuals was minimized through the Marquardt algorithm. Intraparticle mass transport limitations and deactivation of the catalyst by coke formation are considered in the model. Both the Wilke and the Stefan-Maxwell approaches were used to calculate the concentration gradients inside of the particle. The heterogeneous kinetic model was applied in the simulation of the process for typical industrial conditions for both axial and radial flow fixed bed reactors. The influence of the main process variables on the octane number and reformate volume was investigated and optimal conditions were obtained. Additional aspects studied with the kinetic model are the reduction of aromatics, mainly benzene. The results from the simulations agree with the typical performance found in the industrial process.

Sotelo-Boyas, Rogelio

2005-12-01T23:59:59.000Z

51

,"Catalytic Reforming Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Catalytic Reforming Downstream Processing of Fresh Feed Input" Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","9/2013","1/15/2010" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_a_(na)_ydr_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_a_(na)_ydr_mbblpd_m.htm" ,"Source:","Energy Information Administration"

52

Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock, preferably to produce high quality gasoline boiling range products, is disclosed. Relatively impure hydrogen is separated from the reforming zone effluent, compressed, and recontacted with at least a portion of the liquid reformate product to provide relatively pure hydrogen, a portion of which is recycled to the reforming zone. The balance is further compressed and recontacted with at least a portion of the liquid reformate product to provide an improved recovery of normally gaseous hydrocarbons as well as an improved recovery of purified hydrogen at a pressure suitable for use in the relatively high pressure hydrotreating of sulfur-containing feedstocks.

Coste, A.C.

1982-06-08T23:59:59.000Z

53

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment of the requirements for the degree of  

E-Print Network (OSTI)

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment've missed over the past two years. #12;4 TABLE OF CONTENTS GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS 1.083 moles CH4, 0.083 moles CO2, and 0.834 moles Ar which are the inlet conditions for many of the catalytic

Columbia University

54

Catalytic reforming boosts octane for gasoline blending - Today in ...  

U.S. Energy Information Administration (EIA)

Because reformate contains significant amounts of benzene, toluene, and xylene, it also is an important source of feedstock for the petrochemical industry.

55

97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production  

Science Conference Proceedings (OSTI)

With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the bio-oil and catalyze the water gas shift reaction without catalyzing methanation or oxidation of CO and H{sub 2}, thus attaining equilibrium levels of H{sub 2}, CO, H{sub 2}O, and CO{sub 2} at the exit of the catalyst bed. Experimental Bio-oil (mixed with varied amounts of methanol to reduce the viscosity and homogenize the bio-oil) or selected bio-oil components are introduced at a measured flow rate through the top of a vertical quartz reactor which is heated using a five zone furnace. The ultrasonic nozzle used to feed the reactants allows the bio-oil to flow down the center of the reactor at a low, steady flow rate. Additionally, the fine mist created by the nozzle allows for intimate mixing with oxygen and efficient heat transfer, providing optimal conditions to achieve high conversion at relatively low temperatures in the non-catalytic step thus reducing the required catalyst loading. Generation of the fine mist is especially important for providing good contact between non-volatile bio-oil components and oxygen. Oxygen and helium are also delivered at the top of the reactor via mass flow meters with the amount of oxygen being varied to maximize the yields of H{sub 2} and CO and the amount of helium being adjusted such that the gas phase residence time in the hot zone is {approx}0.3 and {approx}0.45 s for bio-oil and methanol experiments, respectively. A catalyst bed can be located at the bottom of the reactor tube. To date, catalyst screening experiments have used Engelhard noble metal catalysts. The catalysts used for these experiments were 0.5 % rhodium, ruthenium, platinum, and palladium (all supported on alumina). Experiments were performed using pure alumina as well. Both the catalyst type and the effect of oxygen and steam on the residual hydrocarbons and accumulated carbon containing particulates were investigated. The residence time before the catalyst is varied to determine the importance of the non-catalytic step and its potential effect on the required catalyst loading. Non-catalytic experiments (primarily homogeneous cracking) use a bed of quartz p

Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.

2008-01-01T23:59:59.000Z

56

Spectroscopic studies on the formation of coke on individual Fluid Catalytic Cracking particles: the effect of poisoning metal compounds.  

E-Print Network (OSTI)

??The formation of coke on individual Fluid Catalytic Cracking (FCC) catalyst particles was studied using UV/Vis microspectroscopy and confocal fluorescence microscopy, with n-hexane cracking as… (more)

Goetze, J.G.

2013-01-01T23:59:59.000Z

57

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-test and analysis  

DOE Green Energy (OSTI)

The concept of solar driven chemical reaction in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH[sub 4]) with carbon dioxide (CO[sub 2]) was achieved in a 64 cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multilayered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, the catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Lab., Albuquerque, NM (United States)); Buck, R. (DLR-ITT, Stuttgart (Germany))

1994-06-01T23:59:59.000Z

58

Hydrodesulfurization of Fluid Catalytic Cracking Decant Oils for the Production of Low-sulfur Needle Coke Feedstocks.  

E-Print Network (OSTI)

??Needle coke, produced by the delayed coking of fluid catalytic cracking decant oils, is the primary filler used in the production of graphite electrodes. The… (more)

Wincek, Ronald

2013-01-01T23:59:59.000Z

59

Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.  

DOE Green Energy (OSTI)

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

2002-01-11T23:59:59.000Z

60

Refiners look at H sub 2 SO sub 4 alkylation and catalytic reforming  

Science Conference Proceedings (OSTI)

Sulfuric acid alkylation and catalytic reforming drew many questions at the most recent National Petroleum Refiners Association (NPRA) question and answer session on refining and petrochemical technology. At this annual meeting, presubmitted questions are answered by a panel of experts. For more information on the meeting's format, see OGJ, Mar. 16, p. 37. This third and final article in the series of excerpts from the 1991 NPRA Q and A Session examines such pertinent alkylation topics as tertiary amyl methyl ether (TAME) raffinate processing and unit operation during acid runaway. Also discussed are skewed platinum/rhenium reforming catalyst and how catalyst life affects reformate aromatics levels.

Not Available

1992-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Catalytic reforming with a platinum group and phosphorus-containing composition  

Science Conference Proceedings (OSTI)

A new catalyst composition for converting hydrocarbons is disclosed. Also disclosed is a method for making the catalyst. The catalyst comprises a platinum group component and a phosphorous component with a porous support material. The catalyst is made by compositing a platinum group component with a porous support material and then contacting that composite with phosphorus or a compound of phosphorus. In a preferred embodiment of the invention a catalyst comprising platinum, phosphorus and chlorine with alumina is utilized in the catalytic reforming of hydrocarbons boiling in the gasoline range to produce a high octane reformate suitable for gasoline blending or a high aromatics content reformate suitable as a petrochemical feedstock.

Antos, G. J.; Chao, T.-H.

1984-11-20T23:59:59.000Z

62

Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock, preferably to produce high quality gasoline boiling range products, is disclosed. Relatively impure hydrogen is separated from the reforming zone effluent, compressed, and recontacted with at least a portion of the liquid reformate product to provide relatively pure hydrogen, a portion of which is recycled to the reforming zone. The balance is further compressed and recontacted with at least a portion of the liquid reformate product in a plural stage absorption zone to provide an improved recovery of normally gaseous hydrocarbons as well as an improved recovery of purified hydrogen at a pressure suitable, for example, the relatively high pressure hydrotreating of sulfur-containing feedstocks.

O'brien, D.E.

1982-06-08T23:59:59.000Z

63

Recovery of normally gaseous hydrocarbons from net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

64

Tube skin temperature prediction of catalytic reforming unit (CRU) heaters  

Science Conference Proceedings (OSTI)

The maximum duty of reformer heaters is governed by the occurance of maximum tube skin temperature of the heaters. The value of maximum tube skin temperatures of the heaters must not exceed theirs' maximum allowable design temperature. The paper highlights ... Keywords: coke formation, finite element, simulations, tube furnance

Suzana Yusup; Nguyen Duy Vinh; Nurhayati Mellon; Abdullah Hassan

2006-10-01T23:59:59.000Z

65

Catalytic Cracking of Gaseous Heavy Hydrocarbons by Ceramic Filters  

DOE Green Energy (OSTI)

The use of syngas from waste or biomass gasification to generate electricity is a way which is attracting increasing attention especially with regard to the demands of regenerable energy consumption and to the reduction of waste disposal. In order to feed the syngas to a gas motor or a gas turbine the gas has to be cleaned. In future also the coupling of biomass gasification with a fuel cell will be applied, which needs a very efficient gas cleaning. The decomposition of tars and the removal of particles from the gas are the key issues of gas cleaning. Up to now these two steps are performed in two separate units. Normally, the tars are decomposed in catalytic beds or honeycomb structures. The catalytic decomposition is achieved at temperatures between 750 C and 900 C depending on the catalyst used. Particles are removed by filtration of the hot gas. Filtration at high temperatures and with high efficiencies is possible when using ceramic filter elements. Ceramic hot gas filters are well established in advanced coal gasification, such as the integrated gasification combined cycle process, as well as in waste and biomass gasification and pyrolysis processes. Since the catalytic reaction requires high temperatures the gas has to be reheated after the particles are removed in the filter or the hot unfiltered gas has to flow through the catalytic unit. If the gas is filtered first, reheating of the gas stream is an additional cost factor. Furthermore, pipes downstream of the filter can be plugged, if the temperature of the gas falls below the condensation temperature of the heavy hydrocarbons. Using the second way of hot unfiltered gas flows through the catalytic unit, there is the problem of deactivation of the catalyst by deposition of dust at higher dust concentrations. At worst the catalytic unit can be plugged by dust deposition.

Heidenreich, S.; Nacken, M.; Walch, A.; Chudzinski, S.

2002-09-19T23:59:59.000Z

66

[98e]-Catalytic reforming of gasoline and diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

67

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

68

Catalytic reforming catalyst with modified pore size distribution and a process using the same  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naptha hydrocarbon at reforming conditions using a catalyst comprising at least one catalytic metal and alumina. The improvement comprises using a catalyst having the following properties in combination: a surface area above about 250 M/sup 2//gram of catalyst; a pore volume above about 0.44 cc/gram of catalyst in pores having diameters of from about 30 angstroms to about 38,000 angstroms; and a pore volume distribution wherein about 70 percent or less of the pore volume is in pores having diameters of from about 30 angstroms to about 400 angstroms. About 30 percent or more pore volume is in pores having diameters of from about 400 angstroms to about 38,000 angstroms.

Unmuth, E.E.; Fleming, B.A.

1987-05-12T23:59:59.000Z

69

Catalytic cracking of aromatic hydrocarbons. Final report, October 1984-March 1986  

SciTech Connect

Iron containing minerals and chars were screened as cracking catalysts for aromatic hydrocarbons (AHC) in simulated gasifier effluents. Catalytic activities of six minerals and two chars were measured and used to infer fundamental hetereogeneous rate constants using measured properties of the pore structure of the solids. Measurements were made for 200 ppM and 2000 ppM benzene cracking over the temperature range 400 to 1000/sup 0/C. The active catalyst under gasifier conditions was found to be FeO. The minerals have a higher reactivity per unit mass in chars than in a pure form. H/sub 2/S was found to reduce the catalytic activity to one third of the unpoisoned value, but the catalysts maintained this reduced activity. These minerals have the potential to be economically feasible, disposable catalysts in a fixed bed or fluidized bed process if they can survive for ten hours. 8 refs., 33 figs., 3 tabs.

Simons, G.A.; Ham, D.O.; Moniz, G.A.

1986-04-01T23:59:59.000Z

70

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

SciTech Connect

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

71

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

DOE Green Energy (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

72

Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions  

Science Conference Proceedings (OSTI)

Pyrolysis of lignocellulosic biomass and reforming of the pyroligneous oils are being studied as a strategy for producing hydrogen. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The authors propose a regionalized system of hydrogen production, where small- and medium-sized pyrolysis units (catalytic reforming of model compounds to hydrogen using Ni-based catalysts have achieved essentially complete conversion to H{sub 2}. Existing data on the catalytic reforming of oxygenates have been studied to guide catalyst selection. A process diagram for the pyrolysis and reforming operations is discussed, as are initial production cost estimates. A window of opportunity clearly exists if the bio-oil is first refined to yield valuable oxygenates so that only a residual fraction is used for hydrogen production.

Wang, D.; Czernik, S.; Montane, D.; Mann, M. [National Renewable Energy Lab., Golden, CO (United States); Chornet, E. [National Renewable Energy Lab., Golden, CO (United States)]|[Univ. de Sherbrooke, Quebec (Canada)

1997-05-01T23:59:59.000Z

73

The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report  

DOE Green Energy (OSTI)

Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

1994-11-01T23:59:59.000Z

74

Separation and recovery of hydrogen and normally gaseous hydrocarbons from net excess hydrogen from a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

75

Review of Novel Catalysts for Biomass Tar Cracking and Methane Reforming  

DOE Green Energy (OSTI)

A review of the literature was conducted to examine the performance of catalysts other than conventional nickel catalysts, and alkaline earth and olivine based catalysts for treating hot raw product gas from a biomass gasifier to convert methane and tars into synthesis gas. Metal catalysts other than Ni included precious metals Rh, Ru, Ir, Pt, and Pd, as well as Cu, Co, and Fe in limited testing. Nickel catalysts promoted with Rh, Zr, Mn, Mo, Ti, Ag, or Sn were also examined, as were Ni catalysts on Ce2O3, TiO2, ZrO2, SiO2, and La2O3. In general, Rh stood out as a consistently superior metal catalyst for methane reforming, tar cracking, and minimizing carbon buildup on the catalyst. Ru and Ir also showed significant improvement over Ni for methane reforming. Ceria stood out as good support material and particularly good promoter material when added in small quantities to another support material such as alumina, zirconia, or olivine. Other promising supports were lanthana, zirconia, and titania.

Gerber, Mark A.

2007-10-10T23:59:59.000Z

76

Recovery of C/sub 3/. sqrt. hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

This invention relates to a hydrocarbon conversion process effected in the presence of hydrogen, especially a hydrogenproducing hydrocarbon conversion process. More particularly, this invention relates to the catalytic reforming of a naphtha feedstock, and is especially directed to an improved recovery of the net excess hydrogen, and to an improved recovery of a C/sub 3/..sqrt.. normally gaseous hydrocarbon conversion product and a C/sub 5/..sqrt.. hydrocarbon conversion product boiling in the gasoline range.

Degraff, R.R.; Peters, K.D.

1982-12-21T23:59:59.000Z

77

Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology  

E-Print Network (OSTI)

by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas primary fuel sources from existing production and distribution networks ­ i.e. natural gas, gasoline gas -- optimize catalyst composition and evaluate reforming conditions. · Hydrogen purification using

78

Investigation of H{sub 2}O and CO{sub 2} reforming and partial oxidation of methane: catalytic effects of coal char and coal ash  

Science Conference Proceedings (OSTI)

Methane reforming and partial oxidation was studied to evaluate the catalytic effects of coal chars and coal ashes on methane (CH{sub 4}) conversion, sum selectivity (the sum of H{sub 2} and CO), and ratio selectivity (the ratio of H{sub 2}/CO) in an atmospheric fluidized bed. The kinetics study presented the possibility of CH{sub 4} reforming and partial oxidation with a favorable H{sub 2}/CO ratio, greater than 5. The higher H{sub 2}/CO ratio in CH{sub 4} reforming and the partial-oxidation process can reduce the consumption of CH{sub 4} needed to adjust the H{sub 2}/CO ratio during combined coal gasification and methane reforming. Coal ashes failed to be good candidates of catalysts on CH{sub 4} reforming and partial oxidation because of their very low specific surface area available for catalytic reactions. However, coal chars presented very promising catalytic performance on CH{sub 4} reforming and partial oxidation because of their larger specific surface area. In this study, no other constituents in coal fly ash or special surface properties of coal chars were correlated with the enhanced methane-conversion efficiency. It seems that the specific surface area is only variable in controlling methane-conversion efficiency. 16 refs., 9 figs.

Hongcang Zhou; Yan Cao; Houyin Zhao; Hongying Liu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2008-07-15T23:59:59.000Z

79

Development of a mathematical description of catalytic reforming taking into account changes of the individual components of the feedstock and catalyst coking  

Science Conference Proceedings (OSTI)

This paper presents an approach for modeling petroleum and petrochemical processing. Based on this approach a mathematical model has been developed for catalytic reforming taking into account changes of individual feedstock components and catalyst coking. Examples are given of calculations and optimization of industrial equipment.

Rabinovich, G.B.; Dynkina, N.E.

1985-12-01T23:59:59.000Z

80

Multiple-stage catalytic reforming with gravity-flowing dissimilar catalyst particles  

Science Conference Proceedings (OSTI)

A multiple-stage catalytic conversion system in which a hydrocarbonaceous charge stock and hydrogen flow serially through a plurality of catalytic reaction zones in each of which the catalyst particles are movable via gravity flow. Dissimilar catalyst particles are utilized in the reactor systems which share a common regenerating tower through which the catalyst particles are downwardly movable via gravity flow and in which the catalyst particles are regenerated in segregated fashion. Dissimilarity of the catalyst particles stems from a difference in activity, stability and selectivity characteristics. In turn, this difference may be attributed either to physical, or chemical distinctions between the two composites, or both.

Sikonia, J. G.; Bennett, R. W.

1985-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Catalytic Steam Reforming of Gasifier Tars: On-Line Monitoring of Tars with a Transportable Molecular-Beam Mass Spectrometer; Milestone Completion Report  

DOE Green Energy (OSTI)

A method for evaluating catalytic tar decomposition in real time is presented. The effectiveness of two catalysts are compared. A key technical and economic barrier to commercialization of biomass gasification technologies is the removal of tars that are unavoidably formed in this thermochemical process. Tars contain fuel value; however, they are problematic in gas engines (both reciprocating and turbine) because they condense in the fuel delivery system, forming deposits that negatively affect operation and efficiency. These tars also combust with high luminosity, potentially forming soot particles. The conventional technology for tar removal is wet scrubbing. Although this approach has shown some success, there are significant equipment and operating costs associated with it. In order to prevent the generation of toxic wastewater, the tars must be separated and either disposed as hazardous waste or, preferably, combusted in the gasification plant. A conceptually better approach is catalytic steam reforming of the tars to hydrogen and carbon monoxide (CO), effectively increasing the gasification efficiency and eliminating the problems mentioned above. In FY2000, Battelle Columbus Laboratories attempted to demonstrate integrated gasification-gas turbine operation using catalytic steam reforming of tars. NREL participated in those tests using the transportable molecular-beam mass spectrometer (TMBMS) to monitor the catalytic reactor's performance on-line [10]. Unfortunately, the pilot plant tests encountered operational problems that prevented conclusive determination of the efficacy of the selected catalyst (Battelle's DN34). In FY2001, NREL performed on-site tar steam reforming tests using a slip-stream of hot pyrolysis gas from the Thermochemical Process Development Unit (TCPDU), which was directed to a bench-scale fluidized bed reactor system designed expressly for this purpose. Supporting this effort, the TMBMS was employed to provide on-line analysis of the tar conversion. The gas composition changes were monitored by two identical gas chromatographs (GCs), and modified method 5 sampling was performed to obtain gravimetric conversion data. The combination of these analytical techniques provided definitive catalyst performance data, as well as linkage to previous and on-going work elsewhere. Two catalysts were tested: nickel (Ni) on potassium promoted alumina (Sued-Chemie C11-NK), used commercially for naphtha steam reforming, and alumina (Battelle's DN34) claimed to be effective for gasifier tar decomposition. In addition, sand was tested as an inert reference material.

