Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

2

Thermal insulation of window glass  

SciTech Connect

The thermal insulation of window glass can be increased by a factor of two using spray-on semiconductive SnO/sub 2/: Sb or IN/sub 2/O/sub 3/: Sn coatings. (auth)

Sievers, A.J.

1973-11-01T23:59:59.000Z

3

Window selection: problems and promise of glass  

SciTech Connect

In the past few years, technical innovations in glass and window design have made windows more energy efficient, reducing energy costs and increasing the comfort levels in buildings. These innovations make it possible for occupants to enjoy the benefits of real windows while enabling owners and managers to lower overall operating costs. 1 figure, 1 table.

1986-04-01T23:59:59.000Z

4

Dynamics of window glass fracture in explosions  

SciTech Connect

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

5

Research Needs: Glass Solar Reflectance and Vinyl Siding  

DOE Green Energy (OSTI)

The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

2011-07-07T23:59:59.000Z

6

Standard Guide for Dry Lead Glass and Oil-Filled Lead Glass Radiation Shielding Window Components for Remotely Operated Facilities  

E-Print Network (OSTI)

Standard Guide for Dry Lead Glass and Oil-Filled Lead Glass Radiation Shielding Window Components for Remotely Operated Facilities

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

7

Reduction of Glass Surface Reflectance by Ion Beam Surface Modification  

DOE Green Energy (OSTI)

This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process can be employed on full scale solar modules, equipment must be developed for ion implanting large sheets of glass. A cost analysis shows that the process can be economical. Our finding is that the reduction of reflectance by ion beam surface modification is technically and economically feasible. The public will benefit directly from this work by the improvement of photovoltaic module efficiency, and indirectly by the greater understanding of the modification of glass surfaces by ion beams.

Mark Spitzer

2011-03-11T23:59:59.000Z

8

Aging, Fragility and Reversibility Window in Bulk Alloy Glasses  

E-Print Network (OSTI)

Non-reversing relaxation enthalpies (DHnr) at glass transitions Tg(x) in the PxGexSe1-2x ternary display wide, sharp and deep global minima (~ 0) in the 0.09 age, in contrast to aging observed for fragile glass compositions outside the window. Thermal reversibility and lack of aging seem to be paradigms of self-organization which molecular glasses share with protein structures which repetitively and reversibly change conformation near Tg and the folding temperature respectively.

S. Chakravarty; D. G. Georgiev; P. Boolchand; M. Micoulaut

2007-09-27T23:59:59.000Z

9

Effect of window reflections on photonic Doppler velocimetry measurements  

Science Conference Proceedings (OSTI)

Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

Ao, T.; Dolan, D. H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-02-15T23:59:59.000Z

10

Electrochromic window with high reflectivity modulation  

DOE Patents (OSTI)

A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

2000-01-01T23:59:59.000Z

11

Research Needs: Glass Solar Reflectance and Vinyl Siding  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Needs: Glass Solar Reflectance and Vinyl Siding Title Research Needs: Glass Solar Reflectance and Vinyl Siding Publication Type Report LBNL Report Number LBNL-5022E Year...

12

Reflective insulating blinds for windows and the like  

DOE Patents (OSTI)

Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

Barnes, P.R.; Shapira, H.B.

1979-12-07T23:59:59.000Z

13

Reflective insulating blinds for windows and the like  

DOE Patents (OSTI)

Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

Barnes, Paul R. (Lenoir City, TN); Shapira, Hanna B. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

14

Research Needs: Glass Solar Reflectance and Vinyl Siding  

E-Print Network (OSTI)

properties of reflected solar radiation from glass surfaces,transfer at the siding surface. Direct solar radiation tosiding, reflected solar radiation from nearby surfaces,

Hart, Robert

2012-01-01T23:59:59.000Z

15

LBNL-5022E Research Needs: Glass Solar Reflectance and Vinyl...  

NLE Websites -- All DOE Office Websites (Extended Search)

022E Research Needs: Glass Solar Reflectance and Vinyl Siding Authors: R. Hart*, C. Curcija, D. Arasteh, H. Goudey, C. Kohler, S. Selkowitz Environmental Energy Technologies...

16

window  

Science Conference Proceedings (OSTI)

NIST. window. (definition). ... 17 December 2004. (accessed TODAY) Available from: http://www.nist.gov/dads/HTML/window.html. to NIST home page.

2013-05-08T23:59:59.000Z

17

Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window A window thermal analysis computer program that is the de facto standard used by U.S. manufacturers to characterize product performance. The program has been selected by the...

18

NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS  

SciTech Connect

A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

2003-10-01T23:59:59.000Z

19

Building Energy Software Tools Directory : Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Back to Tool Screenshot of WINDOW definition. Screenshot of WINDOW glass library. Screenshot of WINDOW assembly definition...

20

Research Needs: Glass Solar Reflectance and Vinyl Siding  

E-Print Network (OSTI)

of the University of California, nor any of their employees,of the University of California. The views and opinions ofof the University of California. Research Needs: Glass Solar

Hart, Robert

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Through the looking glass: you can play against your own reflection  

Science Conference Proceedings (OSTI)

This interactive artwork overturns the commonsense assumption that a looking glass reflects the world in front of it. The worlds outside and inside the looking glass are not symmetric in our optical system. This feature allows you to play an air-hockey ...

Yasuaki Kakehi; Takeshi Naemura

2005-06-01T23:59:59.000Z

22

CAVE WINDOW  

DOE Patents (OSTI)

A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

Levenson, M.

1960-10-25T23:59:59.000Z

23

Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces  

SciTech Connect

The reflecting concentrator of a parabolic trough solar collector system comprises approximately 40% of initial system cost. The parabolic concentrator structure is also the most influential component in determining overall system efficiency. Parabolic test moldings have been fabricated from a general purpose sheet molding compound with flat chemically strengthened glass, flat annealed glass, and thermally formed glass. The test panel configuration was a 1.22 m x 0.61 m, 45/sup 0/ rim angle (0.762 m focal length) parabola. Attempts to mold with annealed sheet glass (1 mm thick) and thermally formed glass (1.25 mm thick) were unsuccessful; only the chemically strengthened glass (1.25 mm thick) was strong enough to survive molding pressures. Because of the mismatch in thermal expansion between glass and sheet molding compound, the as-molded panels contained a sizeable residual stress. The results are given of dimensional changes taking place in the panels under accelerated thermal cycling and outdoor aging conditions; these results are compared to an analytical model of the laminate. In addition, the sheet molding compound has been examined for thermomechanical properties and flow behavior in the rib sections. Results indicated that lowering the thermal expansion coefficient of the sheet molding compound through material modifications would produce a more stable structure.

Champion, R. L.; Allred, R. E.

1980-12-01T23:59:59.000Z

24

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

and spacer effects on window U- value. ASHRAE Transactions,Enermodal. (2001). Modelling Windows, Glass Doors and OtherA. (2001). Heat transfer in window frames with internal

Gustavsen, Arild

2009-01-01T23:59:59.000Z

25

Development of sheet molding compound solar collectors with molded-in silvered glass reflective surfaces  

SciTech Connect

An approach to the fabrication of a line-focusng parabolic trough reflector structure which offers the potential of high performance while utilizing mass production type technology with potential for low cost is discussed. The concept is one of a molded structure of fiber reinforced plastic with an integrally molded silvered glass reflective surface. Sheet molding compound (SMC), a mixture of glass fibers and inorganic fillers in polyester resin, has been selected for evaluation as representative of reinforced plastic molding materials. The purpose of the work was to establish the feasibility of molding glass mirrors into SMC structural trough panels. If the effort proved successful, the next stage of development would be demonstration of the structure in a trough collector which incorporates individual SMC reflector panels. The trough has a 2 x 6 m aperture with six individual SMC panels mounted on a torque tube as the main support structure. Results are described. (WHK)

Champion, R. L.; Allred, R. E.

1980-01-01T23:59:59.000Z

26

Whole Window Performance Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria This graph shows the relationship between whole window U-factor and center of glass U-factor (U-cog) for two window types for two generic frames from the...

