Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

2

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 ?m to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

3

High-Temperature Reactor for Diffuse Reflectance Infrared ...  

High-Temperature Reactor for Diffuse Reflectance Infrared Fourier-Transform Spectroscopy Note: The technology described above is an early stage ...

4

Assessment of Shortwave Infrared Sea Surface Reflection and Nonlocal Thermodynamic Equilibrium Effects in the Community Radiative Transfer Model Using IASI Data  

Science Conference Proceedings (OSTI)

The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 to 4.6 ?m are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of ...

Yong Chen; Yong Han; Paul van Delst; Fuzhong Weng

2013-09-01T23:59:59.000Z

5

A Rapid Radiative Transfer Model for Reflection of Solar Radiation  

Science Conference Proceedings (OSTI)

A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over ...

X. Xiang; E. A. Smith; C. G. Justus

1994-07-01T23:59:59.000Z

6

Improved Spatial Resolution For Reflection Mode Infrared Spectromicroscopy  

SciTech Connect

Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using a microscope coupled to a synchrotron source.

Bechtel, Hans A; Martin, Michael C.; May, T. E.; Lerch, Philippe

2009-08-13T23:59:59.000Z

7

Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations  

Science Conference Proceedings (OSTI)

State-of-the-art radiative transfer models can calculate outgoing infrared (IR) irradiance at the top of the atmosphere (F) to an accuracy suitable for climate modeling given the proper atmospheric profiles of temperature and absorbing gases and ...

Starley L. Thompson; Stephen G. Warren

1982-12-01T23:59:59.000Z

8

Cloud Properties Derived from Visible and Near-infrared Reflectance in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Properties Derived from Visible and Near-infrared Reflectance in the Cloud Properties Derived from Visible and Near-infrared Reflectance in the Presence of Aerosols Hofmann, Odele University of Colorado at Boulder Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Russell, Phil NASA Ames Research Center Livingston, John SRI International Redemann, Jens BAERI/NASA Ames Research Center Bergstrom, Robert Bay Area Environmental Research Institute Platnick, Steven NASA-GSFC Daniel, John NOAA Aeronomy Laboratory Category: Cloud Properties The New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS-ITCT) experiment conducted in July-August 2004 included objectives on the effects of urban-industrial pollution aerosols on cloud radiative properties, the so-called indirect effect. Measurements

9

Oxide Multilayer Thermal Radiation Energy Reflection EBCs: Effect ...  

Science Conference Proceedings (OSTI)

Environmental barrier coatings (EBCs) with thermal radiation energy reflection have been developed recently. The EBCs utilize interaction between ...

10

Infrared Radiative Properties Of the Maritime Antarctic Atmosphere  

Science Conference Proceedings (OSTI)

The longwave radiation environment of the Antarctic Peninsula and Southern Ocean has been investigated using radiometric Fourier Transform Infrared (FTIR) measurements of atmospheric emission in conjunction with detailed radiative transfer ...

Dan Lubin

1994-01-01T23:59:59.000Z

11

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator  

E-Print Network (OSTI)

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator

Bane, K L F; Tu, J J

2006-01-01T23:59:59.000Z

12

Cirrus Infrared Parameters and Shortwave Reflectance Relations from Observations  

Science Conference Proceedings (OSTI)

A summary of experimental observations and analysis of cirrus from high-altitude aircraft remote sensing is presented. The vertical distribution of cirrus optical and infrared cross-section parameters and the relative effective emittance and ...

James D. Spinhirne; William D. Hart; Dennis L. Hlavka

1996-05-01T23:59:59.000Z

13

A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation  

Science Conference Proceedings (OSTI)

A simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) ...

Yi Huang

2013-03-01T23:59:59.000Z

14

Radiative Properties of Cirrus Clouds in the Infrared Region  

Science Conference Proceedings (OSTI)

A multiple-scattering radiative transfer model is employed to evaluate the 11 ?m and the broad-band infrared (IR) fluxes, cooling rates and emittances in model cirrus clouds for a number of standard vertical atmospheric profiles of temperature ...

Graeme L. Stephens

1980-02-01T23:59:59.000Z

15

Infrared Radiation Filament And Metnod Of Manufacture  

SciTech Connect

An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

Johnson, Edward A. (Bedford, MA)

1998-11-17T23:59:59.000Z

16

Near-infrared reflectance analysis by Gauss-Jordan linear algebra  

SciTech Connect

Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

1983-11-01T23:59:59.000Z

17

Infrared reflectance and transmission spectra in II-VI alloys and superlattices  

E-Print Network (OSTI)

Room temperature measurements of the far-infrared (FIR) reflectance spectra are reported for the polar optical phonons in a series of bulk Cd[subscript x]Zn[subscript 1?x]Te (0 ? x ? 1) and CdSe[subscript x]Te[subscript ...

Talwar, Devki N.

18

Durable silver mirror with ultra-violet thru far infra-red reflection  

DOE Patents (OSTI)

A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

Wolfe, Jesse D. (Discovery Bay, CA)

2010-11-23T23:59:59.000Z

19

Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases  

DOE Patents (OSTI)

A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

20

The Effect of Cloud Sides on Reflected Solar Radiation as Deduced from Satellite Observations  

Science Conference Proceedings (OSTI)

We report the observation of a feature that is characteristic of the reflection of solar radiation from absorbing, finite clouds. When absorption takes place, more radiation can be reflected by broken cloud fields than by extensive unbroken cloud ...

James A. Coakley Jr.; Roger Davies

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements  

Science Conference Proceedings (OSTI)

A method is presented for determining the scaled optical thickness of clouds from reflected solar radiation measurements. The procedure compares measurements of the reflection function with asymptotic expressions for the reflection function of ...

Michael D. King

1987-07-01T23:59:59.000Z

22

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145°F (62.78°C) and 100°F (36.78°C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

23

Infrared Radiation Properties of CuO-ZnO-Based Sintered Material ...  

Science Conference Proceedings (OSTI)

Presentation Title, Infrared Radiation Properties of CuO-ZnO-Based Sintered Material Prepared for Energy-Saving Coating. Author(s), Chao Lian, Wei Wei, Hao ...

24

Imaging the Material Properties of Bone Specimens Using Reflection-Based Infrared Microspectroscopy  

Science Conference Proceedings (OSTI)

Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 {micro}m for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm{sup -1} in transmission-based to 1035/1025 cm{sup -1} in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.

Acerbo A. S.; Carr, G.L.; Judex, S.; Miller, L.M.

2012-03-13T23:59:59.000Z

25

The Effect of Clouds on the Earth's Solar and Infrared Radiation Budgets  

Science Conference Proceedings (OSTI)

The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use ...

Gerald F. Herman; Man-Li C. Wu; Winthrop T. Johnson

1980-06-01T23:59:59.000Z

26

Satellite Determinations of the Relationship between Total Longwave Radiation Flux and Infrared Window Radiance  

Science Conference Proceedings (OSTI)

Nimbus-7 satellite observations are used to determine the relationship between the total longwave radiation flux and the radiance in the 10-12 ?m infrared window. The total longwave fluxes are obtained from the earth radiation budget (ERB) narrow-...

George Ohring; Arnold Gruber; Robert Ellingson

1984-03-01T23:59:59.000Z

27

On the Surface Temperature Sensitivity of the Reflected Shortwave, Outgoing Longwave, and Net Incident Radiation  

Science Conference Proceedings (OSTI)

The global-mean top-of-atmosphere incident solar radiation (ISR) minus the outgoing longwave radiation (OLR) and the reflected shortwave radiation (RSW) is the net incident radiation (NET). This study analyzes the global-mean NET sensitivity to a ...

Hartmut H. Aumann; Alexander Ruzmaikin; Ali Behrangi

2012-10-01T23:59:59.000Z

28

Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements  

Science Conference Proceedings (OSTI)

A method for retrieval of cirrus macrophysical and radiative properties using combined ruby lidar and infrared radiometer measurements is explained in detail. The retrieval algorithm includes estimation of a variable backscatter-to-extinction ...

Jennifer M. Comstock; Kenneth Sassen

2001-10-01T23:59:59.000Z

29

Overlap of Solar and Infrared Spectra and the Shortwave Radiative Effect of Methane  

Science Conference Proceedings (OSTI)

This paper focuses on two shortcomings of radiative transfer codes commonly used in climate models. The first aspect concerns the partitioning of solar versus infrared spectral energy. In most climate models, the solar spectrum comprises ...

J. Li; C. L. Curry; Z. Sun; F. Zhang

2010-07-01T23:59:59.000Z

30

An Improved Algorithm for the Operational Calibration of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Radiance data from the High-Resolution Infrared Radiation Sounder (HIRS) have been used routinely in both direct radiance assimilation for numerical weather prediction and climate change detection studies. The operational HIRS calibration ...

Changyong Cao; Kenneth Jarva; Pubu Ciren

2007-02-01T23:59:59.000Z

31

Solar Radiative Fluxes for Broken Cloud Fields above Reflecting Surfaces  

Science Conference Proceedings (OSTI)

A statistical bidirectional method for including the effects of underlying reflecting surfaces in Monte Carlo simulations of atmospheric photon transport is presented. It is illustrated for the idealized Lambertian surface and a general ...

Howard W. Barker; John A. Davies

1992-05-01T23:59:59.000Z

32

Effects of Reflection by Natural Surfaces on the Radiation Emerging from the Top of the Earth's Atmosphere  

Science Conference Proceedings (OSTI)

The radiation emerging from the top of the earth's atmosphere is affected by the reflection characteristics of the underlying surface. Laboratory-gathered bidirectional reflectance data were used to characterize the reflection matrix for three ...

Bruce W. Fitch

1981-12-01T23:59:59.000Z

33

The Use of Cloud Reflectance Functions with Satellite Data for Surface Radiation Budget Estimation  

Science Conference Proceedings (OSTI)

The bidirectional reflectance distribution function (BRDF) of an overcast atmosphere above an ocean surface has been calculated as a function of wavelength using a discrete-ordinates radiative transfer model. This plane-parallel BRDF appears ...

Dan Lubin; Paul G. Weber

1995-06-01T23:59:59.000Z

34

Absorption Approximation with Scattering Effect for Infrared Radiation  

Science Conference Proceedings (OSTI)

A scheme that can handle cloud infrared scattering based on the absorption approximation is developed. In a two-stream mode, the new scheme produces more accurate results than those from the modified two-stream discrete ordinate method. For low ...

J. Li; Qiang Fu

2000-09-01T23:59:59.000Z

35

Using Visible and Near Infrared Diffuse Reflectance Spectroscopy to Characterize and Classify Soil Profiles  

E-Print Network (OSTI)

Visible and near infrared diffuse reflectance spectroscopy (VisNIR-DRS) is a method being investigated for quantifying soil properties and mapping soil profiles. Because a VisNIR-DRS system mounted in a soil penetrometer is now commercially available for scanning soil profiles in situ, methodologies for using scans to map soils and quantify soil properties are needed. The overall goal of this research is to investigate methodologies for collecting and analyzing VisNIR-DRS scans of intact soil profiles to identify soil series. Methodologies tested include scanning at variable versus uniform moistures, using individual versus averaged spectra, boosting an intact spectral library with local samples, and comparing quantitative and categorical classifications of soil series. Thirty-two soil cores from two fields, representing three soil series, were extracted and scanned every 2.5 cm from the soil surface to 1.5 m or to the depth of parent material at variable field moist conditions and at uniform moist condition. Laboratory analyses for clay, sand, and silt were performed on each horizon. Soil series were classified using partial least squares regression (PLS) and linear discriminant analysis (LDA). A Central Texas intact spectral library (n=70 intact cores) was used for PLS modeling, alone and boosted with the two fields. Because whole-field independent validation was used, relative percent difference (RPD) values were used to compare model performance. Wetting soils to uniform moisture prior to scanning improved prediction accuracy of total clay and RPD improved by 53 percent. Averaging side-by-side scans of the same soil profile improved prediction accuracy of RPD by 10 percent. When creating calibration models, boosting a library with local samples improved prediction accuracy of clay content by 80 and 34 percent for the two fields. Principal component plots provided insight on the spectral similarities between these datasets. Overall, using PLS alone performed the same as LDA at predicting soil series. Most importantly, results of this project reiterate the importance of fully-independent calibration and validation for assessing the true potential of VisNIR-DRS. Using VisNIR-DRS is an effective way for in situ characterization and classification of soil properties.

Wilke, Katrina Margarette

2010-08-01T23:59:59.000Z

36

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

37

Multiple Scattering Parameterization in Thermal Infrared Radiative Transfer  

Science Conference Proceedings (OSTI)

A systematic formulation of various radiative transfer parameterizations is presented, including the absorption approximation (AA), ?-two-stream approximation (D2S), ?-four-stream approximation (D4S), and ?-two- and four-stream combination ...

Qiang Fu; K. N. Liou; M. C. Cribb; T. P. Charlock; A. Grossman

1997-12-01T23:59:59.000Z

38

Fecal near-infrared reflectance spectroscopy calibrations for predicting diet quality and intake of donkeys  

E-Print Network (OSTI)

The objective of these studies was to develop near-infrared reflectance spectroscopy calibration equations from diet-fecal pair datasets to predict the diet quality and intake of donkeys. One hundred-forty diet-fecal pair samples were generated from two independent in vivo feeding trials conducted in the United States (N = 100) and Africa (N = 40). At each site, ten female donkeys were fed mixed diets blended from 25 forage and crop residues. The modified partial least square model (MPLS) was used to develop calibration equations for crude protein (CP), digestible organic matter (DOM), dry matter digestibility (DDM) and organic matter digestibility (OMD), for the US, Africa and US/Africa combined datasets, and dry matter (DM) and organic matter (OM) intake calibrations from the US datasets. Crude protein (CP) equations were developed with standard error of calibration (SEC) 0.90, (SEL = 0.5). The US, US/Africa and Africa CP equations had SEC value of 0.77, 0.97 and 0.88 with corresponding R2 of 0.97, 0.95 and 0.88, respectively. Validation of the US CP equation resulted in a standard error of prediction (SEP) of 1.79 with corresponding coefficient of correlation (r2) of 0.82 and slope of 0.84 indicating high accuracy of prediction. In vivo derived DOM equations were also developed for the US, Africa and US/Africa datasets with SEC values of 2.58, 4.91 and 3.52, and R2 of 0.60, 0.81 and 0.84, respectively. In addition, the SEC and R2 values were 3.25 and 0.72 for US OMD, 3.28 and 0.79 for US DDM, and 4.2 and 0.85 for US/Africa OMD, and 4.3 and 0.87 for US/Africa DDM equation, respectively. Calibration equations for predicting DMI and OMI have resulted in SEC values of 3.45 and 3.21 (g/kgw0.75) and R2 values of 0.89 and 0.84, respectively. The present study explored the relationship between DMI and diet quality attributes. Crude protein and digestible organic matter to crude protein ration (DOM/CP) with r2 values of 0.60 and 0.39, respectively, have shown good correlations with intake. The present studies have confirmed the potential for the fecal NIRS profiling for predicting CP, DOM, DDM, OMD, DMI and OMI of donkeys. Both calibration and validation results have indicated that the present donkey equations were comparable to previously developed equations for ruminants; they have the capability for accurate prediction of diet quality and intake, and can be a useful tool for monitoring the nutritional well-being of donkeys with acceptable accuracy. Research works to further expand the present calibration equations with additional diet-fecal samples particularly from Africa that did not meet the required accuracy level is recommended.

Kidane, Negusse Fessehaye

2005-12-01T23:59:59.000Z

39

The Effect of Grain Size and Phosphorous-doping of Polycrystalline 3C-SiC on Infrared Reflectance Spectra  

SciTech Connect

The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behaviour of the 3C-SiC with the highest phosphorous doping level (of 1.2 x 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (< 6.6 x 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency (w{sub p}) is not influenced by the grain size.

I. J. van Rooyen; J. A. A. Engelbrecht; A. Henry; E. Janzen; J. H. Neethling; P. M. van Rooyen

2012-03-01T23:59:59.000Z

40

Photochemical synthesis of disilane from silane with infrared laser radiation  

SciTech Connect

The authors report the clean and efficient conversion of silane to disilane by CO{sub 2} laser irradiation. The direct irradiation of pure silane at high pressures (from 75 to 1,700 Torr) converts silane to disilane with high selectivity and with efficient use of the absorbed laser radiation. Hydrogen is the only other major volatile product, and the production of solid products is minimal. The proposed mechanism of the photochemical reaction includes (1) collisionally enhanced absorption of the laser radiation by silane, (2) collisional deexcitation of the vibrationally excited silane, (3) concurrent decomposition to SiH{sub 2} and H{sub 2}, (4) production of vibrationally excited disilane by SiH{sub 2} insertion into a silane Si-H bond, (5) collisional quenching of the excited disilane, and (6) rapid cooling of the irradiated gas by thermal expansion. They support the proposed mechanism by additional experiments and model calculations.

Zavelovich, J. (Amoco Technology Co., Naperville, IL (USA)); Lyman, J.L. (Los Alamos National Lab., NM (USA))

1989-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method and apparatus for reducing radiation exposure through the use of infrared data transmission  

SciTech Connect

A method and apparatus is described for transmitting information, for exae, dosimetry data from a hazardous environment such as a radioactive area to a remote relatively safe location. A radiation detector senses the radiation and generates an electrical signal which is fed as a binary coded decimal signal to an infrared transmitter having a microprocessor. The microprocessor formats the detected information into digits of data and modulates a 40 kHz oscillator, the output of which is fed to and intensity modulates one or more infrared emitting diodes. The infrared signal from the diodes is transmitted to a portable hand-held infrared receiver remote from the hazardous environment. The receiver includes an infrared sensitive diode which decodes the data and generates an electrical signal which is coupled to a microcomputer. The microcomputer synchronizes itself to the transmitter, reads the digits of data as they are received, sums the digits and compares the sum with a checksum signal generated and transmitted from the transmitter. If a match of the checksum signals exists, the received data is displayed, otherwise it is described and the receiver conditions itself for the next transmission of data.

Austin, Frank S. (Schaghticoke, NY); Hance, Albert B. (Schenectady, NY)

1989-01-01T23:59:59.000Z

42

Rf system for the NSLS coherent infrared radiation source  

Science Conference Proceedings (OSTI)

The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity, power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.

Broome, W.; Biscardi, R.; Keane, J.; Mortazavi, P.; Thomas, M.; Wang, J.M.

1995-05-01T23:59:59.000Z

43

Bias in Differential Reflectivity due to Cross Coupling through the Radiation Patterns of Polarimetric Weather Radars  

Science Conference Proceedings (OSTI)

Examined is bias in differential reflectivity and its effect on estimates of rain rate due to coupling of the vertically and horizontally polarized fields through the radiation patterns. To that end, a brief review of the effects of the bias on ...

Dusan Zrni?; Richard Doviak; Guifu Zhang; Alexander Ryzhkov

2010-10-01T23:59:59.000Z

44

Planck-Weighted Transmittance and Correction of Solar Reflection for Broadband Infrared Satellite Channels  

Science Conference Proceedings (OSTI)

The line-by-line radiative transfer model (LBLRTM) is used to derive the channel transmittances. The channel transmittance from a level to the top of the atmosphere can be approximated by three methods: Planck-weighted transmittance 1 (PW1), ...

Yong Chen; Fuzhong Weng; Yong Han; Quanhua Liu

2012-03-01T23:59:59.000Z

45

Excess Infrared Radiation from a Massive DAZ White Dwarf: GD362 - a Debris Disk?  

E-Print Network (OSTI)

We report the discovery of excess K-band radiation from a massive DAZ white dwarf star, GD362. Combining infrared photometric and spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a debris disk. This would be only the second such system known, discovered 18 years after G29-38, the only single white dwarf currently known to be orbited by circumstellar dust. Both of these systems favor a model with accretion from a surrounding debris disk to explain the metal abundances observed in DAZ white dwarfs. Nevertheless, observations of more DAZs in the mid-infrared are required to test if this model can explain all DAZs.

Mukremin Kilic; Ted von Hippel; S. K. Leggett; D. E. Winget

2005-09-07T23:59:59.000Z

46

Incident Solar Radiation over Europe Estimated from METEOSAT Data  

Science Conference Proceedings (OSTI)

Daily sums of the downward solar radiation, i.e., the global radiation, have been computed from imaging data of reflected solar and emitted infrared radiation which were measured from the geostationary satellites METEOSAT I and II during the ...

Werner Möser; Ehrhard Raschke

1984-01-01T23:59:59.000Z

47

The Gastropod Fast Radiative Transfer Model for Advanced Infrared Sounders and Characterization of Its Errors for Radiance Assimilation  

Science Conference Proceedings (OSTI)

Principal aspects of the development of Gastropod, a fixed-pressure-grid fast radiative transfer model for the Atmospheric Infrared Sounder (AIRS), are described. Performance of the forward and gradient operators is characterized, and the impact ...

V. Sherlock; A. Collard; S. Hannon; R. Saunders

2003-12-01T23:59:59.000Z

48

Retrieval of Sea Surface Temperature from Space, Based on Modeling of Infrared Radiative Transfer: Capabilities and Limitations  

Science Conference Proceedings (OSTI)

The retrieval (estimation) of sea surface temperatures (SSTs) from space-based infrared observations is increasingly performed using retrieval coefficients derived from radiative transfer simulations of top-of-atmosphere brightness temperatures (...

Christopher J. Merchant; Pierre Le Borgne

2004-11-01T23:59:59.000Z

49

A Study of the Solar Radiation Effect on the 4.3-?m Channels of the High-Resolution Infrared Radiation Sounder  

Science Conference Proceedings (OSTI)

Measurements of infrared radiation from the National Oceanic and Atmospheric Administration series of satellites are used to retrieve atmospheric temperature, moisture, and ozone. It is well known that the measurements from the 4.3-?m channels of ...

Larry M. McMillin; David S. Crosby

2000-10-01T23:59:59.000Z

50

Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy  

Science Conference Proceedings (OSTI)

At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

Flattum, Richard Y.; Cooney, Adam T. [Air Force Research Laboratory, Materials and Manufacturing Directorate, NonDestructive Evaluation Branch, Wright-Patterson AFB, OH (United States)

2013-01-25T23:59:59.000Z

51

Intersatellite Radiance Biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations  

Science Conference Proceedings (OSTI)

Intersatellite radiance comparisons for the 19 infrared channels of the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 are performed with simultaneous nadir observations at the orbital intersections of the ...

Changyong Cao; Hui Xu; Jerry Sullivan; Larry McMillin; Pubu Ciren; Yu-Tai Hou

2005-04-01T23:59:59.000Z

52

Mid- and Far-Infrared Reflection/Absorption Spectroscopy (IRAS) Studies of NO on Rh Single Crystal Surfaces  

DOE Green Energy (OSTI)

The NO/CO reaction over Rh metal in automobile catalytic converters is critical to the control of emissions of these pollutant molecules. As part of a program to determine the elementary mechanism(s) of this reaction, we have been performing mid- and far-infrared reflection/absorption spectroscopic (IRAS) measurements of the adsorption and co-adsorption and co-adsorption of NO and CO on Rh single crystal surfaces. Of particular interest is the low-frequency range of the IRAS spectra where we hoped to observe features due to metal-N stretching and/or bending vibrational motions. In particular, we hoped to obtain information regarding the site-requirements for the dissociation of the NO molecule on various Rh single crystal surfaces. An important result from our earlier work is that the selectivity of the reaction for the two nitrogen-containing products, N2 and N2O, is a strong function of the Rh surface structure. On the basis of ancillary data, we suggested that the location of adsorbed NO and N-atoms (formed from dissociation of adsorbed NO) on various Rh surfaces could, perhaps account for the selectivity differences.

Peden, Charles HF; He, Ting; Pilling, M.; Hirschmugl, Carol J.; Gardner, P.

2001-02-01T23:59:59.000Z

53

Effects of a Spectral Surface Reflectance on Measurements of Backscattered Solar Radiation: Application to the MOPITT Methane Retrieval  

Science Conference Proceedings (OSTI)

The amount of solar radiation emerging from the top of the atmosphere is strongly influenced by the reflectance of the underlying surface. For this reason, some information about the magnitude and the spectral variability of the surface ...

G. Pfister; J. C. Gille; D. Ziskin; G. Francis; D. P. Edwards; M. N. Deeter; E. Abbott

2005-05-01T23:59:59.000Z

54

Comparison of the Highly Reflective Cloud and Outgoing Longwave Radiation Datasets for Use in Estimating Tropical Deep Convection  

Science Conference Proceedings (OSTI)

Currently, there are two long-term satellite-derived datasets most are frequently used as indices for tropical deep convection. These are the Outgoing Longwave Radiation (OLR) and Highly Reflective Cloud (HRC) datasets. Although both of these ...

Duane E. Waliser; Nicholas E. Graham; Catherine Gautier

1993-02-01T23:59:59.000Z

55

Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory  

Science Conference Proceedings (OSTI)

A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (?c) and ...

Teruyuki Nakajima; Michael D. King

1990-08-01T23:59:59.000Z

56

Modeling Electromagnetic Reflectivity of Agbabu Oil Sand from Hyperspectral Infrared Reflectance Spectra and Dielectric Properties at L-, C- and X-Band Frequencies  

Science Conference Proceedings (OSTI)

In this paper remote identification of oil sand reservoirs from synthetic aperture radar (SAR) is enhanced by accurate modeling of the electromagnetic (EM) reflectivity of Agbabu oil sands. This is demonstrated using a novel combination of hyperspectral ... Keywords: EM Reflectivity, Computer Simulation, Agbabu Oil Sand, Dielectric property, Petroleum Exploration

Maurice Ezeoke, Kenneth Tong

2013-06-01T23:59:59.000Z

57

Dynamic Infrared Simulation.  