Carpenter, D.; Ratcliff, M.; Dayton, D.

2002-05-01T23:59:59.000Z

82

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

83

Diesel Reforming for Solid Oxide Fuel Cell Application  

DOE Green Energy (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

84

Catalytic Cracking Fresh Feed  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

85

Year/PAD District Distillation Crude Oil Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization...

86

Plasma Catalytic Conversion of Methane in Ultra Rich Flame using Transient Gliding Arc Combustion Support  

E-Print Network (OSTI)

be carried out in a number of ways: steam reforming, thermo-catalytic reforming, partial oxidation, etc. [1

87

The CAESAR project: Experimental and modeling investigations of methane reforming in a CAtalytically Enhanced Solar Absorption Receiver on a parabolic dish  

DOE Green Energy (OSTI)

A joint US/Federal Republic of Germany (FRG) project has successfully tested a unique solar-driven chemical reactor in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment. The CAESAR test was a {open_quotes}proof-of-concept{close_quotes} demonstration of carbon-dioxide reforming of methane in a commercial-scale, solar, volumetric receiver/reactor on a parabolic dish concentrator. The CAESAR design; test facility and instrumentation; thermal and chemical tests; and analysis of test results are presented in detail. Numerical models for the absorber and the receiver are developed and predicted performance is compared with test data. Post test analyses to assess the structural condition of the absorber and the effectiveness of the rhodium catalyst are presented. Unresolved technical issues are identified and future development efforts are recommended.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. [Sandia National Labs., Albuquerque, NM (US); Buck, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Stuttgart (DE). Inst. of Technical Thermodynamics

1993-07-01T23:59:59.000Z

88

Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49 (2), xxxx NON-THERMAL PLASMA CATALYTIC  

E-Print Network (OSTI)

hydrocarbons can be carried out in a number of ways: steam reforming, thermo-catalytic reforming, partial

89

Advanced research in coal gasification process modification technology: catalytic cracking of aromatic hydrocarbons. Topical report, 1 October 1984-31 June 1985  

SciTech Connect

The objective of this work is to screen inexpensive materials for potential use as disposable aromatic hydrocarbon (AHC) cracking catalysts in the reaction zone of the coal gasifier or in a fixed bed downstream from the gasifier. The approach is based on the conclusions reported in the literature that iron in a reduced state is an effective catalyst for AHC destruction. It therefore follows that chars or minerals with high iron content, high porosity, and high internal surface area will provide the most effective catalysts. We have screened all six of the following iron containing minerals: Siderite, Ankerite, Hematite, Magnetite, Pyrite, and Jarosite. The experimental tests measure the catalytic activity of these minerals for cracking benzene over the parameter range relevant to coal gasifier operation. Simulated coal gas containing 200 to 2000 ppM of model aromatic molecules will be used in all experiments and destruction of benzene will be measured over the temperature range 400 to 1000/sup 0/C. The porosity and surface area of these minerals (partially decomposed in coal gas) will be determined and utilized in a computer model describing pore structure, species transport and surface chemistry to interpret the reactivity data in terms of the intrinsic reactivity of the reduced state of each mineral. These results will provide a basis for catalyst selection, coal selection and economic comparison. 3 refs., 15 figs., 3 tabs.

Simons, G.A.; Ham, D.A.; Moniz, G.A.

1985-08-01T23:59:59.000Z

90

Diesel Reforming for Fuel Cell Auxiliary Power Units  

DOE Green Energy (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

91

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: 2, Modeling and analysis  

DOE Green Energy (OSTI)

The CAtalytically Enhanced Solar Absorption Receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as essential to improve the confidence in the capability to predict large-scale reactor operation.

Skocypec, R.D.; Hogan, R.E. Jr.; Muir, J.F.

1991-01-01T23:59:59.000Z

92

Catalytic Properties of Ni-Al Intermetallic Nanoparticle Catalysts for ...  

Science Conference Proceedings (OSTI)

In order to pursue high catalytic performance of Ni-Al intermetallic ... very high catalytic activity for methanol decomposition and methane steam reforming.

93

Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system  

Science Conference Proceedings (OSTI)

A process is described for reforming a hydrocarbon in a multi-stage endothermic reforming series of catalytic reforming reactors where the hydrocarbon is passed through the series of catalytic reforming reactors to form a reformate. The hydrocarbon is heated prior to entry to the next catalytic reforming reactor in the series, which process comprises contact of the hydrocarbon intermediate from the series of catalytic reforming reactors containing reforming catalyst with a polynuclear aromatic adsorbent to adsorb at least a portion of the polynuclear aromatic content from the hydrocarbon prior to entry to each of the next catalytic reforming reactor in the series and recovering a reformate from the last catalytic reforming reactor in the series, the recovered reformate having a reduced content of polynuclear aromatics.

Ngan, D.Y.

1989-02-14T23:59:59.000Z

94

Catalytic Reforming - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Process: Period: Annual (as of January 1) Download Series History: Definitions, Sources & Notes: Show Data By: Process: Area: 2008 2009 2010 2011 2012 ...

95

Catalytic Reforming - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

96

WHEC 16 / 13-16 June 2006 Lyon France Plasma assisted fuel reforming for on-board hydrogen rich gas production  

E-Print Network (OSTI)

through hydrogen on-board storage. The main reforming technology is catalytic reforming, which has been points are challenges for automotive applications. In parallel with research on catalytic reforming assisted reforming could be used complementary to catalytic reforming to ensure dynamics performance (start

Paris-Sud XI, Université de

97

Evaluate reformer performance at a glance  

Science Conference Proceedings (OSTI)

Catalytic reforming is becoming increasingly important in replacing octane lost as the removal of lead from worldwide gasoline pools continues. A method has been developed that can quickly evaluate the performance of any catalytic reformer. The catalytic naphtha reforming process primarily involves three well-known reactions. These are aromatization of naphthenes, cyclization of paraffins and hydrocracking of paraffins. Hydrogen is produced in the process of aromatization and dehydrocyclization of paraffins. Reformer performance is normally evaluated with a reformate analysis (PONA) and yield of C{sub 5{sup +}} reformate. This method of quick evaluation of reformer performance is based upon the main assumption that the increase in hydrocarbon moles in the process is equal to the number of C{single_bond}C bond ruptures and one mole of hydrogen is absorbed to saturate the same. This new method calculates aromatization efficiency, paraffin conversion, aromatic selectivity and finally the paraffin, naphthene and aromatic content of C{sub 5{sup +}} reformate.

Nag, A. [Indian Oil Corporation Ltd., Gujarat (India)

1996-02-01T23:59:59.000Z

98

Multizone naphtha reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naphtha hydrocarbon at reforming conditions having at least two segregated catalyst zones. The improvement comprises contacting the hydrocarbon in a first zone with a first catalyst comprising tin and at least one platinum group metal deposited on a solid catalyst support followed by contacting in a second zone with a second catalyst comprising at least one metal selected from the group consisting of platinum group metals deposited on a solid catalyst support.

Fleming, B.

1987-05-05T23:59:59.000Z

99

Introduction 1 2BChapter 1. Introduction  

E-Print Network (OSTI)

. These processes include catalytic reforming (to increase the octane number), catalytic cracking (to increase

Groningen, Rijksuniversiteit

100

Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming**  

E-Print Network (OSTI)

. The catalytic reforming of hydrocarbons in a microreformer is an attractive approach to supply hydrogen to fuel

Kenis, Paul J. A.

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

L. van Dyk, L. Lorenzen, S. Miachon, and J.-A. Dalmon, Xylene isomerization in an extractor type Catalytic Membrane Reactor, Catal. Today, 104 (2005) 274. Page 1 / 7  

E-Print Network (OSTI)

. Rabinovich, N. Alexeev, Plasma catalytic reforming of methane, International Journal of Hydrogen Energy, 24

Paris-Sud XI, Université de

102

Catalytic skeletal isomerization  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains a derivative of cyclopentane or which contains organic compounds which are convertible to a derivative of cyclopentane is carried out in the presence of a hydrogrel of zinc titanate and a suitable acidic material. Also, the attrition resistance of zinc titanate is improved by incorporating the zinc titanate into a hydrogel structure.

Aldag, A.W.

1984-05-01T23:59:59.000Z

103

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

104

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

105

Catalytic dewaxing of middle distillates  

SciTech Connect

The fractionation and stripping equipment of a middle distillate catalytic dewaxing unit may be eliminated by integrating the catalytic dewaxing unit with a catalytic cracking unit. The light cycle oil sidestream from the cat cracker fractionator, bypasses the sidestream stripper and serves as the feed to the catalytic dewaxing unit. The dewaxed product is separated into a gasoline fraction which is recycled for fractionation in the cat cracker fractionator and a fuel oil fraction which is recycled to the cat cracker sidestream stripper for removal of light materials to produce a low pour fuel oil meeting product specifications.

Antal, M.J.

1982-06-01T23:59:59.000Z

106

Reforming naphtha with boron-containing large-pore zeolites  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process. It comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising larger-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms containing less that 1000 parts per million aluminum.

Zones, S.I.; Holtermann, D.L.; Rainis, A.

1992-05-19T23:59:59.000Z

107

Fuel cell integrated with steam reformer  

DOE Patents (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

108

Octane Number Prediction in a Reforming Plant  

Science Conference Proceedings (OSTI)

In this work a neural network for the prediction of the complex and non-linear behavior of a Catalytic Reforming of a refinery has been developed. In a fuel, refinery reforming is a conversion process to increase octane number (RON) of the desulphurated ...

E. Chibaro

2000-07-01T23:59:59.000Z

109

Methanol Steam Reformer on a Silicon Wafer  

DOE Green Energy (OSTI)

A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

2004-04-15T23:59:59.000Z

110

Catalytic decomposition of alcohols over size-selected Pt nanoparticles supported on ZrO2: A study of activity, selectivity, and stability  

E-Print Network (OSTI)

, but do not contribute to steady-state catalytic reforming rates. The high reactivity of Pd surfaces in C

Kik, Pieter

111

A Mixed-Dimensionality Modeling Approach for Interaction of Heterogeneous Steam Reforming Reactions and Heat Transfer.  

E-Print Network (OSTI)

??Hydrogen is most often produced on an industrial scale by catalytic steam methane reforming, an equilibrium-limited, highly endothermic process requiring the substantial addition of heat… (more)

Valensa, Jeroen

2009-01-01T23:59:59.000Z

112

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

113

Catalytic Hydrotreating Naphtha/Reformer Feed Downstream ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

114

Catalytic Reforming High Pressure Downstream Charge Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

115

Catalytic Cracking Recycle Feed Downstream Charge Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

116

Catalytic Cracking Fresh Feed - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

117

Partial oxidation fuel reforming for automotive power systems.  

DOE Green Energy (OSTI)

For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

1999-09-07T23:59:59.000Z

118

New model accurately predicts reformate composition  

Science Conference Proceedings (OSTI)

Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-01-31T23:59:59.000Z

119

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C@emn.fr ABSTRACT In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases

120

Catalytic Distillation  

E-Print Network (OSTI)

Catalytic Distillation' refers to a chemical process which performs both a catalyzed reaction and primary fractionation of the reaction components simultaneously. A structured catalyst which also is an effective distillation component has been patented by Chemical Research & Licensing Co., Houston, Texas, and developed in a joint venture with Neochem Corp., Houston, Texas, and the Department of Energy. The catalytic distillation packing has been commercially demonstrated successfully with nearly three years continuous service for an acid catalyzed reaction in a carbon steel distillation tower.

Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cracking knuckles  

NLE Websites -- All DOE Office Websites (Extended Search)

Cracking knuckles Cracking knuckles Name: Renee Knuckles Location: N/A Country: N/A Date: N/A Question: Does cracking your joints especially the knuckles cause arthritis? What are some of the results of doing so? Replies: Cracking knuckles has NEVER been associated with causing arthritis. This concept is as wrong as saying weight lifting makes you short, or playing basketball makes you tall. The "popping" of the knuckles results from forcing joint fluid to very rapidly pass from one side of the joint to the other, where the "sides" are partitioned off by the main bones of the joint. Let me rephrase that: a joint is an area where two or more separate and distinct bones meet. The joint fluid provides a cushioning between the joints so that they don't grate into each other. Cracking your knuckles forces the joint fluid from one part of the joint to another, and the popping sound is just the result of the high pressured rushing of fluid.

122

Hydrogen Assisted Cracking  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking (EAC): Laboratory Research and Field Experiences: Hydrogen Assisted Cracking Program Organizers: Suresh Divi, TIMET

123

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

DOE Patents (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

124

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

Science Conference Proceedings (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

125

Transport in a Microfluidic Catalytic Reactor  

DOE Green Energy (OSTI)

A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

2003-04-30T23:59:59.000Z

126

High temperature catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

Not Available

1990-03-01T23:59:59.000Z

127

Autothermal reforming catalyst having perovskite structure  

DOE Patents (OSTI)

The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

2009-03-24T23:59:59.000Z

128

Numerical simulation of micro/mini-channel based methane-steam reformer.  

E-Print Network (OSTI)

??Numerical modeling of methane-steam reforming is performed in a micro/mini-channel with heat input through catalytic channel walls. The low-Mach number, variable density Navier-Stokes equations together… (more)

[No author

2010-01-01T23:59:59.000Z

129

Synthesis and characterization of 1D ceria nanomaterials for CO oxidation and steam reforming of methanol  

Science Conference Proceedings (OSTI)

Novel one-dimensional (1D) ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several ...

Sujan Chowdhury; Kuen-Song Lin

2011-01-01T23:59:59.000Z

130

Quick-start catalyzed methanol partial oxidation reformer  

DOE Green Energy (OSTI)

The catalytic methanol partial oxidation reformer described in this paper offers all the necessary attributes for use in transportation fuel cell systems. The bench-scale prototype methanol reformer developed at Argonne is a cylindrical reactor loaded with copper zinc oxide catalyst. Liquid methanol, along with a small amount of water, is injected as a fine spray into a flowing air stream, past an igniter onto the catalyst bed where the partial oxidation reaction takes place.

Ahmed, S.; Kumar, R.

1995-12-01T23:59:59.000Z

131

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

132

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

133

Creep Crack Growth  

Science Conference Proceedings (OSTI)

Table 3   Creep crack growth constants b and m for various ferritic steels...and Banerji, â??Creep Crack Growth Behavior

134

THE EFFECT OF LUMPING AND EXPANDING ON KINETIC DIFFERENTIAL EQUATIONS  

E-Print Network (OSTI)

in petroleum cracking (Li and R* *ab- itz, 1991b), catalytic reforming (Li, Rabitz, 1993a), biochemistry (Li

Tóth, János

135

MEMS-based fuel cells with integrated catalytic fuel processor and method thereof  

Science Conference Proceedings (OSTI)

Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

2011-08-09T23:59:59.000Z

136

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1  

E-Print Network (OSTI)

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Ghosh3 , Huei Peng2 Abstract A fuel processor that reforms natural gas to hydrogen-rich mixture to feed of the hydrogen in the fuel processor is based on catalytic partial oxidation of the methane in the natural gas

Peng, Huei

137

Hydrocarbon Processing`s refining processes `96  

Science Conference Proceedings (OSTI)

The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

NONE

1996-11-01T23:59:59.000Z

138

Fixed-bed reforming with mid-cycle catalyst addition  

Science Conference Proceedings (OSTI)

A fixed-bed catalytic reforming process is described in which on-stream operation is begun with the catalyst retention volume in the first reactor less than 99% full and additional catalyst is added to said reactor while on-stream.

Houston, R.J.; McCoy, C.S.

1981-02-17T23:59:59.000Z

139

Raney nickel catalytic device  

DOE Patents (OSTI)

A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

O' Hare, Stephen A. (Vienna, VA)

1978-01-01T23:59:59.000Z

140

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fractionation of reformate: A new variant of gasoline production technology  

Science Conference Proceedings (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

142

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

143

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

144

Environmentally Assisted Cracking: Nuclear  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2014. Symposium, Environmentally Assisted Cracking: Nuclear. Sponsorship. Organizer(s) ...

145

Systemic Reform Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

(5) support local initiatives and model sites; (6) align state policy; (7) reform higher education and teacher preparation; and (8) mobilize public and professional...

146

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

147

Security and Suitability Process Reform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security and Suitability Process Reform December 2008 Provided by the Joint Security and Suitability Reform Team EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET...

148

Microchannel Process Technology for Compact Methane Steam Reforming  

Science Conference Proceedings (OSTI)

The study of microchannel reaction engineering and applications to compact chemical reactors has expanded rapidly both academically and industrially in recent years. Velocys{reg_sign}, a spin-out company from Battelle Memorial Institute, is commercializing microchannel process technology for large-scale chemical processing. Hydrogen production at industrial rates in compact Velocys hardware is made possible through increases in both heat and mass transfer rates for highly active and novel catalysts. In one example, a microchannel methane steam reforming reactor is presented with integrated catalytic partial oxidation of methane prior to catalytic combustion with low excess air (25%) to generate the required energy for undothermic methane steam reforming in adjacent channels. Heat transfer rates from the exothermic reactions exceed 18 W/cm{sup 2} of interplanar heat transfer surface area and exceed 65 W/cm{sup 3} of total reaction volume for a methane steam reforming contact time near 4 milliseconds. The process intensity of the Velocys methane steam reformer well exceeds that of conventional steam reformers, which have a typical volumetric heat flux below 1 W/cm{sup 3}. The integration of multiple unit operations and improvements in process intensification result in significant capital and operating cost savings for commercial applications.

Tonkovich, A L.; Perry, Steve; Wang, Yong; Qiu, Dongming; LaPlante, Timothy J.; Rogers, William A.