27

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

CGDB Import Into WINDOW CGDB Import Into WINDOW Updated: 11/14/12 Detailed Instructions for Importing CGDB data into WINDOW These instructions apply to either WINDOW 6 or 7. WINDOW 6 vs WINDOW 7 Because the database structure of WINDOW 6 is different that WINDOW 7, there are different CGDB files to go with each version of WINDOW. There are also different versions of the XML files for each version, because in WINDOW 7 some problems with the files were fixed. Setup of CGDB The CGDB consists of a WINDOW database of records in the Shading Layer, Shade Material Library, and Glass Library, as well as a set of text files for systems that reference BSDF XML files. Database: The installation will put two databases into the "LBNL Shared" directory: (the location will depend on your operating system):

28

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW WINDOW NFRC Certification Version Release Version Beta Version WINDOW 6.3 (For NFRC Certification and modeling Complex Glazing Systems) WINDOW 7.1 For modeling vacuum glazing, deflected glass, vertical venetian blinds and perforated screens WINDOW 7.2 For modeling Cellular Shades, in addition to vacuum glazing, deflected glass, vertical venetian blinds and perforated screens Download WINDOW 6.3 (for NFRC Certification and complex glazing systems) Download WINDOW 7.1 Download WINDOW 7.2 Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) Knowledge Base (Check here first if you are experiencing a problem with the software) New Features

29

Window shopping  

SciTech Connect

The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

Best, D.

1990-03-01T23:59:59.000Z

30

LBNL Windows & Daylighting Software -- WINDOW: NFRC info  

NLE Websites -- All DOE Office Websites (Extended Search)

5.2 (5.2.17): July 2003 Download WINDOW 5.2.17 (Glass Library has IGDB version 14.0) Download THERM 5.2.14 This version of WINDOW 5.2 is approved by NFRC for use with the new NFRC...

31

The Efficient Window Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 The Efficient Window Collaborative http://www.efficientwindows.org Energy-efficient windows make up only about 35% of the U.S. residential window market, even though they are cost-effective in approximately 80% or more of all applications. To ensure that efficient windows reach their optimum potential in homes throughout the U.S., the Department of Energy and key players in the U.S. window industry have formed the Efficient Window Collaborative (EWC). The EWC's goal is doubling the market share of efficient windows by 2005. With 31 charter members from the window and glass industries, the EWC is managed jointly by the Washington, D.C.-based Alliance to Save Energy and the Center for Building Science's Windows and Daylighting Group. The EWC serves as a focal point for voluntary

32

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specular Glazing Systems Specular Glazing Systems NFRC THERM 6.3 / WINDOW 6.3 Simulation Manual July 2013: bullet Entire Manual in PDF Format approximate 8 MB Comparison of WINDOW 5 / THERM 5 and WINDOW 6 / THERM 6 Results for Specular Glazing Systems (PDF Format) NFRC WINDOW 6 / THERM 6 Training for Specular Systems (Power Point Presentation, Oct/Nov 2010) Tutorials Complex Glazing Systems bullet WINDOW 6.2 / THERM 6.2 Research Version User Manual (Documents features in WINDOW6 and THERM 6 for modeling complex glazing systems) bullet WINDOW 6.2 / THERM 6.2 Simulation Manual Chapter for Complex Glazing (Draft) This was used for NFRC Simulator training in June 2009, and includes detailed descriptions for modeling venetian blinds between glass and frits. bullet Complex Glazing Summary -- PDF File

33

Window Menu  

Science Conference Proceedings (OSTI)

... 2007. Window Menu. The window menu has been updated: Documentation ... the item. Older Documentation for Window Menu.

34

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Windows Tips: Windows June 18, 2012 - 9:43am Addthis Tips: Windows Windows can be one of your home's most attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill by letting heat out. During the summer, your air conditioner must work harder to cool hot air from sunny windows. Install ENERGY STAR®-qualified windows and use curtains and shade to give your air conditioner and energy bill a break. If your home has single-pane windows, consider replacing them with double-pane windows with high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select windows with

35

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.9) (6.3.9) October 2010 Last Updated: 11/07/2010 Complex Glazing Features for WINDOW6 The Research Version of WINDOW 6 has the following modeling capabilities: Shading Layer Library: A Shading Layer Library has been added to define shading systems, such as venetian blinds and diffusing layers, which can then be added as layers in the Glazing System Library. Shade Material Library: A Shading Material Library has been added to define materials to be used in the Shading Layer Library. Properties defined in this library include shade material reflectance and absorptance (in the solar, visible and IR wavelengths ranges), as well as the conductivity of the material. Glazing System Library In the “Layers” section of the Glazing System definition, it is now possible to specify either a glass layer or a shading layer. The shading system is chosen from the Shading Layer Library.

36

Monitor window  

Science Conference Proceedings (OSTI)

... from the three Info buttons. Text can be typed into the window. The window can be saved to a file (as can all the other text windows). ...

37

CANBUS , ++ WINDOWS.  

E-Print Network (OSTI)

; : .., .., .., .., .., .., .., .., .., .., .., .., .., .., ... . . . 630090 , . . CANBUS , ++ WINDOWS. , CANBUS CAMAC intelligent controllers with CANBUS interface and on software written on C++ in WINDOWS media. Solutions Interface), IXXAT Windows. VCI , , CAN-, .. Windows c #12; VCI

Kozak, Victor R.

38

Reflred - Windows  

Science Conference Proceedings (OSTI)

... data. There are a number of different windows in the system. The choose window lets you select directory and dataset. ...

39

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

40

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Laser sealed vacuum insulation window  

SciTech Connect

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1987-01-01T23:59:59.000Z

42

Energy-efficient windows  

SciTech Connect

This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

1994-10-01T23:59:59.000Z

43

Reflred - Windows  

Science Conference Proceedings (OSTI)

... The Tcl console window lets you interact directly with Tcl/Tk. The help window lets you browse the help text. 2002-09-13. Browse Index

44

Laser sealed vacuum insulating window  

DOE Patents (OSTI)

A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

Benson, D.K.; Tracy, C.E.

1985-08-19T23:59:59.000Z

45

Field Evaluation of Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Windows Evaluation of Windows Last Updated: 10/20/2009 Various tools can be used to evaluate windows in the field. Unless a new window still has the NFRC label attached to it, it is nearly impossible to determine by sight what the thermal and optical performance of a window is. These tools can provide information, such as low-e coating, gap width and gas fill, that can be used to approximate the performance of a window. Solar gain and Low-e detector This device can be used to determine if a low-e coating is present in the window, what type of coating it is, and where it is located. The type of low-e coating will indicate the amount of solar gain that is admitted through the coating. Readings can be "low", "medium" or "high". The device will also indicate on which glass surface the low-e coating is in relation to the position of the device. Limitations: Only works on glass of 1/8" (3 mm) or thinner. Cost: around $350 from EDTM.com

46

High performance solar control office windows  

SciTech Connect

Investigations conducted over a 9 month period on the use of ion beam sputtering methods for the fabrication of solar control windows for energy conservation are described. Principal emphasis was placed on colored, reflecting, heat rejecting, office building windows for reducing air conditioning loads and to aid in the design of energy conserving buildings. The coating techniques were developed primarily for use with conventional absorbing plate glass such as PPG solarbronze, but were also demonstrated on plastic substrates for retrofit applications. Extensive material investigations were conducted to determine the optimum obtainable characteristics, with associated weathering studies as appropriate aimed at achieving a 20 year minimum life. Conservative estimates indicate that successful commercialization of the windows developed under this program would result in energy savings of 16,000,000 barrels of oil/year by 1990 if installation were only 10 percent of new commercial building stock. These estimates are relative to existing design for energy conserving windows. Installation in a greater percentage of new stock and for retrofit applications could lead to proportionately greater energy savings. All such installations are projected as cost effective as well as energy effective. A secondary program was carried out to modify the techniques to yield thermal control windows for residential applications. These windows were designed to provide a high heat retention capability without seriously affecting their transmission of incident solar radiation, thereby enhancing the greenhouse effect. This part of the program was successful in producing a window form which could be interchanged for standard residential window material in a cost and energy effective manner. The only variation from standard stock in appearance is a very light rose or neutral gray coloring.

King, W.J.

1977-12-01T23:59:59.000Z

47

The Key to Unlocking the Secret Window.  

E-Print Network (OSTI)

??David Koepp's Secret Window was released by Columbia Pictures in 2004. The film's score was written by Philip Glass and Geoff Zanelli. This thesis analyzes (more)

McConnell, Sarah E.

2010-01-01T23:59:59.000Z

48

Tips: Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high-performance glass-low-e or spectrally selective coatings. In colder climates, select gas-filled windows with low-e coatings to reduce heat loss. In warmer climates, select...