E-Print Network (OSTI)

?? The increased usage of infrared sensors by pilots has created a growing demand for simulated environments based on infrared radiation. This has led to… (more)

Dehlin, Jonas

2006-01-01T23:59:59.000Z

58

Hollow core and other infrared waveguides for instrumentation in intense radiation environments.  

SciTech Connect

The purpose of this LDRD was to study the effect of steady-state neutron and gamma irradiation on the transmission of waveguides designed to operate well in the near- or mid-IR region of the electromagnetic spectrum. In this context, near-IR refers to the region between 1.3 {mu}m and about 2.4 {mu}m, and mid-IR between 3.0 {mu}m and 4.5 {mu}m. Such radiation environments could exist in nuclear power plants or nuclear weapons. Pulsed and steady-state radiation effects had been extensively studied on silica-based optical fibers because they have been the most readily available, most widely used in communications and sensing, and the least expensive. However, silica-based fibers do not transmit well beyond about 1.8 {mu}m and they are virtually opaque in the mid-IR. The mid-IR, as defined above, and beyond, is where vibrational spectroscopy is carried out. This type of sensing is one important application of infrared optical fibers.

Weiss, Jonathan David

2007-11-01T23:59:59.000Z

59

Generation of tunable coherent far-infrared radiation using atomic Rydberg states  

SciTech Connect

A source of tunable far-infrared radiation has been constructed. The system has been operated at 91.6 cm/sup -1/ with a demonstrated tunability of .63 cm/sup -1/. The system is based on a Rydberg state transition in optically pumped potassium vapor. The transition energy is tuned by the application of an electric field to the excited vapor. The transition wavelength and the shifted wavelength were detected and measured by the use of a Michelson interferometer and a liquid helium cooled Ga:Ge bolometer and the data was reduced using Fast Fourier transform techniques. Extensive spectroscopy was done on the potassium vapor to elucidate the depopulation paths and rates of the excited levels. Both theoretical and experimental results are presented to support the conclusions of the research effort. Additionally, possible alternative approaches to the population of the excited state are explored and recommendations are made for the future development of this source as well as the potential uses of it in molecular spectroscopy.

Bookless, W.

1980-12-01T23:59:59.000Z

60

Selective radiative cooling with MgO and/or LiF layers  

DOE Patents (OSTI)

A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Observations of the Infrared Radiative Properties of the Ocean—Implications for the Measurement of Sea Surface Temperature via Satellite Remote Sensing  

Science Conference Proceedings (OSTI)

The Atmospheric Emitted Radiance Interferometer (AERI) was used to measure the infrared radiative properties and the temperature of the Gulf of Mexico during a 5-day oceanographic cruise in January 1995. The ocean skin temperature was measured ...

William L. Smith; R. O. Knuteson; H. E. Revercomb; W. Feltz; N. R. Nalli; H. B. Howell; W. P. Menzel; Otis Brown; James Brown; Peter Minnett; Walter McKeown

1996-01-01T23:59:59.000Z

62

Estimation of Surface Energy Balance from Radiant Surface Temperature and NOAA AVHRR Sensor Reflectances over Agricultural and Native Vegetation  

Science Conference Proceedings (OSTI)

A model is developed to evaluate surface heat flux densities using the radiant surface temperature and red and near-infrared reflectances from the NOAA Advanced Very High Resolution Radiometer sensor. Net radiation is calculated from an empirical ...

Huang Xinmei; T. J. Lyons; R. C. G. Smith; J. M. Hacker; P. Schwerdtfeger

1993-08-01T23:59:59.000Z

63

Some Characteristic Differences in the Earth's Radiation Budget over Land and Ocean Derived from the Nimbus-7 ERB Experiment  

Science Conference Proceedings (OSTI)

Broad spectral band Nimbus-7 Earth Radiation Budget (ERB) experiment data are analyzed for top-of-the-atmosphere regional variations in near-ultraviolet visible and near-infrared reflected solar radiation. Regional differences in the noon vs ...

H. Lee Kyle; K. L. Vasanth

1986-07-01T23:59:59.000Z

64

ON THE SIMULTANEOUS GENERATION OF HIGH-ENERGY EMISSION AND SUBMILLIMETER/INFRARED RADIATION FROM ACTIVE GALACTIC NUCLEI  

Science Conference Proceedings (OSTI)

For active galactic nuclei (AGNs), we study the role of the mechanism of quasi-linear diffusion (QLD) in producing the high-energy emission in the MeV-GeV domains strongly connected with the submillimeter/infrared radiation. Considering the kinetic equation governing the stationary regime of the QLD, we investigate the feedback of the diffusion on electrons. We show that this process leads to the distribution of particles by pitch angles, implying that the synchrotron mechanism is no longer prevented by energy losses. Examining a reasonable interval of physical parameters, we show that it is possible to produce MeV-GeV {gamma}-rays that are strongly correlated with submillimeter/infrared bands.

Osmanov, Z., E-mail: z.osmanov@iliauni.edu.g [Centre for Theoretical Astrophysics, ITP, Ilia State University, Kazbegi Str. 2a, 0160 Tbilisi (Georgia)

2010-09-20T23:59:59.000Z

65

Method of using infrared radiation for assembling a first component with a second component  

DOE Patents (OSTI)

A method of assembling a first component for assembly with a second component involves a heating device which includes an enclosure having a cavity for inserting a first component. An array of infrared energy generators is disposed within the enclosure. At least a portion of the first component is inserted into the cavity, exposed to infrared energy and thereby heated to a temperature wherein the portion of the first component is sufficiently softened and/or expanded for assembly with a second component.

Sikka, Vinod K. (Oak Ridge, TN); Whitson, Barry G. (Corryton, TN); Blue, Craig A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

66

Deconvolution of Wide-Field-of-View Measurements of Reflected Solar Radiation  

Science Conference Proceedings (OSTI)

Wide-field-of-view (WFOV) radiometers have been flown as part of the Earth Radiation Budget instrument on the Nimbus 6 and 7 spacecraft and as part of the Earth Radiation Budget Experiment (ERBE) instruments aboard the ERBE spacecraft and also ...

G. Louis Smith; David Rutan

1990-02-01T23:59:59.000Z

67

Comparison of Daily Averaged Reflection, Transmission, and Absorption for Selected Radiative Flux Transfer Approximations  

Science Conference Proceedings (OSTI)

This paper compares accuracy for the daily averaged reflection, transmission, and absorption of solar flux derived from the delta-four-stream approximation and a few selected two-stream approximations. In the chosen variety of two-stream ...

Xun Zhu; Albert Arking

1994-12-01T23:59:59.000Z

68

Cloud-Induced Infrared Radiative Heating and Its Implications for Large-Scale Tropical Circulations  

Science Conference Proceedings (OSTI)

Three-dimensional global distributions of longwave radiative cooling for the summer of 1988 and the winter of 1989 are generated from radiative transfer calculations using European Centre for Medium-Range Weather Forecasts temperature and ...

Byung-Ju Sohn

1999-08-01T23:59:59.000Z

69

Observations and Modeling of Downward Radiative Fluxes (Solar and Infrared) in Urban/Rural Areas  

Science Conference Proceedings (OSTI)

Pollutants (gaseous and aerosol) contained in urban atmospheres alter radiative fluxes at the surface.Numerous radiative models have been developed, and while few experimental data are available, results areoften contradictory. We have taken ...

Claude Estournel; Raoul Vehil; Daniel Guedalia; Jacques Fontan; Aimé Druilhet

1983-01-01T23:59:59.000Z

70

Comparison between Model Simulations and Measurements of Hyperspectral Far- infrared Radiation from FIRST during the RHUBC-II Campaign  

E-Print Network (OSTI)

Surface downward far-infrared (far-IR) spectra were collected from NASA’s Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is known for its dry, cold, and dominantly clear atmosphere, which is optimal for studying the effects, that water vapor and cirrus clouds have on the far-IR. Comparisons with Line-By-Line Discrete Ordinants Radiative Transfer model, LBLDIS, show that FIRST observes the very fine spectral structure in the far-IR with differences as small as +/- 0.7% for both clear-sky and cloudy-sky simulations. Clear sky model analysis demonstrated the greatest sensitivity to atmospheric conditions is between 300 and 500 cm-1. The cloudy-sky simulations demonstrated that the far-IR radiation has minimal sensitivity to cloud particle effective radius, yet is very sensitive to cloud optical thickness at wavenumbers between 400 - 600 cm-1. In fact, cirrus optical thickness found to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but had little effect on the total far-IR radiative forcing. Furthermore, these far-IR measurements open a new window to understanding the radiative impacts of various atmospheric constituents such as water vapor and clouds, and to understanding and modeling the Earth’s climate and energy budget.

Baugher, Elizabeth

2011-12-01T23:59:59.000Z

71

Signal Postprocessing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915-MHz Wind Profilers  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement (ARM) Program has recently initiated a new research avenue toward a better characterization of the transition from cloud to precipitation. Dual-wavelength techniques applied to millimeter-...

Frédéric Tridon; Alessandro Battaglia; Pavlos Kollias; Edward Luke; Christopher R. Williams

2013-06-01T23:59:59.000Z

72

Anisotropic polarization, predicted as a result of the diffraction of blackbody radiation at a reflective phase grating with ideal conductivity  

E-Print Network (OSTI)

In the course of analyzing the axiomatic principles that form the basis of statistical physics, the validity of the postulate that all the isoenergetic microstates of a closed system are equally probable was checked. This article reports the results of numerically modelling the interaction of thermodynamically equilibrium blackbody radiation with a reflective phase diffraction grating that possesses ideal conductivity. Cases are found in which anisotropy of the polarization parameters is guaranteed to appear inside a closed volume of initially homogeneous blackbody radiation, resulting in a formal decrease of its Boltzmann entropy as a consequence of deviation from the microcanonical Gibbs distribution. This is apparently caused by the discontinuous character of the change of the phase trajectories of the photons during diffraction, which makes the physical system under consideration nonergodic.

Savukov, Vladimir V

2013-01-01T23:59:59.000Z

73

Thin film transistors on plastic substrates with reflective coatings for radiation protection  

DOE Patents (OSTI)

Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

2006-09-26T23:59:59.000Z

74

Diurnal Variability of Regional Cloud and Clear-Sky Radiative Parameters Derived from GOES Data. Part III: November 1978 Radiative Parameters  

Science Conference Proceedings (OSTI)

The diurnal variability of the radiation emitted and reflected from the earth-atmosphere is investigated at the regional scale using November 1978 GOES-East visible and infrared data and GOES-derived cloud information. Narrowband GOES data are ...

Patrick Minnis; Edwin F. Harrison

1984-07-01T23:59:59.000Z

75

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

76

Research Needs: Glass Solar Reflectance and Vinyl Siding  

E-Print Network (OSTI)

properties of reflected solar radiation from glass surfaces,transfer at the siding surface. Direct solar radiation tosiding, reflected solar radiation from nearby surfaces,

Hart, Robert

2012-01-01T23:59:59.000Z

77

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

V30, 581, 1975. El "Exxon Donor Solvent Coal Liquefactionfarth- est, along is the Exxon Donor Sol vent process, whichn t and Refined Coal, I and II Exxon Donor Solvent B. ZnClg-

Berdahl, Paul

2011-01-01T23:59:59.000Z

78

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

Hydrogen Requirement for Coal Slurry Reactor . . . . . . .Mass Transfer Resistances in Coal Liquefaction. . . . . . .ZnClp/MeOH Coal L i q u e f a c t i o n P r o c e s s D e s

Berdahl, Paul

2011-01-01T23:59:59.000Z

79

INFRARED RADIATIVE COOLING  

E-Print Network (OSTI)

u r r y Reactor Theory. . . . . . . . . . . . . . . . . . .velocities. D. Slurry Reactor Theory General Slurry reactors

Berdahl, Paul

2011-01-01T23:59:59.000Z

80

The Advantages of Wearable Green Reflected Photoplethysmography  

Science Conference Proceedings (OSTI)

This report evaluates the efficacy of reflected-type green light photoplethysmography (green light PPG). Transmitted infrared light was used for PPG and the arterial pulse was monitored transcutaneously. The reflected PPG signal contains AC components ... Keywords: Green light, Heat stress, Infrared light, Photoplethysmography, Reflection

Yuka Maeda; Masaki Sekine; Toshiyo Tamura

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology  

Science Conference Proceedings (OSTI)

The Clouds and Earth’s Radiant Energy System (CERES) provides coincident global cloud and aerosol properties together with reflected solar, emitted terrestrial longwave, and infrared window radiative fluxes. These data are needed to improve the ...

Norman G. Loeb; Seiji Kato; Konstantin Loukachine; Natividad Manalo-Smith

2005-04-01T23:59:59.000Z

82

Cloud Cover over the South Pole from Visual Observations, Satellite Retrievals, and Surface-Based Infrared Radiation Measurements  

Science Conference Proceedings (OSTI)

Estimates of cloud cover over the South Pole are presented from five different data sources: routine visual observations (1957–2004; Cvis), surface-based spectral infrared (IR) data (2001; CPAERI), surface-based broadband IR data (1994–2003; Cpyr)...

Michael S. Town; Von P. Walden; Stephen G. Warren

2007-02-01T23:59:59.000Z

83

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

84

Ground-Based Observations and Modeling of the Visibility and Radar Reflectivity in a Radiation Fog Layer  

Science Conference Proceedings (OSTI)

The development of a radiation fog layer at the Cabauw Experimental Site for Atmospheric Research (51.97°N, 4.93°E) on 23 March 2011 was observed with ground-based in situ and remote sensing observations to investigate the relationship between ...

R. Boers; H. Klein Baltink; H. J. Hemink; F. C. Bosveld; M. Moerman

2013-02-01T23:59:59.000Z

85

Incoming Solar and Infrared Radiation Derived from METEOSAT: Impact on the Modeled Land Water and Energy Budget over France  

Science Conference Proceedings (OSTI)

The Land Surface Analysis Satellite Applications Facility (LSA SAF) project radiation fluxes, derived from the Meteosat Second Generation (MSG) geostationary satellite, were used in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) ...

D. Carrer; S. Lafont; J.-L. Roujean; J.-C. Calvet; C. Meurey; P. Le Moigne; I. F. Trigo

2012-04-01T23:59:59.000Z

86

The Earth’s Clear-Sky Radiation Budget and Water Vapor Absorption in the Far Infrared  

Science Conference Proceedings (OSTI)

Detailed observational data are used to simulate the sensitivity of clear-sky outgoing longwave radiation (OLR) to water vapor perturbations in order to investigate the effect of uncertainties in water vapor measurements and spectroscopic ...

Ashok Sinha; John E. Harries

1997-07-01T23:59:59.000Z

87

Relationship between Ice Water Path and Downward Longwave Radiation for Clouds Optically Thin in the Infrared: Observations and Model Calculations  

Science Conference Proceedings (OSTI)

A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Zi-IWC (ice water content) relationship developed by Sassen (1987) to ...

Taneil Uttal; Sergey Y. Matrosov; Jack B. Snider; Robert A. Kropfli

1994-03-01T23:59:59.000Z

88

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

89

Lateral transport and far-infrared radiation of electrons in In{sub x}Ga{sub 1-x}As/GaAs heterostructures with the double tunnel-coupled quantum wells in a high electric field  

Science Conference Proceedings (OSTI)

It is shown that the far-infrared radiation of electrons in the selectively doped heterostructures with double tunnel-coupled quantum wells in high lateral electric fields strongly depends on the level of doping of the wells. At a high impurity concentration in a narrow well, higher than (1-2) x 10{sup 11} cm{sup -2}, the radiation is caused only by indirect intrasubband electron transitions. At a lower concentration, along with the indirect transitions, the direct intersubband transitions also contribute to the radiation. These transitions become possible in high electric fields due to the real-space electron transfer between the quantum wells.

Baidus, N. V. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Belevskii, P. A. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Biriukov, A. A. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Vainberg, V. V.; Vinoslavskii, M. N. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Ikonnikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Zvonkov, B. N. [Nizhni Novgorod State University, Nizhni Novgorod Research Physicotechnical University (Russian Federation); Pylypchuk, A. S.; Poroshin, V. N., E-mail: poroshin@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

2010-11-15T23:59:59.000Z

90

A study of surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes u sing attenuated total reflection infrared spectroscopy  

DOE Green Energy (OSTI)

The surface films formed on commercial LiNi0.8Co0.15Al0.05O2 cathodes (ATD Gen2) charged from 3.75V to 4.2V vs. Li/Li+ in EC:DEC - 1M LiPF6 were analyzed using ex-situ Fourier transform infrared spectroscopy (FTIR) with the attenuated total reflection (ATR) technique. A surface layer of Li2CO3 is present on the virgin cathode, probably from reaction of the active material with air during the cathode preparation procedure. The Li2CO3 layer disappeared even after soaking in the electrolyte, indicating that the layer dissolved into the electrolyte possibly even before potential cycling of the electrode. IR features only from the binder (PVdF) and a trace of polyamide from the Al current collector were observed on the surfaces of cathodes charged to below 4.2 V, i.e., no surface species from electrolyte oxidation. Some new IR features were, however, found on the cathode charged to 4.2 V and higher. An electrolyte oxidation product was observed that appeared to contain dicarbonyl anhydride and (poly)ester functionalities. The reaction appears to be an indirect electrochemical oxidation with overcharging (removal of > 0.6 Li ions) destabilizing oxygen in the oxide lattice resulting in oxygen transfer to the solvent molecules.

Song, S.-W.; Zhuang, G.V.; Ross Jr., P.N.

2004-01-19T23:59:59.000Z

91

Infra-red signature neutron detector  

SciTech Connect

A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generating a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

Bell, Zane William (Oak Ridge, TN); Boatner, Lynn Allen (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

92

Infrared regular reflectance and transmittance instrumentation ...  

Science Conference Proceedings (OSTI)

... The extremely low extinction ratio of the Ge chevron polarizers allows measurements such as these to be performed directly, by simply rotating the ...

2012-09-25T23:59:59.000Z

93

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

94

Two-color mid-infrared thermometer with a hollow glass optical fiber  

Science Conference Proceedings (OSTI)

We have developed a low-temperature optical-fiber-based two-color infrared thermometer. A single 700-{mu}m-bore hollow glass optical fiber collects and transmits radiation that is then modulated and split into two paths by a reflective optical chopper. Two different thermoelectrically cooled mid-infrared HgCdZnTe photoconductors monitor the chopped signals that are recovered with lock-in amplification. With the two previously obtained blackbody calibration equations, a computer algorithm calculates the true temperature and emissivity of a target in real time, taking into account reflection of the ambient radiation field from the target surface. The small numerical aperture of the hollow glass fiber and the fast response of the detectors, together with the two-color principle, permit high spatial and temporal resolution while allowing the user to dynamically alter the fiber-to-target distance. {copyright} 1998 Optical Society of America

Small, W. IV; Celliers, P.M.; Da Silva, L.B.; Matthews, D.L. [Lawrence Livermore National Laboratory, L-399, P.O. Box 808, Livermore, California 94550 (United States); Soltz, B.A. [Conversion Energy Enterprises, 81 Pinebrook Road, Spring Valley, New York 10977 (United States)

1998-10-01T23:59:59.000Z

95

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, T.J.

1994-12-31T23:59:59.000Z

96

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.

Karr, T.J.

1997-01-21T23:59:59.000Z

97

Passive infrared bullet detection and tracking  

DOE Patents (OSTI)

An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

Karr, Thomas J. (Alamo, CA)

1997-01-01T23:59:59.000Z

98

Selective radiative cooling with MgO and/or LiF layers  

DOE Patents (OSTI)

A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

Berdahl, P.H.

1984-09-14T23:59:59.000Z

99

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

100

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique  

Science Conference Proceedings (OSTI)

Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed quality, and can also be used to monitor the degree of grain maturity, grain damage, the fate of organic contaminants and the effect of chemical treatment on plant and grain seeds.

P Yu

2011-12-31T23:59:59.000Z

102

Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)  

SciTech Connect

There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements

Lee Spangler; Ross Bricklemyer; David Brown

2012-03-15T23:59:59.000Z

103

Cropland Field Monitoring: MMV Page 1 Montana Cropland Enrolled Farm Fields Carbon Sequestration Field Sampling, Measurement, Monitoring, and Verification: Application of Visible-Near Infrared Diffuse Reflectance Spectroscopy (VNIR) and Laser-induced Breakdown Spectroscopy (LIBS)  

Science Conference Proceedings (OSTI)

There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laboratory based soil characterization typically requires significant soil processing, which is time and resource intensive. This severely limits application for large-region soil characterization. Thus, development of rapid and accurate methods for characterizing soils are needed to map soil properties for precision agriculture applications, improve regional and global soil carbon (C) stock and flux estimates and efficiently map sub-surface metal contamination, among others. The greatest gains for efficient soil characterization will come from collecting soil data in situ, thus minimizing soil sample transportation, processing, and lab-based measurement costs. Visible and near-infrared diffuse reflectance spectroscopy (VisNIR) and laser-induced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally different spectroscopic techniques that have the potential to meet this need. These sensors have the potential to be mounted on a soil penetrometer and deployed for rapid soil profile characterization at field and landscape scales. Details of sensor interaction, efficient data management, and appropriate statistical analysis techniques for model calibrations are first needed. In situ or on-the-go VisNIR spectroscopy has been proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon (SOC). While lab-based VisNIR has been established as a viable technique for estimating various soil properties, few experiments have compared the predictive accuracy of on-the-go and lab-based VisNIR. Eight north central Montana wheat fields were intensively interrogated using on-the-go and lab-based VisNIR. Lab-based spectral data consistently provided more accurate predictions than on-the-go data. However, neither in situ nor lab-based spectroscopy yielded even semi-quantitative SOC predictions. There was little SOC variability to explain across the eight fields, and on-the-go VisNIR was not able to capture the subtle SOC variability in these Montana soils. With more variation in soil clay content compared to SOC, both lab and on-the-go VisNIR showed better explanatory power. There are several potential explanations for poor on-the-go predictive accuracy: soil heterogeneity, field moisture, consistent sample presentation, and a difference between the spatial support of on-the-go measurements and soil samples collected for laboratory analyses. Though the current configuration of a commercially available on-the-go VisNIR system allows for rapid field scanning, on-the-go soil processing (i.e. drying, crushing, and sieving) could improve soil carbon predictions. Laser-induced breakdown spectroscopy (LIBS) is an emerging elemental analysis technology with the potential to provide rapid, accurate and precise analysis of soil constituents, such as carbon, in situ across landscapes. The research team evaluated the accuracy of LIBS for measuring soil profile carbon in field-moist, intact soil cores simulating conditions that might be encountered by a probe-mounted LIBS instrument measuring soil profile carbon in situ. Over the course of three experiments, more than120 intact soil cores from eight north central Montana wheat fields and the Washington State University (WSU) Cook Agronomy Farm near Pullman, WA were interrogated with LIBS for rapid total carbon (TC), inorganic carbon (IC), and SOC determination. Partial least squares regression models were derived and independently validated at field- and regional scales. Researchers obtained the best LIBS validation predictions for IC followed by TC and SOC. Laser-induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC. Regression coefficients from initial models suggested a reliance upon stoichiometric relationships between carbon (247.8 nm) and other elements

Lee Spangler; Ross Bricklemyer; David Brown

2012-03-15T23:59:59.000Z

104

Definition: Forward-Looking Infrared | Open Energy Information  

Open Energy Info (EERE)

Forward-Looking Infrared Forward-Looking Infrared Jump to: navigation, search Dictionary.png Forward-Looking Infrared Forward Looking InfraRed (FLIR) cameras flown from fixed-wing aircraft measure the amount of energy radiated in the infrared (7.5 - 13 micrometer) to detect detailed information on the land surface temperature distribution that might indicate areas of geothermal activity.[1] View on Wikipedia Wikipedia Definition Forward looking infrared (FLIR) cameras, typically used on military and civilian aircraft, use an imaging technology that senses infrared radiation. The sensors installed in forward-looking infrared cameras-as well as those of other thermal imaging cameras-use detection of infrared radiation, typically emitted from a heat source, to create a "picture"

105

Final report for the project "Improving the understanding of surface-atmosphere radiative interactions by mapping surface reflectance over the ARM CART site" (award DE-FG02-02ER63351)  

SciTech Connect

Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earth’s climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Change Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under “PI data Trishchenko”. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.

Alexander P. Trishchenko; Yi Luo; Konstantin V. Khlopenkov, William M. Park; Zhanqing Li; Maureen Cribb

2008-11-28T23:59:59.000Z

106

Preliminary Analysis of Surface Radiation Measurement Data Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

primary radiation flux measurements at the SGP extended facilities are obtained from the Solar Infrared Radiation Station (SIRS). In this study, we examine the radiation...

107

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H. Churnside, and J. B....

108

Prisms with total internal reflection as solar reflectors  

DOE Patents (OSTI)

An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

Rabl, Arnulf (Downers Grove, IL); Rabl, Veronika (Downers Grove, IL)

1978-01-01T23:59:59.000Z

109

Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario  

E-Print Network (OSTI)

the Earth’s reflected solar radiation. While Pallé et al. [of the reflected solar radiation [Wielicki et al. , 1995].the nadir reflectance of solar radiation from Earth to space

Feldman, D.R.