2004-12-01T23:59:59.000Z

149

Copyright reform step zero  

Science Conference Proceedings (OSTI)

'A reasonable person might well think it's a fool's errand to contemplate a [copyright] reform project of any sort.' The US Copyright Act of 1976 and its subsequent amendments is contained in over 200 pages of incomprehensible, sometimes inconsistent, ... Keywords: US copyright law, administrative law, copyright reform, institutional frameworks

Terry Hart

2010-06-01T23:59:59.000Z

150

Today in Energy - Catalytic reforming boosts octane for gasoline ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

151

Hydrogen from Biomass Catalytic Reforming of Pyrolysis Vapors  

E-Print Network (OSTI)

surging, the use of biomass and www.elsevier.com/locate/jaap J. Anal. Appl. Pyrolysis xxx (2006) xxx of the virgin biomass and the development of the microstructure of the char. Structural changes during pyrolysis. Leppamaki, P. Koponen, J. Lavander, E. Tapola, Physical characterization of biomass-based pyrolysis liquids

152

Methanol synthesis gas from catalytic steam reforming of wood  

DOE Green Energy (OSTI)

Laboratory studies were successful in developing catalyst systems and operating conditions for generation of a methanol synthesis gas, a mixture of hydrogen, carbon monoxide and carbon dioxide. Some methane remained in the gas mixture. Wood was reacted with steam at a steam-to-wood weight ratio of about 0.9 and a temperature of 750/sup 0/C (1380/sup 0/F) in the presence of several catalysts. Results are presented for two different catalyst systems.

Mudge, L.K.; Mitchell, D.H.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

1981-01-01T23:59:59.000Z

153

Apparatus for catalytic reforming with continuous sulfur removal  

Science Conference Proceedings (OSTI)

An apparatus for continuously removing residual sulfur from a naptha stream has a primary manganous oxide absorber, a secondary parallel manganous oxide absorber and valve and duct means for by-passing the primary absorber and directing the naptha feed stream to the secondary absorber. The apparatus also includes means for removing manganous oxide from the primary absorber and nitrogen purge means for purging the same.

Novak, W. J.

1985-08-13T23:59:59.000Z

154

Cracks Cleave Crystals  

E-Print Network (OSTI)

The problem of finding what direction cracks should move is not completely solved. A commonly accepted way to predict crack directions is by computing the density of elastic potential energy stored well away from the crack tip, and finding a direction of crack motion to maximize the consumption of this energy. I provide here a specific case where this rule fails. The example is of a crack in a crystal. It fractures along a crystal plane, rather than in the direction normally predicted to release the most energy. Thus, a correct equation of motion for brittle cracks must take into account both energy flows that are described in conventional continuum theories and details of the environment near the tip that are not.

Michael Marder

2004-03-05T23:59:59.000Z

155

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

156

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

157

Catalytic Cracking Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA)

Process: Period-Unit: Download Series History: Definitions, Sources & Notes: Show Data By: Process: Area: Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History; U.S ...

158

Fluidic Catalytic Cracking Power Recovery Dynamic Computer Simulation  

E-Print Network (OSTI)

Fluidic Cat Crackers (FCC) using the catalyst regeneration cycle are candidates for more power efficient operation by the use of high temperature dirty gas expanders. In a previous paper, a computer simulation was described for the steady state operation of the primary mechanical components, specifically the axial compressor and hot gas expander. The present work expands upon the steady state model to add the dynamic characteristics of these elements as well as the effects of the controlling process valves. In many applications the expander will develop more power than the axial compressor can absorb. A power absorbing source, specifically an electrical generator, converts the mechanical excess power into electrical energy. A review of the mechanical equipment and the electrical generator operating modes and controls is needed so that the process designer and operator will know how the system will respond if process upsets were to occur. The program code developed can simulate these elements for specific processes and demonstrate the logic control scheme proposed by the process designer. This information will therefore allow the process operator, process designer and mechanical equipment supplier an understanding of the interplay of the system control elements and define specific operating limits.

Samurin, N. A.

1980-01-01T23:59:59.000Z

159

Fluid catalytic cracking is an important step in producing ...  

U.S. Energy Information Administration (EIA)

... (much as water makes sand into quicksand). Because the catalyst is fluid, it can circulate around the FCC, moving between reactor and regenerator vessels ...

160

Catalytic Cracking Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Corrosion protection of reforming equipment during regeneration of the catalyst  

Science Conference Proceedings (OSTI)

The authors discuss the important process of catalytic reforming to produce the basic components of high-octane gasolines and aromatic hydrocarbons in petroleum chemistry. Wide use is made of two-stage oxidative regeneration--coke burning and oxychlorination. This increases the activity of the catalysts. The authors developed a two-stage industrial method of corrosion protection for the low-temperature equipment of catalytic reforming plants during catalyst regeneration. The system is washed, before catalyst regeneration, with an aqueous solution of KLOE-15 in order to remove corrosion products already present. During catalyst regeneration, KLOE-15 and a neutralizing additive are fed in. The method is technically simple and economically effective, and has been introduced in a number of petroleum refineries.

Altsybeeva, A.I.; Andreeva, G.A.; Prasolova, O.N.; Ratner, E.M.; Reshetnikov, S.M.; Teslya, B.M.

1986-01-01T23:59:59.000Z

162

Fuel cell system with combustor-heated reformer  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

163

Catalytic distillation structure  

DOE Patents (OSTI)

Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

Smith, Jr., Lawrence A. (Bellaire, TX)

1984-01-01T23:59:59.000Z

164

Internal natural gas reformer-dividers for a solid oxide fuel cell generator configuration  

Science Conference Proceedings (OSTI)

This patent describes a fuel cell generator configuration. It comprises electrically connected, axially elongated, fuel cells, each cell having an outer and inner electrode with solid oxide electrolyte therebetween; where elongated dividers separate and are positioned between fuel cells, and where at least one of the elongated dividers is hollow, the hollow divider having solid elongated walls, a reformable fuel mixture entrance, and an exit allowing passage of reformed fuel to the fuel cells, and where the cross-section of the divider contains a catalytic reforming material.

Reichner, P.

1992-01-21T23:59:59.000Z

165

ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS  

SciTech Connect

ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated for the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.

Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.; Korolev, Alexander; Khaleel, Mohammad A.; Singh, Prabhakar

2007-01-16T23:59:59.000Z

166

Selective dehydrogenation of propane over novel catalytic materials  

Science Conference Proceedings (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

167

Selective Dehydrogenation of Propane over Novel Catalytic Materials  

E-Print Network (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices. 4 Acknowledgment The authors thank United Catalysts, Inc. for stimulating technical discussions and for providing samples of commercial ...

Allen Sault Elaine; Elaine P. Boespflug Anthony Martino; Jeffrey S. Kawola

1998-01-01T23:59:59.000Z

168

Catalytic distillation process  

DOE Patents (OSTI)

A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, Jr., Lawrence A. (Bellaire, TX)

1982-01-01T23:59:59.000Z

169

Catalytic distillation process  

DOE Patents (OSTI)

A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

Smith, L.A. Jr.

1982-06-22T23:59:59.000Z

170

Catalytic distillation structure  

DOE Patents (OSTI)

Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

Smith, L.A. Jr.

1984-04-17T23:59:59.000Z

171

LPG storage vessel cracking experience  

SciTech Connect

In order to evaluate liquefied petroleum gas (LPG) handling and storage hazards, Caltex Petroleum Corp. (Dallas) surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one-third of the storage vessels. In most cases, the cracking appeared to be due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems found were due to exposure to wet hydrogen sulfide. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. This article's recommendations concern minimizing cracking on new and existing LPG storage vessels.

Cantwell, J.E. (Caltex Petroleum Corp., P.O. Box 619500, Dallas, TX (US))

1988-10-01T23:59:59.000Z

172

LPG storage vessel cracking experience  

SciTech Connect

As part of an overall company program to evaluate LPG handling and storage hazards the authors surveyed several installations for storage vessel cracking problems. Cracking was found in approximately one third of the storage vessels. In most cases the cracking appeared due to original fabrication problems and could be removed without compromising the pressure containment. Several in-service cracking problems due to exposure to wet hydrogen sulfide were found. Various procedures were tried in order to minimize the in-service cracking potential. One sphere was condemned because of extensive subsurface cracking. Recommendations are made to minimize cracking on new and existing LPG storage vessels.

Cantwell, J.E.

1988-01-01T23:59:59.000Z

173

Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion  

SciTech Connect

Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

2011-05-28T23:59:59.000Z

174

THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS  

Science Conference Proceedings (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

Parks, II, James E [ORNL; Ponnusamy, Senthil [ORNL

2006-01-01T23:59:59.000Z

175

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.  

DOE Green Energy (OSTI)

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.

Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

2004-12-01T23:59:59.000Z

176

Nevada Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

177

North Carolina Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2007-2013: Catalytic Hydro ...

178

Guam Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 0: 0: 0: 0: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Hydro ...

179

Catalytic hydrotreating process  

DOE Patents (OSTI)

Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

Karr, Jr., Clarence (Morgantown, WV); McCaskill, Kenneth B. (Morgantown, WV)

1978-01-01T23:59:59.000Z

180

Catalytic Coal Gasification Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalytic Solutions Inc CSI | Open Energy Information  

Open Energy Info (EERE)

Developer of the breakthrough catalytic coating technology and the Mixed Phase Catalyst (MPCTM), and also manufacturer of catalytic converters. References Catalytic...

182

Corrosion Fatigue Crack Growth and Stress-Corrosion Cracking in ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The high stress ratio (R=0.85) corrosion fatigue crack growth kinetics and stress-corrosion cracking resistance of sensitized (70-175 °C up to ...

183

Multifuel reformer R D  

DOE Green Energy (OSTI)

The on-board fuel for fuel cell powered vehicles may be one or more of hydrogen, methanol, ethanol, natural gas, propane, or other liquified petroleum gases. To use hydrogen as the fuel, suitable means of storing, and subsequently delivering, adequate quantities of the gas must be developed. For all other fuels suitable reformers must be developed to convert the fuel to hydrogen or a hydrogen-rich gas mixture at rates corresponding to the varying power demand rates of the automotive system; this is especially true for the lower temperature fuel cells, such as the polymer electrolyte fuel cell which operates at 80{degrees}C and the phosphoric acid fuel cell which operates at 190{degrees}C. This paper discusses the key design and performance characteristics of such hydrogen storage and fuel reformer systems for use in stand-alone fuel cell automotive applications.

Kumar, R.; Ahmed, S.

1991-01-01T23:59:59.000Z

184

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

185

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

186

Catalytic coal liquefaction process  

SciTech Connect

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

187

Catalytic coal liquefaction process  

DOE Patents (OSTI)

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

188

Catalytic conversion of LPG  

Science Conference Proceedings (OSTI)

The low reactivity of light paraffins has long hindered their utilization as petrochemical feedstocks. Except for their use in ethylene crackers, LPG fractions have traditionally been consumed as fuel. New catalytic processes now being commercialized open new avenues for the utilization of LPG as sources of valuable petrochemical intermediates. This paper discusses processes for the dehydrogenation and aromatization of LPG.

Pujado, P.R.; Vora, B.V.; Mowry, J.R.; Anderson, R.F.

1986-01-01T23:59:59.000Z

189

Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming  

DOE Green Energy (OSTI)

In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

Gunther Dieckmann

2006-06-30T23:59:59.000Z

190

Analysis of Cracked Pipe Weldments  

Science Conference Proceedings (OSTI)

EPRI estimation formulas for predicting loads necessary for crack initiation and instability can facilitate leak-before-break analysis of cracked nuclear piping. Finite-element calculations carried out in this study verified the accuracy of these formulas for analyzing through-the-wall cracks in bimetallic weldments.

1987-02-01T23:59:59.000Z

191

Commercialization of a high-performance continuous reforming catalyst  

Science Conference Proceedings (OSTI)

In 1971, the first CCR Platforming process was started up in the US on the Gulf Coast. Twenty-two years later, more than 108 continuous reforming units are operating worldwide. Another 50 CCR Platforming units are in various stages of design, construction, or start-up. Continuous catalytic reforming now represents more than 25% of the world's reforming capacity. Throughout these three decades, the UOP CCR Platforming technology continuously improved in terms of catalyst and process in response to changing industry requirements. Processing conditions in 1993 place tremendous demands on the catalyst in the reforming unit. This paper reviews the challenges and needs of the changing refining industry and the development of a new generation of CCR Platforming catalyst, R-132, and focuses on the first commercial operation of this high-activity, surface-stable catalyst. Case studies show how a refiner can improve margins by using the high activity, yield stability, longer life, and improved chloride retention benefits of this new R-132 Platforming catalyst.

Gilsdorf, N.L.; Doornbos, A.E.; Gevelinger, T.J. (UOP, Des Plaines, IL (United States)); Angelo, C.M.D. (Petrogal Refinaria de Sines (Portugal))

1993-01-01T23:59:59.000Z

192

Catalytic coal hydrogasification process  

SciTech Connect

In Exxon Research and Engineering Co.'s new approach, methane is produced by a thermoneutral process in which finely divided coal or other carbonaceous material is reacted with steam and hydrogen in the presence of an alkali-metal catalyst (1 to 50 wt percent based on carbonaceous material) in a fluidized bed at a temperature of 1200/sup 0/ to 1500/sup 0/F. The hydrogen and reactant steam concentrations are controlled so that the exothermic hydrogasification reactions provide sufficient heat for the endothermic steam reactions, reactant preheat, and reactor heat losses. The overhead gas from the gasifier is steam-reformed in the presence of an alkali-metal catalyst at a temperature of 1300/sup 0/ to 1700/sup 0/F. Acid constituents such as CO/sub 2/ and H/sub 2/S are removed from the reformed gas, which is then cryogenically separated into hydrogen, CO, and methane. The hydrogen is recycled to the hydrogasification zone and the CO used to fire the steam-reformer furnace. The high-purity methane from the cryogenic unit can be employed as a pipeline gas without further treatment.

Kalina, T.; Moore, R.E.

1974-11-12T23:59:59.000Z

193

Inter-relationship between preparation methods, nickel loading, characteristics and performance in the reforming of crude ethanol over Ni/Al2O3 catalysts: A neural network approach  

Science Conference Proceedings (OSTI)

Artificial neural network (ANN) approach was used to design an optimum Ni/Al"2O"3 catalyst for the production of hydrogen by the catalytic reforming of crude ethanol based on determining the inter-relationships between catalyst-preparation methods, nickel ... Keywords: Artificial neural network, Catalyst characteristics, Crude-ethanol reforming, Hydrogen production, Optimum catalyst design

Shoumin Song; Abayomi J. Akande; Raphael O. Idem; Nader Mahinpey

2007-03-01T23:59:59.000Z

194

Characterization of carbonaceous species formed during reforming of CH{sub 4} with CO{sub 2} over Ni/CaO-Al{sub 2}O{sub 3} catalysts studied by various transient techniques  

Science Conference Proceedings (OSTI)

Catalytic reforming of methane to synthesis gas over wt% Ni/CaO-Al{sub 2}O{sub 3} was studied. Nickel particle morphology and its size distribution is thought to be influenced by the support composition, which in turn controls the origin, the kinetics, and the reactivity of carbon decomposition under reforming reaction conditions. 43 refs., 10 figs., 4 tabs.

Goula, M.A.; Lemonidou, A.A. [Aristotle Univ. of Thessaloniki (Greece); Efstathiou, A.M. [University Campus, Patras (Greece)

1996-07-01T23:59:59.000Z

195

U.S. Propane Production by Source  

U.S. Energy Information Administration (EIA)

Propane comes primarily from two units in a refinery -- the reformer and fluid catalytic cracking unit -- which are important units in the production ...

196

NEPA Contracting Reform Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

197

Novel Reforming Catalysts  

Science Conference Proceedings (OSTI)

Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

Pfefferle, Lisa D; Haller, Gary L

2012-10-16T23:59:59.000Z

198

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

199

Concentric catalytic combustor  

DOE Patents (OSTI)

A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

Bruck, Gerald J. (Oviedo, FL); Laster, Walter R. (Oviedo, FL)

2009-03-24T23:59:59.000Z

200

CSD: Research: Catalytic Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Science Catalytic Science The DOE Chemical Energy program supports basic research in the area of chemical transformations or conversions which are fundamental to new or existing concepts of energy production and storage. A further goal of the program is to identify and develop environmentally benign approaches to the synthesis of chemicals via routes requiring a minimal consumption of energy. These objectives lead naturally to an emphasis on catalysis. Novel homogeneous and heterogeneous catalysts are constantly being sought to enable the synthesis of desired products from nontraditional reactants, often with the aim of minimizing the production of toxic intermediates or byproducts, or to enable the more efficient production of products via existing reaction pathways. To this end, efforts are undertaken to

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Patent Counsel - Patent Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patent Counsel - Patent Reform Patent Counsel - Patent Reform America invents Act 20112.pdf More Documents & Publications PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS Office of...

202

Catalytic distillation : design and application of a catalytic distillation column.  

E-Print Network (OSTI)

??Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a… (more)

Nieuwoudt, Josias Jakobus (Jako)

2005-01-01T23:59:59.000Z

203

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

204

Solar Reforming of Carbon Dioxide to Produce Diesel Fuel  

SciTech Connect

This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

Dennis Schuetzle; Robert Schuetzle

2010-12-31T23:59:59.000Z

205

Analysis of Crack Growth Data  

Science Conference Proceedings (OSTI)

Table 3   Methods for calculating crack growth rates...the derivative at the midpoint of a data set. These methods use

206

Environmentally Assisted Cracking of Materials  

Science Conference Proceedings (OSTI)

In-Situ Repairs of Oil Industry Pipelines, Tanks and Vessels by Welding Using Metal Arc Welding Under Oil (MAW-UO) · Interpretation of Crack Initiation and ...

207

Shale oil cracking. 1. Kinetics  

DOE Green Energy (OSTI)

Experiments were conducted to determine kinetics for thermal cracking of shale oil vapor over shale. Cracking temperatures of 504 to 610/sup 0/C and residence times of 2 to 11 seconds were used. A first-order Arrhenius rate expression and stoichiometry were obtained. Also observed were changes in the oil quality. Cracking decreased the H/C ratio, increased the nitrogen content, and decreased the pour point of the oil. Gas-phase oil cracking is contrasted to liquid-phase oil coking as a loss mechanism in oil-shale retorting.

Burnham, A.K.; Taylor, J.R.

1979-10-01T23:59:59.000Z

208

Environmentally Assisted Cracking of Materials  

Science Conference Proceedings (OSTI)

Development of Alternating Current Potential Drop (ACPD) method for the detection of Primary Water Stress Corrosion Cracking initiation in Stainless Steels and ...

209

PICEP: Pipe Crack Evaluation Program  

Science Conference Proceedings (OSTI)

We describe a computer program that calculates the crack-opening area, the critical (stable) crack length and the two-phase flow rate through cracks in ductile stainless steel pipes and steam generator tubes. The program is useful in performing leak-before-break calculations in order to demonstrate detectable leak rates prior to a through-wall flaw reaching critical size. Necessary input to the code includes a definition of material properties, loads, thermal-hydraulic conditions, pipe geometry, and crack orientation. User information is provided in the report.

Norris, D.; Okamoto, A.; Chexal, B.; Griesbach, T.