49

Window treatments for cold climates  

SciTech Connect

Design considerations for various types of energy conserving window treatments to avoid condensation related maintenance problems are discussed. The window heat losses, dew point temperatures and allowable relative humidities at which condensation may occur on interior glass surfaces at an interior temperature of 65 DEGF (degrees Fahrenheit) and exterior temperatures from -50 to 30 DEGF were calculated by computer. Vapor pressures were also computed to show the importance of vapor (air) tight weather stripping and coverings for window treatments.

Carlson, A.R.

1983-06-01T23:59:59.000Z

50

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Control Window Film Solar Control Window Film Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by applying a film. High-Reflectivity Window Films exit disclaimer International Window Film Association For more information on window film, check the Window Film Information Center exit disclaimer . Solar control window film reduces solar heat gain by reflection and absorption. As they also block solar heat gain in winter months, these films are ideal for cooling-dominated climates. Window films can be tinted

51

Seeing Windows Through  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Seeing Windows Through A profusion of gases, glazings, and gap sizes are among the factors that confound efforts to measure the energy performance of a window or skylight. The increasing variety of efficiency-enhancing options for windows and their frames poses a formidable challenge to builders, utilities, code officials, and consumers. Fortunately, a new system for accurately rating and labeling these products promises to help demystify them and to foster nationwide improvements in energy efficiency. NFRC is Born Window trade groups have historically organized around specific materials or components (such as glass or frames), and energy has rarely been their focal point. This changed in 1989 with the formation of the National Fenestration Rating Council. One impetus behind the industry's

52

Field Evaluation of Low-E Storm Windows  

SciTech Connect

A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

2007-07-11T23:59:59.000Z

53

Windows technology assessment  

SciTech Connect

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

54

Window coverings  

SciTech Connect

This brochure discusses the following: how heat loss and gain occurs, moisture problems, conventional coverings seldom save energy, plastic window sheets, insulated window coverings, and what to look for. (MHR)

1981-01-01T23:59:59.000Z

55

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Deflection Modeling Deflection Modeling It is now possible to model the effects of glass deflection in WINDOW 7. Glazing System Library The Glazing System Library is where the deflection modeling input values are entered. When the "Model Deflection" box is checked, a Deflection input box appears. When the Glazing System is calculated, two rows of results, one for the undeflected state and one for the deflected state, appear for Center of Glass Results, Temperature Data and Angular data. In addition, a Deflection tab appears, which shows the deflection of each glass layer and the resulting gap width for each gap. Glazing System Deflect Input There are two options for defining the deflection in a glazing system, by choosing from the "Input" pulldown list:

56

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

folder for importing or exporting data and the folder containing spectral averaging standards and wavelength sets can be specified. To specify file and folder locations: bullet...

57

WINDOW 5 Glass Library Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculation Warnings to a File Add Glazings to a Laminate Viewing the Spectral Data Grid Add Interlayers View Details of Layer Add Embedded Coatings The Change Glazing Dialog...

58

Window insulator  

SciTech Connect

An insulator for mounting to a window. A pair of plastic layers including a plurality of partitions positioned therebetween form air pockets between the layers. A plurality of suction cups and suction grooves arranged in rows on one outer surface of the sheet removably secure the sheet to a window. The sheet includes a circumferentially extending recessed portion receiving the window frame.

Nesbitt, W. A.

1985-10-01T23:59:59.000Z

59

Windows Enterprise Design Master Directory Sources  

E-Print Network (OSTI)

Windows Enterprise Design Master Directory Sources September 29, 2003 Active Directory information for Windows users contains several pieces of information to identify the person associated with a Windows in Windows Active Directory. It is important the information correctly reflects your current name

Simpkins, William W.

60

Window Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Properties: measurements, simulations and ratings Window Properties: measurements, simulations and ratings Determining the thermal and optical performance of window systems is essential to researchers striving to develop improved products and to window manufacturers who need to demonstrate the energy performance of their products to architects, engineers, builders, and the general public. LBNL is involved in basic research in this field, in developing software and test procedures to analyze and quantify window heat transfer and optics, and in developing standards and rating procedures. Infrared Laboratory experiments provide surface temperature maps of window products. A companion Traversing System measures air velocity and air temperatures near the surface of test specimens. The MoWiTT facility provides accurate measurements of the heat flow through complete window systems subjected to real weather conditions. MoWiTT results have been used to validate the performance of emerging technologies and research prototypes as well as to validate thermal performance models.

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sunlight Responsive Thermochromic Window System  

SciTech Connect

Pleotint has embarked on a novel approach with our Sunlight Responsive Thermochromic, SRT, windows. We are integrating dynamic sunlight control, high insulation values and low solar heat gain together in a high performance window. The Pleotint SRT window is dynamic because it reversibly changes light transmission based on thermochromics activated directly by the heating effect of sunlight. We can achieve a window package with low solar heat gain coefficient (SHGC), a low U value and high insulation. At the same time our windows provide good daylighting. Our innovative window design offers architects and building designers the opportunity to choose their desired energy performance, excellent sound reduction, external pane can be self-cleaning, or a resistance to wind load, blasts, bullets or hurricanes. SRT windows would provide energy savings that are estimated at up to 30% over traditional window systems. Glass fabricators will be able to use existing equipment to make the SRT window while adding value and flexibility to the basic design. Glazing installers will have the ability to fit the windows with traditional methods without wires, power supplies and controllers. SRT windows can be retrofit into existing buildings,

Millett, F,A; Byker,H, J

2006-10-27T23:59:59.000Z

62

Zero Energy Windows  

Science Conference Proceedings (OSTI)

Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-05-17T23:59:59.000Z

63

Microsoft PowerPoint - WINDOW6-ComplexGlazingTypeSummary-ForPresentation.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Christian Kohler, Mike Rubin, Jacob Jonsson Christian Kohler, Mike Rubin, Jacob Jonsson Dariush Arasteh, Robin Mitchell Windows & Daylighting Research Group March 2008 Complex Glazing Summary Complex Glazing Summary Environmental Energy Technologies Division Software Tools Overview Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing Data Base) calculation calculation calculation WINDOW (Whole Window) Environmental Energy Technologies Division WINDOW6 Design / Simulation Tools DOE-2, EnergyPlus Radiance THERM (Window Frame) Optics (Window Glass) IGDB (Specular Glass Data Source) RESFEN (Whole Building Residential) COMFEN (Whole Building Commercial) CGDB (Complex Glazing

64

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Air Leakage (AL) Measuring Performance: Air Leakage (AL) Is my window leaking air? The Air Leakage (AL) rating pertains to leakage through the window assembly itself. Air infiltration can also occur around the frame of the window due to poor installation or poor maintenance of existing window systems. Make sure windows are properly installed and maintained (caulking and weatherstripping). Cold glass can create uncomfortable drafts as air next to the window is cooled and drops to the floor. This is not a result of air leaking through or around the window assembly but from a convective loop created when next to a window is cooled and drops to the floor. This air movement can be avoided by installing high-performance windows. Heat loss and gain occur by infiltration through cracks in the window

65

Window insulation  

SciTech Connect

Insulating apparatus consisting of a plurality of low thermal conductivity panels slidably carried in a conventional window frame is described. 13 claims.

Saucier, E.

1980-01-01T23:59:59.000Z

66

Reflred - Windows  

Science Conference Proceedings (OSTI)

... reduction. The Tcl console window lets you interact directly with Tcl/Tk. Use it to help configure the application colors, etc. ...

67

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Glass Vacuum-insulated Glass Vacuum-insulated glazing units are made up of 2 panes of glass with a very small air space. The air space contains spacers which help maintain the separation between the panes. Most of the emerging glass technologies are available or nearly on the market. These include insulation-filled and evacuated glazings to improve heat transfer by lowering U-factors. Evacuated Windows The most thermally efficient gas fill would be no gas at all-a vacuum. The window industry is pursuing the development of vacuum-insulated glass (VIG) for use in window units in which the space between the panes is evacuated. If the vacuum pressure is low enough, there would be no conductive or convective heat exchange between the panes of glass, thus lowering the U-factor. A vacuum glazing must have a good low-E coating to

68

Arranging PPP Windows  

Science Conference Proceedings (OSTI)

03/15/2005. Arranging PPP Windows. Suggestions for arranging the two PPP windows: Use Attach / adjust windows.

69

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

7 7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and triple-pane sealed units and stock glazing with storm windows. 2) Included as part of the Tinted category. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, June 2006, Table B1 for stock data; AAMA/NWWDA, 1996 Study of the U.S. Market for Windows and Doors, Table 27, p. 60 for 1995 usage values; 2003 AAMA/WDMA Study of the U.S. Market

70

LBNL Windows & Daylighting Software -- WINDOW: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Vista, Microsoft Windows 7, Microsoft Windows XP, Windows 2000TM.. It has been reported by users that the...