2013-01-01T23:59:59.000Z

110

Low-Temperature Calibration of Infrared Thermometers  

Science Conference Proceedings (OSTI)

A method was developed for calibrating infrared thermometers to properly measure target temperatures ranging from ?70 to 0°C. Once calibrated for this range, the thermometer can then be used to measure the flux of thermal radiation from the sky. ...

B. A. Kimball; S. T. Mitchell

1984-12-01T23:59:59.000Z

111

Estimates for Infrared Transfer in Finite Clouds  

Science Conference Proceedings (OSTI)

Upper and lower bounds are computed for the infrared radiance within a cloud of finite size. The bounds are established by an iterative procedure, analogous to the iterative solution of the radiative transfer equation, except that at every ...

D. M. O'Brien

1986-02-01T23:59:59.000Z

112

Thermal Infrared Exposure of Cryogenic Indirect Drive ICF Targets  

DOE Green Energy (OSTI)

Cryogenic inertial confinement fusion targets at the National Ignition Facility and the Laser Megajoule will be protected from thermal infrared radiation by a cold shroud. As the shroud is removed just before the laser pulse, infrared radiation will heat and possibly degrade the symmetry of the solid hydrogen fuel layer. A lumped component mathematical model has been constructed to calculate how long an indirect drive target can be exposed to thermal radiation before the fuel layer degrades. The allowed exposure time sets the maximum shroud removal time and therefore has important implications for the design of the cryogenic shroud systems. The model predicts that the maximum exposure time is approximately 0.18 s for plastic capsules inside hohlraums with transparent laser entrance holes. By covering the laser entrance holes with a partially reflective coating, the exposure time can be increased to approximately 1 s. The exposure time can be increased to about 2 s by using beryllium capsules. Several other design concepts could increase the exposure time even further. Lengthening of the allowed exposure time to 1 s or longer could allow a significant cost savings for the shroud system.

London, R A; Moody, J D; Sanchez, J J; Sater, J D; Haid, B J; Bittner, D N

2005-07-08T23:59:59.000Z

113

Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations  

Science Conference Proceedings (OSTI)

A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75, 1.65 and 2.16 ?m. These observations were obtained from the NASA ER-2 aircraft as part of the First ISCCP [...

Teruyuki Nakajima; Michael D. King; James D. Spinhirne; Lawrence F. Radke

1991-03-01T23:59:59.000Z

114

Condenser optic with sacrificial reflective surface  

Science Conference Proceedings (OSTI)

Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Lee, Sung Hun (Sunnyvale, CA)

2007-07-03T23:59:59.000Z

115

Infrared retina  

DOE Patents (OSTI)

Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

Krishna, Sanjay (Albuquerque, NM); Hayat, Majeed M. (Albuquerque, NM); Tyo, J. Scott (Tucson, AZ); Jang, Woo-Yong (Albuquerque, NM)

2011-12-06T23:59:59.000Z

116

Spectral Reflectance and Atmospheric Energetics in Cirrus-like Clouds. Part II: Applications of a Fourier-Riccati Approach to Radiative Transfer  

Science Conference Proceedings (OSTI)

One of the major sources of uncertainty in climate studies is the detection of cirrus clouds and characterization of their radiative properties. Combinations of water vapor absorption channels (e.g., 1.38 µm), ice-water absorption channels (e.g., ...

Si-Chee Tsay; Philip M. Gabriel; Michael D. King; Graeme L. Stephens

1996-12-01T23:59:59.000Z

117

Surface Forcing of the Infrared Cooling Profile over the Tibetan Plateau. Part I: Influence of Relative Longwave Radiative Heating at High Altitude  

Science Conference Proceedings (OSTI)

The role of the Tibetan Plateau on the behavior of the surface longwave radiation budget is examined, and the behavior of the vertical profile of longwave cooling over the plateau, including its diurnal variation, is quantified. The investigation ...

Eric A. Smith; Lei Shi

1992-05-01T23:59:59.000Z

118

Cumulus Clouds and Reflected Sunlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumulus Clouds and Reflected Sunlight Cumulus Clouds and Reflected Sunlight from Landsat ETM+ G. Wen and L. Oreopoulos National Aeronautics and Space Administration Goddard Space Flight Center University of Maryland Baltimore County Joint Center of Earth System Technology Greenbelt, Maryland R. F. Cahalan and S. C. Tsay National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland Introduction Cumulus clouds attenuate solar radiation casting shows on the ground. Cumulus clouds can also enhance solar radiation in the clear region nearby. The enhancement of down-welling solar radiation has been observed at the ground level in the clear region near cumulus clouds (Mims and Frederick 1994). The additional diffuse radiation source from cumulus clouds makes the clear gaps appear to be

119

Microscreen radiation shield for thermoelectric generator  

DOE Patents (OSTI)

The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1990-01-01T23:59:59.000Z

120

The Radiative Heating in Underexplored Bands Campaigns  

Science Conference Proceedings (OSTI)

Accurately accounting for radiative energy balance between the incoming solar and the outgoing infrared radiative fluxes is very important in modeling the Earth's climate. Water vapor absorption plays a critical role in the radiative heating rate ...

D. D. Turner; E. J. Mlawer

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements  

Science Conference Proceedings (OSTI)

Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

2009-08-28T23:59:59.000Z

122

Ferroelectric infrared detector and method  

DOE Patents (OSTI)

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

123

Multi-channel infrared thermometer  

DOE Patents (OSTI)

A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

Ulrickson, Michael A. (East Windsor, NJ)

1986-01-01T23:59:59.000Z

124

Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997  

DOE R&D Accomplishments (OSTI)

This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

Lamb, W. E. Jr.

1981-12-00T23:59:59.000Z

125

Electrochromic window with high reflectivity modulation  

DOE Patents (OSTI)

A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

2000-01-01T23:59:59.000Z

126

Efficient Calculation of Infrared Fluxes and Cooling Rates Using the Two-Stream Equations  

Science Conference Proceedings (OSTI)

The calculation of infrared radiative fluxes and cooling rates using the two-stream equations is discussed. It is argued that at infrared wavelengths the two-stream equations are best viewed as an approximation to the differential radiance, the ...

J. M. Edwards

1996-07-01T23:59:59.000Z

127

Satellite-Observed Reflectance of Snow and Clouds  

Science Conference Proceedings (OSTI)

The effects of snow and cloud cover on bidirectional reflectance were examined using visible radiation (0.5–0.7 ?m) data measured by NOAA polar orbiting satellites between June 1974 and February 1978. Reflectances resulting from different cloud/...

Alan Robock; Dale Kaiser

1985-11-01T23:59:59.000Z

128

Aging of reflective roofs: soot deposition  

Science Conference Proceedings (OSTI)

Solar-reflective roofs remain cooler than absorptive roofs and thus conserve electricity otherwise needed for air conditioning. A currently controversial aspect of solar-reflective cool roofing is the extent to which an initially high solar reflectance decreases with time. We present experimental data on the spectral absorption of deposits that accumulate on roofs, and we attribute most of the absorption to carbon soot originally produced by combustion. The deposits absorb more at short wavelengths (e.g., in the blue) than in the red and infrared, imparting a slightly yellow tinge to formerly white surfaces. The initial rate of reflectance reduction by soot accumulation is consistent with known emission rates that are due to combustion. The long-term reflectance change appears to be determined by the ability of the soot to adhere to the roof, resisting washout by rain.

Berdahl, Paul; Akbari, Hashem; Rose, Leanna S.

2001-05-01T23:59:59.000Z

129

Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Drizzle in Marine Warm Clouds Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small droplets not only make the cloud more reflective, but also reduce the probability of rainfall and prolong cloud lifetime, because small droplets have less efficiency of coalescence (e.g., Albrecht 1989, Rosenfeld 2000). Since precipitation is a key component in

130

Low Dose Radiation Program: Selected Websites  

NLE Websites -- All DOE Office Websites (Extended Search)

The views expressed in these links do not necessarily reflect the view of the Low Dose Radiation Research Program. Scientific Links Agencies with Radiation Regulatory...

131

New methods for measuring spectral bi-directional transmission and reflection using digital cameras  

E-Print Network (OSTI)

Advanced fenestration systems are increasingly being used to distribute solar radiation purposefully in buildings. Distribution of visible light and near infrared radiation can be optimized to enhance daylighting and reduce ...

Gayeski, Nicholas (Nicholas Thomas)

2007-01-01T23:59:59.000Z

132

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

133

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

134

Real-time scene simulator for thermal infrared localization  

Science Conference Proceedings (OSTI)

Exploiting the natural thermal infrared radiation of humans is a promising approach for an accurate, comfortable and inexpensive indoor localization system. However, different sources of disturbance make the development challenging. In order to provide ...

Daniel Hauschildt; Jürgen Kemper; Nicolaj Kirchhof; Benedict Juretko; Holger Linde

2010-12-01T23:59:59.000Z

135

CIRCE, the Coherent Infrared Center at the ALS  

E-Print Network (OSTI)

INFRARED CENTER AT THE ALS* J. M. Byrd, S. De Santis, J-Yat the Advanced Light Source (ALS) of the Lawrence Berkeleyinfrared radiation from the ALS generated via femtosecond

2004-01-01T23:59:59.000Z

136

Releasable infrared metamaterials J. A. D'Archangela)  

E-Print Network (OSTI)

-type resonating elements. These particles would be suitable for implementation in a paint if dispersed in an IR design was symmetric about a Cr ground plane). Infrared spectral reflectivity measurements from collected flakes were compared to infinite-surface simulations in Ansoft HFSS and spectral reflectance meas

Boreman, Glenn D.

137

Integrating Spheres for Mid- and Near-infrared Reflection ...  

Science Conference Proceedings (OSTI)

... and elliptical concentrators (CPC and ... CEC Compound Elliptical Concentrator CIE ... Illumination CPC Compound Parabolic Concentrator FOV Field ...

2012-10-18T23:59:59.000Z

138

The whitehouse effect: shortwave radiative forcing of climate by anthropogenic aerosols  

SciTech Connect

Increases in atmospheric concentrations of carbon dioxide and other infrared active gases over the industrial period are thought to have increased the average flux of longwave (thermal infrared) radiation between the surface of the earth and the lower atmosphere, leading to an increase in global mean temperature. Over the same period it is though that concentrations of aerosol particles in the troposphere have similarly increased as a consequence of industrial emissions and that these increased concentrations of particles have increased the earth`s reflectivity of shortwave (solar) radiation incident on the planet both directly, by scattering radiation, and indirectly, by increasing the reflectivity of clouds. The term ``whitehouse effect`` is introduced to refer to this increased scattering of shortwave radiation by analogy to the term ``greenhouse effect,`` which refers to the enhanced trapping of longwave radiation resulting from increased concentrations of infrared active gases. Each of these phenomena is referred to as a ``forcing`` of the earth`s climate, that is a secular change imposed on the system; such a forcing is to be distinguished from a ``response`` of the system, such as a change in global mean temperature or other index of global climate. The forcing due to the direct and indirect effects induced by anthropogenic aerosols has been estimated to be comparable in global- average magnitude to that due to increased concentrations of greenhouse gases, but it is of opposite direction, that is exerting a cooling influence. The shortwave radiative influence of anthropogenic aerosols may thus be considered to be offsetting some, perhaps a great fraction, of the longwave radiative influence of anthropogenic greenhouse gases.

Schwartz, S.E.

1994-12-31T23:59:59.000Z

139

Lamp method and apparatus using multiple reflections  

DOE Patents (OSTI)

A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

MacLennan, D.A.; Turner, B.; Kipling, K.

1999-05-11T23:59:59.000Z

140

Lamp method and apparatus using multiple reflections  

DOE Patents (OSTI)

A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

MacLennan, Donald A. (Butler, PA); Turner, Brian (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An infrared image of a dog, with warmest areas appearing the brightest.  

E-Print Network (OSTI)

sunlight, a roaring fire, a radiator or a warm sidewalk is infrared radiation. Although our eyes cannot see in space. Infrared astronomy is the art of measuring incredibly small values of thermal energy astronomers face the same problem when they try to detect heat from space. At room temperature

142

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

143

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

Wood, J.L.

1992-12-01T23:59:59.000Z

144

Infrared Thermography Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

funds for Fiscal Year 2014. Title Infrared Thermography Systems Publication Type Book Chapter LBNL Report Number LBNL-46590 Year of Publication 2000 Authors Griffith, Brent...

145

Issues with infrared thermography  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract Infrared scanning radiometers are used to generate temperature maps of building envelope components, including windows and insulation. These temperature maps may...

146

Use of In Situ Observations to Characterize Cloud Microphysical and Radiative Properties: Application to Climate Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of In Situ Observations to Characterize Use of In Situ Observations to Characterize Cloud Microphysical and Radiative Properties: Application to Climate Studies G. M. McFarquhar and T. Nousiainen Department of Atmospheric Sciences University of Illinois Urbana, Illinois M. S. Timlin, S. F. Iacobellis, and R. C. J. Somerville Scripps Institution of Oceanography La Jolla, California Introduction Cloud radiative feedback is the most important effect determining climate response to human activity. Ice clouds reflect solar radiation and absorb thermal emission from the ground and the lower atmosphere and emit infrared radiation to space. The representation of these processes in models affects future climate predictions and there is much uncertainty in the representation of these processes. The size and

147

Effect of infrared transparency on the heat transfer through windows: a clarification of the greenhouse effect  

SciTech Connect

The various radiative, convective, and conductive components of the net heat transfer are calculated and illustrated for various infrared transparencies of covers such as would be used in architectural, greenhouse, or solar collector windows. It is shown that in the limiting cases of infrared opacity and infrared transparency the relative contributions of the three modes of heat transfer are altered, but all contribute significantly. The radiation shielding arguments pertain to the analogous greenhouse effect in the atmosphere.

Silverstein, S.D.

1976-07-16T23:59:59.000Z

148

Apparatus and method for transient thermal infrared spectrometry  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a material (16, 42) by applying a cooling medium (20, 54) to cool a thin surface layer portion of the material and to transiently generate a temperature differential between the thin surface layer portion and the lower portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material. The altered thermal infrared emission spectrum of the material is detected by a spectrometer/detector (28, 50) while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of the emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation, so that the detected altered thermal infrared emission spectrum is indicative of the characteristics relating to the molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1991-12-03T23:59:59.000Z

149

A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative–Convective Equilibrium Model  

Science Conference Proceedings (OSTI)

A simple one-dimensional radiative–convective equilibrium model is used to investigate the relationship between the surface temperature and the outgoing infrared radiation at the top of the atmosphere. The model atmosphere has a gray infrared ...

Shinichi Nakajima; Yoshi-Yuki Hayashi; Yutaka Abe

1992-12-01T23:59:59.000Z

150

Heat reflecting tape for thermoelectric converter  

DOE Patents (OSTI)

Threads are interlaced with thermoelectric wires to provide a woven cloth in tape form, there being an intermediate layer of heat radiation reflecting material (e.g., aluminum foil) insulated electrically from said wires, which are of opposite thermoelectric polarity and connected as a plurality of thermocouples.

Purdy, David L. (Indiana, PA)

1977-01-01T23:59:59.000Z

151

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

Fritz, I.J.; Wendt, J.R.

1994-09-06T23:59:59.000Z

152

Tandem resonator reflectance modulator  

DOE Patents (OSTI)

A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

153

Reflective diffraction grating  

DOE Patents (OSTI)

Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

Lamartine, Bruce C. (Los Alamos, NM)

2003-06-24T23:59:59.000Z

154

Nano-Mechanical Infrared Detectors  

SciTech Connect

Infrared radiation (IR) is electromagnetic radiation with wavelengths between 0.7 m and 100 m. It extends from visible light to THz waves. Because fundamentally different phenomena can be observed within the IR region, four sub-bands are usually distinguished: near-IR (NIR), mid-wave-IR (MWIR), long-wave-IR (LWIR) and very long-wave-IR (VLWIR). Although somewhat different definitions exist in literature, wavelengths from 0.7 m to 2.5 m belong to NIR, from 2.5 m to 8 m belong to MWIR, from 8 m to 14 m belong to LWIR and wavelengths above 14 m belong to VLWIR. The IR photon energies range from 1.77 eV for 0.7 m photons to 0.0124 eV for 100 m photons. The significance and practical applications of IR detectors are related to two distinct phenomena: emission of electromagnetic waves by all objects at T > 0 K and interaction of electromagnetic waves with vibrational modes of molecular bonds. Thermal imaging and molecular spectroscopy are, respectively, the two major fields that critically depend on the ability to detect IR radiation.

Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott [Oak Ridge National Laboratory (ORNL); Hunt, Rodney Dale [ORNL; Datskos, Panos G [ORNL

2011-01-01T23:59:59.000Z

155

Infrared Basics | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Infrared Basics Citation Protherm. Infrared Basics Internet. 2013. cited...

156

NIST Terahertz Reflection Measurements  

Science Conference Proceedings (OSTI)

... b) Superimposed Fourier Transform amplitude and power reflection map ... laser for broadband (0.2-2.5) THz GaAs antenna generation and detection ...

2013-04-01T23:59:59.000Z

157

Neutron reflecting supermirror structure  

DOE Patents (OSTI)

An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

Wood, James L. (Drayton Plains, MI)

1992-01-01T23:59:59.000Z

158

Cool colors for Summer: Characterizing the Radiative Properties of Pigments  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool colors for Summer: Characterizing the Radiative Properties of Pigments Cool colors for Summer: Characterizing the Radiative Properties of Pigments for Cool Roofs Speaker(s): Ronnen Levinson Date: April 22, 2004 - 12:00pm Location: 90-3122 In recent years roofing manufacturers have incorporated near-infrared (NIR) reflecting pigments in coatings applied to a variety of nonwhite roofing products, such as metal panels and clay tiles. We have developed and validated a model for computation of solar spectral absorption (K) and backscattering (S) coefficients, and used it to characterize a wide variety of pigments that may be used in architectural coatings.Measured values of backscattering coefficients for generic titanium dioxide (rutile) white pigment are in rough agreement with values computed from Mie theory. Pigments in widespread use are examined, with particular emphasis on those

159

Reflective Insulation Handbook.  

Science Conference Proceedings (OSTI)

When reflective-foil insulation manufacturers wanted the Bonneville Power Administration (BPA) to include their products in the Residential Weatherization Program, they lacked conclusive test data to prove that their products met program specifications. Reflective foils lacked widespread acceptance because of uncertainty about their insulation values. BPA discovered that the Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) was preparing a study to test how well reflective foils reduced horizontal heat flow. Because the insulation value of reflective foils depends upon the direction of heat flow, BPA provided additional funding to test their effectiveness in reducing upward and downward heat flow and to produce this Handbook. The objectives of this study were to develop acceptable test and evaluation methods, produce an initial data base of idealized reflective-foil insulation systems, extend this data base to a limited number of commercially available products to develop and test analytical models to predict thermal performance and develop a Reflective Insulation Handbook for homeowners and insulation contractors. This handbook describes how heat is transferred; the function of an insulation; what reflective insulation is; types of reflective insulation; where it can be used; installation procedures; thermal performance; and useful sources of information. 10 figs., 2 tabs.

Desjarlais, Andre O.; Tye, Ronald P.

1990-08-01T23:59:59.000Z

160

The Infrared Sky  

E-Print Network (OSTI)

The infrared sky from space is the sum of a cosmic signal from galaxies, quasars, and perhaps more exotic sources; and foregrounds from the Milky Way and from the Solar System. At a distance of 1 AU from the Sun, the foreground from interplanetary dust is very bright between 5 and 100 microns, but ``very bright'' is still several million times fainter than the background produced by ground-based telescopes. In the near infrared 1-2.2 micron range the space infrared sky is a thousand times fainter than the OH nightglow from the Earth's atmosphere. As a result of these advantages, wide-field imaging from space in the infrared can be an incredibly sensitive method to study the Universe.

E. L. Wright

2004-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of a 3D atmospheric radiative transfer model  

Science Conference Proceedings (OSTI)

The 3D atmospheric radiative transfer model is established based on MODTRAN4. Moreover, the methods of calculating the ratio of atmospheric transmission, path radiation and single scattering solar radiation are presented. This 3D model is running by ... Keywords: MODTRAN4, atmospheric radiative transfer model, infrared radiation

Zhifeng Lu; Ge Li; Gang Guo; Kedi Huang

2008-05-01T23:59:59.000Z

162

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Laboratory Infrared Thermography Laboratory The Infrared Thermography Laboratory (IRLab) conducts detailed laboratory experiments on the thermal performance of windows and other insulated systems. During a typical experiment, a specimen is placed between two environmental chambers that simulate a long, cold night during winter. Besides generating informative thermal images, the experiments collect several types of quantitative data with high spatial resolution that are useful for understanding subtle details in the thermal performance and for validating computer simulations of heat and fluid flows. Thermography experiments in the IRLab use an infrared imager to produce qualitative thermal images, or thermograms, that help provide a visual interpretation of how heat is flowing through the specimen. The infrared thermograms are also taken and postprocessed to extract numerical data to perform quantitative thermography that produces a database of the distribution of surface temperatures on the warm side of various specimen. A traversing system is also used to measure the distribution of air temperatures and velocities near the specimen. Research results are presented at various technical conferences -- see our schedule of upcoming conferences. Technical papers on infrared thermography are available for downloading. The IRLab contains a machine tool shop area that supports fabrication efforts in the Building Technologies Department. Other types of research, such as Non-Destructive Evaluation, are also conducted in the IRLab.

163

Infrared Protein Crystallography  

DOE Green Energy (OSTI)

We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

2011-12-31T23:59:59.000Z

164

Carbon nanotubes as near infrared laser susceptors  

E-Print Network (OSTI)

Power (W) q Momentum (kg m s-1) Qc Heat loss through conduction (W) Qr Heat loss through radiation (W) rnuc Nucleation radius (m) Rf Reflection fraction Tf Transmission fraction V Volume (m3) VG Steam specific volume (m3 kg-1) VL Water...

Bahrami, Amir

2011-01-11T23:59:59.000Z

165

The Infrared Spectral Energy Distribution of Normal Star-Forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths  

E-Print Network (OSTI)

New far-infrared and submillimeter data are used to solidify and to extend to long wavelengths the empirical calibration of the infrared spectral energy distribution (SED) of normal star-forming galaxies. As was found by Dale et al. (2001), a single parameter family, characterized by f_nu(60 microns)/f_nu(100 microns), is adequate to describe the range of normal galaxy spectral energy distributions observed by IRAS and ISO from 3 to 100 microns. However, predictions based on the first generation models at longer wavelengths (122 to 850 microns) are increasingly overluminous compared to the data for smaller f_nu(60 microns)/f_nu(100 microns), or alternatively, for weaker global interstellar radiation fields. After slightly modifying the far-infrared/submillimeter dust emissivity in those models as a function of the radiation field intensity to better match the long wavelength data, a suite of SEDs from 3 microns to 20 cm in wavelength is presented. Results from relevant applications are also discussed, including submillimeter-based photometric redshift indicators, the infrared energy budget and simple formulae for recovering the bolometric infrared luminosity, and dust mass estimates in galaxies. Regarding the latter, since galaxy infrared SEDs are not well-described by single blackbody curves, the usual methods of estimating dust masses can be grossly inadequate. The improved model presented herein is used to provide a more accurate relation between infrared luminosity and dust mass.

Daniel A. Dale; George Helou

2002-05-06T23:59:59.000Z

166

First Data From the Earth Radiation Budget Experiment (ERBE)  

Science Conference Proceedings (OSTI)

The first data obtained from the Earth Radiation Budget Experiment (ERBE) are presented. These data include emitted infrared radiation, albedo, and estimated scene types for 15 November 1984, as well as measurements of the ‘solar constant’. ...

ERRE Science Team

1986-07-01T23:59:59.000Z

167

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

168

Geothermal Exploration in Eastern California Using Aster Thermal Infrared  

Open Energy Info (EERE)

in Eastern California Using Aster Thermal Infrared in Eastern California Using Aster Thermal Infrared Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration in Eastern California Using Aster Thermal Infrared Data Abstract Remote sensing is a cost-effective tool that can be used to cover large areas for the purpose of geothermal exploration. A particular application is the use of satellite thermal infrared (TIR) imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard an orbiting satellite. It can be used to search remotely for elevated surface temperatures, which may be associated with geothermal resources. The study region is in the central part of eastern California, with emphasis on the Coso geothermal field. Nighttime scenes are most

169

Shape optimization using reflection lines  

Science Conference Proceedings (OSTI)

Many common objects have highly reflective metallic or painted finishes. Their appearance is primarily defined by the distortion the curved shape of the surface introduces in the reflections of surrounding objects. Reflection lines are commonly used ...

E. Tosun; Y. I. Gingold; J. Reisman; D. Zorin

2007-07-01T23:59:59.000Z

170

Solar Infrared Photometer  

Science Conference Proceedings (OSTI)

A sun photometer which operates at five wavelengths in the near infrared between 1.0 and 4.0 ?m has been developed. The instrument is a manually operated, fitter wheel design and has principal applications for atmospheric aerosol studies. The ...

J. D. Spinhirne; M. G. Strange; L. R. Blaine

1985-06-01T23:59:59.000Z

171

Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio Occultation  

Science Conference Proceedings (OSTI)

The authors investigate whether combining a data type derived from radio occultation (RO) with the infrared spectral data in an optimal detection method improves the quantification of longwave radiative forcing and feedback. Signals derived from ...