1984-08-01T23:59:59.000Z

210

Novel Catalytic Membrane Reactors  

DOE Green Energy (OSTI)

There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

Stuart Nemser, PhD

2010-10-01T23:59:59.000Z

211

Hiring Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hiring Reform Hiring Reform Hiring Reform President Obama's Memorandum dated May 11, 2010, Improving the Federal Recruitment and Hiring Process, is Phase I of the Administration's comprehensive initiative to address major, long-standing impediments to recruiting and hiring the best and the brightest into the Federal civilian workforce. The Memorandum is based on issues that DOE and others brought to the attention of OPM, and it is designed to help Agencies build the workforce you need to achieve your goals. The Presidential Memorandum launches the Obama Administration's flagship personnel policy reform initiative. It builds on a nearly year-long collaboration between OPM and Agencies aimed at streamlining the hiring process and recruiting top talent, especially for mission-critical jobs.

212

Applications of solar reforming technology  

DOE Green Energy (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

213

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

214

Before House Committee on Oversight and Government Reform | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform By: Secretary...

215

Before the House Committee on Oversight and Government Reform...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Government Reform Before the House Committee on Oversight and Government Reform Before the Committee on Oversight and Government Reform, U.S. House of Representatives...

216

Effect of Thermomechanical Processing on Fatigue Crack ...  

Science Conference Proceedings (OSTI)

gechanical driving force such as crack opening distance (COD) . However, at hold time loading, the crack growth rate is drastically decreased with an increase of ...

217

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

218

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

219

Texas Inland Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA)

Process: Area: 2007 2008 2009 2010 2011 2012 View History; Catalytic Reforming : 133: 125: 131: 2010-2012: Catalytic Cracking: 173: 158: 159: 149: 162: 164: 1987-2012 ...

220

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Safety and Security Directives Reform  

NLE Websites -- All DOE Office Websites (Extended Search)

Reforming a "Mountain" of Policy Reforming a "Mountain" of Policy Beginning with his confirmation hearings in January 2009, Energy Secretary Steven Chu challenged the Department of Energy to take a fresh look at how we conduct business. This challenge provided the opportunity for DOE to put in place the most effective and efficient strategies to accomplish the Department's missions safely and securely. In response to the Secretary's challenge and building on the results of Deputy Secretary Poneman's Safety and Security Reform studies, the Office of Health, Safety and Security (HSS) broadened its directives review activities during 2009. By November 2009 HSS had initiated a disciplined review of all health, safety, and security directives, which included a systematic review of the Department's safety and security regulatory model.

222

Intergranular Stress Corrosion Cracking (IGSCC) Mechanism of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Environmentally Assisted Cracking of Materials. Presentation Title ...

223

Weldability Tests for Evaluating Cracking Susceptibility  

Science Conference Proceedings (OSTI)

Table 2   Weldability tests used to evaluate susceptibility to cracking...used to evaluate susceptibility to cracking Test Fields of use Controllable variables Type of data Specialized equipment Relative cost Lehigh restraint test Weld metal hot and cold cracking, root cracking,

224

Before the House Oversight and Government Reform Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy,...

225

Bringing electricity reform to the Philippines  

SciTech Connect

Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

Fe Villamejor-Mendoza, Maria

2008-12-15T23:59:59.000Z

226

Olefins from High Yield Autothermal Reforming Process ...  

Isobutylene is used to produce fuel additives. The autothermal reforming process can produce isobutylene and requires no external energy input ...

227

Fluidized Bed Steam Reforming Technology Overview  

Coal added as reductant and for energy • What happens inside the reformer? Water evaporates Nitrates reduced to nitrogen gas

228

Method of steam reforming methanol to hydrogen  

DOE Patents (OSTI)

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

229

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

230

Continuing Management Reform | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Continuing Management Reform | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

231

1996 worldwide refining survey  

Science Conference Proceedings (OSTI)

Data are presented on the capacity of refineries for the following processes: vacuum distillation, coking, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Production capacities are also noted for alkylation, polymerization/dimerization, aromatics, isomerization, lubricants, oxygenates, hydrogen, coke, sulfur, and asphalts. Country totals are given, as well as the data for individual companies within each country, state, or province.

NONE

1996-12-23T23:59:59.000Z

232

Worldwide refining  

Science Conference Proceedings (OSTI)

The paper consists of several tables compiling data on refinery capacities by country, by state, and by company. The capacity data are given by process as well as by final product. Processes include vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Products include alkylates, polymers, and dimers; aromatics and isomers; oxygenates; hydrogen; asphalts; and coke.

Williamson, M.

1994-12-19T23:59:59.000Z

233

Worldwide refining  

Science Conference Proceedings (OSTI)

Data are presented on refining capacity by country and by company within each country. Capacity data are divided into the following processes: vacuum distillation, thermal operations, catalytic cracking, catalytic reforming, catalytic hydrocracking, catalytic hydrorefining, and catalytic hydrotreating. Production capacity is divided into: alkylation/polymerization/dimerization; aromatics/isomerization; lubricants; oxygenates; hydrogen; petroleum coke; and asphalts.

NONE

1995-12-18T23:59:59.000Z

234

Stable crack growth estimates based on effective crack length and crack-opening displacements  

SciTech Connect

A method was developed for estimating the amount of stable crack growth that has occurred in a fracture toughness specimen that were loaded into the plastic range and for which only a monotonically increasing load-displacement curve was measured. The method was applied to data from several pressure vessel steels. The resulting J vs ..delta..a values compare favorably with a resistance curve obtained by the multiple specimen heat-tinting technique for A533, Grade B, Class 1 steel. The method for estimating stable crack growth uses several existing concepts heretofore mainly used separately. These concepts include an approximate expression for J for the compact specimen proposed by Andrews, the effective crack length concept of McCabe and Landes, the UK representation of the crack profile as a pair of straight lines intersecting at a hinge point, and Well's expression, J = m sigma/sub y/delta, for relating the crack-opening displacement to the value of J. The value of the constraint factor, m, at the advancing crack tip is estimated by means of a relation between ductility and fracture toughness. When calculated with respect to the COD at the original fatigue crack tip, the constraint factor, m/sub o/, is found to have a value consistently close to 2.0 for compact and precracked Charpy specimens. The method of estimation requires no auxiliary load-deflection measurements or calculations, and so permits single specimen estimates of stable crack growth to be made without the necessity of making high precision unloading compliance measurements.

Merkle, J.G.; Hudson, C.E.

1979-01-01T23:59:59.000Z

235

Aspects of Stress Corrosion Cracking Relevant to Irradiation-Assisted Stress Corrosion Cracking (IASCC)  

Science Conference Proceedings (OSTI)

This report provides a comprehensive survey of crack initiation issues in irradiation-assisted stress corrosion cracking (IASCC). It considers microcracking on smooth specimens and the transition from microcracking to stable crack propagation.

2002-05-02T23:59:59.000Z

236

NEPA Contracting Reform Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Reform Guidance Contracting Reform Guidance NEPA Contracting Reform Guidance This documents provides guidance on NEPA contracting strategy, including: defining the work of the contractor; establishing contracts ahead of time; minimizing cost while maintaining quality. Guidance also provides: model statements of work, direction on NEPA contract management by NEPA Document Manager; a system for measuring NEPA costs and for evaluating contractor procedures; details on the DOE NEPA website. NEPA Contracting Reform Guidance More Documents & Publications NEPA Contracting Reform Guidance (December 1996) Statement of Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental Reports, and other Environmental

237

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

238

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

239

Simulation of ethylbenzene dehydrogenation in microporous catalytic membrane reactors  

DOE Green Energy (OSTI)

Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of systems of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e., dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result of the anticipated increased yield per reactor pass, large economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost reactants and energy. The controlled, defined reaction zone (the membrane interface), will facilitate the reactor design process and permit greater control of reactor dynamics.

Not Available

1989-04-01T23:59:59.000Z

240

Research Article HZSM-5 Catalyst for Cracking Palm Oil to Gasoline: A Comparative Study with and without Impregnation  

E-Print Network (OSTI)

It is important to develop a renewable source of energy to overcome a limited source fossil energy. Palm oil is a potential alternative and environmental friendly energy resource in Indonesia due to high production capacity of this vegetable oil. The research studied effect of catalyst to selectivity of biofuel product from cracking of palm oil. The catalyst consisted of HZSM-5 catalyst with or without impregnation. The research was conducted in two steps, namely catalyst synthesized and catalytic cracking process. HZSM-5 was synthesized using Plank methods. The characterization of the synthesized catalysts used AAS (Atomic Absorption Spectroscopy) and BET (Brunaueur Emmet Teller). The cracking was carried out in a fixed bed microreactor with diameter of 1 cm and length of 16 cm which was filled with 0.6 gram catalyst. The Ni/HZSM-5 catalyst was recommended for cracking palm oil for the high selectivity to gasoline. © 2013

Achmad Roesyadi; Danawati Hariprajitno; N. Nurjannah; Santi Dyah Savitri

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Predicting the Behavior of Small Fatigue Cracks - Programmaster.org  

Science Conference Proceedings (OSTI)

are effective at providing crack propagation resistance in many materials and composites, these mechanisms result in a crack size dependence (i.e., “small crack ...

242

Nonlinear structural crack growth monitoring  

DOE Patents (OSTI)

A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

Welch, Donald E. (Oak Ridge, TN); Hively, Lee M. (Philadelphia, TN); Holdaway, Ray F. (Clinton, TN)

2002-01-01T23:59:59.000Z

243

Reformer assisted lean NO.sub.x catalyst aftertreatment system and method  

DOE Patents (OSTI)

A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

Kalyanaraman, Mohan (Media, PA); Park, Paul W. (Peoria, IL); Ragle, Christie S. (Havana, IL)

2010-06-29T23:59:59.000Z

244

Plasma-catalyzed fuel reformer  

DOE Patents (OSTI)

A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

2013-06-11T23:59:59.000Z

245

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

246

Thermochemical Fuel Reformer Development Project  

Science Conference Proceedings (OSTI)

Thermochemical Fuel Reforming (TCFR) is the recovery of internal combustion engine exhaust heat to chemically convert natural gas into a higher calorific flow fuel stream containing a significant concentration of hydrogen. This technique of recycling the engine exhaust heat can reduce fuel use (heat rate). In addition, the hydrogen enhanced combustion also allows stable engine operation at a higher air-fuel ratio (leaner combustion) which results in very low NOx production. This interim report covers two...

2006-12-11T23:59:59.000Z

247

Intergranular Cracking of Brass Sprinkler Heads  

Science Conference Proceedings (OSTI)

Symposium, Charles R. Morin Memorial Symposium on Failure Analysis and Prevention. Presentation Title, Intergranular Cracking of Brass Sprinkler Heads.

248

Superconducting Cuprates on Catalytic Substrates - Energy ...  

Electricity Transmission Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory. Contact BNL About This Technology Technology Marketing ...

249

Design of Catalytic Materials for Plasma Assisted Catalysis System  

DOE Green Energy (OSTI)

In recent years, the Plasma Assisted Catalysis (PAC) approach for controlling NOx and/or particulate emissions from mobile diesel engines has received a significant amount of attention from researchers. Substantial work has been performed by various researchers to develop an understanding of the reaction mechanisms in a plasma reactor in conjunction with conventional lean-NOx catalyst materials. However, less effort has been devoted to systematically investigating new catalyst materials specifically designed for application in the PAC system. Since it is believed that plasma produces a unique environment for a catalyst bed (i.e. oxidation of NO to NO2 and partial oxidation/reforming of hydrocarbon reductants in the exhaust), new catalytic materials that take advantage of the plasma reactor conditions need to be studied. Optimum catalyst materials will be required in order to develop a PAC system that achieves maximum deNOx performance over the wide range of operating conditions in which the system will be required to operate for application on heavy duty diesel engines. This presentation discusses the issues involved in designing catalytic materials for achieving high NOx conversion in a laboratory test PAC system, and what is required to improve the catalyst materials further for application in an on-engine environment.

Park, Paul W.

2000-08-20T23:59:59.000Z

250

Environmental fiscal reform (EFR) | Open Energy Information  

Open Energy Info (EERE)

Environmental fiscal reform (EFR) Environmental fiscal reform (EFR) Jump to: navigation, search Tool Summary Name: Environmental fiscal reform (EFR) Agency/Company /Organization: Global Subsidies Initiative (GSI), International Institute for Sustainable Development (IISD), World Bank Phase: Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Co-benefits assessment, Finance, Market analysis, Policies/deployment programs References: Environmental fiscal reform - What should be done and how to achieve it[1] Reforming fiscal policies to close the gap between economic and ecological efficiencies[2] Overview "The term environmental fiscal reform (EFR) refers to: a range of taxation or pricing instruments that can raise revenue, while simultaneously furthering environmental goals. This is achieved by providing economic

251

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Science Conference Proceedings (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

252

Stress Corrosion Cracking of Brass: A Comparative Study on ...  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

253

Environmental Effects on Fatigue Crack Growth Rates in Sour ...  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

254

Environmental Cracking Resistance of High Nickel Alloys (CRAs  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

255

On Modeling Hydrogen-Induced Intergranular Cracking under ...  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

256

Corrosion and Cracking of Carbon Steel in Fuel Grade Ethanol  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

257

Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

258

On the Fatigue Crack Propagation Behavior of Superalloys at ...  

Science Conference Proceedings (OSTI)

ON THE FATIGUE CRACK PROPAGATION BEHAVIOR. OF SUPERALLOYS AT ... the FCP resistance of superalloys ... lead to poor crack propagation behavior.

259

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

260

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

reformates from catalytic reforming in refineries and steamor aromatic mixtures from catalytic reforming in refineries.and reformates from catalytic reforming in refineries. An

Neelis, Maarten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Distributed Bio-Oil Reforming (Presentation)  

DOE Green Energy (OSTI)

This presentation by Bob Evans at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's distributed bio-oil reforming efforts.

Evans, R. J.; Czernik, S.; French, R.; Ratcliff, M.; Marda, J.; Dean, A. M.

2007-05-15T23:59:59.000Z

262

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

263

TransForum v4n2 - Diesel Reformer  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARGONNE SCIENTISTS TEAM UP TO DEVELOP NEW DIESEL REFORMER Liu tests diesel reformer Argonne's Di-Jia Liu conducted extensive testing of the diesel reformer; his experiments are...

264

Catalytic Device International LLC | Open Energy Information  

Open Energy Info (EERE)

Catalytic Device International LLC Catalytic Device International LLC Jump to: navigation, search Name Catalytic Device International LLC Place Pleasanton, California Product California-based, firm focused on portable, heat-on-demand products. References Catalytic Device International LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catalytic Device International LLC is a company located in Pleasanton, California . References ↑ "Catalytic Device International LLC" Retrieved from "http://en.openei.org/w/index.php?title=Catalytic_Device_International_LLC&oldid=343285" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

265

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

266

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

267

Endothermic photo-catalytic reactions  

Science Conference Proceedings (OSTI)

The overall objective of this report is to present the results of an investigation to provide guidelines for future experimental work, on solar energy driven endothermic photo-catalytic reactions, and primarily to select candidate synthesis reactions which lead to high $-value products. An intensive literature search was conducted to find properties, market demand, and prices of pertinent chemicals; meeting four criteria: (1) the reaction must be endothermic and favorable; (2) the reaction must be catalytic; (3) the product must be produced from low cost feedstocks; and (4) the product must have a sales price >$1.00/lb. Initial examination of low cost feedstocks to high value products lead to consideration of n-paraffins to aromatics and substituted aromatics. Fifteen candidate endothermic synthesis reactions, meeting the above criteria, are suggested. The ratio of product price by reactant cost indicates {approximately}5--8 for the best possibilities; all can be visualized as starting with low cost paraffin and methanol feedstocks.

Prengle, H.W. Jr.; Wentworth, W.E.; Polonczyk, K.C.; Saghafi, M.; Wilking, J.A.; Kramer, K.S. (Houston Univ., TX (United States))

1992-04-01T23:59:59.000Z

268

Thermal and catalytic hydrodehalogenation of halon 1301 ...  

Science Conference Proceedings (OSTI)

... as hydrolysis, steam reforming, dehalogenation, dehydrohalogenation as ... probably be the thermal cleavage of ... of methane-based car,Qon moieties ...

2011-10-04T23:59:59.000Z

269

Catalytic conversion of light alkanes, Phase 1. Topical report, January 1990--January 1993  

DOE Green Energy (OSTI)

The authors have found a family of new catalytic materials which, if successfully developed, will be effective in the conversion of light alkanes to alcohols or other oxygenates. Catalysts of this type have the potential to convert natural gas to clean-burning high octane liquid fuels directly without requiring the energy-intensive steam reforming step. In addition they also have the potential to upgrade light hydrocarbons found in natural gas to a variety of high value fuel and chemical products. In order for commercially useful processes to be developed, increases in catalytic life, reaction rate and selectivity are required. Recent progress in the experimental program geared to the further improvement of these catalysts is outlined.

NONE

1993-12-31T23:59:59.000Z

270

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group includes individuals from DOE, the national laboratories, industry, and academia. Corn Stover Harvest Bio-Derived Liquids Reforming Distributed reforming of biomass derived...

271

Regulatory and Financial Reform of Federal Research Policy: Recommenda...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy:...

272

Before House Committee on Oversight and Government Reform | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight and Government Reform Before House Committee on Oversight and Government Reform Testimony of Daniel Poneman, Deputy Secretary of Energy Before House Committee on...

273

Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nceApplicationFederalVacanciesReformAct1998.pdf More Documents & Publications Intelligence Reform and Terroroism Prevention Act - December 17, 2004 Bond Amendment, Security...

274

School Finance Reform: Assessing General Equilibrium Effects  

E-Print Network (OSTI)

In 1994 the state of Michigan implemented one of the most comprehensive school finance reforms undertaken to date in any of the states. Understanding the effects of the reform is thus of value in informing other potential reform initiatives. In addition, the reform and associated changes in the economic environment provide an opportunity to assess whether a simple general equilibrium model can be of value in framing the study of such reform initiatives. In this paper, we present and use such a model to derive predictions about the effects of the reform on housing prices and neighborhood demographic compositions. Broadly, our analysis implies that the effects of the reform and changes in the economic environment are likely to have been reflected primarily in housing prices and only modestly on neighborhood demographics. We find that evidence for the Detroit metropolitan area from the decade encompassing the reform is largely consistent with the predictions of the model (JEL codes: H42, H71, H73, I22).

Maria Marta Ferreyra

2007-01-01T23:59:59.000Z

275

Method of improving catalytic activity and catalytics produced thereby  

DOE Patents (OSTI)

A process for dissociating H{sub 2}S in a gaseous feed using an improved catalytic material is disclosed in which the feed is contacted at a temperature of at least about 275C with a catalyst of rutile nanocrystalline titania having grain sizes in the range of from about 1 to about 100 manometers. Other transition metal catalysts are disclosed, each of nanocrystalline material with grain sizes in the 1--100 nm range. This invention may have application to vehicle emissions control (three-way catalysts).