71

NREL: News Feature - Smart Windows: Energy Efficiency with a...  

NLE Websites -- All DOE Office Websites (Extended Search)

of color-changing glass (about 100 windows) would require less power than a 75 watt light bulb. And because the windows modulate the building's interior climate, the rest of the...

72

DOE2 gas properties fix for WINDOW5  

NLE Websites -- All DOE Office Websites (Extended Search)

the glass layers referenced from the glazing systems used in the Window Library entries Gas Library: All the gases referenced from the glazing systems used in the Window Library...

73

windows Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPUTY GROUP LEADER Charlie Curcija 495-2602 90-3111 dccurcija@lbl.gov WINDOWS AND DAYLIGHTING STAFF Andre Anders 486-6745 53-004 aanders@lbl.gov Dennis...

74

Experimental evaluation of the in-plane seismic behavior of store-front window systems  

E-Print Network (OSTI)

J. , (1960). Behavior of window panels under in-planeC. , (1997). Behavior of window glass panels duringBehavior of Store-front Window Systems A thesis submitted in

Eva, Charles Almond

2009-01-01T23:59:59.000Z

75

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

E-Print Network (OSTI)

D. Curcija. 2006. THERM 5.2 / WINDOW 5.2, NFRC SimulationSashlite 2011. The Shashlite window website http://2010. Development of a slim window frame made of glass fibre

Gustavsen, Arild

2012-01-01T23:59:59.000Z

76

LBNL Windows & Daylighting Software -- WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

downloading and installing Optics 6, as it has a few bug fixes and works with Windows 7 and 8. NFRC (National Fenestration Rating Council) will "sunset" use of Optics 5.1...

77

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduced Condensation Reduced Condensation Condensation High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. High-performance windows create warmer interior glass surfaces, reducing frost and condensation. High-performance windows with warm edge technology and insulating frames have such a warm interior surface that condensation on any interior surfaces is significantly reduced under all conditions. Condensation occurs when the interior surface temperature of the glass drops below either the dewpoint or frost point. A window's frame and/or glazing system can contribute to the possibility of condensation if they are poor performers for a specific climate. High-performance windows create warmer interior glass surfaces, reducing condensation and frost.

78

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

by up to 75%. UV absorbers can be incorporated into thin plastic films in multilayer windows or as an interlayer in laminated glass. In both cases, the UV transmission can be...

79

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

80

BSP 930 WINDOWS HANDBOOK  

Science Conference Proceedings (OSTI)

... click Default Computer. When the Default Computer Properties window appears, select Windows NT System, then Logon. ...

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New and Underutilized Technology: Smart Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smart Windows New and Underutilized Technology: Smart Windows October 8, 2013 - 2:55pm Addthis The following information outlines key deployment considerations for smart windows within the Federal sector. Benefits Smart windows are made of electrochromic glass, which uses electrical energy to transition between clear and darkened state to control light and heat gain. Darkened glass transmits less light and reduces heat gain, especially in dual-pane windows. Application Smart windows are appropriate for deployment within most building categories and should be considered in building design, renovation, or during window replacement projects. Key Factors for Deployment Window orientation is a factor that must be considered prior to smart window implementation. Ranking Criteria

82

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

83

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

84

Windowed versus windowless solar energy cavity receivers  

DOE Green Energy (OSTI)

A model for a windowed, high-temperature cavity receiver of the heated-air type is developed and used to evaluate the greenhouse effect as a method for obtaining high receiver operating efficiencies. The effects on receiver efficiency of varying the window cutoff wavelength, the amount of absorption in the window pass-band, the cavity operating temperature, and the number of windows are determined. Single windowed cavities are found to offer theoretical efficiencies comparable to windowless ones, while multiple windowed units are found to suffer from low operating efficiencies due to losses resulting from reflections at each window/air interface. A ''first order'' examination is made of the feasibility of air cooling the window to assure its survival. This appears possible if a proper combination of cooling technique and window material characteristics is selected.

Jarvinen, P. O.

1976-09-01T23:59:59.000Z

85

Field Evaluation of Low-E Storm Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Evaluation of Low-E Storm Windows Field Evaluation of Low-E Storm Windows Title Field Evaluation of Low-E Storm Windows Publication Type Conference Paper LBNL Report Number LBNL-1940E Year of Publication 2007 Authors S. Craig Drumheller, Christian Kohler, and Stefanie Minen Conference Name Thermal Performance of the Exterior Envelopes of Whole Buildings X International Conference Volume 277 Date Published 12/2007 Conference Location Clearwater Beach, FL Abstract A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homes had traditional clear glass. Overall heating load reduction due to the storm windows was 13% with the clear glass and 21% with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years for the low-e storm windows.

86

Window-closing safety system  

DOE Patents (OSTI)

A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

McEwan, T.E.

1997-08-26T23:59:59.000Z

87

Window-closing safety system  

DOE Patents (OSTI)

A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

McEwan, Thomas E. (Livermore, CA)

1997-01-01T23:59:59.000Z

88

Making Smart Windows Smarter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Windows Smarter Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Program Director, Building Technologies Office What does this project do? Pleotint, LLC has developed a specialized glass film that uses the energy generated by the sun to limit excess heat and light from coming into homes and buildings. When you look out the window, you might notice whether the sun is shining, a nice view of the outdoors or an interesting cloud passing by. What most people probably don't notice is that traditional windows waste about 30

89

Window Energy Efficiency Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Energy Efficiency Checklist While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Here is a...

90

Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

made standard windows significantly more efficient. However, even if all windows in the stock were replaced with todays efficient products, window energy consumption would still be...

91

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

to Electrochromic Windows Attachment 12: Analysis of VisualMarket Electrochromic Windows Attachment 17: Summary ofof the Electrochromic Windows Attachment 4: An Assessment of

2006-01-01T23:59:59.000Z

92

Zero Energy Windows  

E-Print Network (OSTI)

of Electrochromic Windows Controlled for Daylight and Visualof Electrochromic Windows, California Energy Commission /Potential of Electrochromic Windows in the U.S. Commercial

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

93

Tutorial Design Windows - CECM  

E-Print Network (OSTI)

Tutorial Design Windows: Activity 2: Activity 2 Design Window Return to tutorial. Exercise 1: Exercise 1 Design Window Return to exercises. Exercise 2: Exercise ...

94

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Early-Market Electrochromic Windows. LBNL-59950. 17. Summaryof Daylight through Windows. http://www.lrc.rpi.edu/Occupants Control of Window Blinds in Private Offices.

2006-01-01T23:59:59.000Z

95

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Single Glazing Single Glazing Single-Glazed, Clear Glass This figure illustrates the performance of a typical single-glazed unit with clear glass. Relative to all other glazing options, single-glazed with clear glass allows the highest transfer of energy (i.e. heat loss or heat gain depending on local climate conditions) while permitting the highest daylight transmission. Single Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. Whole Window Properties - Single-Glazed, Clear Glass Metal Frame Non-metal Frame Metal Frame Metal Frame with Thermal Break Non-metal Frame Non-metal Frame, Thermally Improved

96

LBNL Windows & Daylighting Software -- WINDOW tutorials  

NLE Websites -- All DOE Office Websites (Extended Search)

Movie) bullet Creating a Window with a Generic Frame in WINDOW 6 or 7 (QuickTime Movie) Advanced Tutorials: bullet Database structure for Shading Systems in WINDOW7 (QuickTime)...

97

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation (all versions) WINDOW 5.0 : bullet WINDOW 5.0 User Manual (3 MB, Adobe PDF format) bullet NFRC THERM 5.2 WINDOW 5.2 Simulation Manual (July 2006) (13 MB, Adobe PDF...

98

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

directories. Gas Library Import Fixed a display problem that would occur when importing a Gas Library record from another WINDOW 7 database. Window Library Export Fixed problem...

99

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies Window Technologies Operator Types Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. This section on Operator Types describes how these typical windows work. Operator Types Glazing Types Traditionally, windows have been made from clear glass, but advanced technologies have significantly improved the thermal performance of glass. This section on Glazing Types describes some of these technologies. Glazing Types Gas Fills Gas fills improve the thermal performance of insulating glazing units by reducing the conductance of the air space between the layers. This section on Gas Fills describes the thermal performance benefits of adding gas to an IGU.