Yi Huang; Stephen S. Leroy; James G. Anderson

2010-11-01T23:59:59.000Z

172

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earth’s current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave “visible” to longwave “infrared” ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

173

An Intercalibration of METEOSAT-1 and GOES-2 Visible and Infrared Measurements  

Science Conference Proceedings (OSTI)

An intercomparison between radiative parameters determined from visible and infrared channels of the METEOSAT-1 and GOES-2 geosynchronous satellites has been carried out using data obtained over the central Atlantic Ocean for 5 November 1978. ...

David R. Brooks; Christopher F. England; Carry E. Hunt; Patrick Minnis

1984-09-01T23:59:59.000Z

174

Examination of the Relationship between Outgoing Infrared Window and Total Longwave Fluxes Using Satellite Data  

Science Conference Proceedings (OSTI)

The relationship between narrowband and broadband thermal radiances is explored to determine the accuracy of outgoing longwave radiation derived from narrowband data. Infrared window (10.2–12.2 ?m) data from the Geostationary Operational ...

Patrick Minnis; David F. Young; Edwin F. Harrison

1991-11-01T23:59:59.000Z

175

Computation of Infrared Cooling Rates in the Water Vapor Bands  

Science Conference Proceedings (OSTI)

A fast but accurate method for calculating the infrared radiative terms due to water vapor has been developed. It makes use of the behavior in the far wings of absorption lines to scale transmission along an inhomogencous path to an equivalent ...

Ming Dah Chou; Albert Arking

1980-04-01T23:59:59.000Z

176

Apparatus and method for transient thermal infrared spectrometry of flowable enclosed materials  

DOE Patents (OSTI)

A method and apparatus for enabling analysis of a flowable material enclosed in a transport system having an infrared transparent wall portion. A temperature differential is transiently generated between a thin surface layer portion of the material and a lower or deeper portion of the material sufficient to alter the thermal infrared emission spectrum of the material from the black-body thermal infrared emission spectrum of the material, and the altered thermal infrared emission spectrum is detected through the infrared transparent portion of the transport system while the altered thermal infrared emission spectrum is sufficiently free of self-absorption by the material of emitted infrared radiation. The detection is effected prior to the temperature differential propagating into the lower or deeper portion of the material to an extent such that the altered thermal infrared emission spectrum is no longer sufficiently free of self-absorption by the material of emitted infrared radiation. By such detection, the detected altered thermal infrared emission spectrum is indicative of characteristics relating to molecular composition of the material.

McClelland, John F. (Ames, IA); Jones, Roger W. (Ames, IA)

1993-03-02T23:59:59.000Z

177

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

178

Solar Reflectance Index Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

179

Process of preparing metal parts to be heated by means of infrared radiance  

DOE Patents (OSTI)

A method for preparing metal for heating by infrared radiance to enable uniform and consistent heating. The surface of one or more metal parts, such as aluminum or aluminum alloy parts, is treated to alter the surface finish to affect the reflectivity of the surface. The surface reflectivity is evaluated, such as by taking measurements at one or more points on the surface, to determine if a desired reflectivity has been achieved. The treating and measuring are performed until the measuring indicates that the desired reflectivity has been achieved. Once the treating has altered the surface finish to achieve the desired reflectivity, the metal part may then be exposed to infrared radiance to heat the metal part to a desired temperature, and that heating will be substantially consistent throughout by virtue of the desired reflectivity.

Mayer, Howard Robinson (Cincinnati, OH); Blue, Craig A. (Knoxville, TN)

2009-06-09T23:59:59.000Z

180

Modeling the effects of reflective roofing  

SciTech Connect

Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

Gartland, L.M.; Konopacki, S.J.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Polarizer reflectivity variations  

SciTech Connect

On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism.

Ozarski, R.G.; Prior, J.

1980-02-22T23:59:59.000Z

182

Amorphous silicon solar cell allowing infrared transmission  

DOE Patents (OSTI)

An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

Carlson, David E. (Yardley, PA)

1979-01-01T23:59:59.000Z

183

The whitehouse effect: Shortwave radiative forcing of climate by anthropogenic aerosols, an overview  

E-Print Network (OSTI)

Abstraet--Loadings of tropospheric aerosols have increased substantially over the past 150 yr as a consequence of industrial activities. These aerosols enhance reflection of solar radiation by the Earth-atmosphere system both directly, by scattering light in clear air and, indirectly, by increasing the reflectivity of clouds. The magnitude of the resultant decrease in absorption of solar radiation is estimated to be comparable on global average to the enhancement in infrared forcing at the tropopause due to increases in concentrations of CO2 and other greenhouse gases over the same time period. Estimates of the aerosol shortwave forcing are quite uncertain, by more than a factor of two about the current best estimates. This article reviews the atmospheric chemistry and microphysical processes that govern the loading and light scattering properties of the aerosol particles responsible for the direct effect and delineates the basis for the present estimates of the magnitude and uncertainty in the resultant radiative forcing. The principal sources of uncertainty are in the loading of anthropogenic aerosols, which is highly variable spatially and temporally because of the relatively short residence time of these aerosols (ca. 1 week) and the episodic removal in precipitation, and in the dependence of light scattering on particle size, and in turn on relative humidity. Uncertainty in aerosol forcing is the greatest source of uncertainty in radiative forcing of climate

Stephen E. Schwartz

1996-01-01T23:59:59.000Z

184

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

185

Tunable infrared source employing Raman mixing  

SciTech Connect

A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

Byer, Robert L. (Stanford, CA); Herbst, Richard L. (Menlo Park, CA)

1980-01-01T23:59:59.000Z

186

Assimilation of Satellite Infrared Radiances and Doppler Radar Observations during a Cool Season Observing System Simulation Experiment  

Science Conference Proceedings (OSTI)

An observing system simulation experiment is used to examine the impact of assimilating water vapor–sensitive satellite infrared brightness temperatures and Doppler radar reflectivity and radial velocity observations on the analysis accuracy of a ...

Thomas A. Jones; Jason A. Otkin; David J. Stensrud; Kent Knopfmeier

2013-10-01T23:59:59.000Z

187

Mid?Infrared Spectral Diagnostics of Luminous Infrared Galaxies  

Science Conference Proceedings (OSTI)

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All?sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on?board Spitzer in the rest?frame wavelength range between 5 and 38 ?m. The GOALS sample enables a direct measurement of the relative contributions of star?formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large

A. Petric; The GOALS collaboration

2010-01-01T23:59:59.000Z

188

Coherent infared radiation from the ALS generated via femtosecond laser modulation of the electron beam  

E-Print Network (OSTI)

INFRARED RADIATION FROM THE ALS GENERATED VIA FEMTOSECONDthrough a wiggler at the ALS produces large modulation oflocations for a nominal ALS lattice and for an experimental

2004-01-01T23:59:59.000Z

189

An SOM-Hybrid Supervised Model for the Prediction of Underlying Physical Parameters from Near-Infrared Planetary Spectra  

Science Conference Proceedings (OSTI)

Near-Infrared reflectance spectra of planets can be used to infer surface parameters, sometimes with relevance to recent geologic history. Accurate prediction of parameters (such as composition, temperature, grain size, crystalline state, and dilution ... Keywords: Near-Infrared spectra, New Horizons Space Mission, Pluto-Charon system, Self-Organizing Map, parameter prediction

Lili Zhang; Erzsébet Merényi; William M. Grundy; Eliot F. Young

2009-06-01T23:59:59.000Z

190

Single photon reflection and transmission in optomechanical system  

E-Print Network (OSTI)

Cavity Optomechanical system is speedily approaching the regime where the radiation pressure of a single photon displaces the moving mirror. In this paper, we consider a cavity optomechanical system where the cavity field is driven by an external field. In the limit of weak mirror-cavity couplings, we calculate analytically the reflection and transmission rates for cavity field and discuss the effects of mirror-cavity coupling on the reflection and transmission.

M. A. Khan; S. C. Hou; K. Farooq; X. X. Yi

2013-04-22T23:59:59.000Z

191

Infra-Red Process for Colour Fixation on Fabrics  

E-Print Network (OSTI)

Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific advantages: energy direct transmission, emitter and product spectral coupling, possible selectivity. That is the case in the Textile Industry, where experiments showed that infra-red process heating could be efficient for color fixation on fabrics. Shorter production cycles and energy saving are the main results.

Biau, D.; Raymond, D. J.

1983-01-01T23:59:59.000Z

192

Hard, infrared black coating with very low outgassing  

SciTech Connect

Infrared astronomical instruments require absorptive coatings on internal surfaces to trap scattered and stray photons. This is typically accomplished with any one of a number of black paints. Although inexpensive and simple to apply, paint has several disadvantages. Painted surfaces can be fragile, prone to shedding particles, and difficult to clean. Most importantly, the vacuum performance is poor. Recently a plasma enhanced chemical vapor deposition (PECVD) process was developed to apply thick (30 {micro}m) diamond-like carbon (DLC) based protective coatings to the interior of oil pipelines. These DLC coatings show much promise as an infrared black for an ultra high vacuum environment. The coatings are very robust with excellent cryogenic adhesion. Their total infrared reflectivity of < 10% at normal incidence approaches that of black paints. We measured outgas rates of <10{sup -12} Torr liter/sec cm{sup 2}, comparable to bare stainless steel.

Kuzmenko, P J; Behne, D M; Casserly, T; Boardman, W; Upadhyaya, D; Boinapally, K; Gupta, M; Cao, Y

2008-06-02T23:59:59.000Z

193

Documentation : a reflective practice approach  

E-Print Network (OSTI)

The Center for Reflective Community Practice in MIT's Department of Urban studies is involved in projects helping community organizers working on social change. In order to foster reflection, they are currently utilizing ...

Ouko, Luke Odhiambo

2005-01-01T23:59:59.000Z

194

Characterization of background reflectivity for MEDUSA  

Science Conference Proceedings (OSTI)

The DARPA MEDUSA program goal is to detect, locate, and identify electro-optical threats in the vicinity of a moving platform. Laser sensing will be employed to find these threats by looking for anomalous reflections from threat sensors. However, the reflectivity variability (clutter) in both natural and manmade backgrounds will inherently limit target detection levels. In parallel with advanced component development by several aerospace contractors, a study of this clutter limitation was initiated in the long-wave (LW) and midwave (MW) infrared spectral regions to properly drive system design parameters. The analysis of clutter and associated limits on detection has been a major component of LANL efforts in laser remote sensing for non-proliferation. LANL is now analyzing existing data and conducting additional selected measurements in both the LWIR (9 and 10.6 pm) and MWIR (4.6 pm) in support of the DARPA program to increase our understanding of these clutter limitations and, thereby aid in the design and development of the MEDUSA system. The status of the LANL effort will be discussed. A variety of different natural and manmade target types have been investigated. Target scenes range from relatively low clutter sites typical of a southwestern desert to higher clutter downtown urban sites. Images are created by conducting raster scans across a scene interest. These images are then analyzed using data clustering techniques (e g K-means) to identify regions within the scene that contain similar reflectivity profiles. Data will be presented illustrating the reflectivity variability among different samples of the same target type, Le. within the same cluster, and among different data clusters. In general, it is found that the variability of reflectivities among similar targets is well represented by a log-normal distribution. Furthermore, manmade target tend to have higher reflectivities and more variability than natural targets. The implications of this observation for MEDUSA systems designed to locate and identify threat sensors will be discussed. The implications for chemical sensing applications will also be addressed.

Oldenborg, R. C. (Richard C.); Tiee, J. J. (Joe J.); Foy, B. R. (Bernard R.); Petrin, R. R. (Roger R.); Wilson, C. W. (Carl W.)

2003-01-01T23:59:59.000Z

195

Generalization of Lambert's reflectance model  

Science Conference Proceedings (OSTI)

Lambert's model for body reflection is widely used in computer graphics. It is used extensively by rendering techniques such as radiosity and ray tracing. For several real-world objects, however, Lambert's model can prove to be a very inaccurate approximation ... Keywords: BRDF, Lambert's model, moon reflectance, reflection models, rough surfaces

Michael Oren; Shree K. Nayar

1994-07-01T23:59:59.000Z

196

MISMATCHES CREATE REFLECTIONS  

E-Print Network (OSTI)

Unlike low-power, metal-gate CMOS, high-speed 54HC/74HC devices readily drive long cable runs and backplanes. While the family maintains CMOS’s traditional noise immunity, you must watch transmission-line effects in such applications. Because of 54HC/74HC high-speed CMOS’s short propagation delays and fast rise and fall times, you must understand its transmission-line behavior when driving lines as short as even a foot or two, whether those lines are coaxial cables, twisted pairs or backplanes. Moreover, the devices ’ fast edge rates increase the likelihood of crosstalk among interconnecting cables. Despite the need, however, to take design precautions that minimize adverse effects related to high-speed operation, 54HC/74HC logic—unlike slower metal-gate CMOS—includes many features that suit it to driving transmission lines. For example, its symmetrical push-pull outputs result in stiff logic levels, and its high output drive allows fast bit rates. Another advantage of high-speed-CMOS designs is that they don’t prove to be as difficult as those based on other high-speed logic families. In general, high-speed CMOS doesn’t require the detailed attention to pc-board layout and transmission-line characteristics that Schottky TTL or ECL designs do. Furthermore, controlling unwanted reflections is easier in the CMOS designs, because 54HC/74HC devices’ electrostatic-protection diodes tend to clamp the reflected voltages to the power-supply levels.

unknown authors

1985-01-01T23:59:59.000Z

197

Radiative Properties of Cirrus Clouds Derived from Surface Interferometric Measurements  

Science Conference Proceedings (OSTI)

Beam transmittance, emittance, reflectance, and outgoing radiance are inferred from interferometric measurements in the infrared window region for 14 temperate continental and 12 subtropical cirrus cloud cash observed during FIRE II at Parsons, ...

Gordon H. Beck; John M. Davis; S. K. Cox

1996-08-01T23:59:59.000Z

198

International RADAGAST Experiment in Niamey, Niger: Changes and Drivers of Atmospheric Radiation Balance  

Science Conference Proceedings (OSTI)

The Sahara desert is notorious as a source of massive dust storms. This dust dramatically influences the Earth-atmosphere energy budget through reflecting and absorbing the incoming sunlight. However, this budget is poorly understood, and in particular, we lack quantitative understanding of how the diurnal and seasonal variation of meteorological variables and aerosol properties influence the propagation of solar irradiance through the desert atmosphere. To improve our understanding of these influences, coincident and collocated observations of fluxes, measured from both space and the surface, are highly desirable. Recently, the unique capabilities of the African Monsoon Multidisciplinary Analysis (AMMA) Experiment, the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), the Geostationary Earth Radiation Budget (GERB) instrument, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) were combined effectively as part of a large international project: the Radiative Atmospheric Divergence using AMF, GERB data and AMMA Stations (RADAGAST), which took place in Niamey, Niger, in 2006. The RADAGAST objectives, instrumentation, and scientific background are presented in [1]. Initial results from RADAGAST documented the strong radiative impact of a major Saharan dust storm on the Earth’s radiation budget [2]. A special issue of the Journal of Geophysical Research will include a collection of papers with the more complete results from RADAGAST (e.g., [1,3], and references therein). In particular, a year-long time series from RADAGAST are used to investigate (i) the factors that control the radiative fluxes and the divergence of radiation across the atmosphere [3-5], (ii) seasonal changes in the surface energy balance and associated variations in atmospheric constituents (water vapor, clouds, aerosols) [6], and (iii) sensitivity of microphysical, chemical and optical properties of aerosols to their sources and the atmospheric conditions [7]. Here we show retrievals of the aerosol properties from spectrally resolved solar measurements, the simulated and observed radiative fluxes at the surface, and outline factors that control the magnitude and variability of aerosol and radiative properties [8].

Kassianov, Evgueni I.; McFarlane, Sally A.; Barnard, James C.; Flynn, Connor J.; Slingo, A.; Bharmal, N.; Robinson, G. J.; Turner, David D.; Miller, Mark; Ackerman, Thomas P.; Miller, R.

2009-03-11T23:59:59.000Z

199

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Santa Fe, NM); Carbone, Robert J. (Los Alamos, NM); Cooper, Ralph S. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

200

Infrared laser system  

DOE Patents (OSTI)

An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

Cantrell, Cyrus D. (Richardson, TX); Carbone, Robert J. (Johnson City, TN); Cooper, Ralph (Hayward, CA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Baseline Surface Radiation Network Pyrgeometer Round-Robin Calibration Experiment  

Science Conference Proceedings (OSTI)

With the aim of improving the consistency of terrestrial and atmospheric longwave radiation measurements within the Baseline Surface Radiation Network, five Eppley Precision Infrared Radiometer (PIR) pyrgeometers and one modified Meteorological ...

Rolf Philipona; Claus Fröhlich; Klaus Dehne; John DeLuisi; John Augustine; Ellsworth Dutton; Don Nelson; Bruce Forgan; Peter Novotny; John Hickey; Steven P. Love; Steven Bender; Bruce McArthur; Atsumu Ohmura; John H. Seymour; John S. Foot; Masataka Shiobara; Francisco P. J. Valero; Anthony W. Strawa

1998-06-01T23:59:59.000Z

202

Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model  

Science Conference Proceedings (OSTI)

A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for ...

Qing Yue; K. N. Liou; S. C. Ou; B. H. Kahn; P. Yang; G. G. Mace

2007-11-01T23:59:59.000Z

203

Radiative Effects on Turbulent Temperature Spectra and Budgets in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The effects of radiative energy transfer on turbulent temperature fields are studied, and preliminary estimates show the infraredradiative dissipation” mechanism to be dominant. Spectral computations for the idealized homogeneous-isotropic case ...

M. Coantic; O. Simonin

1984-09-01T23:59:59.000Z

204

Long-Term Trends in Downwelling Spectral Infrared Radiance over the U.S. Southern Great Plains  

Science Conference Proceedings (OSTI)

A trend analysis was applied to a 14-yr time series of downwelling spectral infrared radiance observations from the Atmospheric Emitted Radiance Interferometer (AERI) located at the Atmospheric Radiation Measurement Program (ARM) site in the U.S. ...

P. Jonathan Gero; David D. Turner

2011-09-01T23:59:59.000Z

205

Infrared Thermometer Measurements of the Temperature of the Clouds from the Surface during the 7 March 1970 Total Eclipse  

Science Conference Proceedings (OSTI)

An infrared thermometer was used to observe the apparent radiation temperature of the overcast sky during a 15 h period including the total solar eclipse of 7 March 1970 at the Suwannee River State Park, Florida. An effective cloud temperature ...

L. F. Hall

1980-11-01T23:59:59.000Z

206

Inference of Cirrus Cloud Properties Using Satellite-observed Visible and Infrared Radiances. Part I: Parameterization of Radiance Fields  

Science Conference Proceedings (OSTI)

Current techniques for deriving cirrus optical depth and altitude from visible (0.65 ?m) and infrared (11.5 ?m) satellite data use radiative transfer calculations based on scattering phase functions of spherical water droplets. This study ...

Patrick Minnis; Kuo-Nan Liou; Yoshihide Takano

1993-05-01T23:59:59.000Z

207

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

208

ARM - Publications: Science Team Meeting Documents: Validation of infrared  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of infrared cloud radiative transfer simulations and spectral Validation of infrared cloud radiative transfer simulations and spectral cloud properties retrievals using S-HIS, AERI and HSRL measurements from M-PACE Holz, Robert University of Wisconsin, CIMMS DeSlover, Daniel University of Wisconsin Revercomb, Henry University Of Wisconsin-Madison Tobin, David University of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Turner, David Pacific Northwest National Laboratory Eloranta, Edwin University of Wisconsin As part of the Mixed-Phase Arctic Cloud Experiment (M-PACE) the Scanning High spectral resolution Interferometer Sounder (S-HIS) flew on the Proteus high altitude aircraft with the ARM-UAV instrumentation. The University of North Dakota Cessna Citation capable of cloud situ measurements was coordinated with the Proteus to obtain coincident down looking and situ

209

Forward looking infrared | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Forward looking infrared Citation Wikipedia. Forward looking infrared...

210

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

Howard, T.C.

1986-12-23T23:59:59.000Z

211

Variable area light reflecting assembly  

DOE Patents (OSTI)

Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

Howard, Thomas C. (Raleigh, NC)

1986-01-01T23:59:59.000Z

212

Emissivity corrected infrared method for imaging anomalous structural heat flows  

DOE Patents (OSTI)

A method for detecting flaws in structures using dual band infrared radiation is disclosed. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features. 1 fig.

Del Grande, N.K.; Durbin, P.F.; Dolan, K.W.; Perkins, D.E.

1995-08-22T23:59:59.000Z

213

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

214

Variability of Radiative Cooling during the Asian Summer Monsoon and Its Influence on Intraseasonal Waves  

Science Conference Proceedings (OSTI)

Infrared radiative cooling rates are calculated over the Asian summer monsoon between 5°S–20°N and 40°–135°E at a spatial resolution of 5° × 5° for the summer seasons of 1984 and 1987. A medium spectral resolution infrared radiative transfer ...

Amita V. Mehta; Eric A. Smith

1997-04-01T23:59:59.000Z

215

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

DOE Green Energy (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL

2005-07-11T23:59:59.000Z

216

Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices  

DOE Patents (OSTI)

Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

2000-01-01T23:59:59.000Z

217

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

218

Absorption of Solar Radiation by Atmospheric O4  

Science Conference Proceedings (OSTI)

Spectroscopic measurements of the atmospheric solar radiation attenuation reveal that the near ultraviolet–visible–near-infrared absorption of the oxygen collision complex (O2)2, thus far omitted from models, is important for the direct heating ...

Klaus Pfeilsticker; Frank Erle; Ulrich Platt

1997-04-01T23:59:59.000Z

219

Investigation of Aerosol Sources, Lifetime and Radiative Forcing through Multi-Instrument Data Assimilation  

E-Print Network (OSTI)

as clouds reflect solar radiation and trap outgoing CHAPTEReffectively scatter solar radiation, such as sulfate, reduceF o = 1361W/m 2 (Solar Radiation and Climate Experiement (

Rubin, Juli Irene

2012-01-01T23:59:59.000Z

220

Longwave radiative forcing by aqueous aerosols  

SciTech Connect

Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States). Environmental Research Div.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

* The far-infrared (λ > 15 µm) is an important  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared (λ > 15 µm) is an important infrared (λ > 15 µm) is an important component of the overall radiation budget of the Earth, accounting for approximately half of the outgoing infrared radiation to space. * Dominated by the pure rotation band of water vapor, the maximum mid-to-upper tropospheric cooling also occurs in the far-IR (left panel). * ARM science team research has resulted in enormous improvements in the treatment of radiation in climate models (e.g. Tobin et al. 1999; right panel). Tropical atmosphere cooling rates calculated using modern LBLRTM calculations(left panel) and differences between current and early ARM (1995/1996) calculations. At the conclusion of the 1997 SHEBA campaign, some spectral differences between Atmospheric Emitted Radiance Interferometer (AERI) measurements and

222

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

223

Short communication: A software component for estimating solar radiation  

Science Conference Proceedings (OSTI)

GSRad (global solar radiation) is a software component containing models to estimate extra-terrestrial and ground-level solar radiation (global and photosynthetically active; direct, diffuse, and reflected components) from alternative methods. Radiation ... Keywords: Atmospheric transmissivity, Component architecture, GSRad, Model extensibility, Solar radiation fractions

M. Donatelli; L. Carlini; G. Bellocchi

2006-03-01T23:59:59.000Z

224

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

225

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

226

Amplitude and phase-resolved measurements of optical metamaterials in the mid-infrared by phase matched electro-optic sampling.  

Science Conference Proceedings (OSTI)

We describe a time-domain spectroscopy system in the thermal infrared used for complete transmission and reflection characterization of metamaterials in amplitude and phase. The system uses a triple-output near-infrared ultrafast fiber laser, phase-locked difference frequency generation and phase-matched electro-optic sampling. We will present measurements of several metamaterials designs.

Sinclair, Michael B.; Brener, Igal; Passmore, Brandon Scott; Wendt, Joel Robert; Bender, Daniel A.; Ten Eyck, Gregory A.

2010-03-01T23:59:59.000Z

227

Satellite-based reconstruction of the tropical oceanic clear sky outgoing longwave radiation and comparison with climate models  

Science Conference Proceedings (OSTI)

The changes of the outgoing longwave radiation (OLR) in clear-sky conditions have been calculated using High-resolution Infrared Radiation Sounder (HIRS) observations from 1979 to 2004. After applying corrections for satellite orbital drift and ...

Guillaume Gastineau; Brian J. Soden; Darren L. Jackson; Chris W. O’Dell

228

Radar Reflectivity of Cumulus Clouds  

Science Conference Proceedings (OSTI)

The relationships between the radar reflectivity factor Z and significant physical cloud parameters are studied from a dataset collected with an instrumented aircraft in non- or very weakly precipitating warm clouds. The cloud droplet populations ...

Henri Sauvageot; Jilani Omar

1987-06-01T23:59:59.000Z

229

Ultrasonic flowmetering with reflected pulses  

E-Print Network (OSTI)

A transit time type ultrasonic flowmeter was tested with two different reflected pulse trajectories in flowing air at ambient conditions against an orifice meter. The flowmeter was designed to be highly accurate, to require ...

Hoyle, David C.