Beck, D.D.; Siegel, R.W.

1993-09-23T23:59:59.000Z

276

Catalytic Properties of Ni3Al Foils for Methane Steam Reforming  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, The 8th Pacific Rim International Congress on Advanced Materials and Processing. Symposium, A. Materials for Energy.

277

ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT  

E-Print Network (OSTI)

resources [1-5]. Well know examples of second generation fuels derived from biomass are pyrolysis oil-ethanol from cellulosic biomass. Fast pyrolysis of lignocellulosic biomass involves heating of the biomass] Bridgwater, A., editor, Fast Pyrolysis of Biomass: A Handbook Volume 3. CPL press: Newbury Berkshire, 2005

278

FEASIBILITY ANALYSIS REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES  

E-Print Network (OSTI)

report was prepared as a result of work sponsored by the California Energy Commission (Commission). It does not necessarily represent the views of the Commission, its employees, or the state of California. The Commission, the state of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report. PREFACE The Public Interest Energy Research (PIER) Program supports public interest energy research and development that will help improve the quality of life in California by bringing environmentally safe, affordable and reliable energy services and products to the marketplace. The PIER Program, managed by the California Energy Commission (Commission), annually awards up to $62 million of which $2 million/year is allocated to the Energy Innovation Small Grant (EISG) Program for grants. The EISG Program is administered by the San Diego State

Energy Innovations; Small Grant Program; Eisg Awardee

2000-01-01T23:59:59.000Z

279

Catalysts for steam reforming of Ethanol in a catalytic wall reactor.  

E-Print Network (OSTI)

??La energía se ha convertido en una necesidad vital para garantizar el desarrollo de las sociedades modernas. Entre las diferentes posibles alternativas para producir energía,… (more)

Torres Rivero, José Antonio

2008-01-01T23:59:59.000Z

280

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Monthly report, April 1977  

DOE Green Energy (OSTI)

Activities are reported in a program to determine the feasibility and to estimate the economics of hydroprocessing synthetic crude feedstocks to distillate fuels using presented available technology. The first feedstock is shale oil. The oil used in this evaluation is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies evaluating hydroprocessing of the whole shale oil have been in progress for about six months. Shale oil makes an excellent catalytic cracking feedstock provided its nitrogen content is reduced to at least 0.1 percent by appropriate hydrofining. Gasolines and cycle oils derived from the cracking of hydrofined shale oils are similar to those obtained from the cracking of hydrofined petroleum gas oils. The second feedstock is solvent refined coal (SRC). In SRC processing, an analysis of hydrofining feedstock was conducted and hydrofining tests were planned. (JRD)

Sullivan, R.F.; Rudy, C.E.; Chen, H.C.

1977-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The influence of cracks in rotating shafts  

E-Print Network (OSTI)

In this paper, the influence of transverse cracks in a rotating shaft is analysed. The paper addresses the two distinct issues of the changes in modal properties and the influence of crack breathing on dynamic response during operation. Moreover, the evolution of the orbit of a cracked rotor near half of the first resonance frequency is investigated. The results provide a possible basis for an on-line monitoring system. In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by using the alternate frequency/time domain approach. It is shown that this method evaluates the nonlinear behaviour of the rotor system rapidly and efficiently by modelling the breathing crack with a truncated Fourier series. The dynamic response obtained by applying this method is compared with that evaluated through numerical integration. The resulting orbit during transient operation is presented and some distinguishing features of a cracked rotor are examined.

Jean-Jacques Sinou; A. W. Lees

2008-01-19T23:59:59.000Z

282

Catalytic steam gasification of carbon  

DOE Green Energy (OSTI)

Unsupported carbide powders with high specific surface area, namely {alpha}-WC (35 m{sup 2}/g, hexagonal), {beta}-WC{sub 0.61} (100 m{sup 2}/g, cubic face centered) and {beta}-WC{sub 0.5} (15 m{sup 2}/g, hexagonal) have been prepared. The key element in this preparation is the successful removal of surface polymeric carbon by careful gasification to methane by means of dihydrogen. These tungsten carbide powders have been used in catalytic reactions of oxidation of H{sub 2} and hydrogenolysis of alkanes, such as butane, hexane, and neopentane.

Boudart, M.

1990-12-31T23:59:59.000Z

283

Catalytic membranes for fuel cells  

DOE Patents (OSTI)

A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

2011-04-19T23:59:59.000Z

284

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept,...

285

Quench Cracking Characterization of Superalloys Using Fracture ...  

Science Conference Proceedings (OSTI)

When the on-cooling thermal stress. (load) accumulated to a certain point, quench cracking happened abruptly. Based on the precrack length, the thermal stress ...

286

Environmentally Assisted Cracking Susceptibility Assessment of AP ...  

Science Conference Proceedings (OSTI)

Presentation Title, Environmentally Assisted Cracking Susceptibility Assessment of AP 1000 Reactor Coolant Pump Flywheel Retainer Ring A289 18Cr-18Mn ...

287

Sulfide Stress Cracking in Steels - A Review  

Science Conference Proceedings (OSTI)

Symposium, Corrosion and Corrosion Protection of Materials in the Oil and Gas Industry. Presentation Title, Sulfide Stress Cracking in Steels - A Review.

288

Stress Corrosion Cracking - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Atomic Ordering in Alloy 690 and Its Effect on Long-term Structural Stability and Stress Corrosion Cracking Susceptibility: Michael Kaufman1; ...

289

Creep Crack Growth Behaviour of Alloy 718  

Science Conference Proceedings (OSTI)

its creep crack growth is controlled by stress intensity factor regardless of load level .... energy. Since vacancies diffuse from a low strain energy position to a high ...

290

Evaluation of Stress-Corrosion Cracking  

Science Conference Proceedings (OSTI)

Table 3   Stress-corrosion cracking of selected material systems...chlorides, seawater Oil/gas production and transmission, oil refining,

291

Crystallographic Orientation Dependence of Fatigue Crack ...  

Science Conference Proceedings (OSTI)

In the present study, fatigue crack propagation behavior of rolled AZ31B magnesium ... Alloy Design for Enhancing the Fracture Resistance of Heat Treated High ...

292

Status Review of Initiation of Environmentally Assisted Cracking and Short Crack Growth  

Science Conference Proceedings (OSTI)

This report reviews current knowledge of environmentally assisted cracking EAC initiation and short crack growth by stress corrosion cracking, strain-induced corrosion cracking, and, to a lesser extent, corrosion fatigue in nickel base alloys, austenitic stainless steels, and carbon and low-alloy steels exposed to typical pressurized water reactor PWR and boiling water reactor BWR aqueous environments. The document identifies key gaps in knowledge and recommends areas where additional experimental work i...

2005-12-06T23:59:59.000Z

293

Electricity reform in developing and transition countries: A reappraisal  

E-Print Network (OSTI)

Electricity reform in developing and transition countries: A reappraisal J.H. Williams, R. Ghanadan-oriented reforms in their electric power sectors. Despite the widespread adoption of a standard policy model features of non-OECD electricity reform and reappraises reform policies and underlying assumptions

Kammen, Daniel M.

294

Autothermal Cyclic Reforming Based H2 Generating & Dispensing System  

E-Print Network (OSTI)

Pressure Reforming Comp- ressor 100 psig 100 psig Reformer H2 PSA SyngasNatural Gas Low Pressure Reforming CMP Syngas 5 psig5 psig Reformer CMP 100 psig H2 PSA Natural Gas Syngas CMP HX CMP HX Thermal Reliability (Eliminates Syngas Compressor) Advantages 70-80%70-80%Thermal Efficiency (Excludes Electricity

295

Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal  

E-Print Network (OSTI)

Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal L Keywords: A. Stainless steel B. SEM C. Stress corrosion a b s t r a c t Single crystal 321 stainless steel, and the river-markings exhibited microshear facets along the {1 1 1} plane. Interaction between the main crack

Volinsky, Alex A.

296

Catalytic conversion of light alkanes  

DOE Green Energy (OSTI)

The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

Lyons, J.E.

1992-06-30T23:59:59.000Z

297

Pemex opts for catalytic dehydrogenation  

SciTech Connect

In the gas-rich areas such as the Middle East, Southeast Asia, Canada, and Mexico, low-cost ethane is the feed of choice for ethylene production. Coproduct production is minimal. Continued growth in demand for propylene, isobutylene, normal butone-1, and butadiene requires that alternate sources of these normally coproduct olefins be developed. Catalytic dehydrogenation, with its high selectivity to the desired olefin, is the logical and economic choice. Mexico is a case in point. It's ethylene production is based on ethane. Demand is rising for propylene and butadiene derivatives, and a potential demand exists for isobutylene to produce octane enhancers to implement an announced lead phase down. Only modest amounts of by-product monoolefin will be available from refining operations. Pemex, the Mexican refining and petrochemical giant, recognized this and started up its first Houdry Catadene /SUP TM/ plant in 1975 at Ciudad Madero to produce 55,000 metric ton/year of butadiene from normal butane. Pemex recently committed to a large (350,000 metric ton/year) propylene-from-propane plant at Morelos based on the Houdry Catofin /SUP TM/ catalytic dehydrogenation process. The plant will supply propylene to a long list of derivative plants (Table 1).

Craig, R.G.; Penny, S.J.; Schwartz, W.A.

1983-07-01T23:59:59.000Z

298

Before the House Oversight and Government Reform Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Government Reform Subcommittee on Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the Subcommittee on Technology, Information Policy, Intergovernmental Relations and Procurement Reform, Committee on Oversight and Government Reform, United States House of Representatives Written Statement By: Owen Barwell, Acting Chief Financial Officer, United States Department of Energy Subject: DOE Financial Information Systems Final_Testimony_for_Owen_Barwell.pdf More Documents & Publications AL2010-03.pdf Request for Information - Operations and Maintenance (O & M) Support

299

Internal reforming fuel cell assembly with simplified fuel feed  

DOE Patents (OSTI)

A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

2001-01-01T23:59:59.000Z

300

Autothermal Reforming of Renewable Fuels  

DOE Green Energy (OSTI)

The conversion of biomass into energy and chemicals is a major research and technology challenge of this century, comparable to petroleum processing in the last century. Recently we have successfully transformed both volatile liquids and nonvolatile liquids and solids into syngas with no carbon formation in autothermal catalytic reactors with residence times of ~10 milliseconds. In the proposed research program we explore the mechanisms of these processes and their extensions to other biomass sources and applications by examining different feeds, catalysts, flow conditions, and steam addition to maximize production of either syngas or chemicals. We will systematically study the catalytic partial oxidation in millisecond autothermal reactors of solid biomass and the liquid products formed by pyrolysis of solid biomass. We will examine alcohols, polyols, esters, solid carbohydrates, and lignocellulose to try to maximize formation of either hydrogen and syngas or olefins and oxygenated chemicals. We will explore molecules and mixtures of practical interest as well as surrogate molecules that contain the functional groups of biofuels but are simpler to analyze and interpret. We will examine spatial profiles within the catalyst and transient and periodic operation of these reactors at pressures up to 10 atm to obtain data from which to explore more detailed mechanistic models and optimize performance to produce a specific desired product. New experiments will examine the conversion of syngas into biofuels such as methanol and dimethyl ether to explore the entire process of producing biofuels from biomass in small distributed systems. Experiments and modeling will be integrated to probe and understand detailed reaction kinetics and the processes by which solid biomass particles are transformed into syngas and chemicals by reactive flash volatilization.

Schmidt, Lanny D

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Computational Fluid Dynamics Simulation of Steam Reforming and Autothermal Reforming for Fuel Cell Applications.  

E-Print Network (OSTI)

??With the increasing demand for fuel cell applications in transportation, the performance of reformers using gasoline or diesel as the fuel needs to be optimized.… (more)

Shi, Liming

2009-01-01T23:59:59.000Z

302

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

303

Bank Regulation and Mortgage Market Reform  

E-Print Network (OSTI)

America’s Housing Finance Market: A Report To Congress”,Subordinated Debt: A Capital Markets Approach to BankBank Regulation and Mortgage Market Reform Dwight M. Jaffee

Jaffee, Dwight M.

2011-01-01T23:59:59.000Z

304

Distributed Reforming of Biomass Pyrolysis Oils (Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas (0.5% H 2 ) System Definition (1500 kgday station used for H2A analysis) Capital Costs Bio-Oil Reforming H2A Analysis Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank...

305

Device for cooling and humidifying reformate  

Science Conference Proceedings (OSTI)

Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI)

2008-04-08T23:59:59.000Z

306

Electricity reform abroad and US investment  

SciTech Connect

This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

1997-10-01T23:59:59.000Z

307

Advanced control and information systems `97  

Science Conference Proceedings (OSTI)

Data are presented on advanced control and information systems, describing specific application, control strategy, economics, commercial installations, and licensor. Uses include alkylation, amine treating, catalytic reforming, cryogenic separation, catalytic cracking, hydrocracking, hydrogen production, LNG separation, lube oils, olefins, plant scheduling, polymers, refineries, steam reforming, and utilities.

NONE

1997-09-01T23:59:59.000Z

308

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

309

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

310

Method of fabricating a catalytic structure  

SciTech Connect

A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

2009-09-22T23:59:59.000Z

311

U.S. Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; Cat. Hydro-Cracking Gas Oil Downstream Charge Capacity ; U.S. Downstream Charge Capacity of Operable ...

312

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-06-01T23:59:59.000Z

313

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

DOE Green Energy (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-01-01T23:59:59.000Z

314

3:2:1 Crack Spread  

Gasoline and Diesel Fuel Update (EIA)

:2:1 Crack Spread :2:1 Crack Spread Figure 1 Source: U.S. Energy Information Administration, based on Thomson Reuters. A crack spread measures the difference between the purchase price of crude oil and the selling price of finished products, such as gasoline and distillate fuel, that a refinery produces from the crude oil. Crack spreads are an indicator of the short-term profit margin of oil refineries because they compare the cost of the crude oil inputs to the wholesale, or spot, prices of the outputs (although they do not include other variable costs or any fixed costs). The 3:2:1 crack spread approximates the product yield at a typical U.S. refinery: for every three barrels of crude oil the refinery processes, it makes two barrels of gasoline and one barrel of distillate

315

Catalytic Hydrothermal Gasification of Biomass  

Science Conference Proceedings (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

316

Catalytic reactor with improved burner  

DOE Patents (OSTI)

To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

Faitani, Joseph J. (Hartford, CT); Austin, George W. (Glastonbury, CT); Chase, Terry J. (Somers, CT); Suljak, George T. (Vernon, CT); Misage, Robert J. (Manchester,all of, CT)

1981-01-01T23:59:59.000Z

317

APPARATUS FOR CATALYTICALLY COMBINING GASES  

DOE Patents (OSTI)

A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

Busey, H.M.

1958-08-12T23:59:59.000Z

318

Characterization of Environment-Dependent Fatigue Crack Growth ...  

Science Conference Proceedings (OSTI)

at high frequency levels to fully environment-dependent at very low frequency ... environment-dependent crack growth process, crack increment per cycle is ...

319

Computational Weld Mechanics of Hot Crack Nucleation in Nickel ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Computational weld mechanics (CWM) is used to estimate the likelihood of hot crack nucleation in a welded joint. A hot crack nucleates when ...

320

Characterization of Elevated Temperature Fatigue Crack Growth Rates  

Science Conference Proceedings (OSTI)

temperature fatigue and the crack growth rates may be adequately correlated with the ... During creep crack growth the use of rate dependent elastic/plastic frac-.

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Effect of Microstructure on the Fatigue Crack Growth Resistance ...  

Science Conference Proceedings (OSTI)

GROWTH RESISTANCE OF NICKEL BASE SUF'RRALLOYS. Randy Bowman ... damage are most resistant to crack growth. ... crack propagation. (FCP) was ...

322

High cycle fatigue and fatigue crack propagation behavior of ...  

Science Conference Proceedings (OSTI)

And fatigue crack propagation rates of modified A7075 showed slightly lower. Those superior fatigue strength and resistance of fatigue crack propagation of ...

323

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Ratio Parameters in Steam-Reforming Hydrogen productionan Insufficient Parameter in the Steam-Reforming Process,”Impurities on the Methanol Steam-Reforming Process for Fuel

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

324

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products TCS 2014 Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products...

325

Investigation of carbon-formation mechanisms and fuel-conversion rates in the adiabatic reformer. Annual report, March 19, 1980-March 19, 1981  

Science Conference Proceedings (OSTI)

Fuel cell power plants may be required to use coal derived liquid fuels or heavy petroleum distillates as fuels. Among the fuel processor candidates, the adiabatic reformer is at the most advanced state of development. The objective of the present program is to establish a reactor model for the adiabatic reformer which will predict process stream compositions and include carbon formation processes. Four subordinate tasks were proposed to achieve the objective. These are: 1) to determine on selected catalysts rate expressions for catalytic reactions occurring in the entrance section of the adiabatic reformer; 2) to determine with microbalance experiments critical conditions for carbon formation on selected catalysts; 3) to establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for catalytic reactions and data from the literature for homogeneous gas phase reactions; and 4) to establish a model to predict carbon formation by combination of the model for process stream composition from Task 3 and data for carbon formation from Task 2. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

326

Mechanisms and controlling characteristics of the catalytic oxidation of methane  

DOE Green Energy (OSTI)

We have demonstrated in this work (1) that methane is readily activated at mild conditions (100[degree]C, 1 torr) over a relatively noble metal, Pd. This was observed using a stepped and kinked Pd(679) crystal (1), and other crystal faces are now being investigated to establish whether the cracking of the C-H bond of methane on Pd is structure sensitive or structure insensitive. Oxygen chemisorption is extremely structure sensitive: weakly bonded, highly reactive oxygen overlayers form on Pd(100) surface (2), while strongly bonded, moderately reactive oxygen overlayers form on Pd(111) and Pd(679). Reaction of the weakly bonded oxygen with surface carbide gives rise to CO[sub 2] over clean Pd(100) but to CO over halogen-doped Pd(100) (3--5). The effect of halogens is primarily ensemble-controlling, or oxygen-supply restricting, but long range influence of surface Cl on the strength of the Pd-O bond has also been observed (3). Because the overall chemistry of methane activation with the subsequent oxidation gives rise to the very important oxidative reforming CH[sub 4] + 1/2 O[sub 2] [yields][sub Pd/Cl] CO + 2 H[sub 2], Pd/Cl we plan to continue our study of this reaction in detail over Pd(100) (completed), Pd(111) (initiated), Pd(311) (initiated), Pd(110) (to be initiated), and Pd(679) (completed), without and with the halogen modifiers.

Klier, K.; Simmons, G.W.; Herman, R.G.; Miller, A.C.