100

Saving energy with storm windows and doors  

SciTech Connect

The objective of conserving heating and cooling fuels with properly designed and installed doors and windows will not succeed until the window and door energy problems are specifically identified and specific solutions are understood. Almost three times as much heat is lost directly through the glass as from the edges of the frame. One square foot of single glazing loses as much heat as 10 ft/sup 2/ of solid wall. Almost 70 percent of the heating load and 46 percent of the cooling load are related to windows and doors. Homeowners are urged to caulk and weatherstrip; keep windows and doors in good repair; and install windows and doors with insulating glass. (MCW)

Gorell, F.

1976-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-E Coatings Low-E Coatings Low-E Center-of-glass values of double pane units with and without low-E coatings. When heat or light energy is absorbed by glass, it is either convected away by moving air or reradiated by the glass surface. The ability of a material to radiate energy is called its emissivity. All materials, including windows, emit (or radiate) heat in the form of long-wave, far-infrared energy depending on their temperature. This emission of radiant heat is one of the important components of heat transfer for a window. Thus reducing the window's emittance can greatly improve its insulating properties. Standard clear glass has an emittance of 0.84 over the long-wave portion of the spectrum, meaning that it emits 84% of the energy possible for an object at its temperature. It also means that 84% of the long-wave

102

Integral window hermetic fiber optic components  

DOE Patents (OSTI)

In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

1994-12-31T23:59:59.000Z

103

Vacuum Glazing; A Thermally Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing; A Thermally Insulating Window Technology Vacuum Glazing; A Thermally Insulating Window Technology Speaker(s): Cenk Kocer Date: May 31, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sunnie Lim The vacuum glazing consists of two panes of glass separated by a sub-millimetre vacuum gap. Under the action of atmospheric pressure the separation of the panes is maintained by an array of high strength spacers in the gap. The glass panes are hermetically sealed at the edge using a low melting point glass frit (solder glass). Since 1913 many have worked on a practical implementation of such a flat insulating glass structure, with success finally being reported in 1989 by Collins et al. at the University of Sydney. The purpose of this talk is to present a brief history of the vacuum glazing research at the University of Sydney, and outline in detail

104

An expert system for window glazing design  

SciTech Connect

An integrated expert system was developed to facilitate the design of window glass for structural strength, hydrostatic loads, sound attenuation, and solar control. The integrated software consists of a text-based interface, a rule-based expert system, and two neural networks. The text of a glazing design guide is linked by related topics and concepts. The software's design feature lets the user enter design parameters for the window choice via an interactive consultation in to a rule-based expert system that critiques the design. The technical aspects of the glass's structural strength are based primarily on linear methods published by the American Architectural Manufacturers Association Statistical correlations for the new nonlinear failure prediction for glass strength are used to automatically design for the minimum glass thickness required to withstand a specified load. Neural networks estimate values for sound attenuation and solar transmission characteristics from laboratory test data on selected glass constructions.

Foss, R.V. (E.I. duPont de Nemours and Co., Parkersburg, WV (US)); Droste, D.H.

1990-01-01T23:59:59.000Z

105

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

The High Performance Windows Volume Purchase (WVP) Program The High Performance Windows Volume Purchase (WVP) Program The U.S. Department of Energy's Building Technologies Program (BTP) is coordinating a volume purchase program intended to overcome cost and awareness barriers to the wider adoption of highly-insulating windows and low-E storm windows. These products include windows meeting a number of specifications including a U-factor of 0.22 or less as well as storm windows with low-emissivity glass. Buyer groups with a potential interest in purchasing these products in volume will learn about their availability and cost through the program's product listings. Over 50 manufacturers proposed products for the first round of these listings, for which submittals were due by February 19, 2010. DOE does not purchase any products through this project, nor does DOE

106

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on Window Durability Guidance on Window Durability There is no simple rating or absolute guarantee of the durability of a window. You may want to study the design and workmanship of the window and rely on recommendations from others who have used similar products. The advice of experienced architects and builders can be helpful. As with other products, warranties can be an indicator of the reliability of the window and its manufacturer. Durability may vary with location; for example, some materials are degraded by salt near the ocean. These aspects of window durability deserve special attention: frame and sashes; insulating glass seals; weatherstripping; and local requirements for structural integrity. Frame and Sashes Although design and workmanship may be the most important factors

107

An Alkali-Vapor Cell with Metal Coated Windows for Efficient Application of an Electric Field  

E-Print Network (OSTI)

We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2 kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no ...

Sarkisyan, D; Guena, J; Lintz, M; Bouchiat, M A; Sarkisyan, David; Gu\\'{e}na, Jocelyne; Lintz, Michel; Bouchiat, Marie-Anne

2005-01-01T23:59:59.000Z

108

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Glazing Glazing Double-Glazed, Clear Glass This figure illustrates the performance of a typical double-glazed unit with two lites of clear glass. The inner and outer layers of glass are both clear and separated by an air gap. Double glazing, compared to single glazing, cuts heat loss in half due to the insulating air space between the glass layers. In addition to reducing the heat flow, a double-glazed unit with clear glass will allow the transmission of high visible light and high solar heat gain. Double Clear Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

109

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Notes Release Notes Updated: 11/07/11 History of COMFEN 3.1 Releases New Features Glazed Wall Assembly In addition to modeling individual windows, COMFEN now has the capability of modeling "Glazed Wall Assemblies" which allow you to specify the number of horizontal and vertical framing members, as well as their spacing, and the program automatically generates the facade. Click here for more details. Material Library COMFEN now has a Material Library, which can be used in the Wall Construction and Spandrel Libraries. See the User Manual for more details. Wall Library COMFEN now has a Wall Library which can be used to build up layers from the Material Library to define a wall. See the User Manual for more details. Spandrel Library COMFEN now has a Spandrel Library which can be used to build up layers from the Material Library to define a spandrel, including glass and glazing systems as the outer-most layers. See the User Manual for more details.

110

Vacuum Window Glazings for Energy-Efficient Buildings : Summary Report.  

SciTech Connect

The technical feasibility of a patented, laser-welded, evacuated insulating window was studies. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but is has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

Benson, David K.

1990-05-01T23:59:59.000Z

111

Vacuum window glazings for energy-efficient buildings  

Science Conference Proceedings (OSTI)

The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. (Solar Energy Research Inst., Golden, CO (USA)); Soule, D.E. (Western Illinois Univ., Macomb, IL (USA))

1990-05-01T23:59:59.000Z

112

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: Visible Transmittance (VT) Measuring Performance: Visible Transmittance (VT) How to maximize daylight? Historically, only clear glass was used to maximize the amount of light entering through a window. Especially in cooling-dominated climate, this desirable daylight also came with undesirable solar heat gain. With the advancement of high-performance glazing systems, it is possible for low-E coatings to reject the solar heat gain while allowing the visible light to pass through the glass. The type of low-E coating that is appropriate for your specific house depends on location, orientation, window area, and shading strategies. The visible transmittance (VT) is an optical property that indicates the fraction of visible light transmitted through the window. This is separate from the Solar Heat Gain Coefficient (SHGC), since many modern windows

113

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Comfort Improved Comfort Comfort High performance windows with new glazing technologies not only reduce energy costs but make homes more comfortable as well. During cold weather, exterior temperatures drive interior glass surface temperatures down below the room air temperature; how low the glass temperature drops depends on the window's insulating quality. If people are exposed to the effects of a cold surface, they can experience significant radiant heat loss to that cold surface and they feel uncomfortable, even if the room air temperature is comfortable. When the interior glass surface temperature is 52˚F or less, it is most likely that there will be discomfort. During warm weather, solar radiation can cause discomfort. Just as people turn up the heat to compensate for cold windows in cold weather, they may use

114

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

(6.3.74 -- February 14, 2012) Release Notes Updated: 02/15/13 If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 6.3.74 Program Changes Window LIbrary: Window Types In previous versions of WINDOW 6.3, there were two different Window Type lists, with conflicting ID numbers, which resulted in the possibility of a Window Library made with one set of Window Types would become corrupted (the wrong Window Types assigned) if the database records were imported into a another database with the different Window Type list. To solve this problem, we have added a database "migration" with this version of WINDOW -- when it opens any older database, it will update the Window Types list to have the choices (and IDs) shown below and then it will also update all the Window Library records to map to the new Window Types based on what the records were set to originally.