1984-01-01T23:59:59.000Z

230

Ground Reflections and Green Thunderstorms  

Science Conference Proceedings (OSTI)

It has been suggested that green light often observed in association with severe thunderstorms is caused by sunlight being reflected onto the cloud by green vegetation. Colorimetric observations were recorded of green-colored and blue-colored ...

Frank W. Gallagher III

2001-04-01T23:59:59.000Z

231

Coupling Diffuse Sky Radiation and Surface Albedo  

Science Conference Proceedings (OSTI)

New satellite instruments have been delivering a wealth of information regarding land surface albedo. This basic quantity describes what fraction of solar radiation is reflected from the earth’s surface. However, its concept and measurements have ...

Bernard Pinty; Alessio Lattanzio; John V. Martonchik; Michel M. Verstraete; Nadine Gobron; Malcolm Taberner; Jean-Luc Widlowski; Robert E. Dickinson; Yves Govaerts

2005-07-01T23:59:59.000Z

232

Spectrally Invariant Approximation within Atmospheric Radiative Transfer  

Science Conference Proceedings (OSTI)

Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These “spectrally invariant relationships” are the consequence of wavelength ...

A. Marshak; Y. Knyazikhin; J. C. Chiu; W. J. Wiscombe

2011-12-01T23:59:59.000Z

233

Applications of synchrotron radiation to Chemical Engineering Science: Workshop report  

Science Conference Proceedings (OSTI)

This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

Not Available

1991-07-01T23:59:59.000Z

234

A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of  

Open Energy Info (EERE)

Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistics-Based Method For The Short-Wave Infrared Spectral Analysis Of Altered Rocks- An Example From The Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt Details Activities (0) Areas (0) Regions (0) Abstract: We propose a simple graphic and statistical method for processing short-wave infrared (SWIR) reflectivity spectra of alteration minerals, which classifies spectra according to their shape and absorption features, thus obtaining groups of spectra equivalent to mineral assemblages. It also permits selection of fewer samples for further mineralogical verification.

235

Wood Inspection by Infrared Thermography  

E-Print Network (OSTI)

Wood is used everywhere and for everything. With times, this material presents many adulterations, witch degrade his physical properties. This work present a study of infrared thermography NDT for wood decay detection. The study is based on the difference of moisture content between sound wood and decay. In the first part, moisture content influence on response signal is determine. The second part define the limits of infrared thermography for wood decay detection. Results show that this method could be used, but with many cautions on depth and size of wood defects.

A. Wyckhuyse; X. Maldague; X. Maldague Corresponding

2002-01-01T23:59:59.000Z

236

OPTICAL DIFFERENCE FREQUENCY GENERATION OF FAR INFRARED RADIATION  

E-Print Network (OSTI)

spot radius (mm) Fig. 9. o u If) .r- :::::I s::: ttl s:::or- ttlttl S- O) If) O~----~----J-----~----~----~--~~ o Angle from

Morris, J.R.

2010-01-01T23:59:59.000Z

237

Gaussian Quadrature and Its Application to Infrared Radiation  

Science Conference Proceedings (OSTI)

The Gaussian integration of moments is systematically discussed. It is shown that the well-known diffusivity-factor approximation is equivalent to a one-node Gaussian quadrature. The limit as the moment power approaches infinity in a one-node ...

J. Li

2000-03-01T23:59:59.000Z

238

Novel rectenna for collection of infrared and visible radiation.  

E-Print Network (OSTI)

??This dissertation presents the rectifying antennas potential for harvesting solar power, along with a novel design for a solar rectenna. The suns general features and… (more)

Sarehraz, Mohammad

2005-01-01T23:59:59.000Z

239

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

240

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator.  

E-Print Network (OSTI)

. 1 Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared. The light from a flashlight can be considered as the emission of many photons of the same frequency

Kioussis, Nicholas

242

Infrared Thermography Guide (Revision 3)  

Science Conference Proceedings (OSTI)

Costly equipment outages can be reduced by implementing a comprehensive predictive maintenance program. Infrared thermography (IR), a fundamental component of such programs, uses nonintrusive techniques to monitor the operating condition of equipment and components. This revised report provides updated information to assist utilities in implementing an effective IR program.

2002-05-30T23:59:59.000Z

243

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections can bring about. Over the last 2-3 years a number of articles have appeared in various industrial publications concerning infrared surveys. However, all of the articles have dealt with the technical aspects of infrared inspections, with the economics either completely neglected or mentioned only in passing. I believe that in the real industrial world it is the economic benefits of a technology that allow the product of that technology to reach the market and become a success, and not the fact that a technology is useful per se. In this presentation, I shall be focusing primarily on the major economic aspects of the surveys and what the end results really represent in terms of economic benefits. Once the economic benefits of these inspections are clearly understood, it will be readily apparent why the industrial use of these inspections is developing rapidly.

Duch, A. A.

1979-01-01T23:59:59.000Z

244

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

245

Modeling of the ITER-like wide-angle infrared thermography view of JET  

SciTech Connect

Infrared (IR) thermography systems are mandatory to ensure safe plasma operation in fusion devices. However, IR measurements are made much more complicated in metallic environment because of the spurious contributions of the reflected fluxes. This paper presents a full predictive photonic simulation able to assess accurately the surface temperature measurement with classical IR thermography from a given plasma scenario and by taking into account the optical properties of PFCs materials. This simulation has been carried out the ITER-like wide angle infrared camera view of JET in comparing with experimental data. The consequences and the effects of the low emissivity and the bidirectional reflectivity distribution function used in the model for the metallic PFCs on the contribution of the reflected flux in the analysis are discussed.

Aumeunier, M.-H. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Firdaouss, M.; Travere, J.-M.; Loarer, T.; Gauthier, E.; Martin, V. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Chabaud, D.; Humbert, E. [OPTIS, ZE de La Farlede, F-83078 Toulon Cedex 9 (France); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

246

Did 1998 Reflect Structural Change?  

Gasoline and Diesel Fuel Update (EIA)

Did 1998 Reflect Structural Change? Did 1998 Reflect Structural Change? 5/17/99 Click here to start Table of Contents PPT Slide Did 1998 Reflect Structural Change? Demand U.S. Propane Demand Sectors (1996) PPT Slide 1998 Propane Prices Fell with Crude Oil PPT Slide Warm Weather Behind Demand Decline 1998 Warm Weather Kept Demand Down Supply Propane Production Fell in 1998 1998 Propane Net Imports Increased Algeria Was Major Source of ‘98 Import Increase U.S. Chemical Use & Large Storage Attracts Excess Propane Petroleum & Propane Market Over Supply Average Stock Levels: Crude Market & Propane Futures Market Incentives to Build Petroleum Stocks New “Structure” or Cycle? Near-Term Future Large January Draw Did Not Remove Excess How Might Excess Stocks Decline? Near Term U.S. Propane Production

247

Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Reflection Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Reflection Survey Details Activities (35) Areas (22) Regions (2) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

248

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

249

Research Needs: Glass Solar Reflectance and Vinyl Siding  

DOE Green Energy (OSTI)

The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

2011-07-07T23:59:59.000Z

250

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

251

Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Land Surface Emissivity in the Vicinity Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the vicinity of the U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Central Facility (CF) in North Central Oklahoma. The UW-Madison LSE model is part of the ARM best

252

Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Cloud Imager Deployment Infrared Cloud Imager Deployment at the North Slope of Alaska During Early 2002 J. A. Shaw and B. Thurairajah Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. Edqvist National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado K. Mizutani Communications Research Laboratory Koganei, Tokyo, Japan Introduction Starting in February 2002, we deployed a new cloud-radiation sensor called the infrared cloud imager (ICI) at the North Slope of Alaska (NSA) site near Barrow, Alaska (71.32 N, 156.62 W). ICI records radiometrically calibrated images of the thermal infrared sky radiance in the 8µm to 14 µm wavelength band, from which spatial cloud statistics and spatially resolved cloud radiance can be determined.

253

Amazon Forest Radiation Budget from Satellite Data  

Science Conference Proceedings (OSTI)

The top-of-the-atmosphere net radiation is determined over the Ducke Reserve Forest site, Manaus, Brazil (2°57 S, 59°57 W), from GOES-7 visible and infrared data during the 1987 wet season (April?May), for 0900 and 1500 LST. It is shown that a ...

J-C. Calvet; Y. Viswanadham

1993-05-01T23:59:59.000Z

254

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

255

Aging of reflective roofs: soot deposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Aging of reflective roofs: soot deposition Title Aging of reflective roofs: soot deposition Publication Type Journal Article Year of Publication 2002 Authors Berdahl, Paul, Hashem...

256

Infrared Cooling in Cloudy Atmospheres: Precision of Grid Point Selection for Numerical Models  

Science Conference Proceedings (OSTI)

The infrared layer temperature change in a cloudy atmosphere normally shows warming at the base of the cloud and intense cooling at the top of the cloud. In a model that uses broad-band radiative transfer to calculate atmospheric temperature ...

L. P. Stearns

1983-07-01T23:59:59.000Z

257

The Role of Background Cloud Microphysics in the Radiative Formation of Ship Tracks  

Science Conference Proceedings (OSTI)

The authors investigate the extent to which the contrast brightness of ship tracks, that is, the relative change in observed solar reflectance, in visible and near-infrared imagery can be explained by the microphysics of the background cloud in ...

S. Platnick; P. A. Durkee; K. Nielsen; J. P. Taylor; S.-C. Tsay; M. D. King; R. J. Ferek; P. V. Hobbs; J. W. Rottman

2000-08-01T23:59:59.000Z

258

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

259

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01T23:59:59.000Z

260

Synthesis of materials with infrared and ultraviolet lasers  

SciTech Connect

This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

Lyman, J.L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces  

Science Conference Proceedings (OSTI)

Reliable active and passive hyperspectral imaging and detection of explosives and solid-phase chemical residue on surfaces remains a challenge and an active area of research and development. Both methods rely on reference libraries for material identification, but in many cases the reference spectra do not sufficiently resemble those instrumental signals scattered from real-world objects. We describe a physics-based model using the dispersive complex dielectric constant to explain what is often thought of as anomalous behavior of scattered or non-specular signatures encountered in active and passive sensing of explosives or chemicals on surfaces and show modeling and experimental results for RDX.

Phillips, Mark C.; Suter, Jonathan D.; Bernacki, Bruce E.; Johnson, Timothy J.

2012-09-01T23:59:59.000Z

262

Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy  

Science Conference Proceedings (OSTI)

The spatial variability of soil attributes is cost prohibitive to characterize using traditional soil sampling and laboratory analysis. Yet, the potential benefit of managing soils on a site-specific basis has been recognized. In addition, measurement ... Keywords: Decision support, Fuzzy clusters, Mapping soil properties, Precision agriculture, Principal component analysis, Soil sensors

C. D. Christy

2008-04-01T23:59:59.000Z

263

Foreword for Non-Dispersive Infrared (NDIR) Gas Measurement Today  

Science Conference Proceedings (OSTI)

Infrared spectroscopy provides the analytical laboratory with essential capabilities to identify and to quantify components of gas mixtures in a relatively straightforward manner. Except for symmetric diatomic species, most molecules are 'IR active' that is, they absorb IR light at specific energies associated with that molecule's vibrational and rotation modes. Simple molecules have a few predominant absorption energies and are easy to identify, while more complicated molecules with many bonds have many absorption peaks. To cover the full range of possible absorption energies, laboratory instruments initially employed dispersive elements, typically gratings, to scan over the wavelengths of interest. Today, Fourier-transform infrared (FTIR) spectroscopy has replaced most dispersive IR spectrometry due to improvements in speed and the signal-to-noise ratio but at the expense of instrumental complexity. The impressive analytical power of IR spectroscopy can be distilled into a tiny sensor for a restricted, but nevertheless very useful, set of chemical vapors. Non-dispersive infrared (NDIR) sensors use bandpass filters to select one, or at most a few, energy bands corresponding absorption by carbon dioxide, water, hydrocarbons, etc. Although the concept is simple, the task has proved to be elusive for constructing an NDIR sensor that maintains its calibration in spite of aging and environmental factors. Over the past four decades, Dr. Wong has been on the quest to perfect NDIR sensing, yet in very practical designs. This book reflects his journey, and more recently that of his coauthor, to do just that.

Warmack, Robert J Bruce [ORNL

2012-01-01T23:59:59.000Z

264

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

265

Coherent infrared imaging camera (CIRIC)  

SciTech Connect

New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

1995-07-01T23:59:59.000Z

266

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

267

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool  

NLE Websites -- All DOE Office Websites (Extended Search)

Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool Advances in Measuring Solar Reflectance-or, Why That Roof isn't as Cool as You Thought it Was Speaker(s): Ronnen Levinson Date: June 30, 2009 - 12:00pm Location: LBNL Bldg. 66 Auditorium Solar reflectance is often used to estimate the solar heat gain and rate the "coolness" of roofs and pavements. A solar reflectance property measured by two popular ASTM standard test methods (E903, C1549) can underestimate the peak solar heat gain of a spectrally selective "cool colored" surface by nearly 100 W m-2 because it assumes that sunlight contains an unrealistically high fraction of near-infrared (invisible) energy. Its use in building energy simulations can overestimate cool-roof annual energy savings by more than 20%. I define a new and simple solar

268

Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of the Infrared Spectral Lines Measurements of the Infrared Spectral Lines of Water Vapor at Atmospheric Temperatures P. Varanasi and Q. Zou Institute for Terrestrial and Planetary Atmospheres State University of New York at Stony Brook Stony Brook, New York Introduction Water vapor is undoubtedly the most dominant greenhouse gas in the terrestrial atmosphere. In the two facets of Atmospheric Radiation Measurement (ARM) Program research, atmospheric remote sensing (air-borne as well as Cloud and Radiation Testbed [CART] site-based) and modeling of atmospheric radiation, the spectrum of water vapor, ranging from the microwave to the visible wavelengths, plays a significant role. Its spectrum has been the subject of many studies throughout the last century. Therefore, it is natural to presume it should be fairly well established by now. However, the need for a

269

Infrared [Fe II] and Dust Emissions from Supernova Remnants  

E-Print Network (OSTI)

Supernova remnants (SNRs) are strong thermal emitters of infrared radiation. The most prominent lines in the near-infrared spectra of SNRs are [Fe II] lines. The [Fe II] lines are from shocked dense atomic gases, so they trace SNRs in dense environments. After briefly reviewing the physics of the [Fe II] emission in SNR shocks, I describe the observational results which show that there are two groups of SNRs bright in [Fe II] emission: middle-aged SNRs interacting with molecular clouds and young core-collapse SNRs in dense circumstellar medium. The SNRs belonging to the former group are also bright in near-infrared H$_2$ emission, indicating that both atomic and molecular shocks are pervasive in these SNRs. The SNRs belonging to the latter group have relatively small radii in general, implying that most of them are likely the remnants of SN IIL/b or SN IIn that had strong mass loss before the explosion. I also comment on the "[Fe II]-H$_2$ reversal" in SNRs and on using the [Fe II]-line luminosity as an indic...

Koo, Bon-Chul

2013-01-01T23:59:59.000Z

270

Low Emittance and Solar Control Glazing  

NLE Websites -- All DOE Office Websites (Extended Search)

Emittance and Solar-Control Glazing Low-emittance coatings have a high reflectance in the thermal infrared suppressing infrared radiation transfer thereby imparting additional...

271

Selective IR reflective coatings development. Semiannual report, July 24, 1978-January 24, 1979  

DOE Green Energy (OSTI)

Two low temperature deposition technques, a glow discharge activation technique and an ion plating technique, were investigated as methods for coating thin plastic membranes with solar transparent, infrared reflective semiconducting oxides. The glow discharge activation technique was shown to produce coatings with better optical properties than the ion plating technique. Repeatability of coating properties with the glow discharge technique has been a problem whose solution appears to lie in better deposition process control.

Lefkow, A R

1979-01-01T23:59:59.000Z

272

Helios model for the optical behavior of reflecting solar concentrators  

DOE Green Energy (OSTI)

The Helios model simulates the optical behavior of reflecting concentrators. The model follows the incident solar radiation through the system (including the atmosphere) and includes all the factors that influence the optical performance of a collector. An important output is the flux-density pattern (W/cm/sup 2/) at a grid of points on a surface such as the absorbing surface of a receiver and its integral (power in watts) over the surface. The angular distribution of sunrays for the radiation incident on a concentrator is modified by convolution, using the fast Fourier transform, to incorporate the effects of other nondeterministic factors such as sun-tracking errors, surface slope errors, and reflectance properties. The analytical methods used for the statistics, the off-axis reflecting optics, the atmospheric effects, and the various coordinate systems are described and illustrated. This model forms a basis for the simulation code HELIOS as well as for other codes under development. Some of the HELIOS routines are described, a few of its capabilities are discussed and illustrated, and comparisons of data with calculations are presented. These capabilities have been used for performance predictions, safety studies, design trade-offs, data analysis problems, the specification and analysis of concentrator quality, and for the general understanding of solar-concentrator technology.

Biggs, F.; Vittitoe, C.N.

1979-03-01T23:59:59.000Z

273

Exploring the physical properties of local star-forming ULIRGs from the ultraviolet to the infrared  

E-Print Network (OSTI)

We present an application of the da Cunha, Charlot & Elbaz (2008) model of the spectral energy distribution (SEDs) of galaxies from the ultraviolet to far-infrared to a small pilot sample of purely star-forming Ultra-Luminous Infrared Galaxies (ULIRGs). We interpret the observed SEDs of 16 ULIRGs using this physically-motivated model which accounts for the emission of stellar populations from the ultraviolet to the near-infrared and for the attenuation by dust in two components: an optically-thick starburst component and the diffuse ISM. The infrared emission is computed by assuming that all the energy absorbed by dust in these components is re-radiated at mid- and far-infrared wavelengths. This model allows us to derive statistically physical properties including star formation rates, stellar masses, as well as temperatures and masses of different dust components and plausible star formation histories. We find that, although the ultraviolet to near-infrared emission represents only a small fraction of th...

da Cunha, Elisabete; Diaz-Santos, Tanio; Armus, Lee; Marshall, Jason A; Elbaz, David

2010-01-01T23:59:59.000Z

274

Miniaturized Mid-Infrared Sensor Technologies  

SciTech Connect

Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for overall at least maintaining, or ideally improving the achievable sensitivity.

Kim, S; Young, C; Mizaikoff, B

2007-08-16T23:59:59.000Z

275

An Intercomparison Between Radiation Budget Estimates from METEOSAT 1, Nimbus 7 and TIROS-N Satellites  

Science Conference Proceedings (OSTI)

Daily averaged and instantaneous values or the Earth's radiation budget have been computed from the satellite measurements of reflected solar and emitted terrestrial radiation with MEUGSAT 1, Nimbus 7 ERB and TIROS-N scanning radiometers. The ...

R. W. Saunders; L. L. Stowe; G. E. Hunt; C. F. England

1983-04-01T23:59:59.000Z

276

Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models  

Science Conference Proceedings (OSTI)

Current climate models generally reflect too little solar radiation over the Southern Ocean, which may be the leading cause of the prevalent sea-surface temperature biases in climate models. We study the role of clouds the radiation biases in ...

A. Bodas-Salcedo; K. D. Williams; M. A. Ringer; I. Beau; J. N. S. Cole; J.-L. Dufresne; T. Koshiro; B. Stevens; Z. Wang; T. Yokohata

277

Lecture 3 week 2/3 2012: Solar radiation, the greenhouse, global heat engine  

E-Print Network (OSTI)

... that would be like 13.68 one- hundred watt light bulbs illuminating a one-meter square surface, except that light bulbs put about 80% of their 100 watts of power into heat/infrared radiation. Given the distance

278

Global, Seasonal Cloud Variations from Satellite Radiance Measurements. Part II. Cloud Properties and Radiative Effects  

Science Conference Proceedings (OSTI)

Global, daily, visible and infrared radiance measurements from the NOAA-5 Scanning Radiometer (SR) are analyzed for the months of January, April, July and October 1977 to infer cloud and surface radiative properties and their effects on the Earth ...

William B. Rossow; Andrew A. Lacis

1990-11-01T23:59:59.000Z

279

A dedicated storage ring for Far-IR coherent synchrotron radiation at the ALS  

E-Print Network (OSTI)

SYNCHROTRON RADIATION AT THE ALS* W. C. Barry, K. M.on the Infrared Beamline” ALS 1999 Activity Report pp. 78-m circumference ring will use the ALS injector parasitically

2002-01-01T23:59:59.000Z

280

Influence of Radiation on the Temperature Sensor Mounted on the Swiss Radiosonde  

Science Conference Proceedings (OSTI)

The Swiss radiosonde (SRS400) measures the air temperature with a very thin copper–constantan thermocouple. The influence of the visible and infrared radiation, as well as the dependency of the air pressure on the measured temperature, is ...

Dominique Ruffieux; Juerg Joss

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Absorption of Solar Radiation by Stratocumulus Clouds: Aircraft Measurements and Theoretical Calculations  

Science Conference Proceedings (OSTI)

Aircraft observations of shortwave radiative properties of stratocumulus clouds were carried out over the western North Pacific Ocean during January 1991. Two aircraft were equipped with a pair of pyranometers and near-infrared pyranometers. ...

Tadahiro Hayasaka; Nobuyuki Kikuchi; Masayuki Tanaka

1995-05-01T23:59:59.000Z

282

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

283

Discharge lamp with reflective jacket  

DOE Patents (OSTI)

A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

2001-01-01T23:59:59.000Z

284

Neural Network and Multiple Linear Regression for Estimating Surface Albedo from ASTER Visible and Near-Infrared Spectral Bands  

Science Conference Proceedings (OSTI)

The current Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-based broadband albedo model requires shortwave infrared bands 5 (2.145–2.185 nm), 6 (2.185–2.225 nm), 8 (2.295–2.365 nm), and 9 (2.360–2.430 nm) and visible/near-...

Mohammad H. Mokhtari; Ibrahim Busu; Hossein Mokhtari; Gholamreza Zahedi; Leila Sheikhattar; Mohammad A. Movahed

2013-04-01T23:59:59.000Z

285

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

286

Calibration method for video and radiation imagers  

DOE Patents (OSTI)

The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

Cunningham, Mark F. (Oak Ridge, TN); Fabris, Lorenzo (Knoxville, TN); Gee, Timothy F. (Oak Ridge, TN); Goddard, Jr., James S. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Ziock, Klaus-peter (Clinton, TN)

2011-07-05T23:59:59.000Z

287

Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven .  

E-Print Network (OSTI)

??A quantitative, model-based understanding of heat exchange in infrared and combined infrared-microwave heating of food inside an oven is developed. The research is divided into… (more)

Frangipani Almeida, Marialuci

2004-01-01T23:59:59.000Z

288

Correcting Calibrated Infrared Sky Imagery for the Effect of an Infrared Window  

Science Conference Proceedings (OSTI)

A method is demonstrated for deriving a correction for the effects of an infrared window when used to weatherproof a radiometrically calibrated thermal infrared imager. The technique relies on initial calibration of two identical imagers without ...

Paul W. Nugent; Joseph A. Shaw; Nathan J. Pust; Sabino Piazzolla

2009-11-01T23:59:59.000Z

289

Spatial Convergence of Bidirectional Reflectance Models  

Science Conference Proceedings (OSTI)

Analyses of bidirectional reflectance data are presented with implications regarding the spatial scales appropriate for inferring irradiances from radiances reflected by various surface–atmosphere scenes. Multiple-angle radiance data collected in ...

John M. Davis; Stephen K. Cox

1998-10-01T23:59:59.000Z

290

Semantic Models for Distributed Object Reflection  

Science Conference Proceedings (OSTI)

A generic formal model of distributed object reflection is proposed, that combines logical reflection with a structuring of distributed objects as nested configurations of metaobject that can control subobjects under them. The model provides mathematical ...

José Meseguer; Carolyn L. Talcott

2002-06-01T23:59:59.000Z

291

Assessment of Phase Conductor Inspection Technologies: Near-Infrared Spectroscopy Development  

Science Conference Proceedings (OSTI)

A feasibility study was completed in 2003 to determine if iron oxide deposits can be identified on the surface of aluminum-conductor steel-reinforced (ACSR) conductors. Results were promising and demonstrated that the presence of steel core corrosion may be identified by a ratio of reflected light intensities at specific wavelengths. Early “Near Infrared Spectroscopy” testing in a semi-controlled environment and in the field revealed many environmental conditions must be ...

2013-12-22T23:59:59.000Z

292

Reflective coatings for solar applications  

DOE Green Energy (OSTI)

Many applications of solar energy require large mirrors to provide high levels of concentrated sunlight. The success of such conversion systems hinges on the optical durability and economic viability of the reflector materials. A major effort at the National Renewable Energy Laboratory (NREL) has been to improve the existing reflector materials technology and to identify candidates that retain optical performance and durability criteria and offer potential for reduced cost. To attain the goals, it is desirable to maintain and increase the involvement of industrial organizations in reflective materials R&D related to the conversion of solar resources to useful energy. Toward this end, NREL has recently initiated several collaborative efforts with industry to develop advanced reflector materials.

Jorgensen, G.

1993-05-01T23:59:59.000Z

293

Reflective coatings for solar applications  

DOE Green Energy (OSTI)

Many applications of solar energy require large mirrors to provide high levels of concentrated sunlight. The success of such conversion systems hinges on the optical durability and economic viability of the reflector materials. A major effort at the National Renewable Energy Laboratory (NREL) has been to improve the existing reflector materials technology and to identify candidates that retain optical performance and durability criteria and offer potential for reduced cost. To attain the goals, it is desirable to maintain and increase the involvement of industrial organizations in reflective materials R D related to the conversion of solar resources to useful energy. Toward this end, NREL has recently initiated several collaborative efforts with industry to develop advanced reflector materials.