1992-01-01T23:59:59.000Z

327

Year/PAD District Cokers Catalytic Crackers Hydrocrackers Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2011 - 2013 (Barrels per Calendar Day) Reformers Capacity Inputs 2011 2,396,787 5,794,214 1,687,745 2,093,849 4,952,455 1,466,627 2,570,970 3,346,457 93,700 673,300 41,500 37,932 490,729 18,030 PADD I 188,389 266,950 373,897 1,176,972 254,000 350,063 1,017,616 223,751 PADD II 664,852 812,244 1,318,440 2,933,842 841,285 1,183,318 2,570,348 744,638 PADD III 1,243,427 1,629,967 80,350 185,800 28,200 63,362 158,192 18,214 PADD IV 96,649 120,190 530,400 824,300 522,760 459,175 715,570 461,995 PADD V 377,652 517,106 2012 2,499,293 5,611,191 1,706,540 2,173,336 4,901,284 1,528,708 2,614,571 3,246,874 74,900 489,300 20,000

328

Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.  

DOE Green Energy (OSTI)

For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

Rossignol, C.; Krause, T.; Krumpelt, M.

2002-01-11T23:59:59.000Z

329

A BRIEF HISTORY OF INDUSTRIAL CATALYSIS  

E-Print Network (OSTI)

Naphtha Reforming Catalytic reforming of naphthas serves toalready apparent in catalytic reforming as outlined above,catalysts (e.g. , in catalytic reforming, methanatiom, or

Heinemann, Heinz

2013-01-01T23:59:59.000Z

330

Hydrogen generation utilizing integrated CO2 removal with steam reforming  

DOE Patents (OSTI)

A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

Duraiswamy, Kandaswamy; Chellappa, Anand S

2013-07-23T23:59:59.000Z

331

Vacuum-insulated catalytic converter  

DOE Patents (OSTI)

A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

Benson, David K. (Golden, CO)

2001-01-01T23:59:59.000Z

332

Glycoside hydrolases: Catalytic base/nucleophile diversity  

NLE Websites -- All DOE Office Websites (Extended Search)

Glycoside Glycoside Hydrolases: Catalytic Base/Nucleophile Diversity Thu V. Vuong, David B. Wilson Department of Molecular Biology and Genetics, Cornell University, 458 Biotechnology Building, Ithaca, New York 14850; telephone: 607-255-5706; fax: 607-255-2428; e-mail: dbw3@cornell.edu Received 1 April 2010; revision received 27 May 2010; accepted 2 June 2010 Published online 15 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bit.22838 ABSTRACT: Recent studies have shown that a number of glycoside hydrolase families do not follow the classical catalytic mechanisms, as they lack a typical catalytic base/ nucleophile. A variety of mechanisms are used to replace this function, including substrate-assisted catalysis, a network of several residues, and the use of non-carboxylate residues or exogenous nucleophiles. Removal of the catalytic base/ nucleophile

333

Numerical modeling of crack reorientation and link-up  

Science Conference Proceedings (OSTI)

The FRANC3D/BES software system has been used to simulate the reorientation and link-up of hydraulic fractures in three-dimensional (3D) problems. The adopted technique only needs to discretize the body surface and the crack surface. The crack propagation ... Keywords: FRANC3D/BES, crack propagation, multiple cracks

C. Y. Dong; C. J. de Pater

2002-11-01T23:59:59.000Z

334

Thermally integrated staged methanol reformer and method  

DOE Green Energy (OSTI)

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

335

Methodology for extracting local constants from petroleum cracking flows  

DOE Patents (OSTI)

A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

Chang, Shen-Lin (Woodridge, IL); Lottes, Steven A. (Naperville, IL); Zhou, Chenn Q. (Munster, IN)

2000-01-01T23:59:59.000Z

336

Electricity reform in Chile : lessons for developing countries  

E-Print Network (OSTI)

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. ...

Pollitt, Michael G.

2004-01-01T23:59:59.000Z

337

Cost Analysis of Bio-Derived Liquids Reforming  

E-Print Network (OSTI)

) steam reforming C2H5OH + H2O Ã? 2CO + 4H2 6) Water gas shift 7) Methanation 8) Coking from CH4 (methane Ethanol Reforming Options Gas Phase Liquid Phase Virent Steam Partial Oxidation Reforming GE (SCPO) decomposition C2H5OH Ã? CH4 + CO + H2 steam reforming CH4 + 2H2O Ã? 4H2 + CO2 3) C2H5OH dehydrogenation

338

Before the House Oversight and Government Reform Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before...

339

U.S. Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Catalytic Reforming 2,632 2,571 2,606 2010-2012 Catalytic Cracking 5,250 4,983 4,957 4,873 4,952 4,901 1987-2012 Catalytic Hydrocracking...

340

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network (OSTI)

and energy balance, different types of fuel reforming including steam reforming, autothermal reforming technologies. Steam reforming, partial oxidation and autothermal reforming are the three major fuel of an activated carbon bed. Prior to enter the SOFC stack, the fuel is pre-reformed (methane is partially

Liso, Vincenzo

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Simulation of terrace wall methane-steam reforming reactors  

Science Conference Proceedings (OSTI)

Terrace wall arrangement is one of the most common arrangements for methane-steam reforming reactor furnaces. In this work, a mathematical model of heat transfer in terrace wall furnaces has been developed. The model has been coupled with a reliable ... Keywords: heat transfer modeling, methane-steam reforming, reformer simulation, terrace wall furnace

J. S. Soltan Mohammadzadeh; A. Zamaniyan

2002-08-01T23:59:59.000Z

342

Integrated autothermal reactor concepts for oxidative coupling and reforming of  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Oxidative coupling and steam reforming of methane . . . . . . . . . . 5 1.4 This thesis of methane . . . . . . . . . . . . . . . . . . . 23 2.4 Only steam reforming of methane#12;Integrated autothermal reactor concepts for oxidative coupling and reforming of methane #12

Twente, Universiteit

343

Environmentally assisted cracking in light water reactors.  

DOE Green Energy (OSTI)

This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature indicate that IASCC in 289 C water is dominated by a crack-tip grain-boundary process that involves S. An initial IASCC model has been proposed. A crack growth test was completed on mill annealed Alloy 600 in high-purity water at 289 C and 320 C under various environmental and loading conditions. The results from this test are compared with data obtained earlier on several other heats of Alloy 600.

Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

2007-11-06T23:59:59.000Z

344

Legal aspects of Internet governance reform  

Science Conference Proceedings (OSTI)

The Internet has moved on from its early almost lawless nature. There are now multiple organisations and legal aspects associated with Internet governance. Whether the issue on the Internet is network security, intellectual property rights (IPRs), e-commerce, ... Keywords: ICANN, WGIG, WSIS, cybercrime, framework, governance, internet, law, reform, treaty

David Satola

2007-01-01T23:59:59.000Z

345

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

346

VOC Destruction by Catalytic Combustion Microturbine  

SciTech Connect

This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

Tom Barton

2009-03-10T23:59:59.000Z

347

Effect of Hot Cracks on EAC Crack Initiation and Growth in Nickel ...  

Science Conference Proceedings (OSTI)

No crack initiation/extension from hot cracks occured in any weld metals, which is ... Applicability of Lean Grade of Duplex Stainless Steels in Nuclear Power Plants .... Wear of Zircaloy-4 Grid Straps Due to Fretting and Periodic Impact with RV ...

348

TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW  

SciTech Connect

Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

Langton, C.

2012-05-11T23:59:59.000Z

349

DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS  

DOE Green Energy (OSTI)

Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

Mauss, M; Wnuck, W

2003-08-24T23:59:59.000Z

350

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

351

March 16, 2010, Safety and Security Reform Roundtable - Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security Reform Roundtable Safety and Security Reform Roundtable Forrestal Building, Washington, DC March 16 th , 2010 1:00 PM (EST) AGENDA * Introduction of Union Leaders Glenn Podonsky, Chief Health, Safety and Security Officer * Welcome/Introductory Remarks on Reform Goals Dan Poneman, Deputy Secretary * Reform Status and Approach - Oversight, Directives, Mission Support Glenn Podonsky, Chief Health, Safety and Security Officer * Discussion Forum - Union Feedback - Feedback on oversight reform initiatives - Priority safety issues - Experience in collaborative focus group efforts - Recommendations for a path forward * Operating Organization Perspectives 1. Tom D'Agostino Administrator, National Nuclear Security Administration 2. Steven Koonin Under Secretary for Science

352

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

353

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina; P. Szedlacsek

2006-03-31T23:59:59.000Z

354

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

355

STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS  

SciTech Connect

Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

2009-05-01T23:59:59.000Z

356

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

357

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

358

Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates  

SciTech Connect

Fundamental understanding and control of chemical transformations are essential to the development of technically feasible and economically viable catalytic processes for efficient conversion of biomass to fuels and chemicals. Using an integrated experimental and theoretical approach, we report high hydrogen selectivity and catalyst durability of acetone steam reforming (ASR) on inert carbon supported Co nanoparticles. The observed catalytic performance is further elucidated on the basis of comprehensive first-principles calculations. Instead of being considered as an undesired intermediate prone for catalyst deactivation during bioethanol steam reforming (ESR), acetone is suggested as a key and desired intermediate in proposed two-stage ESR process that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. The significance of the present work also sheds a light on controlling the chemical transformations of key intermediates in biomass conversion such as ketones. We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory directed research and development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL, and sponsored by the U.S. DOE’s Office of Biological and Environmental Research.

Sun, Junming; Mei, Donghai; Karim, Ayman M.; Datye, Abhaya K.; Wang, Yong

2013-06-01T23:59:59.000Z

359

Adsorbent-treated cat cracked gasoline in motor fuels  

SciTech Connect

A methof is described for supressing carburetor deposit formation of motor fuels containing untreated cat cracked gasoline by blending adsorbent-treated cat cracked gasoline into the motor fuel. Up to about 50 percent by weight of the total composition is adsorbent treated cat cracked gasoline, but preferably from about 5 to about 25 percent by weight of the total composition is adsorbent treated cat cracked gasoline. In a preferred embodiment a standard reference fuel capable of providing a predetermined level of carburetor deposit formation is provided by the addition of either adsorbent-treated cat cracked gasoline, untreated cat cracked gasoline, or aromatic amines to a base fuel.

Thomas, S.P.

1980-09-30T23:59:59.000Z

360

Electro Catalytic Oxidation (ECO) Operation  

Science Conference Proceedings (OSTI)

The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

Morgan Jones

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Crack detection using resonant ultrasound spectroscopy  

DOE Patents (OSTI)

This invention is comprised of a method and apparatus for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

Migliori, A.; Bell, T.M.

1992-12-31T23:59:59.000Z

362

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases for a CHP plant based on spark ignition engine running under lean conditions. An overall auto-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases. Experiments are conducted at constant speed at 2 air/fuel ratios and 4 additional natural gas flow rates. H2 content varies in the range 6 % to 10 % in vol. H2 content effect is analyzed with respect to performance and emissions. Comparing with EGR shows an increasing of electrical efficiency of 1 % whilst heat recovery decreases by 1%. NO and HC decrease by 18 % and 12%, but CO increases by 14%, respectively. The results show that: (i) graphite joints were destroyed under effect of H2 and high temperature; (ii) a cold spot appeared in the RGR line, and condensation has as consequence a carbon deposit; and (iii) no back-fire or knock occurred.

O. Le Corre; C. Rahmouni; K. Saikaly; I. Dincer

2013-01-01T23:59:59.000Z

363

Method for processing coke oven gas  

SciTech Connect

Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

Flockenhaus, C.; Meckel, J.F.; Wagener, D.

1980-11-25T23:59:59.000Z

364

Hydrocarbon Reformers for Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Several new or emerging technologies are vying to compete in the distributed resources market; notably, fuel cells and microturbines. Fuel cells represent an idealized power generation technology with tremendous long-term promise. As a hydrogen-fueled system, however, fuel cells need either a hydrogen fuel supply infrastructure or fuel processing (reforming and clean-up) technology to convert conventional fossil fuels to a hydrogen-rich energy source. This report provides an overview of fuel processing t...

2000-11-30T23:59:59.000Z

365

Accelerated Fatigue Crack Growth Behavior of PWA 1480 Single ...  

Science Conference Proceedings (OSTI)

3 456. 610. 1520 30. AK . AKrss. MPa v'?! Fig. 10 Fatigue crack growth rate as a function of AKrss and AK. Prediction of the Microscopic Crack Behavior: An ...

366

Reading of cracked optical discs using iterative learning control  

Science Conference Proceedings (OSTI)

Optical discs, including Compact Discs (CDs), Digital Versatile Discs (DVDs), and Blu-ray Discs (BDs), can get cracked during storage and usage. Such cracks commonly lead to discontinuities in the data track, potentially preventing reading of the data ...

Maarten Steinbuch; Koos Van Berkel; George Leenknegt; Tom Oomen; Jeroen Van De Wijdeven

2009-06-01T23:59:59.000Z

367

Final Report for "Investigation of reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts" with all publications attached.  

DOE Green Energy (OSTI)

This was a university-based research project in support of distributed reforming production technologies for hydrogen. Our objective was to examine the steam reforming of bio-ethanol and other related bio-derived liquids over non-precious metal catalyst systems to enable small-scale distributed hydrogen production technologies from renewable sources. The study targeted development of a catalytic system that does not rely on precious metals and that can be active in the 350-550 C temperature range, with high selectivity and high stability. To this end, we adopted a multi-prong research strategy, that included catalyst formulation and synthesis, detailed catalyst characterization, reaction kinetics and reaction engineering, molecular modeling and economic analysis studies. Our approach was an iterative one, where the knowledge gained in one aspect of the study was utilized to modify and fine-tune catalyst development. The research addressed many fundamental and inter-related phenomena involved in the catalytic steam reforming of ethanol that may not be readily studied in an industrial development setting. The outcome of the project was a catalytic system that was able to meet the DOE targets in hydrogen production, with high H{sub 2} yield, high selectivity and stability that could perform efficiently in the 350-550 C temperature range. In addition, we were able to answer many fundamental questions about the catalytic systems that could easily be translated to other catalytic systems. The study resulted in 14 refereed journal articles, with one more in preparation. The results were also shared broadly at many different national and international forums such as conferences of the American Chemical Society, American Institute of Chemical Engineers, North American Catalysis Society, International Congress on Catalysis and International Conference on Catalysis for Renewable Sources. There were 30 presentations given at various national and international meetings. The P.I. was also invited to give 11 lectures on the findings from this study at many universities and research centers in the USA and other countries. The knowledge base acquired through this study is expected to bring industry closer to designing catalytic systems that can be tailored for the specific hydrogen production applications, especially for distributed hydrogen production strategies.

Umit S. Ozkan

2011-03-31T23:59:59.000Z

368

Performance characterization of a hydrogen catalytic heater.  

DOE Green Energy (OSTI)

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

Johnson, Terry Alan; Kanouff, Michael P.

2010-04-01T23:59:59.000Z

369

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

370

Annual Operation of Selective Catalytic Reduction Systems  

Science Conference Proceedings (OSTI)

In 2009, many coal-fired generating units equipped with selective catalytic reduction (SCR) systems for nitrogen oxide (NOX) control will convert from seasonal to annual SCR operation. This report provides guidelines on how to prepare for annual operation. It focuses on existing experience with annual operation, catalyst management strategy, equipment reliability, cold weather issues, low load and cycling operation, and risk assessment.

2007-12-18T23:59:59.000Z

371

2001 Workshop on Selective Catalytic Reduction  

Science Conference Proceedings (OSTI)

Approximately 100,000 megawatts of coal-fired capacity in the United States will employ selective catalytic reduction (SCR) for the control of nitrogen oxides (NOx) emissions by 2004. The 2001 Workshop on SCR, held in Baltimore, Maryland, provided a forum for discussion of current SCR issues.

2002-02-04T23:59:59.000Z

372

Effect of Surface Oxygen Containing Groups on the Catalytic Activity of Multi-walled Carbon Nanotube Supported Pt Catalyst  

Science Conference Proceedings (OSTI)

Multi-walled carbon nanotubes (MWNT) supported platinum catalysts were employed to study the support functionalization on their catalytic performances. The MWNT were subjected to HNO{sub 3} functionalization, in which oxygen-containing-groups (OCGs) were introduced to improve Pt dispersion. The MWNT supports were characterized by nitrogen physisorption and NEXAFS, and the Pt supported on differently functionalized MWNT characterized by X-ray absorption, TEM and both hydrogen and CO chemisorption. Compared to the as received MWNT supports, Pt dispersion is improved on the HNO3 treated MWNT supports, but the turnover frequency (TOF) of aqueous phase reforming decreases by half. The TOF can be recovered by removing the OCGs via high temperature annealing. To further investigate the OCGs effect, different probe reactions, including both steam reforming and liquid phase reforming of hydrocarbon oxygenates and dehydrogenation of alkanes in the liquid and gas phases, have been performed on the MWNT supported catalysts with different OCGs. A comparison of these reaction results suggests that OCGs are only detrimental to reactions in a binary mixture with two components of different hydrophilicity due to their competitive adsorption on the catalyst supports.

X Wang; N Li; J Webb; L Pfefferle; G Haller

2011-12-31T23:59:59.000Z

373

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

374

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

375

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

376

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Fluid Coking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

377

Girth Weld Cracking at Ethanol Terminal Facilities - Programmaster ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Girth Weld Cracking at ...

378

Stress Corrosion Cracking of Steel In Concentrated Nitrate ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Environmentally Assisted Cracking of Materials. Presentation Title, Stress ...

379

Interaction between Local Strains and Stress Corrosion Cracks ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Environmentally Assisted Cracking (EAC): Laboratory Research and Field ...

380

Stress Corrosion Cracking Observation in API G-105 Grade Drill ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Environmentally Assisted Cracking of Materials. Presentation Title, Stress ...

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Environmentally Assisted Cracking of Stainless Steels and Nickel ...  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Intergranular Stress Corrosion Cracking (IGSCC) Mechanism of Structural Component Materials in Pressurized Water Reactors : Young Suk ...

382

stress corrosion cracking of iron and nickel based alloys  

Science Conference Proceedings (OSTI)

This Table of Contents is from Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking published by TMS.

383

Latent Cracking of Tantalum - Titanium Welds Due to Hydrogen ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Environmentally Assisted Cracking of Materials. Presentation Title, Latent ...

384

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Thermal Cracking/Visbreaking Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

385

Molecular Dynamics of Fatigue Crack Growth in Nanocrystalline ...  

Science Conference Proceedings (OSTI)

Experimental techniques are prohibitive due to limitations of nano samples and advanced microscopic manipulators. In this study, crack propagation under ...

386

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

387

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

388

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrocracking, Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

389

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Catalytic Hydrotreating, Heavy Gas Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

390

Cracked rotor vibrations by multifractal analysis  

E-Print Network (OSTI)

Multifractal analysis has been used to diagnoze cracked and healthy rotors. Is has been shown that the complexity and regularity criteria of the dynamical systems defined by the multiple scaling of the time series can indicate the damages of the rotating shaft.