115

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6 and THERM 6 Technical Documentation WINDOW 6 and THERM 6 Technical Documentation Algorithm Documentation WINDOW6 and THERM6 implement the ISO 15099 algorithms: bullet ISO 15099 The algorithms in WINDOW6 and THERM6 follow the procedures presented in ISO 15099: "Thermal performance of windows, doors and shading devices - Detailed calculations." See: http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO+15099%3A2003 In addition to implementing ISO 15099 algorithms in WINDOW6 and THERM6, we have added additional capabilities to WINDOW6. The following reports and papers describe these additional capabilities and/or elaborate on ISO15099. bullet Thermal Algorithm Documentation for THERM6: Conrad 5 & Viewer 5 Technical and Programming Documentation June 20, 2006 bullet Thermal Algorithm Documentation for WINDOW6:

116

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

all the Window Records in a database opened in this new version. Click here for a zip file (called W6mdb.zip) that contains a W6.mdb file for WINDOW 6.3.74 that has the...

117

Insulating windows. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning window insulation systems. Double and multi-paned windows, insulating glass sealants, frames, insulation systems, and window construction techniques are discussed. Thermally efficient window shades, shutters, and blinds are also presented. (Contains a minimum of 55 citations and includes a subject term index and title list.)

1994-03-01T23:59:59.000Z

118

Residents and windows. 1. Shielding of windows  

SciTech Connect

In order to assess the influence of the shielding of windows performed by occupants in residential buildings on the heat balance of the building, the shielding of 40,000 windows was determined by observation during two heating seasons. It is shown that the demand for privacy has a large effect on the degree of window-shielding. There are also indications that many occupants trying to save energy use window-shielding as one of their means to achieve this.

Lyrberg, M.D.

1983-06-01T23:59:59.000Z

119

Troubleshooting Microsoft Windows XP  

Science Conference Proceedings (OSTI)

From the Publisher:Troubleshooting Microsoft Windows XP provides fast answers to problems that can arise when using the Windows XP Home or Windows XP Professional operating system. The book addresses common issues with the new user interface, the taskbar ...

Stephen W. Sagman

2001-12-01T23:59:59.000Z

120

Introduction Windows and Precomputation  

E-Print Network (OSTI)

Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms;Introduction Windows and Precomputation Linear Combinations and Joint Expansions Endomorphisms and Complex Bases Outline 1 Introduction 2 Windows and Precomputation 3 Linear Combinations and Joint Expansions 4

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Using X Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

option 3 or 510-486-8611 Home For Users Network Connections Using X Windows Using X Windows Introduction X-Windows allows you to display remote applications on...

122

Solar window collection and distribution module system. Final performance report  

SciTech Connect

The construction and monitoring of a solar window collection and distribution system are presented. One complete window module was purchased and assembled, including: the glass, the window frames, sealants, grills, vents and a mechanical damper device. Monitoring of the system operation was limited to measuring inside air temperature, outside air temperature, and circulation temperatures through the window module systems, as well as the actual tinted glass surface temperature. The system has produced a reduction in glare, fading of furniture, and control of solar gains to a building structure.

1985-01-01T23:59:59.000Z

123

Chapter 5. Auxiliary Windows  

Science Conference Proceedings (OSTI)

... simultaneously. New ones are created by the New command in the Messages submenu in any OOF2 window's OOF.Windows menu. ...

2013-08-23T23:59:59.000Z

124

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

125

Windows 8-Windows Phone applikationsutveckling; Windows 8/Windows Phone application development.  

E-Print Network (OSTI)

?? Den hr rapporten beskriver utvecklingen av en applikation fr Windows 8 och Windows Phone 8 dr fokus ligger p multiplattformsutveckling. Applikationen anvnder sig av (more)

Johansson, Henrik

2013-01-01T23:59:59.000Z

126

Windows | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Windows Jump to: navigation, search TODO: Add description List of Windows Incentives...

127

thumbnails for windows  

Science Conference Proceedings (OSTI)

... 4) Cut and paste the above text window into some text editor, and save into the ... Then, in Windows, open the write folder and use 'View / thumbnails'.

128

LBNL Window & Daylighting Software -- COMFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Beta 5 Beta (5.0.05 -- January 1, 2013) Last Updated: 01/01/2013 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

129

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Windows Dynamic Windows Technologies, such as electrochromics, are now available for the residential market. The skylight on the left is switched to the "on" position-reducing glare and solar heat gain. The skylight on the right is switched to the "off" position. Photo: Velux-America and SAGE Electrochromics. The emerging concept for the window of the future is more as a multifunctional "appliance-in-the-wall" rather than simply a static piece of coated glass. These systems include switchable windows and shading systems that have variable optical and thermal properties that can be changed in response to climate and occupant preferences. By actively managing lighting and cooling, smart windows could reduce peak electric loads, increase daylighting benefits throughout the United States, improve

130

LBNL Window & Daylighting Software -- COMFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Last Updated: 10/04/2012 Screen Shots Opening Screen, Overview Tab Climate Tab Facade Edit Screen The Facade Library screen allows the user to define a facade with windows, and overhangs and fins for each window. COMFEN displays the geometry of each window that is defined as well as the position in the facade. Each window can be defined with a different glazing system and frame combination if desired. Multiple facades can be defined on this screen, and then compared in the Project screen, described below. Glazed Wall Assembly Definition Glazing System Library The Glazing System Library allows the user to make new glazing systems or import them from a WINDOW 6 database. Shading Control Scheme Library The Shading Control Scheme Library screen allows the user to define interior, exterior and between glass shading systems for

131

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-E Glazing Low-E Glazing Double-Glazed, High-solar-gain Low-E Glass This figure illustrates the characteristics of a typical double-glazed window with a high-solar gain low-E glass with argon gas fill. These windows are designed to reduce heat loss but admit solar gain. High-solar-gain low-E glass products are best suited for buildings located in heating-dominated climates and are the product of choice for passive solar design projects. High-solar-gain low-E glass is often made with pyrolytic low-E coatings, although sputtered high-solar-gain low-E is also available. Double HSG Low-E Center of Glass Properties Note: These values are for the center of glass only. They should only be used to compare the effect of different glazing types, not to compare total window products. Frame choice can drastically affect performance. These values represent double glazing with a 1/2" air gap.

132

Experimental evaluation of the in-plane seismic behavior of store-front window systems.  

E-Print Network (OSTI)

??Glass window systems have been shown to suffer significant damage during earthquake loading, resulting in the potential for human injuries and significant economic losses. Film-coated (more)

Eva, Charles Almond

2009-01-01T23:59:59.000Z

133

Windows activation Sergei Striganov  

E-Print Network (OSTI)

Windows activation Sergei Striganov Fermilab July 25, 2007 #12;Beam windows residual activity of irradiated object should be much larger than -ray interaction length (3.7 cm in windows). In such model activation is proportional to star density. For beam size much smaller windows transverse dimension

McDonald, Kirk

134

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

bullet Window Library: RESFEN5 has a Window Library that allows data for specific windows to be imported from the WINDOW5 program. A default set of WINDOW5 data is installed...

135

Company Rehires Unemployed Workers for Energy Efficient Window Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Rehires Unemployed Workers for Energy Efficient Window Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down this year due to the economy," said Pacific Glass President Bernie Thueringer. Thueringer and domestic frame and glass suppliers Efco Corp and Old Castle Glass have seen new business from a Recovery Act funded energy efficiency project in Kitsap County, Washington. "We were excited about this project because we were able to bring five of

136

Company Rehires Unemployed Workers for Energy Efficient Window Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Rehires Unemployed Workers for Energy Efficient Window Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down this year due to the economy," said Pacific Glass President Bernie Thueringer. Thueringer and domestic frame and glass suppliers Efco Corp and Old Castle Glass have seen new business from a Recovery Act funded energy efficiency project in Kitsap County, Washington. "We were excited about this project because we were able to bring five of

137

MoWiTT:Mobile Window Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 MoWiTT: Mobile Window Thermal Test Facility The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems requires accurate measurement of the flow of energy through windows in realistic conditions, a capability provided by the Mobile Window Thermal Test facility. Consisting of a pair of outdoor, room-sized calorimeters, MoWiTT measures the net energy flow through two window samples in side-by-side tests using ambient weather conditions. MoWiTT characterizes the net energy flow as a function of time and measures the temperatures, solar fluxes, and

138

High Performance Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Performance Window High Performance Window Attachments D. Charlie Curcija Lawrence Berkeley National Laboratory dccurcija@lbl.gov 510-495-2602 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Impact of Project: * Motivate manufacturers to make improvements in Window systems U-Factors, SHGC and daylighting utilization * Increase awareness of benefits from energy efficient window attachments Problem Statement: * A wide range of residential window attachments are available, but they have widely unknown

139

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

140

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MEASUREMENTS THROUGH A HOT CELL WINDOW USING OPTICAL TOOLING  

SciTech Connect

S>Optical tooling has been evaluated for the measurement of physical dimensions of radioactive parts through hot cell windows. Instruments were set up outside of a four foot thick lead glass window and by means of a grid plate which had been accurately scribed, a ''contour map'' or calibration chart of the window variations was recorded. Although the window was not specially selected, the readings were within 1.0% of the true dimension without using correction factors. One of the calibration chart with the window reduced the error to plus or minus 0.1%. The method is considered feasible and sufficiently fast for a wide variety of hot cell measurements. A pin point light source is suggested as a simple check for selective assembly of lead glass laminates during manufacture of hot cell windows to provide control of optical properties. (auth)

Abbatiello, A.A.