Jorgensen, G.

1993-05-01T23:59:59.000Z

294

Reflective ghost imaging through turbulence  

SciTech Connect

Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghost imager.

Hardy, Nicholas D.; Shapiro, Jeffrey H. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2011-12-15T23:59:59.000Z

295

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

296

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

297

COBE Observations of the Cosmic Infrared Background  

E-Print Network (OSTI)

The Diffuse InfraRed Background Experiment on COBE measured the total infrared signal seen from space at a distance of 1 astronomical unit from the Sun. Using time variations as the Earth orbits the Sun, it is possible to remove most of the foreground signal produced by the interplanetary dust cloud [zodiacal light]. By correlating the DIRBE signal with the column density of atomic hydrogen measured using the 21 cm line, it is possible to remove most of the foreground signal produced by interstellar dust, although one must still be concerned by dust associated with H_2 (molecular gas) and H II (the warm ionized medium). DIRBE was not able to determine the CIRB in the 5-60 micron wavelength range, but did detect both a far infrared background and a near infrared background. The far infrared background has an integrated intensity of about 34 nW/m^2/sr, while the near infrared and optical extragalactic background has about 59 nW/m^2/sr. The Far InfraRed Absolute Spectrophotometer (FIRAS) on COBE has been used to constrain the long wavelength tail of the far infrared background but a wide range of intensities at 850 microns are compatible with the FIRAS data. Thus the fraction of the CIRB produced by SCUBA sources has large uncertainties in both the numerator and the denominator.

E. L. Wright

2003-06-03T23:59:59.000Z

298

Infrared emission from interplanetary dust  

Science Conference Proceedings (OSTI)

Standard models of the interplanetary dust emission fail to account satisfactorily for IR observations. A new model of the dust, based on very simple assumptions on the grain structure (spherical and homogeneous) and chemical composition (astronomical silicates, graphite, blackbodies) is developed. Updated values of the refractive indexes have been included in the analysis. The predictions of the model (absolute values of the fluxes, spectral shape, elongation dependence of the emission) have then been compared with all the available IR observations performed by the ARGO (balloon-borne experiment by University of Rome), AFGL and Zodiacal Infrared Project (ZIP) (rocket experiments by Air Force Geophysics Laboratory, Bedford, Mass.), and IRAS satellite. Good agreement is found when homogeneous data sets from single experiments (e.g., ZIP and ARGO) are considered separately. 19 references.

Temi, P.; De Bernardis, P.; Masi, S.; Moreno, G.; Salama, A.

1989-02-01T23:59:59.000Z

299

Reflection Survey (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey (Nannini, 1986) Reflection Survey (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "seismic analyses" - no indication of active/passive, reflection/refraction, etc. ---> "On the contrary, in areas with little or no volcanic activity, assumptions on the nature, size and characteristics of the source of the thermal anomaly are generally much more difficult and hypothetical. In these circumstances, some useful data can be obtained from accurate seismic analyses, together with a seismotectonic and geodynamic

300

Long-Wave Infrared | Open Energy Information  

Open Energy Info (EERE)

Long-Wave Infrared Long-Wave Infrared Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Long-Wave Infrared Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Map characteristic minerals associated with hot springs/mineral deposits Stratigraphic/Structural: Hydrological: Thermal: Map surface temperatures Dictionary.png Long-Wave Infrared: Long Wave Infrared (LWIR) refers to multi- and hyperspectral data collected in the 8 to 15 µm wavelength range. LWIR surveys are sometimes referred to as "thermal imaging" and can be used to identify relatively warm features

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Definition: Multispectral Thermal Infrared | Open Energy Information  

Open Energy Info (EERE)

Infrared Infrared Jump to: navigation, search Dictionary.png Multispectral Thermal Infrared This wavelength range senses heat energy from the Earth's surface. It can be used to sense surface temperature, including anomalies associated with active geothermal or volcanic systems. Both multispectral and hyperspectral remote sensing observations are available. This range can also be used to map mineralogy associate with common rock-forming silicates.[1][2] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Thermal_infrared_spectroscopy ↑ http://asterweb.jpl.nasa.gov/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Multispectral_Thermal_Infrared&oldid=601561

302

Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program  

SciTech Connect

The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

SA Edgerton; LR Roeder

2008-09-30T23:59:59.000Z

303

Definition: Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey Reflection Survey Jump to: navigation, search Dictionary.png Reflection Survey Seismic reflection surveys image the structure of the subsurface through the measurement of the two way travel time of reflected artificially-generated elastic waves.[1] View on Wikipedia Wikipedia Definition Also Known As Seismic Reflection References ↑ http://www.amazon.com/Introduction-Geophysical-Prospecting-Milton-Dobrin/dp/0071004041 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Reflection_Survey&oldid=598371" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

304

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

305

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

306

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

307

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics  

E-Print Network (OSTI)

We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA)- a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R \\sim 1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

Stephen Eikenberry; S. Nicholas Raines; Nicolas Gruel; Richard Elston; Rafael Guzman; Jeff Julian; Glenn Boreman; Paul Glenn; Greg Hull-Allen; Jeff Hoffmann; Michael Rodgers; Kevin Thompson; Scott Flint; Lovell Comstock; Bruce Myrick

2006-04-27T23:59:59.000Z

308

Thermonuclear Reflect AB-Reactor  

E-Print Network (OSTI)

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

Bolonkin, Alexander

2008-01-01T23:59:59.000Z

309

Thermonuclear Reflect AB-Reactor  

E-Print Network (OSTI)

The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical project. The main point of preference for the offered reactor is its likely cheapness as a power source. Key words: Micro-thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, Self-magnetic AB-thermonuclear reactor, aerospace thermonuclear engine.

Alexander Bolonkin

2008-03-26T23:59:59.000Z

310

NREL: Solar Radiation Research - Optical Metrology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Metrology Laboratory Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range from 250 nm to 2,500 nm and to include the ultraviolet (250-400 nm), visible (400-750 nm), near infrared (750-1,100 nm), and shortwave infrared (1,100-2,500 nm) ranges. Activities The Optical Metrology Laboratory provides National Institute of Standards and Technology-traceable measurements for:

311

RADIATION DETECTOR  

DOE Patents (OSTI)

A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

Wilson, H.N.; Glass, F.M.

1960-05-10T23:59:59.000Z

312

REFLECTED LIGHT INTENSITY DISTRIBUTIONS FROM DEFECTS ON HIGHLY REFLECTIVE SPHERES PDO 6984778, Topical Report  

SciTech Connect

A light reflection technique suitable for development into an automated surface quality certification system was investigated to determine if reflected light intensity distributions could be corre]ated with surface defect depths. Reflected laser light intensity distributions from pit and scratch defects on highly reflective spheres were studied with a commercial multi-element photodetector. It was found that the intensity distributions --Goll'lf be correlated with depths of pits and scratches in a size range of concern on highly reflective' spheres.

Klingsport, P. E.

1977-02-01T23:59:59.000Z

313

NIST Radiation thermometry  

Science Conference Proceedings (OSTI)

Radiation thermometry. Summary: ... Description: Radiation thermometers are calibrated using a range of variable-temperature blackbodies. ...

2011-10-13T23:59:59.000Z

314

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

315

90-Degree Bragg Reflection from a Thin Crystalline Film  

SciTech Connect

Experimental observations of synchrotron radiation diffraction from a thin surface layer at a 90-degree Bragg reflection are reported and discussed. The synchrotron experiments were performed using a bending magnet source at the European Synchrotron Radiation Facility (ESRF) in France and undulator sources at the Advanced Photon Source (APS) in the U.S. and SPring-8 in Japan. Thin (0.5, 1.0 and 1.5 micron) InGaAs films deposited on a GaAs (100) substrate were studied near the 90- degree using the GaAs (800) reflection. A slight, less than 0.1%, difference in the lattice spacing between the layer and the substrate is sufficient to allow a direct and exclusive observation of the diffraction profile from a thin layer as if it was a 'free-standing' thin crystal. This research opens new possibilities for x-ray optical schemes and the development of novel analytical techniques for surface/interface x-ray diffraction studies.

Nikulin, A.Y.; Davis, J.R.; Usher, B.F.; Freund, A.K.; Ishikawa, T.

2001-09-11T23:59:59.000Z

316

Surface Di-directional Reflectance Properties Over the ARM SGP Area from Satellite Multi-Platform Observations  

NLE Websites -- All DOE Office Websites (Extended Search)

Bi-Directional Reflectance Properties Bi-Directional Reflectance Properties Over the ARM SGP Area from Satellite Multi-Platform Observations Y. Luo, A. P. Trishchenko, and R. Latifovic Canada Centre for Remote Sensing Natural Resources Canada Ottawa, Ontario, Canada Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Introduction Surface albedo is an important parameter in atmospheric radiation research. Good knowledge of surface bi-directional reflectance distribution function (BRDF) is essential in order to obtain the hemispheric reflectance (albedo) using data from satellite systems, which only view the ground at particular angles. Linear kernel-driven BRDF models have been commonly used for simple operational implementation of

317

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1mm to 100mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

Ryan T. Kristensen; John F. Beausang; David M. DePoy

2003-12-01T23:59:59.000Z

318

Frequency Selective Surfaces as Near Infrared Electro-Magnetic Filters for Thermophotovoltaic Spectral Control  

DOE Green Energy (OSTI)

Frequency selective surfaces (FSS) effectively filter electromagnetic radiation in the microwave band (1 mm to 100 mm). Interest exists in extending this technology to the near infrared (1 {micro}m to 10 {micro}m) for use as a filter of thermal radiation in thermophotovoltaic (TPV) direct energy conversion. This paper assesses the ability of FSS to meet the strict spectral performance requirements of a TPV system. Inherent parasitic absorption, which is the result of the induced currents in the FSS metallization, is identified as a significant obstacle to achieving high spectral performance.

RF Kristensen; JF Beausang; DM DePoy

2004-06-28T23:59:59.000Z

319

Evaluation of Arctic Broadband Surface Radiation Measurements  

Science Conference Proceedings (OSTI)

The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

Matsui, N.; Long, Charles N.; Augustine, J. A.; Halliwell, D.; Uttal, Taneil; Longenecker, D.; Niebergale, J.; Wendell, J.; Albee, R.

2012-02-24T23:59:59.000Z

320

Photovoltaic module with light reflecting backskin  

DOE Patents (OSTI)

A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

Gonsiorawski, Ronald C. (Danvers, MA)

2007-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

322

Infrared Properties of z=7 Galaxies from Cosmological Simulations  

E-Print Network (OSTI)

Three-dimensional panchromatic dust radiative transfer calculations are performed on a set of 198 galaxies of stellar masses in the range 5x10^8-3x10^10 Msun from a cosmological hydrodynamic simulation (resolved at 29pc/h) at z=7. In a companion paper (Kimm & Cen), the stellar mass and UV luminosity functions, and UV-optical and FUV-NUV colors are shown to be in good agreement with observations, if an SMC-type dust extinction curve is adopted. Here we make useful predictions, self-consistently, of the infrared properties of these z=7 simulated galaxies that can be confronted with upcoming ALMA data. Our findings are as follows. (1) The effective radius in the rest-frame MIPS 70 micron band is in the range of 80-400pc proper for z=7 galaxies with L_FIR=10^{11.3-12}Lsun. (2) The median of the peak wavelength of the far-infrared (FIR) spectral energy distribution is in the range of 45-60 micron, depending on the dust-to-metal ratio. (3) For star formation rate in the range 3-100 Msun/yr the median FIR to bol...

Cen, Renyue

2013-01-01T23:59:59.000Z

323

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

U.S. natural gas consumption since 1997 reflects shifting patterns. Total U.S. natural gas consumption rose 7% between 1997 and 2011, but this modest ...

324

5. Consumer Prices Reflect Benefits of Restructuring  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1996: Issues and Trends 99 5. Consumer Prices Reflect Benefits of Restructuring The restructuring of the natural gas ...

325

On HVAC duct acoustical end reflection  

Science Conference Proceedings (OSTI)

Duct end reflection (ER) is the apparent loss of sound power resulting from an abrupt change in a cross?sectional area of the duct. In most references

2000-01-01T23:59:59.000Z

326

Measuring Light Reflectance of BGO Crystal Surfaces  

E-Print Network (OSTI)

Carlo program simulating light propagation in isotropic orTerms—Lambertian reflection, light collection, Monte Carloy-axis) and fraction specular light (right y- axis) for a

Janecek, Martin

2009-01-01T23:59:59.000Z

327

Reflective Coherent Spatial Light Modulator (RCSLM)  

Reflective Coherent Spatial Light Modulator (RCSLM) Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

328

Does Shareholder Voting Reflect Shareholder Preferences?  

E-Print Network (OSTI)

=980422. Kamar, Ehud. 2006. “Does Shareholder Voting onDoes Shareholder Voting Reflect Shareholder Preferences?contests. The literature that does exist is methodologically

Listokin, Yair Jason

2007-01-01T23:59:59.000Z

329

Sandia National Laboratories Solar Reflection Panels  

Sandia National Laboratories Solar Reflection Panels HTTPS://IP.SANDIA.GOV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia ...

330

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

331

Synchrotron Infrared Unveils a Mysterious Microbial Community  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Infrared Unveils a Synchrotron Infrared Unveils a Mysterious Microbial Community Synchrotron Infrared Unveils a Mysterious Microbial Community Print Tuesday, 22 January 2013 00:00 A cold sulfur spring in Germany is the only place where archaea are known to dominate bacteria in a microbial community. How this unique community thrives and the lessons it may hold for understanding global carbon and sulfur cycles are beginning to emerge from research by the University of Regensburg's Christine Moissl-Eichinger and her colleagues, including Advanced Light Source guest Alex Probst. Crucial microbial biochemistry was done at Berkeley Lab by Hoi-Ying Holman, director of the Berkeley Synchrotron Infrared Structural Biology facility, and her staff at the ALS, and by Phylochip inventors Todd DeSantis and Gary Anderson.

332

Science and applications of infrared semiconductor nanocrystals  

E-Print Network (OSTI)

In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

Geyer, Scott Mitchell

2010-01-01T23:59:59.000Z

333

High-Density-Infrared Transient Liquid Coatings  

Science Conference Proceedings (OSTI)

Infrared energy is the portion of the electromagnetic spectrum between 0.78 mm ..... that may bring to the market new materials that cannot be produced economically ... For more information, contact C.A. Blue, Oak Ridge National Laboratory, ...

334

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2001-01-01T23:59:59.000Z

335

Rapid infrared heating of a surface  

DOE Patents (OSTI)

High energy flux infrared heaters are used to treat an object having a surface section and a base section such that a desired characteristic of the surface section is physically, chemically, or phasically changed while the base section remains unchanged.

Sikka, Vinod K. (Oak Ridge, TN); Blue, Craig A. (Concord, TN); Ohriner, Evan Keith (Knoxville, TN)

2002-01-01T23:59:59.000Z

336

Infrared Propagation Modeling beneath Marine Stratus Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of aerosol size distributions are used to determine the vertical profiles of infrared (IR) extinction and absorption coefficients and asymmetry factors in eight different maritime stratus cloud regimes during unstable ...

H. G. Hughes; C. R. Zeisse

2000-04-01T23:59:59.000Z

337

NIST Infrared laser gonioreflectometer instrument (ILGRI)  

Science Conference Proceedings (OSTI)

... stable CO 2 , near infrared diode, and continuously tunable OPO PPLN lasers) and a ... from 1 nW to 1 W. The addition of other laser wavelengths in ...

2010-10-05T23:59:59.000Z

338

Session Z: Pb-Salt Infrared Materials  

Science Conference Proceedings (OSTI)

In order to demonstrate the advantages of this light coupling scheme, a two-color C-QWIP covering the two infrared atmospheric windows as well as a relatively ...

339

Annual Forcing of the Surface Radiation Balance Diurnal Cycle Measured from a High Tower near Boulder, Colorado  

Science Conference Proceedings (OSTI)

The radiation balance consisting of upward and downward components of solar and thermal infrared broadband irradiances is continuously measured from the top of a 300-m tower situated on the Colorado high plains. The data are representative of a ...

Ellsworth G. Dutton

1990-12-01T23:59:59.000Z

340

Large-Scale Precipitation and Outgoing Longwave Radiation from INSAT-1B during the 1986 Southwest Monsoon Season  

Science Conference Proceedings (OSTI)

Areally averaged precipitation and broadband outgoing longwave radiation (OLR) have been estimated from infrared window channel observations from INSAT-1B, the Indian geostationary satellite, for the period June–September 1986. The estimation ...

Phillip A. Arkin; A. V. R. Krishna Rao; R. R. Kelkar

1989-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Theory for the Retrievals of Virtual Temperature from Remote Measurements of Horizontal Winds and Thermal Radiation  

Science Conference Proceedings (OSTI)

This paper develops a theory for the estimation of virtual temperature from remote measurements of (i) emitted thermal radiation by microwave and infrared radiometers and (ii) horizontal winds by Doppler radars (or lidars). The problem of ...

Tzvi Gal-Chen

1988-06-01T23:59:59.000Z

342

Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors  

DOE Patents (OSTI)

Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Solobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN)

1999-01-01T23:59:59.000Z

343

Infrared Issues in Graviton Higgs Theory  

E-Print Network (OSTI)

We investigate the one-loop infrared behaviour of the effective potential in minimally coupled graviton Higgs theory in Minkowski background. The gravitational analogue of one loop Coleman Weinberg effective potential turns out to be complex, the imaginary part indicating an infrared instability. This instability is traced to a tachyonic pole in the graviton propagator for constant Higgs fields. Physical implications of this behaviour are studied. We also discuss physical differences between gauge theories coupled to Higgs fields and graviton Higgs theory.

Srijit Bhattacharjee; Parthasarathi Majumdar

2013-01-30T23:59:59.000Z

344

Comparing Optical and Near Infrared Luminosity Functions  

E-Print Network (OSTI)

The Sloan Digital Sky Survey [SDSS] has measured an optical luminosity function for galaxies in 5 bands, finding 1.5 to 2.1 times more luminosity density than previous work. This note compares the SDSS luminosity density to two recent determinations of the near infrared luminosity function based on 2MASS data, and finds that an extrapolation of the SDSS results gives a 2.3 times greater near infrared luminosity density.

Edward L. Wright

2001-02-02T23:59:59.000Z

345

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

346

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

347

RADIATION SOURCES  

DOE Patents (OSTI)

A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

Brucer, M.H.

1958-04-15T23:59:59.000Z

348

Identification coding schemes for modulated reflectance systems  

DOE Patents (OSTI)

An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

Coates, Don M. (Santa Fe, NM); Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Platts, David (Santa Fe, NM); Clark, David D. (Santa Fe, NM)

2006-08-22T23:59:59.000Z

349

Data Souvenirs: Environmental psychology and reflective design  

Science Conference Proceedings (OSTI)

The physical form of technology and its relationship to the surrounding environment is an important factor in design; we argue that this is especially true in the design of reflective technology. We suggest environmental psychology theory as a tool for ... Keywords: Design, Environmental psychology, Personal reflection, Tangible interfaces

Ryan Aipperspach; Ben Hooker; Allison Woodruff

2011-05-01T23:59:59.000Z

350

Reflectance based optical fiber chemical sensor  

DOE Patents (OSTI)

A thin film chemical sensor undergoes changes in reflective optical properties when exposed to a chemical species. A thin metal film is deposited at the end of an optical fiber, and exposure of the thin film to the chemical species causes changes in the effective thickness of the thin film, thereby changing its reflective properties. A chemical detection system based on the thin film sensor includes a light source and an optical divider for dividing light from the light source into a first and second light path. The first light path leads to circuitry for providing a reference signal. The thin film chemical sensor receives light from the second light path, and a photoelectric detector detects light reflected from the chemical sensor and provides an electrical signal representative of the reflected light. Circuitry is provided for comparing the reference signal with the reflected light signal, thereby providing a measurement signal indicative of the presence of the chemical species. 5 figs.

Butler, M.A.; Pfeifer, K.B.; Ricco, A.J.

1988-10-18T23:59:59.000Z

351

Coherent Synchrotron Radiation: Theory and Simulations.  

Science Conference Proceedings (OSTI)

The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum achievable emittance in the synchrotron light sources for short bunches.

Novokhatski, Alexander; /SLAC

2012-03-29T23:59:59.000Z

352

U-043: Attachmate Reflection Buffer Overflow in FTP Client Lets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for HP version 14.x Reflection for UNIX and OpenVMS version 14.x Reflection for ReGIS Graphics version 14.x Reflection for IBM version 14.x Reflection X version 14.x ABSTRACT: A...

353

Measuring solar reflectance-Part I: Defining a metric that accurately  

NLE Websites -- All DOE Office Websites (Extended Search)

solar reflectance-Part I: Defining a metric that accurately solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Title Measuring solar reflectance-Part I: Defining a metric that accurately predicts solar heat gain Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., Hashem Akbari, and Paul Berdahl Journal Solar Energy Volume 84 Pagination 1717-1744 Keywords Heat Island, Methods & Protocols Abstract Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective "cool colored" surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope 5:12 [23°]) by as much as 89 W m-2, and underestimate its peak surface temperature by up to 5 K. Using RE891BN to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%.

354

Radiation Protection Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

355

Radiation Tolerant Metallic Multilayers  

Science Conference Proceedings (OSTI)

Strategies that can alleviate radiation damage may assist the design of radiation tolerant materials. We will summarize our recent studies on radiation damage in ...

356

NEW SOURCES OF RADIATION  

E-Print Network (OSTI)

Stanford Synchrotron Radiation Project Report No. 75/07.IBL 79M0733 Fig. 20. Radiation emission pattern by electronsWinick, Stanford Synchrotron Radiation Laboratory. Fig. 21.

Schimmerling, W.

2010-01-01T23:59:59.000Z

357

Radiation-induced angiosarcoma  

E-Print Network (OSTI)

1a Figure 1b Figure 1. Radiation-induced angiosarcoma in afollowing completion of radiation therapy. Figure 2a Figurecell histiocytosis after radiation for breast carcinoma: can

Anzalone, C Lane; Cohen, Philip R; Diwan, Abdul H; Prieto, Victor G

2013-01-01T23:59:59.000Z

358

Radiative Importance of ÂŤThinÂŽ Liquid Water Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Accomplishments of the Instantaneous Radiative Flux (IRF) Working Group August 2006 AERI Observations at Southern Great Plains Improve Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations used to evaluate clear sky IR radiative transfer models * Long-term comparisons have improved - Spectral line database parameters - Water vapor continuum absorption models * Reduced errors in computation of downwelling radiative IR flux by approx 4; current uncertainty is on the order of 1.5 W/m 2 AERI - (Pre-ARM Model) AERI - (Model in 2003) 1 RU = 1 mW / (m 2 sr cm -1 ) Excellent Agreement in Clear Sky Shortwave Radiative Transfer Between Obs and Calcs Shortwave Flux Bias (Solid) Shortwave Flux RMS (Hatched) W m -2 * Comparison of shortwave radiative flux at the surface

359

Polariton Enhanced IR Reflection Spectra of Epitaxial Graphene on SiC  

E-Print Network (OSTI)

We show ~10x polariton-enhanced infrared reflectivity of epitaxial graphene on 4H-SiC, in SiC's restrahlen band (8-10um). By fitting measurements to theory, we extract the thickness, N, in monolayers (ML), momentum scattering time, Fermi level position of graphene and estimate carrier mobility. By showing that 1/root(ns), the carrier concentration/ML, we argue that scattering is dominated by short-range interactions at the SiC/graphene interface. Polariton formation finds application in near-field optical devices such as superlenses.

Daas, B K; Sudarshan, T S; Chandrashekhar, M V S

2010-01-01T23:59:59.000Z

360

Radiation properties of cavity Cerenkov radiation  

SciTech Connect

Cerenkov radiation from cavities has been analyzed by quantum electrodynamic theory. Analytical expressions of basic radiation properties such as the Einstein's A and B coefficients are derived and shown to be directly modified by the cavities. The analysis leads to the conclusion that the coherent radiation from the Cerenkov radiation devices is due to super radiance of spontaneous emission instead of stimulated emission. Coherent and incoherent radiations are analyzed in the THz radiation range.

Gao Ju; Shen Fang [Electrical and Computer Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States)

2006-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Glue Film Thickness Measurements by Spectral Reflectance  

SciTech Connect

Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 ?m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

B. R. Marshall

2010-09-20T23:59:59.000Z

362

Spectroscopic research on infrared emittance of coal ash deposits  

SciTech Connect

This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces - with similar geometry and combusting similar coal. The method is potentially applicable to completely different boiler furnaces combusting different coal, and the authors recommend running the tests with new deposit samples. The data will then be applicable to the thermal design of a whole new class of furnaces, having similar geometry and combusting similar coal. This is expected to greatly enhance the accuracy and precision of thermal calculation as well as the efficiency of thermal design of steam boilers. (author)

Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan [Department of Thermomechanics, Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade 35 (RS); Vucicevic, Biljana [Laboratory for Thermal Engineering, Institute of Nuclear Sciences VINCA, P.O. Box 522, Belgrade 11001 (RS); Goricanec, Darko [Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000 (Slovenia); Stevanovic, Zoran [Faculty of Mining and Geology, University of Belgrade, Dusina 7, 11120 Belgrade 35 (RS)

2009-11-15T23:59:59.000Z

363

Near infrared spectral imaging of explosives using a tunable laser source  

Science Conference Proceedings (OSTI)

Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

Klunder, G L; Margalith, E; Nguyen, L K

2010-03-26T23:59:59.000Z

364

Determination of the electronic structure of bilayer graphene from infrared spectroscopy results  

Science Conference Proceedings (OSTI)

We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer graphene and their theoretical analysis within the Slonczewski-Weiss-McClure (SWMc) model. The infrared response is shown to be governed by the interplay of the interband and the intraband transitions among the four bands of the bilayer. The position of the main conductivity peak at thecharge-neutrality point is determined by the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information about less known parameters of the SWMc model such as those responsible for the electron-hole and sublattice asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.