Grzegorz Litak; Jerzy T. Sawicki

2008-04-15T23:59:59.000Z

391

Strip edge cracking simulation in cold rolling  

SciTech Connect

This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A. [Univ Lille Nord de France, F-59000 Lille (France); UVHC, TEMPO EA 4542, F-59313 Valenciennes (France)

2011-01-17T23:59:59.000Z

392

Honeywords: making password-cracking detectable  

Science Conference Proceedings (OSTI)

We propose a simple method for improving the security of hashed passwords: the maintenance of additional ``honeywords'' (false passwords) associated with each user's account. An adversary who steals a file of hashed passwords and inverts the hash function ... Keywords: authentication, chaffing, honeywords, login, password cracking, password hashes, passwords

Ari Juels, Ronald L. Rivest

2013-11-01T23:59:59.000Z

393

Segmentation of cracks in shale rock  

Science Conference Proceedings (OSTI)

In this paper the use of morphological connected filters are studied for segmenting sheet- and thread-like cracks in images of shale rock. A volume formed from a stack of 2-D X-ray images is processed using 3-D attributes. The shape-preserving property ...

Erik R. Urbach; Marina Pervukhina; Leanne Bischof

2011-07-01T23:59:59.000Z

394

Digital radiographic systems detect boiler tube cracks  

SciTech Connect

Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

Walker, S. [EPRI, Charlotte, NC (United States)

2008-06-15T23:59:59.000Z

395

The influence of crack-imbalance orientation and orbital evolution for an extended cracked Jeffcott rotor  

E-Print Network (OSTI)

Vibration peaks occurring at rational fractions of the fundamental rotating critical speed, here named Local Resonances, facilitate cracked shaft detection during machine shut-down. A modified Jeffcott-rotor on journal bearings accounting for gravity effects and oscillating around nontrivial equilibrium points is employed. Modal parameter selection allows this linear model to represent first mode characteristics of real machines. Orbit evolution and vibration patterns are analyzed, yielding useful results. Crack detection results indicate that, instead of 1x and 2x components, analysis of the remaining local resonances should have priority; this is due to crack-residual imbalance interaction and to 2x multiple induced origins. Therefore, local resonances and orbital evolution around 1/2, 1/3 and 1/4 of the critical speed are emphasized for various crack-imbalance orientations.

Julio Gomez-Mancilla; Jean-Jacques Sinou; V. R. Nosov; Fabrice Thouverez; A. Zambrano

2008-01-19T23:59:59.000Z

396

Stress corrosion cracking and crack tip characterization of Alloy X-750 in light water reactor environments  

E-Print Network (OSTI)

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

2011-01-01T23:59:59.000Z

397

Stress Corrosion Cracking and Crack Tip Characterization of Alloy X-750 in Light Water Reactor Environments  

E-Print Network (OSTI)

Stress corrosion cracking (SCC) susceptibility of Inconel Alloy X-750 in the HTH condition has been evaluated in high purity water at 93 and 288°C under Boiling Water Reactor Normal Water Chemistry (NWC) and Hydrogen Water ...

Gibbs, Jonathan Paul

398

Methods of cracking a crude product to produce additional crude products  

DOE Patents (OSTI)

A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

Mo, Weijian (Sugar Land, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX)

2009-09-08T23:59:59.000Z

399

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reforming Hydrocarbon Fuels Using of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention discloses a method to reform hydrocarbon fuels using hexa- aluminate catalysts. In general, the method successfully disrupts the forma- tion of carbon that leads to the deactivation of the catalyst, a key element in the reforming of hydrocarbon fuels. When researchers are designing catalysts to reform hydrocarbon fuels, one

400

Will electricity market reform likely reduce retail rates?  

Science Conference Proceedings (OSTI)

To win public support, proponents for electricity market reform to introduce competition often promise that the post-reform retail rates will be lower than the average embedded cost rates that would have prevailed under the status quo of a regulated monopoly. A simple economic analysis shows that such a promise is unlikely to occur without the critical assumption that the post-reform market has marginal costs below average costs. (author)

Woo, C.K.; Zarnikau, Jay

2009-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - Poster Abstract_2010_NETL_ Oxide-Based Reforming...  

NLE Websites -- All DOE Office Websites (Extended Search)

Structured Oxide - Based Reforming Catalyst Development U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Dushyant Shekhawat Dushyant.Shekhawat@NETL....

402

Kinetics of Supercritical Water Reformation of Ethanol to H  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Description Kinetics of the supercritical water reformation of ethanol was experimentally studied in a tubular reactor made of Inconel 625 alloy.

403

Compatibility of selected ceramics with steam-methane reformer environments  

DOE Green Energy (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

404

Thermodynamic and Experimental Study on the Steam Reforming ...  

Science Conference Proceedings (OSTI)

For improving hydrogen yield, a new system for steam reforming of bio-oil with site ... Kinetic Modeling Study of Oxy-methane Combustion at Ordinary Pressure.

405

Women and the reform of the welfare system: An introduction  

Science Conference Proceedings (OSTI)

This special issue of Gender Issues, one of a three-part series, examines the welfare reform measures initiated a decade ago and their consequences for ...

406

PICEP: Pipe Crack Evaluation Program (Revision 1): Special report  

Science Conference Proceedings (OSTI)

This report describes software for calculating single- or two-phase flow through cracks in pipes and steam generator tubes. Options are available for calculating the crack-opening area and the critical (stable) crack length. The program is useful in performing leak-before-break analysis to demonstrate detectable leak rates prior to crack growth instability. Input to the code includes material properties, loads, thermal-hydraulic conditions, pipe geometry, and crack type and orientation. Theory and user information are provided in this report. 16 refs., 7 figs.

Norris, D.M.; Chexal, B.

1987-12-01T23:59:59.000Z

407

Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids  

SciTech Connect

The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

2013-01-18T23:59:59.000Z

408

An Energy Analysis of the Catalytic Combustion Burner  

E-Print Network (OSTI)

The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional flame combustion, and realizes the combustion of ultra-natural gas/air mixture under the flammable limits. Its combustion efficiency is higher, which improves the ratio of energy utilization. Applying the catalytic combustion to gas boilers could solve the gas boilers' lower combustion efficiency, and achieve energy savings. On the basis of the catalytic combustion burner, the catalytic combustion burner was designed according to the catalytic combustion and water heaters. In this paper, we analyzed the heat loss and thermal efficiency of the catalytic combustion burner, and compared it to that of flame combustion boilers. The results showed that catalytic combustion burner ?'s heat loss is not so high as originally considered, and its pollutant emissions are lower.

Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

2006-01-01T23:59:59.000Z

409

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

410

NEPA Contracting Reform Guidance (December 1996)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . .

411

Endothermic photo-catalytic reactions. Final report  

SciTech Connect

The overall objective of this report is to present the results of an investigation to provide guidelines for future experimental work, on solar energy driven endothermic photo-catalytic reactions, and primarily to select candidate synthesis reactions which lead to high $-value products. An intensive literature search was conducted to find properties, market demand, and prices of pertinent chemicals; meeting four criteria: (1) the reaction must be endothermic and favorable; (2) the reaction must be catalytic; (3) the product must be produced from low cost feedstocks; and (4) the product must have a sales price >$1.00/lb. Initial examination of low cost feedstocks to high value products lead to consideration of n-paraffins to aromatics and substituted aromatics. Fifteen candidate endothermic synthesis reactions, meeting the above criteria, are suggested. The ratio of product price by reactant cost indicates {approximately}5--8 for the best possibilities; all can be visualized as starting with low cost paraffin and methanol feedstocks.

Prengle, H.W. Jr.; Wentworth, W.E.; Polonczyk, K.C.; Saghafi, M.; Wilking, J.A.; Kramer, K.S. [Houston Univ., TX (United States)

1992-04-01T23:59:59.000Z

412

Database - Selective Catalytic Reduction Catalyst Deactivation Rates  

Science Conference Proceedings (OSTI)

Selective catalytic reduction (SCR) catalyst deactivation is a critical parameter controlling to a large extent achievable catalyst life, as well as overall SCR system performance. Accurate assessment and prediction of catalyst deactivation is required to adequately manage reactor potential. EPRI has on-going efforts underway aimed at better understanding the factors that affect catalyst deactivation, especially as a function of fuel, boiler design, and boiler operating conditions, in hopes of ...

2013-11-06T23:59:59.000Z

413

2006 Workshop on Selective Catalytic Reduction  

Science Conference Proceedings (OSTI)

EPRI held the 2006 Workshop on Selective Catalytic Reduction (SCR) on October 31 November 2, 2006 at the Dearborn Inn in Dearborn, Michigan and at DTE Energy's Monroe Station. Post-Combustion NOX Control Program members, invited speakers, and EPRI staff participated in this two and a half day event. The workshop agenda was comprised of twenty-seven presentations, two panel discussions, and a plant tour. Operating experience reports on SCR systems at Baldwin, Bowen, Bull Run, Crist, Cumberland, Gaston, Go...

2007-03-07T23:59:59.000Z

414

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded.

Doctor, Richard D. (Lisle, IL)

1993-01-01T23:59:59.000Z

415

Circumferential cracking of steam generator tubes  

SciTech Connect

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

416

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

DOE Green Energy (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

417

Process for magnetic beneficiating petroleum cracking catalyst  

DOE Patents (OSTI)

A process is described for beneficiating a particulate zeolite petroleum cracking catalyst having metal values in excess of 1000 ppm nickel equivalents. The particulate catalyst is passed through a magnetic field in the range of from about 2 Tesla to about 5 Tesla generated by a superconducting quadrupole open-gradient magnetic system for a time sufficient to effect separation of said catalyst into a plurality of zones having different nickel equivalent concentrations. A first zone has nickel equivalents of about 6,000 ppm and greater, a second zone has nickel equivalents in the range of from about 2000 ppm to about 6000 ppm, and a third zone has nickel equivalents of about 2000 ppm and less. The zones of catalyst are separated and the second zone material is recycled to a fluidized bed of zeolite petroleum cracking catalyst. The low nickel equivalent zone is treated while the high nickel equivalent zone is discarded. 1 figures.

Doctor, R.D.

1993-10-05T23:59:59.000Z

418

Preconversion catalytic deoxygenation of phenolic functional groups  

Science Conference Proceedings (OSTI)

The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

Kubiak, C.P.

1991-01-01T23:59:59.000Z

419

A revolution in micropower : the catalytic nanodiode.  

DOE Green Energy (OSTI)

Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

Cross, Karen Charlene; Heller, Edwin J.; Figiel, Jeffrey James; Coker, Eric Nicholas; Creighton, James Randall; Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Coltrin, Michael Elliott; Pawlowski, Roger Patrick; Baucom, Kevin C.

2010-11-01T23:59:59.000Z

420

Structures for dense, crack free thin films  

DOE Patents (OSTI)

The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

2011-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Cracking of Nickel Alloys in Bicarbonate and ...  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

422

Hydrogen Induced Cracking of Drip Shield  

DOE Green Energy (OSTI)

One potential failure mechanism for titanium and its alloys under repository conditions is via the absorption of atomic hydrogen in the metal crystal lattice. The resulting decreased ductility and fracture toughness may lead to brittle mechanical fracture called hydrogen-induced cracking (HIC) or hydrogen embrittlement. For the current design of the engineered barrier without backfill, HIC may be a problem since the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this scientific analysis and modeling activity is to evaluate whether the drip shield will fail by HIC or not under repository conditions within 10,000 years of emplacement. This Analysis and Model Report (AMR) addresses features, events, and processes related to hydrogen induced cracking of the drip shield. REV 00 of this AMR served as a feed to ''Waste Package Degradation Process Model Report'' and was developed in accordance with the activity section ''Hydrogen Induced Cracking of Drip Shield'' of the development plan entitled ''Analysis and Model Reports to Support Waste Package PMR'' (CRWMS M&O 1999a). This AMR, prepared according to ''Technical Work Plan for: Waste Package Materials Data Analyses and Modeling'' (BSC 2002), is to feed the License Application.

G. De

2003-02-24T23:59:59.000Z

423

Computational Model For Transient And Steady State Analysis Of A 1-dimensional Auto-thermal Reformer.  

E-Print Network (OSTI)

??Kim, Daejong This study presents a 1-dimensional mathematical model of steam reformer to be used with high temperature solid oxide fuel cell (SOFC). Steam reforming… (more)

Honavara-Prasad, Srikanth

2011-01-01T23:59:59.000Z

424

Steam reforming of fuel to hydrogen in fuel cells  

DOE Patents (OSTI)

A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

1984-01-01T23:59:59.000Z

425

Steam reforming of fuel to hydrogen in fuel cell  

DOE Patents (OSTI)

A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Young, J.E.; Fraioli, A.V.

1983-07-13T23:59:59.000Z

426

Sequencing in telecommunications reform: A review of the Turkish case  

Science Conference Proceedings (OSTI)

This paper reviews the Turkish case of telecommunications reform with reference to the evidence from the sequencing literature. Turkey's progress is in line with the proper sequencing of reform suggested by the literature. Accordingly, Turkey has pursued ... Keywords: Industrial policy, Privatisation, Regulation, Telecommunications

Necmiddin Bagdadioglu; Murat Cetinkaya

2010-12-01T23:59:59.000Z

427

Electricity Reform Abroad and U.S. Investment  

Reports and Publications (EIA)

Reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom in an attempt to better understand how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries of Argentina, Australia, and the UK.

Kevin Lillis

1997-09-01T23:59:59.000Z

428

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.

2003-05-21T23:59:59.000Z

429

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg

2003-05-01T23:59:59.000Z

430

Home Production and Social Security Reform ?  

E-Print Network (OSTI)

This paper incorporates home production into a dynamic general equilibrium model of overlapping generations with endogenous retirement to study Social Security reforms. As such, the model differentiates both consumption goods and labor effort according to their respective roles in home production and market activities. Using a calibrated model, we conduct a policy experiment where we eliminate the current pay-as-you-go Social Security System and study the steady state impact. We find that the experiment has important implications for labor supply as well as consumption decisions and that these decisions are influenced by the presence of a home production technology. Comparing our economy to a onegood economy without home production, the welfare gains of eliminating Social Security are magnified significantly. We further demonstrate that the qualitative results hold with the less extreme policy reform where we delay the eligible Social Security benefits claimant age by four years. These policy analyses suggest the importance of modeling home production and distinguishing between both time

Michael Dotsey; Wenli Li; Fang Yang

2012-01-01T23:59:59.000Z

431

Crack tip plasticity in single crystal UO2: Atomistic simulations  

SciTech Connect

The fracture behavior of single crystal uranium dioxide is studied using molecular dynamics simulations at room temperature. Initially, an elliptical notch is created on either {111} or {110} planes, and tensile loading is applied normal to the crack planes. For cracks on both planes, shielding of crack tips by plastic deformation is observed, and crack extension occurs for crack on {111} planes only. Two plastic processes, dislocation emission and phase transformation are identified at crack tips. The dislocations have a Burgers vector of ?110?/2, and glide on {100} planes. Two metastable phases, the so-called Rutile and Scrutinyite phases, are identified during the phase transformation, and their relative stability is confirmed by separate density- functional-theory calculations. Examination of stress concentration near crack tips reveals that dislocation emission is not an effective shielding mechanism. The formation of new phases may effectively shield the crack provided all phase interfaces formed near the crack tips are coherent, as in the case of cracks residing on {110} planes.

Yongfeng Zhang; Paul C. Millett; Michael Tonks; Bulent Biner; Xiang-Yang Liu; David A. Andersson

2012-11-01T23:59:59.000Z

432

Reforming Power Markets in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Reforming Power Markets in Developing Countries Reforming Power Markets in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reforming Power Markets in Developing Countries Agency/Company /Organization: World Bank Sector: Energy Focus Area: Conventional Energy, Renewable Energy Topics: Policies/deployment programs Resource Type: Publications, Lessons learned/best practices Website: siteresources.worldbank.org/INTENERGY/Resources/Energy19.pdf References: Reforming Power Markets in Developing Countries [1] Summary "This paper complements the World Bank's Operational Guidance Note by compiling lessons of this experience that help in applying the Note's guidance. These lessons are taken from the rapidly growing literature on power market reform in developing countries. They cover the range of issues

433

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

434

Regulatory and Financial Reform of Federal Research Policy: Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

and Financial Reform of Federal Research Policy: and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research universities' ability to carry out their missions without requiring a significant financial investment by the Federal government. Regulatory and Financial Reform of Federal Research Policy: Recommendations

435

Electricity Reform in Chile. Lessons for Developing Countries  

E-Print Network (OSTI)

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. This paper traces the history of the Chilean reform, which began in 1982, and assesses its progress and its lessons. We conclude that the reform has been very successful. We suggest lessons for the generation, transmission and distribution sectors, as well as the economic regulation of electricity and the general institutional environment favourable to reform. We note that while the initial market structure and regulatory arrangements did give rise to certain problems, the overall experience argues strongly for the private ownership and operation of the electricity industry.

Michael Pollitt

2004-01-01T23:59:59.000Z

436

Process Reform, Security and Suitability - December 17, 2008 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 December 17, 2008 This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year. In response to significant, continuing security clearance timeliness concerns, Congress called for improvements and established specific timeliness goals as part of the Intelligence Reform and Terrorism Prevention Act of 2004 (IRTPA). Since the enactment of IRTPA, average timeliness for 90 percent of all clearance determinations reported has been substantially improved, from 265 days (in 2005) to 82 days (4th Quarter,

437

Catalytic Tri-reforming of Biomass-Derived Syngas to Produce Desired H2:CO Ratios for Fuel Applications.  

E-Print Network (OSTI)

??This study focuses on upgrading biomass derived syngas for the synthesis of liquid fuels using Fischer-Tropsch synthesis (FTS). The process includes novel gasification of biomass… (more)

Walker, Devin Mason

2012-01-01T23:59:59.000Z

438

Role of crack tip shielding in the initiation and growth of long and small fatigue cracks in composite microstructures  

Science Conference Proceedings (OSTI)

The role of crack tip shielding in retarding the initiation and growth of fatigue cracks has been examined in metallic composite microstructures (consisting of hard and soft phases), with the objective of achieving maximum resistance to fatigue. Specifically, duplex ferritic-martensitic structures have been developed in AISI 1008 and 1015 mild steels to promote shielding without loss in strength. The shielding is developed primarily from crack deflection and resultant crack closure, such that unusually high long crack propagation resistance is obtained. It is found that the fatigue threshold ..delta..K/sub TH/ in AISI 1008 can be increased by more than 100 pct to over 20 MPa ..sqrt..m, without sacrifice in strength, representing the highest ambient temperature threshold reported for a metallic alloy to date. Similar but smaller increases are found in AISI 1015. The effect of the dual-phase microstructures on crack initiation and small crack (10 to 1000 ..mu..m) growth, however, is markedly different, characteristic of behavior influenced by the mutual competition of intrinsic and extrinsic (shielding) ''toughening'' mechanisms. Accordingly, the composite microstructures which appear to show the highest resistance to the growth of long cracks, show the lowest resistance to crack initiation and small crack growth. In general, dual-phase steels are found to display remarkable fatigue properties, with fatigue limits as high as 58 pct of the tensile strengths and fatigue thresholds in the range of 13 to 20 MPa..sqrt..m.