1958-07-18T23:59:59.000Z

142

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003  

E-Print Network (OSTI)

SYSTEM ADMINISTRATOR: WINDOWS SERVER 2003 MCSA © 2011 Microsoft Corporation. All rights reserved MCPDMCPD WINDOWS DEVELOPERWEB DEVELOPER Job Role/Achievement Certification Recommended Coursework Student TECHNICIAN: WINDOWS 7 MCITPMCITP SUPPORT TECHNICIAN: WINDOWS VISTA SERVER ADMINISTRATOR: WINDOWS SERVER 2003

Atkinson, Katie

143

Electrochromic Windows: Advanced Processing Technology  

SciTech Connect

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

SAGE Electrochromics, Inc

2006-12-13T23:59:59.000Z

144

Neutrinos: Windows to New Physics  

E-Print Network (OSTI)

After briefly reviewing how the symmetries of the Standard Model (SM) are affected by neutrino masses and mixings, I discuss how these parameters may arise from GUTs and how patterns in the neutrino sector may reflect some underlying family symmetry. Leptogenesis provides a nice example of how different physical phenomena may be connected to the same neutrino window of physics beyond the SM. I end with some comments on the LSND signal and briefly discuss the idea that neutrinos have environment dependent masses.

R. D. Peccei

2006-09-20T23:59:59.000Z

145

BT::Electrochromic Windows Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

146

Building Technologies Office: High Performance Windows Volume Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

147

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Low Conductance Spacers Window Technologies: Low Conductance Spacers Spacers The lites of glass in an insulating unit must be held apart at the appropriate distance by spacers. In addition to keeping the glass lites separated, the spacer system must serve a number of functions: accommodate stress induced by thermal expansion and pressure differences; provide a moisture barrier that prevents passage of water or water vapor that would fog the unit; provide a gas-tight seal that prevents the loss of any special low-conductance gas in the air space; create an insulating barrier that reduces the formation of interior condensation at the edge. Spacers The standard solution for insulating glass units (IGUs) is the use of metal spacers and sealants. These spacers, typically aluminum, also

148

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple Low-E Glazing Triple Low-E Glazing Triple-Glazed, High-solar-gain Low-E Glass This figure illustrates the performance of a window with a very low heat loss rate (low U-factor). In this case there are three glazing layers and two low-E coatings, ½" argon gas or ¼" krypton gas fill between glazings, and low-conductance edge spacers. The middle glazing layer can be glass or suspended plastic film. Some windows use four glazing layers (two glass layers and two suspended plastic films). This product is suited for buildings located in very cold climates. Both Low-E coatings in this product have high solar heat and visible light transmittance, which is ideal for passive solar design. The use of three layers, however, results in lower solar heat gain relative to double glazing with high-solar-gain Low-E.

149

02preview.windows.compreview.windows.com Release Preview  

E-Print Network (OSTI)

02preview.windows.compreview.windows.com Windows 8 Release Preview Product guidepreview.windows.com #12;03 01preview.windows.compreview.windows.com © 2012 Microsoft Corporation. All rights reserved. #12;Contents Windows 7, only better 06 The new Start screen 06 Touch, keyboard, and mouse: seamless integration

Fähndrich, Manuel A.

150

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsoft Vista and Windows 7 Operating System Issues Last update:071612 12:38 PM The LBNL Windows & Daylighting suite of software programs (WINDOW, THERM, Optics) are installed...

151

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

152

Zero Energy Windows  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingheating energy needs, reject solar gain to reduce cooling loads, significantly mitigate a building

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

153

window.xp  

NLE Websites -- All DOE Office Websites (Extended Search)

New New in Building Energy Efficiency Selecting Windows for Energy Efficiency New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection. S electing the right window for a specific home invariably requires tradeoffs between dif- ferent energy performance features, and with other non-energy issues. An understanding of some basic energy concepts is therefore essential to choosing appropriate windows and skylights. As illustrated on the fol-

154

Safety Share - Window Blinds  

NLE Websites -- All DOE Office Websites (Extended Search)

- Window Blinds On November 17, 2010, an HSS employee was adjusting the window blinds in his office. One might expect this low hazard, routine operation to require little or no...

155

New Window of Opportunity:  

Science Conference Proceedings (OSTI)

Page 1. New Window of Opportunity: Certificate Transparency - A Certification Authority's Perspective Ben Wilson, SVP DigiCert ...

2013-04-10T23:59:59.000Z

156

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

advanced spectrally selective low-e double-pane windows and the same type of daylighting control system

2006-01-01T23:59:59.000Z

157

Laser sealed evacuated window glazings  

SciTech Connect

The design and fabrication of a highly insulating, evacuated window glazing have been investigated. A thermal network model has been used to parametrically predict the thermal performance of such a window. Achievable design, options are predicted to provide a glazing with a thermal conductance less than 0.6 W/m/sup 2/K (R > 10/sup 0/F ft/sup 2/ h/Btu) which is compact, lightweight, and durable. A CO/sub 2/ laser has been used to produce a continuous, leak tight, welded glass perimeter seal around 25 x 25 cm/sup 2/ test specimens. Various diameters of regularly spaced spherical support spacers were incorporated in the specimens as well as an integral SnO/sub 2/:F transparent, low emissivity coating for suppression of radiative heat transfer. Laser sealing rates of .06 cm/s were achieved at a 580/sup 0/C glass working temperature with 400 W of continuous wave (CW) laser power.

Benson, D.K.; Tracy, C.E.; Jorgensen, G.J.

1984-10-01T23:59:59.000Z

158

Subject Responses to Electrochromic Windows  

E-Print Network (OSTI)

large-area electrochromic windows in commercial buildings,of electrochromic windows: a pilot study, Building andceramic electrochromic window: field study results, Energy

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

159

FLUDViz: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... Tk for communication between the OpenGL graphics window and the Tcl/Tk control window. ... invokes OpenGL and WGL (Windows GL extensions). ...

160

Chapter 4. The Graphics Window  

Science Conference Proceedings (OSTI)

... OOF2: The Manual. Chapter 4. The Graphics Window. ... Chapter 4. The Graphics Window. ... Figure 4.1 shows the structure of the Graphics Window. ...

2013-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hot Cell Window Shielding Analysis Using MCNP  

SciTech Connect

The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

Chad L. Pope; Wade W. Scates; J. Todd Taylor

2009-05-01T23:59:59.000Z

162

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.8 (September 30, 2013) Program Changes TARCOG DLL Changes The TARCOG.DLL file,...

163

Method of making an integral window hermetic fiber optic component  

DOE Patents (OSTI)

In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

Dalton, Rick D. (Miamisburg, OH); Kramer, Daniel P. (Centerville, OH); Massey, Richard T. (Hamilton, OH); Waker, Damon A. (Bellbrook, OH)

1996-11-12T23:59:59.000Z

164

Method of making an integral window hermetic fiber optic component  

DOE Patents (OSTI)

In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

1996-11-12T23:59:59.000Z

165

High Performance Windows Volume Purchase: The Windows Volume Purchase RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

The Windows The Windows Volume Purchase RFP to someone by E-mail Share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Facebook Tweet about High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Twitter Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Google Bookmark High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Delicious Rank High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on Digg Find More places to share High Performance Windows Volume Purchase: The Windows Volume Purchase RFP on AddThis.com... Home About FAQs Low-E Storm Windows Request for Proposal Contacts For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers

166

Microsoft Windows Embedded Compact Cryptographic ...  

Science Conference Proceedings (OSTI)

Page 1. Microsoft Windows Cryptographic Primitives Library (bcrypt.dll) Security Policy Document ... Microsoft Windows Embedded Compact ...