Zhang, L. M.; Li, Z. Q.; Basov, D. N.; Fogler, M. M.; Hao, Z.; Martin, Michael C.

2008-11-12T23:59:59.000Z

365

Coherent Radiation in Gamma-Ray Bursts and Relativistic Collisionless Shocks  

E-Print Network (OSTI)

We suggest that coherent radiation may occur in relativistic collisionless shocks via two-stream Weibel instabilities. The coherence amplifies the radiation power by many orders [$\\sim 10^{12}$ in Gamma-Ray Bursts (GRBs)] and particles cool very fast before being randomized. We imply (1) GRBs accompany strong infrared emission, (2) protons efficiently transfer energy to electrons and (3) prompt GRBs might be the upscattered coherent radiation.

Kunihito Ioka

2005-08-23T23:59:59.000Z

366

Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010  

SciTech Connect

The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

2012-07-07T23:59:59.000Z

367

Proof Synthesis and Reflection for Linear Arithmetic  

Science Conference Proceedings (OSTI)

This article presents detailed implementations of quantifier elimination for both integer and real linear arithmetic for theorem provers. The underlying algorithms are those by Cooper (for Z) and by Ferrante and Rackoff ... Keywords: Linear arithmetic, Proof synthesis, Reflection

Amine Chaieb; Tobias Nipkow

2008-07-01T23:59:59.000Z

368

Diffuse reflectance imaging with astronomical applications  

E-Print Network (OSTI)

Diffuse objects generally tell us little about the surrounding lighting, since the radiance they reflect blurs together incident lighting from many directions. In this paper we discuss how occlusion geometry can help invert ...

Hasinoff, Samuel W.

369

Solar Reflection Panels - Energy Innovation Portal  

Patent 7,077,532: Solar reflection panels A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front ...

370

Types of Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation...

371

Radiation Effects In Ceramics  

Science Conference Proceedings (OSTI)

RADIATION MATERIALS SCIENCE IN TECHNOLOGY APPLICATIONS II: Radiation Effects in Ceramics. Sponsored by: Jt. SMD/MSD Nuclear Materials ...

372

Ionizing Radiation Dosimetry  

Science Conference Proceedings (OSTI)

Ionizing Radiation Dosimetry. ... OH. US Air Force Radiation Dosimetry Laboratory, Wright-Patterson - Base, OH [100548- 0] PA. ...

2013-09-06T23:59:59.000Z

373

Radiation Physics Division  

Science Conference Proceedings (OSTI)

... The Radiation Physics Division, part of the Physical Measurement Laboratory ... the measurement standards for ionizing radiations and radioactivity ...

2013-09-05T23:59:59.000Z

374

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Infrared Beams Print Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

375

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

376

Infrared light sources with semimetal electron injection  

DOE Patents (OSTI)

An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

377

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile Time Required Low-End Estimate: 6 weeks0.115 years

378

Reflective masks for extreme ultraviolet lithography  

SciTech Connect

Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

Nguyen, Khanh Bao

1994-05-01T23:59:59.000Z

379

Infrared Heating of Hydrogen Layers in Hohlraums  

DOE Green Energy (OSTI)

The authors report results of modeling and experiments on infrared heated deuterium-hydride (HD) layers in hohlraums. A 2 mm diameter, 40 {micro}m thick shell with 100-400 {micro}m thick HD ice inside a NIF scale-1 gold hohlraum with 1-3 {micro}m rms surface roughness is heated by pumping the HD vibrational bands. Models indicate control of the low-mode layer shape by adjusting the infrared distribution along the hohlraum walls. They have experimentally demonstrated control of the layer symmetry perpendicular to the hohlraum axis.

Kozioziemski, B J; McEachern, R L; London, R A; Bitter, D N

2001-08-15T23:59:59.000Z

380

The FourStar Infrared Camera  

E-Print Network (OSTI)

The FourStar infrared camera is a 1.0-2.5 micron (JHKs) near infrared camera for the Magellan Baade 6.5m telescope at Las Campanas Observatory (Chile). It is being built by Carnegie Observatories and the Instrument Development Group at Johns Hopkins and is scheduled for completion in 2009. The instrument uses four Teledyne HAWAII-2RG arrays that produce a 10.9 x 10.9 arcmin field of view. The outstanding seeing at the Las Campanas site coupled with FourStar's high sensitivity and large field of view will enable many new survey and targeted science programs.

S. E. Persson; Robert Barkhouser; Christoph Birk; Randy Hammond; Albert Harding; E. R. Koch; J. L. Marshall; Patrick J. McCarthy; David Murphy; Joe Orndorff; Gregg Scharfstein; Stephen A. Shectman; Stephen Smee; Alan Uomoto

2008-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Synchrotron Ultraviolet Radiation Facility SURF III ...  

Science Conference Proceedings (OSTI)

... Synchrotron Radiation. What is Synchrotron Radiation? Synchrotron radiation ... known. Properties of Synchrotron Radiation. Schwinger ...

382

Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain  

Science Conference Proceedings (OSTI)

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

2010-09-15T23:59:59.000Z

383

Infrared Quantum Dots** By Edward H. Sargent*  

E-Print Network (OSTI)

increasingly on mastery of the infrared spectral region. Fiber-optic communications systems rely on the low's progress in visible-light-emitting colloidal-quantum-dot synthesis, physical chemistry, and devices on applications and devices. The applications of interest surveyed include monolithic integration of fiber-optic

384

MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS  

Science Conference Proceedings (OSTI)

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

Xia, X. Y.; Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Gao, Y.; Tan, Q. H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mao, S. [National Astronomical Observatories of China, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Omont, A. [Institut d'Astrophysique de Paris, UMR7095, UPMC and CNRS, 98bis boulevard Arago, F-75014 Paris (France); Flaquer, B. O.; Leon, S. [Instituto de Radioastronomia Milimetrica (IRAM), Avenida Divina Pastora 7, Nucleo Central, 18012 Granada (Spain); Cox, P., E-mail: xyxia@bao.ac.cn [Institut de Radio Astronomie Millimetrique (IRAM), F-38406 St. Martin d'Heres (France)

2012-05-10T23:59:59.000Z

385

Shortwave Infrared Spectroradiometer for Atmospheric Transmittance Measurements  

Science Conference Proceedings (OSTI)

The use of a shortwave infrared (SWIR) spectroradiometer as a solar radiometer is presented. The radiometer collects 1024 channels of data over the spectral range of 1.1–2.5 ?m. The system was tested by applying the Langley method to data ...

M. Sicard; K. J. Thome; B. G. Crowther; M. W. Smith

1998-02-01T23:59:59.000Z

386

SiGeC Near Infrared Photodetectors  

E-Print Network (OSTI)

A near infrared waveguide photodetector in Si-based ternary Si?â??xâ??yGexCy alloy was demonstrated for 0.85~1.06 µm wavelength fiber-optic interconnection system applications. Two sets of detectors with active absorption ...

Li, Baojun

387

A Field Intercomparison Technique to Improve the Relative Accuracy of Longwave Radiation Measurements and an Evaluation of CASES-99 Pyrgeometer Data Quality  

Science Conference Proceedings (OSTI)

Techniques for improving the relative accuracy of longwave radiation measurements by a set of pyrgeometers [the Eppley Laboratory Precision Infrared Radiometer (Model PIR)] are presented using 10 PIRs from the 1999 Cooperative Atmosphere–Surface ...

S. P. Burns; J. Sun; A. C. Delany; S. R. Semmer; S. P. Oncley; T. W. Horst

2003-03-01T23:59:59.000Z

388

Effects of Radiation and Turbulence on the Diabatic Heating and Water Budget of the Stratiform Region of a Tropical Cloud Cluster  

Science Conference Proceedings (OSTI)

A two-dimensional, kinematic model, incorporating ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment, is used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds ...

Dean D. Churchill; Robert A. Houze Jr.

1991-04-01T23:59:59.000Z

389

Comparing MODIS and AIRS Infrared-Based Cloud Retrievals  

Science Conference Proceedings (OSTI)

Comparisons are described for infrared-derived cloud products retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) using measured spatial response functions obtained from prelaunch ...

Shaima L. Nasiri; H. Van T. Dang; Brian H. Kahn; Eric J. Fetzer; Evan M. Manning; Mathias M. Schreier; Richard A. Frey

2011-05-01T23:59:59.000Z

390

Noise reduction efforts for the ALS infrared beamlines  

E-Print Network (OSTI)

is being commissioned at the ALS that should help quietalso has links to the main ALS Infrared Website, where PDF’sNoise reduction efforts for the ALS infrared beamlines Tom

2003-01-01T23:59:59.000Z

391

Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms  

Science Conference Proceedings (OSTI)

The development of a combined infrared and passive microwave satellite rainfall estimation technique is outlined. Infrared data from geostationary satellites are combined with polar-orbiting passive microwave estimates to provide 30-min rainfall ...

Chris Kidd; Dominic R. Kniveton; Martin C. Todd; Tim J. Bellerby

2003-12-01T23:59:59.000Z

392

Infrared Brightness Temperature of Mars, 1983-2103  

E-Print Network (OSTI)

The predicted infrared brightness temperature of Mars using the 1976 model of Wright is tabulated here for the period 1983 to 2103. This model was developed for far-infrared calibration, and is still being used for JCMT calibration.

E. L. Wright

2007-03-25T23:59:59.000Z

393

A Comparison of Infrared Light Emitting Diodes (IR-LED) versus Infrared  

E-Print Network (OSTI)

B. Characteristics of a typical IR LED analogous to the typeLight Emitting Diodes (IR-LED) versus Infrared Helium-Neon (light emitting diode (IR-LED) to quantitatively measure fuel

Girard, James W.; Bogin, Gregory E; Mack, John Hunter; Chen, J-Y; Dibble, Rober W

2005-01-01T23:59:59.000Z

394

Reflection Survey (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey (Majer, 2003) Reflection Survey (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones. References E. L. Majer (2003) 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary

395

Soil Moisture Monitorization Using GNSS Reflected Signals  

E-Print Network (OSTI)

The use of GNSS signals as a source of opportunity for remote sensing applications, GNSS-R, has been a research area of interest for more than a decade. One of the possible applications of this technique is soil moisture monitoring. The retrieval of soil moisture with GNSS-R systems is based on the variability of the ground dielectric properties associated to soil moisture. Higher concentrations of water in the soil yield a higher dielectric constant and reflectivity, which incurs in signals that reflect from the Earth surface with higher peak power. Previous investigations have demonstrated the capability of GPS bistatic scatterometers to obtain high enough signal to noise ratios in order to sense small changes in surface reflectivity. Furthermore, these systems present some advantages with respect to others currently used to retrieve soil moisture. Upcoming satellite navigation systems, such as the European Galileo, will represent an excellent source of opportunity for soil moisture remote sensing for vario...

Egido, Alejandro; Caparrini, Marco; Martin, Cristina; Farres, Esteve; Banque, Xavier

2008-01-01T23:59:59.000Z

396

Dielectric compound parabolic concentrating solar collector with a frustrated total internal reflection absorber  

SciTech Connect

Coupling a dielectric compound parabolic concentrator (DCPC) to an absorber across a vacuum gap by means of frustrated total internal reflection (FTIR) can theoretically approach the maximum concentration permitted by physical laws, thus allowing higher radiative fluxes in thermal applications. The calculated optical performance of 2-D DCPCs with FTIR absorbers indicates that the ratio of gap thickness to optical wavelength must be /0.22 before the optical performance of the DCPC is superior to that of the nondielectric CPC.

Hull, J.R.

1989-01-01T23:59:59.000Z

397

An Accurate Radiative Heating and Cooling Algorithm for Use in a Dynamical Model of the Middle Atmosphere  

Science Conference Proceedings (OSTI)

An infrared radiative heating and cooling algorithm designed to be used with dynamical models of the middle atmosphere is described. A Curtis matrix is used to compute cooling by the 15 and 10 ?m bands of carbon dioxide. Escape of radiation to ...

W. M. Wehrbein; C. B. Leovy

1982-07-01T23:59:59.000Z

398

Reflection Survey (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley. The project objective includes the development and application of active seismic methods for improved understanding of the subsurface structure, faults, fractures lithology, and fluid paths in geothermal reservoirs. While the objective of the work previous to FY2003 was concerned with the detection and location of faults and fractures based on an existing 3-D seismic data set collected at the Rye Patch geothermal reservoir, the current work was aimed at investigating

399

Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Remotely Controlled, Continuous Observations of Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement (CSIRO/ARM) Program Mark II infrared (IR) filter radiometer operated continuously at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site for a period of five weeks. Data of high quality were obtained by remote operation and data transfer with no evidence of spurious

400

A Robust Estimator of Rainfall Rate Using Differential Reflectivity  

Science Conference Proceedings (OSTI)

Conventional estimator of rainfall rate using reflectivity factor and differential reflectivity ZDR becomes unstable when the measured values of ZDR are small due to measurement errors. An alternate estimator of rainfall rate using reflectivity ...

Eugenio Gorgucca; Gianfranco Scarchilli; V. Chandrasekar

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The mid-infrared diameter of W Hydrae  

E-Print Network (OSTI)

Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Modeling results in an apparent angular FDD diameter of W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12 microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/- 0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 +/- 20) deg and an axis ra...

Zhao-Geisler, R; Koehler, R; Lopez, B; Leinert, C

2011-01-01T23:59:59.000Z

402

Metallic Mesh Filter Used for Electromagnetic Shielding of Infrared Window  

Science Conference Proceedings (OSTI)

In order to meet anti-electromagnetism interference performance requirements of infrared window, a metallic mesh coating must be used on the infrared window. From the diffraction theory of grating and the equivalent circuit method, simplified expressions ... Keywords: stealth technology, electro-optical countermeasure, transparent conductive coating, metallic mesh filter, infrared window

Jia-Li Song, Xiao-Guo Feng

2012-07-01T23:59:59.000Z

403

A multimedia museum guide system with instant infrared communication  

Science Conference Proceedings (OSTI)

In this paper, we describe a prototype of an multimedia guide system that use instant infrared communication to get the multimedia contents and play the contents based on the operation of the users. The portable guide device is conposed of an infrared ... Keywords: guide system, infrared, uubiquitous computing, wireless communication

Dawei Cai

2008-03-01T23:59:59.000Z

404

Radiation Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

405

RADIATION COUNTER  

DOE Patents (OSTI)

This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

Goldsworthy, W.W.

1958-02-01T23:59:59.000Z

406

RADIATION DOSIMETER  

DOE Patents (OSTI)

An improvement was made in the determination of amounts of ionizing radiation, particularly low-energy beta particles of less than 1000 rad total dose by means of fluid-phase dosimeter employing a stabilized-- sensitized ferrous-ferric colorimetric system in a sulphuric acid medium. The improvement in the dosimeter consists of adding to the ferrous-ferric system in concentrations of 10/sub -2/ to 10/sup -4/M an organic compound having one or more carboxylic or equivalent groups, such compounds being capable of chelating or complexing the iron ions in the solution. Suitable sensitizing and stabilizing agents are benzoic, phthalic, salicylic, malonic, lactic, maleic, oxalic, citric, succinic, phenolic tartaric, acetic, and adipic acid, as well as other compounds which are added to the solution alone or in certain combinations. As in conventional fluid-phase dosimeters, the absorbed dosage is correlated with a corresponding change in optical density at particular wavelengths of the solution.

Balkwell, W.R. Jr.; Adams, G.D. Jr.

1960-05-10T23:59:59.000Z

407

Research Needs: Glass Solar Reflectance and Vinyl Siding  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Needs: Glass Solar Reflectance and Vinyl Siding Title Research Needs: Glass Solar Reflectance and Vinyl Siding Publication Type Report LBNL Report Number LBNL-5022E Year...

408

Seismic Reflection Data and Conceptual Models for Geothermal...  

Open Energy Info (EERE)

Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection...

409

Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP)...

410

Reflection Survey At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Wister Area (DOE GTP) Exploration...

411

Potential benefits of solar reflective car shells: Cooler cabins...  

NLE Websites -- All DOE Office Websites (Extended Search)

of solar reflective car shells: Cooler cabins, fuel savings and emission reductions Title Potential benefits of solar reflective car shells: Cooler cabins, fuel savings and...

412

Land Surface Reflectance: A Possible Earth Science  

E-Print Network (OSTI)

are in magenta, water bodies are outlined in white. MODIS Surface Reflectance South Africa From: E. Vermote, UMD correction (low, medium, high) ­ cloud and cloud shadow ­ snow flag ­ land/water flag · Supplemental information ­ Viewing geometry (view and solar zenith and azimuth angles) ­ Geolocation (lat

413

Dynamic shading enhancement for reflectance transformation imaging  

Science Conference Proceedings (OSTI)

We propose a set of dynamic shading enhancement techniques for improving the perception of details, features, and overall shape characteristics from images created with Reflectance Transformation Imaging (RTI) techniques. Selection of these perceptual ... Keywords: Visualization, cultural heritage shading enhancement, illumination, image processing

Gianpaolo Palma; Massimiliano Corsini; Paolo Cignoni; Roberto Scopigno; Mark Mudge

2010-09-01T23:59:59.000Z

414

Reflected Solar Radiances from Regional Scale Scenes  

Science Conference Proceedings (OSTI)

A set of bi-directional reflectance models is presented for various atmospheric scene types. The models were composited from data collected from an aircraft platform in May-July 1979 during Summer MONEX. The space scale of the composited models ...

John M. Davis; Stephen K. Cox

1982-11-01T23:59:59.000Z

415

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

416

An Infrared Imaging Study of the Bipolar Proto-Planetary Nebula IRAS 16594-4656  

E-Print Network (OSTI)

High-resolution mid-infrared images have been obtained in N-band and Q-band for the proto-planetary nebula IRAS 16594-4656. A bright equatorial torus and a pair of bipolar lobes can clearly be seen in the infrared images. The torus appears thinner at the center than at the edges, suggesting that it is viewed nearly edge-on. The infrared lobes correspond to the brightest lobes of the reflection nebula seen in the Hubble Space Telescope (HST) optical image, but with no sign of the point-symmetric structure seen in the visible image. The lobe structure shows a close correspondence with a molecular hydrogen map obtained with HST, suggesting that the dust emission in the lobes traces the distribution of the shocked gas. The shape of the bipolar lobes shows clearly that the fast outflow is still confined by the remnant circumstellar envelope of the progenitor asymptotic giant branch (AGB) star. However, the non-detection of the dust outside of the lobes suggests that the temperature of the dust in the AGB envelope is too low for it to be detected at 20 microns.

Kevin Volk; Bruce J. Hrivnak; Kate Y. L. Su; Sun Kwok

2006-07-20T23:59:59.000Z

417

DETECTORS FOR RADIATION DOSIMETRY  

E-Print Network (OSTI)

2) W. J. Price, "Nuclear Radiation Detection" (2nd ed. , Newand R. J. Berry, "Manual on Radiation Dosimetry" (New York:4) G. F. Knoll, "Radiation Detection and Measurement" (New

Perez-Mendez, V.

2010-01-01T23:59:59.000Z

418

Posters Long-Pathlength Infrared Absorption Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Posters Long-Pathlength Infrared Absorption Measurements in the 8- to 14-µm Atmospheric Window: Self-Broadening Coefficient Data T. J. Kulp (a) and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, California Introduction The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 µm, this absorption can be attributed primarily to water vapor. It consists of 1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the υ 2 rovibrational band (at the high-wavenumber boundary of the window); and 2) the

419

3D metamaterials for the thermal infrared.  

Science Conference Proceedings (OSTI)

Metamaterials form a new class of artificial electromagnetic materials that provides the device designer with the ability to manipulate the flow of electromagnetic energy in ways that are not achievable with naturally occurring materials. However, progress toward practical implementation of metamaterials, particularly at infrared and visible frequencies, has been hampered by a combination of absorptive losses; the narrow band nature of the resonant metamaterial response; and the difficulty in fabricating fully 3-dimensional structures. They describe the progress of a recently initiated program at Sandia National Laboratories directed toward the development of practical 3D metamaterials operating in the thermal infrared. They discuss their analysis of fundamental loss limits for different classes of metamaterials. In addition, they discuss new design approaches that they are pursuing which reduce the reliance on metallic structures in an effort to minimize ohmic losses.

Sinclair, Michael B.; Brener, Igal; Wendt, Joel Robert; Burckel, David Bruce; Ten Eyck, Gregory A.

2010-06-01T23:59:59.000Z

420

Analysis of the SIAM Infrared Acquisition System  

SciTech Connect

This report describes and presents the results of an analysis of the performance of the infrared acquisition system for a Self-Initiated Antiaircraft Missile (SIAM). A description of the optical system is included, and models of target radiant intensity, atmospheric transmission, and background radiance are given. Acquisition probabilities are expressed in terms of the system signal-to-noise ratio. System performance against aircraft and helicopter targets is analyzed, and background discrimination techniques are discussed. 17 refs., 22 figs., 6 tabs.

Varnado, S.G.

1974-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

THE INFRARED COLORS OF THE SUN  

Science Conference Proceedings (OSTI)

Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

Casagrande, L.; Asplund, M. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Australian National University, ACT 2611 (Australia); Ramirez, I. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712-0259 (United States); Melendez, J., E-mail: luca@mso.anu.edu.au [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Sao Paulo, 05508-900 SP (Brazil)

2012-12-10T23:59:59.000Z

422

Probing Organic Transistors with Infrared Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Organic Transistors with Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However, even though this class of devices is finding a growing number of applications, electronic processes in organic materials are still not well understood. A group of researchers from the University of California and the ALS has succeeded in probing the intrinsic electronic properties of the charge carriers in organic FETs using infrared spectromicroscopy. The results of their study could help in the future development of sensors, large-area displays, and other plastic electronic components.

423

Infrared Sky Brightness Monitors for Antarctica  

E-Print Network (OSTI)

. Two sky brightness monitorsone for the near-infrared and one for the mid-infraredhave been developed for site survey work in Antarctica. The instruments, which we refer to as the NISM (Near-Infrared Sky Monitor) and the MISM (Mid-Infrared Sky Monitor), are part of a suite of instruments being deployed in the Automated Astrophysical Site-Testing Observatory (AASTO). The chief design constraints include reliable, autonomous operation, low power consumption, and of course the ability to operate under conditions of extreme cold. The instruments are currently operational at the Amundsen-Scott South Pole Station, prior to deployment at remote, unattended sites on the high antarctic plateau. 1. INTRODUCTION The antarctic plateau is recognized as having the potential to provide some of the best astronomical observing conditions on earth (see, e.g., Burton et al. 1994). Almost all the site testing to date has been carried out at the South Pole, where it has already been demonstrated t...

Storey Ashley Boccas; J. W. V. Storey; M. C. B. Ashley; M. Boccas; M. A. Phillips; A. E. T. Schinckel

1999-01-01T23:59:59.000Z

424

Integral field near-infrared spectroscopy of II Zw 40  

E-Print Network (OSTI)

We present integral field spectroscopy in the near-infrared of the nearby starburst galaxy IIZw40. Our new observations provide an unprecedented detailed view of the interstellar medium and star formation of this galaxy. The radiation emitted by the galaxy is dominated by a giant HII region, which extends over an area of more than 400 pc in size. A few clusters are present in this area, however one in particular appears to be the main source of ionizing photons. We derive the properties of this object and compare them with those of the 30 Doradus cluster in the Large magellanic cloud (LMC). We study the spatial distribution and velocity field of different components of the inetrstellar medium (ISM), mostly through the Bracket series lines, the molecular hydrogen spectrum, and [FeII]. We find that [FeII] and H2 are mostly photon excited, but while the region emitting [FeII] is almost coincident with the giant HII region observed in the lines of atomic H and He, the H2 has a quite different distribution in space and velocity. The age of the stellar population in the main cluster is such that no supernova (SN) should be present yet so that the gas kinematics must be dominated by the young stars. We do not see, in the starbursting region, any geometrical or dynamical structure that can be related to the large scale morphology of the galaxy.

L. Vanzi; G. Cresci; E. Telles; J. Melnick

2008-03-17T23:59:59.000Z

425

Courses on Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

426

Radiation Physics Events  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Events. Radiation Physics Events. (showing 1 - 3 of 3). CIRMS 2012 Start Date: 10/22/2012 ...