Shang, J.K.; Tzou, J.L.; Ritchie, R.O. (Materials and Chemical Sciences Div., Lawrence Berkeley Lab., and Dept. of Materials Science and Mineral Engineering, Univ. of California, Berkeley, CA (US))

1987-09-01T23:59:59.000Z

439

Petrochemicals  

Science Conference Proceedings (OSTI)

An account of the chemistry and industry of petrochemicals. Organized around three basic petrochemical processes-cracking, catalytic reforming, and steam reforming-this text presents a picture of the relationship between the petrochemical industry and the oil industry, and outlines the overall technological structure of the petrochemical industry. Data on annual capacities is given.

Wiseman, P.

1986-01-01T23:59:59.000Z

440

Hydrogen induced crack growth in Grade-12 titanium  

DOE Green Energy (OSTI)

Internal hydrogen induced crack growth rates were measured in Grade-12 titanium which is a candidate material for high-level nuclear waste containers. As-received and hydrogen charged samples (5 ppM to 330 ppM hydrogen) were used for slow crack growth measurements at constant loads using a Krak Gauge. The testing temperature ranged from room temperature to 148/sup 0/C. The crack growth kinetics under low to moderate loads are linear, but this linear rate is interrupted by discrete fast crack jump segments with parabolic or cubic type kinetics. These fast jump segments are thought to be associated with the passage of the crack front through the alpha-beta interface phase or with the initial loading sequence. By measuring striation spacings on the fracture surface, most crack growth rates observed are found to be in stage II. The striations are considered to be associated with hydride fracture. The crack path is either transgranular in the alpha phase or interfacial in the alpha phase adjacent to the beta phase. For transgranular growth, crack growth rates are constant and slower than those for interfacial growth which is associated with fast crack growth through a high hydrogen concentration region. Most stage II crack growth rates depend slightly on the stress intensity suggesting the contribution of plastic tearing process to stage II kinetics. The activation energies for crack growth are much lower than the activation energy of hydrogen diffusion through the alpha phase, implying that hydrogen is transported along dislocations, grain boundaries or interfaces. When the temperature is increased, the crack velocity first reaches a maximum and then decreases at higher temperatures. These temperature effects come from lower hydrogen concentration trapped at dislocations or from slower hydride nucleation kinetics, both at higher temperatures.

Ahn, T.M.; Lee, K.S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2003 Workshop on Selective Catalytic Reduction  

Science Conference Proceedings (OSTI)

Approximately 105,000 MW of coal-fired generating capacity in the United States will be equipped with selective catalytic reduction (SCR) systems to meet the nitrogen oxide (NOx) limits of the state implementation plan (SIP). Power producers placed approximately 40,000 MW of capacity into operation in 2003. Combined with early SCR adopters from prior years, about 65 percent of the planned inventory is presently operable. Since 1999, EPRI has organized and held annual SCR workshops to discuss key issues a...

2004-02-09T23:59:59.000Z

442

2002 Workshop on Selective Catalytic Reduction  

Science Conference Proceedings (OSTI)

Approximately 100,000 MW of coal-fired generating capacity in the United States will be equipped with selective catalytic reduction (SCR) systems to meet the nitrogen oxides (NOx) limits of the state implementation plan (SIP) call. Approximately 20,000 MW of capacity was expected to go into operation in 2002. Added to early SCR adopters in prior years, about 25 percent of the planned inventory is presently operable. Since 1999, EPRI has organized annual SCR workshops to discuss key issues and development...

2003-01-30T23:59:59.000Z

443

Catalytic multi-stage liquefaction (CMSL)  

DOE Green Energy (OSTI)

Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

1996-11-01T23:59:59.000Z

444

Evaluation of Partial Oxidation Reformer Emissions  

DOE Green Energy (OSTI)

In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

Unnasch, Stefan; Fable, Scott; Waterland, Larry

2006-01-06T23:59:59.000Z

445

Clean gasoline reforming with superacid catalysts  

DOE Green Energy (OSTI)

The objectives of this project are to: (a) determine if a coal-derived naphtha can be hydrotreated to produce a product with a sufficiently low heteroatom content that can be used for reforming, (b) identify hydrocarbon compounds in the naphtha with concentrations greater than 0.5 wt %, (c) develop a Pt/Al[sub 2]O[sub 3] heavily chlorided catalyst and determine the activity, selectivity and deactivation of this catalyst using model compounds and the hydrotreated naphtha, and (d) develop both a sulfated Pt/ZrO[sub 2] and Fe/Mn/ZrO[sub 2] catalyst formulations and determine the activity, selectivity and deactivation of these catalysts using model compounds and d warranted, the hydrotreated naphtha.

Davis, B.H.

1992-01-01T23:59:59.000Z

446

Hiring Reform Memoranda and Action Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0585 0585 October 7, 2010 MEMORANDUM FOR HEADS OF ALL DEPARTMENTAL ELEMEI\lTS HUMAI\l RESOURCES DIRECTORS FROM: MICHAELC. KANE~~~ CHIEF HUMAN CAPITAL ~ c· SUBJECT: IMPROVING DOE RECRUITMENT AND HIRING PROCESSES This is a follow-up to the Deputy Secretary's Memorandum dated October 6, 2010 where he communicated the need to implement the Action Plan developed to improve the recruitment and hiring processes throughout the Department. One of the central tenets of the President's reform efforts and the Department's Action Plan is management's commitment and attention to an efficient and effective hiring process that yields quality employees. This was clearly articulated in the President's Memorandum dated May 11, 2010 where he directed that management be held accountable through the performance evaluation system for their role

447

Relationships Between Stress Corrosion Cracking Tests and Utility ...  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Several utility steam generator and stress corrosion cracking ... Superheated steam and neutral solution environments are found to be ...

448

Influence of Different Cooling Structure on Surface Crack of HSLA ...  

Science Conference Proceedings (OSTI)

Presentation Title, Influence of Different Cooling Structure on Surface Crack of .... of Si3N4-SiC Heat Absorption Ceramic Material Used for Tower Type Solar ...

449

Basic Aspects of Superalloy Design for Crack Growth Resistance  

Science Conference Proceedings (OSTI)

theories for fatigue and creep crack growth resistance that are particularly ... devices as the nuclear reactors and in such strategic and expensive vehicles.

450

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

451

Stress Corrosion Cracking of Stabilized Austenitic Stainless Steels ...  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Stress Corrosion Cracking of Stabilized Austenitic Stainless Steels in Various Types of Nuclear Power Plants by M.O. Speidel and R.

452

Orientation Effects and Influence of Delta Phase on Fatigue Crack ...  

Science Conference Proceedings (OSTI)

including a hold time at maximum load lead to increased crack propagation rates when compared ... 720°C ;' 8 hours .! controlled cooling rate at 50°C per hour.

453

Fatigue Property-Microstructure Relationships and Crack Growth  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Effect of Microstructure on Fatigue Behavior of Two Pipeline Steels: .... to a transition crack length (LEFM applicable) is approximated using ...

454

In-vitro Evaluation of Stress Corrosion Cracking of Biomedical ...  

Science Conference Proceedings (OSTI)

In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys, WZ21 and WE43, was investigated using ...

455

Corrosion Inhibition of Stress Corrosion Cracking and Localized ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Stress corrosion cracking of 7050 aluminum alloys in the turbo expander industry can cause expensive catastrophic failures, especially for turbo

456

Strain Rate Sensitivity of Alloy 718 Stress Corrosion Cracking  

Science Conference Proceedings (OSTI)

Stress corrosion cracking (SCC) tests were conducted in 36O'C pressurized- water-reactor. (PWR) primary water using. Alloy 718 heat-treated to produce.

457

Stress Corrosion Cracking of Aluminium-Free Magnesium Alloys in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress Corrosion Cracking of Aluminium-Free Magnesium Alloys in a Simulated Human Body Fluid. Author(s), Lokesh Choudhary, R. K. Singh ...

458

Environmentally Assisted Cracking of Alloy 7050-T7451 Exposed to ...  

Science Conference Proceedings (OSTI)

Under cyclic loading notched specimens failed by transgranular stress corrosion cracking. Striations were observed on the cleavage-like facets. The number of ...

459

Stress Corrosion Crack Initiation of Alloy 690 in Subcritical and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The objective of this study is to investigate the structure and chemistry of corrosion and stress corrosion crack initiation in Alloy 690. To avoid

460

grain boundary oxidation and stress corrosion cracking in nickel ...  

Science Conference Proceedings (OSTI)

Accelerated stress corrosion cracking tests and exposures were conducted on alloy 600, Ni-9Fe, and Ni-9Fe-5Cr (LCr) in constant extension rate mode in ...

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Model for the Superimposed Effects of Stress-Corrosion Cracking ...  

Science Conference Proceedings (OSTI)

Symposium, Fatigue and Corrosion Damage in Metallic Materials: Fundamentals, ... and a stress-corrosion cracking mode acting at high stress intensity in NaCl.

462

Stress Corrosion Cracking Threshold of Ti 6-4 Extrusions  

Science Conference Proceedings (OSTI)

Ti 6Al-4V extrusions with standard chemistry and extra low interstitial are evaluated for their stress corrosion cracking resistance. Also examined is the affect of ...

463

A Study on the Stress Corrosion Cracking Mechanism of Carbon ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Carbon steel is susceptible to stress corrosion cracking (SCC) in fuel grade ethanol (FGE). The research results obtained thus far have found ...

464

Stress Corrosion Cracking Initiation of Austenitic Alloys in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress Corrosion Cracking Initiation of Austenitic Alloys in Supercritical Water. Author(s), Guoping Cao, Vahid Firouzdor, Todd Allen. On-

465

Galvanic Corrosion and Stress Corrosion Cracking of Steel and ...  

Science Conference Proceedings (OSTI)

No aluminum bolt AW 7075 failed in magnesium due to stress corrosion cracking (SCC). Even aluminum bolts in T6 condition can be used for automotive ...

466

Stress corrosion cracking of zirconium in nitric acid  

Science Conference Proceedings (OSTI)

The susceptibility of zirconium and its common alloys to stress corrosion cracking (SCC) in nitric acid was investigated by slow strain-rate and constant deflection techniques. Cracking occurred at 25/sup 0/C over a wide range of acid concentrations and electrochemical potentials. The crack velocity increased slightly with increasing temperature. The failure mode was transgranular and the morphology was similar to SCC failures of zirconium alloys in other environments. The fracture was very orientation-dependent suggesting that it occurs on a single crystallographic plane in the material. The results of the study are not consistent with a hydrogen mechanism for cracking.

Beavers, J.A.; Griess, J.C.; Boyd, W.K.

1980-01-01T23:59:59.000Z

467

One-Dimensional Cold Rolling Effects on Stress Corrosion Crack ...  

Science Conference Proceedings (OSTI)

A Microstructural Investigation on the Effect of Cold Work on Environmentally .... Stress Corrosion Cracking Behavior near the Fusion Boundary of Dissimilar ...

468

Intergranular Liquid Formation, Distribution, and Cracking in the ...  

Science Conference Proceedings (OSTI)

zone adjacent to the fusion zone. These intergranular cracks form when liquid ...... 718, and A286 in Light Water Reactor. Environments",. J. Mater. Eng., 2, pp.

469

Solidification Cracking Study of High Chromium Nickel-Base Filler ...  

Science Conference Proceedings (OSTI)

... and rank the relative cracking susceptibility of these filler metal specifications. ... Surface Processing of Ag /TiO2 Nanowire Membranes for Solar Photovoltaic ...

470

Research and Evaluation of Low Temperature Crack Propagation of ...  

Science Conference Proceedings (OSTI)

NRC/EPRI Welding Residual Stress Validation Program (Phase III) · On the Microstructure of Alloy 600 SCC Cracks Observed by TEM on PWR SG Pulled Tubes ...

471

DPQ Event Cracked Bushing Leads to Transformer Bank Failure  

Science Conference Proceedings (OSTI)

As part of EPRI's distribution power quality (DPQ) project this power quality (PQ) case study investigates cracked bushing recorded by PQ monitors that led to tranformer bank failure.

2003-12-31T23:59:59.000Z

472

Ranking the Susceptibility to Hydrogen-assisted Cracking in Super ...  

Science Conference Proceedings (OSTI)

Thus, SDSS welds are exposed to hydrogen charging to under CP. There have been reported hydrogen assisted cracking (HAC) failures in SDSS welds during ...

473

Hydrogen Induced Cracking Susceptibility of Titanium Alloys in ...  

Science Conference Proceedings (OSTI)

May 16, 2007 ... This report evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain ...

474

P wave anisotropy, stress, and crack distribution at Coso geothermal...  

Open Energy Info (EERE)

P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave...

475

Failure Analysis of a Cracked Thermite Welded Rail Section  

Science Conference Proceedings (OSTI)

Brittle fracture followed the fatigue crack propagation causing complete separation of the rail. Although the excess material was thought to reinforce the rails it ...

476

Thermal Cracking of Large-Diameter 706 Ingots  

Science Conference Proceedings (OSTI)

responsible for the cracking. The most plausible scenario is that residual stresses generated by ... Analysis of Heat Up for Homogenization. Finite Element Model.

477

High-Temperature Stress Relaxation Cracking and Stress Rupture ...  

Science Conference Proceedings (OSTI)

An incident occurred that resulted in the cracking of gasifier internals, bulging and stress rupture of the shell and the escape of hot syngas, causing a fire.

478

Corrosion Fatigue and Crack Propagation of Different Austenitic ...  

Science Conference Proceedings (OSTI)

A FIB Study of the Resistance of Grain Boundaries to Short Fatigue Crack Propagation in Three-Dimensions in High Strength Al Alloys · A Non-Linear Damage ...

479

Effect of Interstitial Content on High Temperature Fatigue Crack ...  

Science Conference Proceedings (OSTI)

instance; resulted in fatigue crack propagation (FCP)' programs like ESDADTA(2) and ENSIP(3). Fatigue resistance of nickel base superalloys is affected by ...

480

Fatigue and Fatigue Crack Propagation Behaviors of High ...  

Science Conference Proceedings (OSTI)

The S-N fatigue and fatigue crack propagation (FCP) behaviors of high ... The mechanisms associated with the improved fatigue resistance for the high ...

Note: This page contains sample records for the topic "reforming catalytic cracking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Effect of Thermal-Mechanical Treatment on the Fatigue Crack ...  

Science Conference Proceedings (OSTI)

that fatigue crack propagation (FCP) resistance without holding time has no significant difference between three alloys with 718Plus being the best and 718 the ...

482

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

483

Catalytic conversion of cellulose to liquid hydrocarbon fuels ...  

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

484

Piloted rich-catalytic lean-burn hybrid combustor  

DOE Patents (OSTI)

A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

Newburry, Donald Maurice (Orlando, FL)

2002-01-01T23:59:59.000Z

485

Hydrogen-assisted catalytic ignition characteristics of different fuels  

SciTech Connect

Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

Zhong, Bei-Jing; Yang, Fan [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang, Qing-Tao [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); China Aerodynamics Research and Development Center, Mianyang 621000 (China)

2010-10-15T23:59:59.000Z

486

Catalytic Acceleration of Carbon Capture via Bio-processes  

Science Conference Proceedings (OSTI)

Recently, transformation of the biomass into fuels such as bioethanol, biodiesel or functional chemicals by means of catalytic and enzymatic conversion has ...

487

Multi-step catalytic hydroprocessing to produce hydrocarbon fuels ...  

Multi-step catalytic hydroprocessing to produce hydrocarbon fuels from biomass pyrolysis bio-oil (PNNL IPID 16665) Pacific Northwest National Laboratory

488

Catalytic distillation for the synthesis of tertiary butyl alcohol.  

E-Print Network (OSTI)

??Catalytic Distillation for the synthesis of tertiary butyl alcohol (TBA) is investigated in this thesis. The solvent, ethylene glycol, is proposed as a means of… (more)

Safinski, Tomasz

2005-01-01T23:59:59.000Z

489

Revealing the rapid isothermal growth of graphene on catalytic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis from Atoms to Systems Revealing the rapid isothermal growth of graphene on catalytic substrates July 01, 2013 Optical reflectivity tracks the rapid growth of...

490

U.S. Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA)

Process: Area: Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History; Catalytic Reforming: 2,493: 2,563: 2,667: 2,739: 2,807: 2,705: 2010-2013: Catalytic Cracking ...

491

U.S. Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA)

Process: Area: 2007 2008 2009 2010 2011 2012 View History; Catalytic Reforming : 2,632: 2,571: 2,606: 2010-2012: Catalytic Cracking: 5,250: 4,983: 4,957: 4,873: 4,952 ...

492

West Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 3,350: 3,850: 3,850: 3,850: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 0: 0: 0: 0: 0: 0: 2006-2013 ...

493

Alabama Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 28,700: 36,000: 33,000: 33,000: 2010-2013: Total Coking: 12,600: 12,600: 12,600: 28,000: 30,000: 30,000: 1987-2013: Catalytic Cracking - Fresh ...

494

Hawaii Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,800: 12,500: 12,500: 12,500: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 21,000: 21,000: 21,000 ...

495

New Mexico Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,243: 34,243: 34,243: 29,800: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 39,631: 39,631: 39,631 ...

496

Tennessee Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 34,200: 34,200: 33,000: 35,300: 2010-2013: Total Coking: 0: 0: 0: 0: 0: 0: 2006-2013: Catalytic Cracking - Fresh Feed: 68,000: 68,000: 68,000 ...

497

Kansas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 76,200: 76,700: 76,700: 76,700: 2010-2013: Total Coking: 59,530: 61,800: 61,800: 61,800: 61,800: 60,000: 1987-2013: Catalytic Cracking - Fresh ...

498

East Coast (PADD 1) Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 226,266: 266,950: 195,550: 240,550: 2010-2013: Total Coking: 91,575: 95,500: 45,300: 93,700: 74,900: 74,900: 1987-2013: Catalytic Cracking ...

499

Virginia Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 11,000: 11,000 : 2010-2011: Total Coking: 17,675: 21,800: 20,000: 20,000: 0: 0: 1987-2013: Catalytic Cracking - Fresh Feed: 27,800: 27,800: 27,800:

500

PAD District 5 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Catalytic Reforming : 543,246: 517,106: 527,756: 529,406: 2010-2013: Total Coking: 567,655: 573,008: 559,955: 530,400: 537,900: 529,700: 1987-2013: Catalytic Cracking ...