2011-12-01T23:59:59.000Z

427

Bayesian Radiation Source Localization  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation

Kenneth D. Jarman; Erin A. Miller; Richard S. Wittman; Christopher J. Gesh

428

Radiation Control (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

429

Solar radiation resource assessment  

DOE Green Energy (OSTI)

The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

Not Available

1990-11-01T23:59:59.000Z

430

A Model of the Radiative Properties of the EL Chichon Stratospheric Aerosol Layer  

Science Conference Proceedings (OSTI)

An accurate multiple-scattering model has been employed to examine the effect of an aerosol layer at 25 mb, corresponding to the EL Chichon observations, on the reflection, transmission and absorption of radiation by the stratosphere as a ...

Michael D. King; Harshvardhan; Albert Arking

1984-07-01T23:59:59.000Z

431

Attenuation and Scattering of Millimeter Wavelength Radiation by Clouds and Precipitation  

Science Conference Proceedings (OSTI)

This article is concerned with investigations of scattering and absorption of 35, 94, 140, and 240 GHz radiation by clouds and precipitation. The computations of radar reflectivity, Doppler spectra, and absorption coefficients are performed using ...

Roger Lhermitte

1990-06-01T23:59:59.000Z

432

Relationship between Cloud Radiative Forcing and Sea Surface Temperatures over the Entire Tropical Oceans  

Science Conference Proceedings (OSTI)

Satellite measurements from January 1985 to December 1989 show that warmer tropical oceans as a whole are associated with less longwave greenhouse effect of clouds and less cloud reflection of solar radiation to the space. The regression slopes ...

M. H. Zhang; R. D. Cess; S. C. Xie

1996-06-01T23:59:59.000Z

433

Retrieval of Surface Solar Radiation Budget under Ice Cloud Sky: Uncertainty Analysis and Parameterization  

Science Conference Proceedings (OSTI)

This study investigates and accounts for the influence of various ice cloud parameters on the retrieval of the surface solar radiation budget (SSRB) from reflected flux at the top of the atmosphere (TOA). The optical properties of ice clouds ...

Ying Zhang; Zhanqing Li; Andreas Macke

2002-10-01T23:59:59.000Z

434

Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget  

Science Conference Proceedings (OSTI)

Despite recent improvements in satellite instrument calibration and the algorithms used to determine reflected solar (SW) and emitted thermal (LW) top-of-atmosphere (TOA) radiative fluxes, a sizeable imbalance persists in the average global net ...

Norman G. Loeb; Bruce A. Wielicki; David R. Doelling; G. Louis Smith; Dennis F. Keyes; Seiji Kato; Natividad Manalo-Smith; Takmeng Wong

2009-02-01T23:59:59.000Z

435

An Upper Boundary Condition Permitting Internal Gravity Wave Radiation in Numerical Mesoscale Models  

Science Conference Proceedings (OSTI)

A radiative upper boundary condition is proposed for numerical mesoscale models which allows vertically propagating internal gravity waves to pass out of the computational domain with minimal reflection. In this formulation, the pressure along ...

Joseph B. Klemp; Dale R. Durran

1983-03-01T23:59:59.000Z

436

Milwaukee Installer Reflects on His Career In Solar  

Energy.gov (U.S. Department of Energy (DOE))

Interested in joining America's solar workforce? One Milwaukee solar installer shares his career reflections and advice.

437

Structures, systems and methods for harvesting energy from electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

438

Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation  

DOE Patents (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

2012-10-09T23:59:59.000Z

439

Structures, systems and methods for harvesting energy from electromagnetic radiation  

Science Conference Proceedings (OSTI)

Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

2011-12-06T23:59:59.000Z

440

On the band-to-continuum intensity ratio in the infrared spectra of interstellar carbonaceous dust  

E-Print Network (OSTI)

Published interpretations of the relative intensity variations of the Unidentified Infrared Bands (UIBs) and their underlying continuum are discussed. An alternative model is proposed, in which a single carrier for both emits a) mostly a continuum when it is electronically excited by photons (visible or UV), or b) exclusively the UIBs, when only chemical energy is deposited by H capture on its surface, inducing only nuclear vibrations. The bands will dominate in atomic H regions but will be overcome by thermal continuum radiation when the ambient field is strong but lacks dissociating photons (900-1100 Angstroms). The model applies to PDRs as well as to limbs of molecular clouds in the ISM and agrees quantitatively with recent satellite observations. It gives indications on atomic H density and UIB intensity provided the ambient radiation field is known. It invokes no chemical, electronic, structural or size change in order to interpret the observed intensity variations.

Renaud Papoular

2004-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

442

U.S. Reflects World Market  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: U.S. crude oil inventories reflect the world situation. U.S. inventories were drawn down in 1999 as world demand exceeded world supply of crude oil as OPEC cut back on production. Low crude oil inventories go hand in hand with low product inventories. Product inventories were also drawn down to help meet demand, as was seen with gasoline this Spring. The rise in crude oil inventories earlier this year, while indicating an improvement in the market balance, appears to be short-lived, just as we had predicted a few months ago. Looking at U.S. crude stock levels in April and May can be misleading, since increases then were more reflective of the surge in WTI and U.S. product prices in the 1st quarter. With U.S. crude oil stocks drawn down by more than 20 million barrels from

443

Compact reflective imaging spectrometer utilizing immersed gratings  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

Chrisp, Michael P. (Danville, CA)

2006-05-09T23:59:59.000Z

444

Light reflecting apparatus including a multi-aberration light reflecting surface  

DOE Patents (OSTI)

A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

Sawicki, Richard H. (Pleasanton, CA); Sweatt, William (Livermore, CA)

1987-01-01T23:59:59.000Z

445

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

446

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

447

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

448

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

449

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

450

V-022: Attachmate Reflection Products Java Multiple Vulnerabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Attachmate Reflection Products Java Multiple Vulnerabilities 2: Attachmate Reflection Products Java Multiple Vulnerabilities V-022: Attachmate Reflection Products Java Multiple Vulnerabilities November 13, 2012 - 1:00am Addthis PROBLEM: Attachmate Reflection Products Java Multiple Vulnerabilities PLATFORM: Reflection X 2011 Reflection Suite for X 2011 Reflection for Secure IT Server for Windows Reflection for Secure IT Client and Server for UNIX ABSTRACT: Security issues related to Reflection PKI Services Manager REFERENCE LINKS: PKI Services Manager Technical Note 2560 Secunia Advisory SA51256 CVE-2012-0551 CVE-2012-1711 CVE-2012-1713 CVE-2012-1716 CVE-2012-1717 CVE-2012-1718 CVE-2012-1719 CVE-2012-1720 CVE-2012-1721 CVE-2012-1722 CVE-2012-1723 CVE-2012-1724 CVE-2012-1725 CVE-2012-1726 IMPACT ASSESSMENT: High DISCUSSION: Attachmate has acknowledged multiple vulnerabilities in some Reflection

451

Far-infrared observations of G351. 6 - 1. 3/G351. 7 - 1. 2 region  

SciTech Connect

An area of about 20 arcmin x 25 arcmin around the H II region-molecular cloud complexes G351.6 - 1.3 and G351.7 - 1.2 has been mapped in a 120 - 300 micron far-infrared band with a spatial resolution of about 1.5 arcmin. Besides the two main sources, five weaker sources have been seen. The IRAS two-dimensional COADD data of the same region at 60 microns and 100 microns have been deconvolved for comparison with the 150 micron intensity map. Combining all the available far-infrared measurements, dust temperature, optical depth, far-infrared luminosity, etc, have been derived for the individual sources in this complex. Spectra have been constructed for the two main sources using all available data. These have been compared with the results of radiation transfer calculations for a spherically symmetric model. Information has been derived on the nature of the dust and its distribution in the main source in G351.6 - 1.3. A mixture of graphite and silicate grains gives a good fit to the observed spectrum. The favored radial dust density distribution is uniform. 30 refs.

Ghosh, S.K.; Iyengar, K.V.K.; Rengarajan, T.N.; Tandon, S.N.; Verma, R.P. (Tata Institute of Fundamental Research, Bombay (India))

1990-04-01T23:59:59.000Z

452

NIST MIRF - Accelerator Radiation Physics  

Science Conference Proceedings (OSTI)

Accelerator Radiation Physics. Medium-energy accelerators are under investigation for production of channeling radiation ...

453

NIST Synchrotron radiation in SSD  

Science Conference Proceedings (OSTI)

Synchrotron radiation in the Sensor Science Division. ... Synchrotron Radiation-Based Calibrations for Space Weather Prediction. ...

2011-10-18T23:59:59.000Z

454

Monoenergetic Proton Beams Accelerated by a Radiation Pressure Driven Shock  

DOE Green Energy (OSTI)

We report on the acceleration of impurity-free quasimononenergetic proton beams from an initially gaseous hydrogen target driven by an intense infrared ({lambda} = 10 {micro}m) laser. The front surface of the target was observed by optical probing to be driven forward by the radiation pressure of the laser. A proton beam of MeV energy was simultaneously recorded with narrow energy spread ({sigma}-4%), low normalized emittance (-8 nm), and negligible background. The scaling of proton energy with the ratio of intensity over density (I/n) confirms that the acceleration is due to the radiation pressure driven shock.

Palmer, C.A.; Pogorelsky, I.; Dover, N.P.; Babzien, M.; Dudnikova, G.I.; Ispiriyan, M.; Polyanskiy, M.N.; Schreiber, J.; Shkolnikov, P.; Yakimenko, V.; Najmudin, Z.

2011-11-01T23:59:59.000Z

455

Radiation Detection Instruments  

Science Conference Proceedings (OSTI)

Directory of Accredited Laboratories. Radiation Detection Instruments. In 2005, the Department of Homeland Security requested ...

2013-09-06T23:59:59.000Z

456

Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters A One-Dimensional Radiative Convective Model with Detailed Cloud Microphysics J. Simmons, O. Lie-Svendsen, and K. Stamnes Geophysical Institute University of Alaska Fairbanks, Alaska The Arctic is a key element in determining the radiation budget of the earth. Within the polar regions, the net radiation (incoming solar radiation minus outgoing infrared radiation) is negative. To understand the role this energy deficit plays in the overall radiation budget, one must examine the prevalent atmospheric features of the Arctic. One such feature is a persistent layer of low-altitude, stratiform clouds found over the central Arctic predominantly from April to September (Tsay et al. 1984). These Arctic stratus clouds (ASC) modulate the earth's radiation budget

457

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

458

Stratified Quasar Winds: Integrating X-ray and Infrared Views of Broad Absorption Line Quasars  

E-Print Network (OSTI)

Quasars are notable for the luminous power they emit across decades in frequency from the far-infrared through hard X-rays; emission at different frequencies emerges from physical scales ranging from AUs to parsecs. Each wavelength regime thus offers a different line of sight into the central engine and a separate probe of outflowing material. Therefore, obtaining a complete accounting of the physical characteristics and kinetic power of quasar winds requires a panchromatic approach. X-ray and infrared studies are particularly powerful for covering the range of interesting physical scales and ionization states of the outflow. We present a stratified wind picture based on a synthesis of multiwavelength research programs designed to constrain the nature of mass ejection from radio-quiet quasars. This wind comprises three zones: the highly ionized shielding gas, the UV broad absorption line wind, and the cold dusty outflow. The primary launching mechanism for the wind likely varies in each zone. While radiative acceleration on resonance lines dominates for the UV absorbing wind, the shielding gas may instead be driven by magnetic forces. Ultraviolet continuum radiative pressure, perhaps coupled with magnetic launching, accelerates a dusty outflow that obscures the inner broad line region in unification schemes.

S. C. Gallagher; J. E. Everett

2007-01-04T23:59:59.000Z

459

Radiation Field Control Manual  

Science Conference Proceedings (OSTI)

The EPRI Radiation Management Program is dedicated to reducing nuclear power plant worker personnel exposure by developing practices and technologies to increase the radiation protection of the worker, and to implement methods to reduce radiation fields. The nuclear power industry has recently implemented the RP2020 Initiative to promote positive radiation protection trends. Control of radiation fields is crucial to one of the initiative goals of reducing exposure. This manual provides the current state ...

2004-12-16T23:59:59.000Z

460

Infrared Images of Shock-Heated Tin  

Science Conference Proceedings (OSTI)

High-resolution, gated infrared images were taken of tin samples shock heated to just below the 505 K melting point. Sample surfaces were either polished or diamond-turned, with grain sizes ranging from about 0.05 to 10 mm. A high explosive in contact with a 2-mm-thick tin sample induced a peak sample stress of 18 GPa. Interferometer data from similarly-driven tin shots indicate that immediately after shock breakout the samples spall near the free (imaged) surface with a scab thickness of about 0.1 mm.

Craig W. McCluskey; Mark D. Wilke; William D. Turley; Gerald D. Stevens; Lynn R. Veeser; Michael Grover

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Surface Radiation from GOES: A Physical Approach; Preprint  

DOE Green Energy (OSTI)

Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

Habte, A.; Sengupta, M.; Wilcox, S.

2012-09-01T23:59:59.000Z

462

Albedo and Reflection Spectra of Extrasolar Giant Planets  

E-Print Network (OSTI)

We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of four broad effective temperature ranges, it is natural to establish four representative EGP albedo classes: a ``Jovian'' class (T$_{\\rm eff} \\lesssim 150$ K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (T$_{\\rm eff} \\sim 250$ K; Class II) primarily affected by condensed H$_2$O, a ``clear'' class (T$_{\\rm eff} \\gtrsim 350$ K; Class III) which lacks clouds, and a high-temperature class (T$_{\\rm{eff}}$ $\\gtrsim$ 900 K; Class IV) for which alk...

Sudarsky, D; Pinto, P A; Sudarsky, David; Burrows, Adam; Pinto, Philip

1999-01-01T23:59:59.000Z

463

Does an accelerated electron radiate Unruh radiation?  

E-Print Network (OSTI)

An accelerated particle sees the Minkowski vacuum as thermally excited, and the particle moves stochastically due to an interaction with the thermal bath. This interaction fluctuates the particle's transverse momenta like the Brownian motion in a heat bath. Because of this fluctuating motion, it has been discussed that the accelerated charged particle emits extra radiation (the Unruh radiation) in addition to the classical Larmor radiation, and experiments are under planning to detect such radiation by using ultrahigh intensity lasers constructed in near future. There are, however, counterarguments that the radiation is canceled by an interference effect between the vacuum fluctuation and the fluctuating motion. In fact, in the case of an internal detector where the Heisenberg equation of motion can be solved exactly, there is no additional radiation after the thermalization is completed. In this paper, we revisit the issue in the case of an accelerated charged particle in the scalar QED. We first prove the e...

Iso, Satoshi; Zhang, Sen

2010-01-01T23:59:59.000Z

464

Reflection and Transmission for Conformal Defects  

E-Print Network (OSTI)

We consider conformal defects joining two conformal field theories along a line. We define two new quantities associated to such defects in terms of expectation values of the stress tensors and we propose them as measures of the reflectivity and transmissivity of the defect. Their properties are investigated and they are computed in a number of examples. We obtain a complete answer for all defects in the Ising model and between certain pairs of minimal models. In the case of two conformal field theories with an enhanced symmetry we restrict ourselves to non-trivial defects that can be obtained by a coset construction.

Thomas Quella; Ingo Runkel; Gerard M. T. Watts

2006-11-27T23:59:59.000Z

465

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

466

Assessing Cloud Spatial and Vertical Distribution with Infrared...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le...

467

a prospective for new mid-infrared medical endoscopy  

Science Conference Proceedings (OSTI)

It is shown that chalcogenide glass fiberoptics could underpin new mid-infrared medical endoscopic systems for real-time molecular sensing, imaging and ...

468

Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Yellowstone Region (Hellman & Ramsey, 2004) Exploration...

469

Application Of High-Resolution Thermal Infrared Sensors For Geothermal...  

Open Energy Info (EERE)

Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

470

Infrared Imagery Applied to A Large Buoyant Plume  

Science Conference Proceedings (OSTI)

The possibility of applying infrared imagery to the study of a large, hot plume materialized by carbon particles resulting from the incomplete combustion of fuel oil is investigated.

J-M. Brustet; B. Benech; P. Waldteufel

1981-05-01T23:59:59.000Z

471

First Principles Simulations of the Infrared Spectrum of Liquid...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrared spectra. These important findings suggest that through the use of high-performance computing, we can improve our predictive power of aqueous environments. Prof. Galli...

472

Near Infrared Heating and Sintering; A Versatile Tool to Enable ...  

Science Conference Proceedings (OSTI)

A single heating technique (near infrared (NIR)) can bring down oven residence times to seconds. Five examples in relation to HOPV production are: (1) TiO2 ...

473

Testing and Deployment of an Infrared Thermometer Network at...  

NLE Websites -- All DOE Office Websites (Extended Search)

four user- definable field-of-view retrievals centered on zenith * Ferroelectric thermal infrared detector does not need cryogenic cooling * Detector is resistant to...

474

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager  

Cesiated Carbon Nanoflakes Field Emitter Array Infrared Imager ... The field emission current of each cesiated carbon nanoflake structure is modulated by the

475

Laboratory Procedures for using Infrared Thermography to Validate...  

NLE Websites -- All DOE Office Websites (Extended Search)

925 Laboratory Procedures for using Infrared Thermography to Validate Heat Transfer Models Daniel Trler, Brent T. Griffith, and Dariush K. Arasteh Lawrence Berkeley National...

476

Infrared Thermography in High Level Waste  

Science Conference Proceedings (OSTI)

The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

GLEATON, DAVIDT.

2004-08-24T23:59:59.000Z

477

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

478

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

479

radiation.cdr  

Office of Legacy Management (LM)

Radiation-It's a Fact of Life Radiation-It's a Fact of Life It has been with us since the beginning of time. Everyone who has ever walked on this planet has been exposed to radiation. For the most part, nature is the largest source of exposure. It's in the air we breathe, the ground we walk on, and even the food we eat. The radiation we receive from all natural and some man-made sources is called "background radiation." The millirem (mrem) is a unit used for measuring radiation received by a person. The total average background for radiation received by people living in the United States is 360 millirem per year (mrem/yr), of which 300 mrem/yr is from natural sources, and 60 mrem/yr is man-made. Cosmic Radiation from the sun and stars Internal Radiation from naturally radioactive

480

Infrared measurements of soot formation and droplet sizes in diesel sprays. Final report, June 6, 1987--December 31, 1990  

DOE Green Energy (OSTI)

This report describes an investigation of diesel sprays using a combination of infrared wavelength optical diagnostics to probe the high droplet number density region surrounding the injector tip. Infrared wavelengths were shown to be more effective than visible or ultraviolet wavelength light at penetrating this region of the spray. This success is easily explained by the decrease in optical cross section of small diameter drops (less than 10 {mu}m) for a wavelength shift from the visible to wavelengths near 10 {mu}m. Two types of diagnostics were implemented. First, a custom manufactured, high speed infrared spectrometer was used to monitor the spectral region between 6 and 12 {mu}m in 0.5 {mu}m intervals. Spectra from this instrument, for specific locations in the combusting spray were used to monitor the development of soot in the spray. The second diagnostic technique used three collinear laser beams focussed into a 0.25 mm beam to monitor the droplet size in the spray. This measurement uses a ratio of signals to remove the droplet number density as a variable and the observed signal ratio is a direct indication of the average (using an approximate radius to the fourth power weighting function) droplet size. The experiments were performed using a shock tube to simulate the conditions typical of diesel combustion (700 to 900 K in temperature and approximately 3.0 MPa in pressure) and a custom manufactured single shot fuel injection system. Optical access in the shock tube included visible and infrared transmissive windows arranged to provide orthogonal access in two directions and perpendicular to the spray axis. The fuel injection system for this work was configured to produce approximately 20 MPa of injection pressure and produced a single injection approximately 2 ms after the injection trigger. This system could therefore be controlled to inject into the quiescent reflected region of the shock tube after the incident shock reflection from the end wall.

Parker, T.E.; Morency, J.R.; Foutter, R.R.; Rawlins, W.T.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflects infrared radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lamp method and apparatus using multiple reflections  

DOE Patents (OSTI)

An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD)

2001-01-01T23:59:59.000Z

482

A replaceable reflective film for solar concentrators  

DOE Green Energy (OSTI)

The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

Not Available

1991-09-01T23:59:59.000Z

483

Reflection-Based Python-C++ Bindings  

Science Conference Proceedings (OSTI)

Python is a flexible, powerful, high-level language with excellent interactive and introspective capabilities and a very clean syntax. As such, it can be a very effective tool for driving physics analysis. Python is designed to be extensible in low-level C-like languages, and its use as a scientific steering language has become quite widespread. To this end, existing and custom-written C or C++ libraries are bound to the Python environment as so-called extension modules. A number of tools for easing the process of creating such bindings exist, such as SWIG and Boost. Python. Yet, the process still requires a considerable amount of effort and expertise. The C++ language has few built-in introspective capabilities, but tools such as LCGDict and CINT add this by providing so-called dictionaries: libraries that contain information about the names, entry points, argument types, etc. of other libraries. The reflection information from these dictionaries can be used for the creation of bindings and so the process can be fully automated, as dictionaries are already provided for many end-user libraries for other purposes, such as object persistency. PyLCGDict is a Python extension module that uses LCG dictionaries, as PyROOT uses CINT reflection information, to allow /cwPython users to access C++ libraries with essentially no preparation on the users' behalf. In addition, and in a similar way, PyROOT gives ROOT users access to Python libraries.

Generowicz, Jacek; Lavrijsen, Wim T.L.P.; Marino, Massimo; Mato, Pere

2004-10-14T23:59:59.000Z

484

Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m  

Science Conference Proceedings (OSTI)

To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

Kimball B. A.; Lewin K.; Conley, M. M.

2012-04-01T23:59:59.000Z

485

Radiative effects of a CO/sub 2/ increase: results of a model comparison  

SciTech Connect

A comparison of infrared radiative transfer models is announced. The initial phase is underway, with other phases scheduled through 1984. The results of the ir model comparison will be included in the state-of-the-art report on climate modeling. Although the time scale for completion of the comparison is a few years, significant preliminary results have already been obtained. (PSB)

Luther, F.M.

1982-10-07T23:59:59.000Z

486

Low Dose Radiation Program: Links - General Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

General Radiation Information Answers to Questions about Radiation Dose Ranges Charts - tables showing radiation dose ranges from radio diagnostics to cancer radiotherapy....

487

Low Dose Radiation Program: Links - Websites about Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Websites About Radiation The ABC's of Nuclear Science A Teacher's Guide To The Nuclear Science Wall Chart Answers to Questions about Radiation and You Background Radiation:...

488

Plutonium radiation surrogate  

DOE Patents (OSTI)

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

489

Reconstruction of shape and reflectance properties based on visual hull  

Science Conference Proceedings (OSTI)

A method based on Visual Hull is proposed for simultaneously recovering an object's shape and its reflectance properties from multiple images. Here, the reflectance properties are described by the Ward BRDF model. Firstly, the shape represented by voxels ...

Zuoyong Zheng; Lizhuang Ma; Zhong Li; Zhihua Chen

2009-05-01T23:59:59.000Z

490

Narrowband to Broadband Conversion with Spatially Autocorrelated Reflectance Measurements  

Science Conference Proceedings (OSTI)

A new technique for estimating broadband reflectance from Advanced Very High-Resolution Radiometer (AVHRR) narrowband reflectances in channel 1 and 2 is developed. The data used are simultaneous and coincident narrowband and broadband ...

Zhanqing Li; H. G. Leighton

1992-05-01T23:59:59.000Z

491

RefaFlex: safer refactorings for reflective Java programs  

Science Conference Proceedings (OSTI)

If programs access types and members through reflection, refactoring tools cannot guarantee that refactorings on those programs are behavior preserving. Refactoring approaches for highly reflective languages like Smalltalk therefore check behavior preservation ...

Andreas Thies; Eric Bodden

2012-07-01T23:59:59.000Z

492

Reflected Fluxes for Broken Clouds over a Lambertian Surface  

Science Conference Proceedings (OSTI)

Reflected fluxes are calculated for broken cloudiness (i.e., nonplane parallel) as a function of cloud cover, cloud optical depth, solar zenith angle and surface albedo. These calculations extend previous results for broken cloud reflected fluxes ...

Ronald M. Welch; Bruce A. Wielicki

1989-05-01T23:59:59.000Z

493

Low-Latitude Reflection of Rossby Wave Trains  

Science Conference Proceedings (OSTI)

The nonlinear reflection of an isolated Rossby wave train at a low-latitude wave-breaking region is contrasted with the more familiar longitudinally periodic case. General theoretical arguments for nonlinear reflection based on absorptivity ...

G. Brunet; P. H. Haynes

1996-02-01T23:59:59.000Z

494

High speed infrared imaging system and method  

DOE Patents (OSTI)

A system and method for radiation detection with an increased frame rate. A semi-parallel processing configuration is used to process a row or column of pixels in a focal-plane array in parallel to achieve a processing rate up to and greater than 1 million frames per second.

Zehnder, Alan T. (Ithaca, NY); Rosakis, Ares J. (Altadena, CA); Ravichandran, G. (Arcadia, CA)

2001-01-01T23:59:59.000Z

495

Tachyons and Gravitational Cherenkov Radiation  

E-Print Network (OSTI)

AND GRAVITATIONAL CHERENKOV RADIATION CHARLES SCHWARTZwould emit gravitational radiation. It is very small.gravitational waves; Cherenkov radiation. In a recent work,

Schwartz, Charles

2011-01-01T23:59:59.000Z

496

Los Alamos Lab: Radiation Protection  

NLE Websites -- All DOE Office Websites (Extended Search)

Advisor Paul Hoover Special Assistant and Issues Management Coordinator Elinor Gwynn Radiation Protection