2013-08-07T23:59:59.000Z

167

Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

168

Windows and Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior Office building exterior Windows and Daylighting Windows research is aimed at improving energy efficiency in buildings and homes across the nation. Research includes: New glazing materials Windows simulation software Advanced high-performance fenestration systems Daylighting technologies Measurement of window properties Windows performance in residential and commercial buildings. Contacts Stephen Selkowitz SESelkowitz@lbl.gov (510) 486-5064 Eleanor Lee ESLee@lbl.gov (510) 486-4997 Charlie Curcija DCCurcija@lbl.gov (510) 495-2602 Links Windows and Daylighting Daylighting the New York Times Headquarters Building Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

169

Highly Insulating Windows - Publ  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Insulating Windows - Publications Future Advanced Windows for Zero-Energy Homes, J. Apte, D. Arasteh, J. Huang, 2003 ASHRAE Annual Meeting, 2002 Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Performance Criteria for Residential Zero Energy Windows, D. Arasteh, H. Goudey, J. Huang, C. Kohler, R. Mitchell, 2006, submitted to ASHRAE Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate.

170

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics 6.0 Optics 6.0 (6.0 -- February 13, 2012) Release Notes Updated: 07/16/12 Program Changes Microsoft Windows 7 / Vista Operating System"Aware" Optics now installs and operates much better under the Microsoft Windows 7 and Vista operating systems. It is no longer necessary to run the "VistaFix" batch file after installing the program. Fixed Bugs If you find bugs, or if you think these have not been fixed, please do not hesitate to send an email to OpticsHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. Paths Appear in Tools/Options In the Microsoft Windows 7 / Vista Operating System environments, the program would not display the directory paths in the Tools / Options "File Locations" dialog box. This is now fixed.

171

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Cellular / Honeycomb Shades Cellular / Honeycomb Shades Updated 09/30/2013 It is now possible to model cellular / honeycomb shading systems in the Shading System Library and then add them to a glazing system in the Glazing System Library. NOTE: Before attempting to calculate a glazing system with a cellular shade, you must make the following change to the THERM7.ini file, which is located in C:\Users\Public\LBNL\Settings. Close WINDOW7 before making this change. DocPath=C:\Users\Public\LBNL\WINDOW7\debug Shading Layer Library A cellular / honeycomb shade can now be defined in the Shading Layer Library. Defining this type of shading system requires an XML file which contains information about the cell geometry and the material thermal and optical properties. WINDOW can model two different types of cellular shades:

172

LBNL Windows & Daylighting Software -- WINDOW5.02: Feature List  

NLE Websites -- All DOE Office Websites (Extended Search)

System Non-Convergence System Non-Convergence Last update:05/19/08 05:03 PM There are some circumstances where WINDOW 5 will give the following error message: This error can occur either in the Window or Glazing System calculation, but it is actually an error that occurs when the program tries to calculate the glazing system thermal properties -- it occurs in the Window Library because the program recalculates the center-of-glass U-value based on the window height. It will happen in rare circumstances because of a problem with the discontinuity in correlations that calculate convective heat transfer in glazing cavities. The solution is to change either the glazing system height or width. In general, the most practical solution is to change the glazing system height rather than the width..

173

Dynamic Windows.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

including products with improved fixed or static properties and products with dynamic solar heat gain proper- ties. Nine representative window products are examined in eight...

174

Zero Energy Windows  

E-Print Network (OSTI)

systems, such as space conditioning and lighting. Windows2. Table 1: Annual Space-Conditioning Energy Consumption ofquads Table 2: Annual Space-Conditioning Energy Consumption

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

175

Windows Vistan kyttnotto organisaatioympristss.  

E-Print Network (OSTI)

??Tyn tavoitteena oli kehitt menetelm, jolla Windows Vista- kyttjrjestelm voidaan asentaa usealle tietokoneelle samanaikaisesti mahdollisimman tehokkaasti. Lisksi kyttnotto tytyi tapahtua automaattisesti, jotta se ei vie (more)

Kamula, Erkki

2009-01-01T23:59:59.000Z

176

Windows Server 2008 -infrastruktuuri.  

E-Print Network (OSTI)

??Tm ty ksittelee Windows 2008 -verkkoinfrastrukstuuri-kurssin materiaalin suunnittelua ja testausta. Ty toteutettiin Metropolia Ammattikorkeakoululle kevll 2010. Tyn alussa esitelln tyss kytetty virtuaalisointiohjelmisto ja toiminta, sek (more)

Sundgren, Patrik

2011-01-01T23:59:59.000Z

177

ADVANCEMENT OF ELECTROCHROMIC WINDOWS  

NLE Websites -- All DOE Office Websites (Extended Search)

Eleanor Lee, Co-Principal Investigator Steve Marsh, Curtainwall Engineering, Sensors and Instrumentation Robin Mitchell, Window Modeling Thomas Richardson, Ph.D., Material...

178

Glass Production  

E-Print Network (OSTI)

40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

Shortland, Andrew

2009-01-01T23:59:59.000Z

179

BRAZING THIN BERYLLIUM WINDOWS  

SciTech Connect

Thin, high-vacuum Be windows were vacuum brazed to Cu supports for electronic devices, using small frames of 630-705 deg C In--Cu--Ag brazing alloy. The edges of the Be windows were coated with Cu before brazing. The brazing procedure is described. (D.L.C.)

Papacosta, J.P.; Murdock, D.M.; Crews, R.W.

1962-11-01T23:59:59.000Z

180

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Efficient Windows Collaborative  

SciTech Connect

The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

Nils Petermann

2010-02-28T23:59:59.000Z

182

Window inference in isabelle  

E-Print Network (OSTI)

Window inference is a transformational style of reasoning that provides an intuitive framework for managing context during the transformation of subterms under transitive relations. This report describes the design for a prototype window inference tool in Isabelle, and discusses possible directions for the final tool. 1

Mark Staples

1995-01-01T23:59:59.000Z

183

Energy efficient residential new construction: market transformation. Spectral selective glass. Final project report  

Science Conference Proceedings (OSTI)

This final report describes the following tasks associated with this project: cost and availability of spectrally selective glass (SSG); window labeling problem and field verification of glass; availability of SSG replacement glass and tempered glass; HVAC load reduction due to spectrally selective glass; and comsumer appreciation of spectrally selective glass. Also included in the report are four attachments: builder and HVAC subcontractor presentation, sample advertisements, spectrally selective glass demonstration model, and invitation to SCE Glass mini trade-show.

Hammon, Robert

2000-12-18T23:59:59.000Z

184

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

185

TRNSYS for windows packages  

SciTech Connect

TRNSYS 14.1 was released in 1994. This package represents a significant step forward in usability due to several graphical utility programs for DOS. These programs include TRNSHELL, which encapsulates TRNSYS functions, PRESIM, which allows the graphical creation of a simulation system, and TRNSED, which allows the easy sharing of simulations. The increase in usability leads to a decrease in the time necessary to prepare the simulation. Most TRNSYS users operate on PC computers with the Windows operating system. Therefore, the next logical step in increased usability was to port the current TRNSYS package to the Windows operating system. Several organizations worked on this conversion that has resulted in two distinct Windows packages. One package closely resembles the DOS version and includes TRNSHELL for Windows and PRESIM for Windows. The other package incorporates a general front-end, called IISIBat, that is a general simulation tool front-end. 8 figs.

Blair, N.J.; Beckman, W.A.; Klein, S.A.; Mitchell, J.W.

1996-09-01T23:59:59.000Z

186

Insulating window system  

SciTech Connect

An insulating window system is described for use with existing structural windows which consists of: a window track, the track secured to and outlining the structural windows and includes a jaw means, the jaw means includes a pair of spaced jaws, the jaws extending outward from the track and being concaved towards each other forming a semi-oval channel; a glazing frame means having a base member and a pane holder, the base member having two outwardly extending spaced arms, the arms being concaved towards each other forming a semi-oval channel and engaging the jaws when passed there against, for locking the window track and glazing frame means together; the pane holder extending from the glazing frame means and includes an end section and a face section, the face section overlaying the base member with the end section extending therebetween, all forming a glazing channel for securing a glazing pane.

Miller, W.

1986-04-15T23:59:59.000Z

187

A true virtual window  

E-Print Network (OSTI)

Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still images and video, lack three dimensional properties necessary for a realistic viewing experience ? primarily motion parallax. We present a new system using a head-coupled display and image-based rendering to simulate a photorealistic artificial window view of nature with motion parallax. Evaluation data obtained from human subjects suggest that the system prototype is a better window substitute than a static image and has significantly more positive effects on observers? moods. The test subjects judged the system prototype as a good simulation of, and acceptable replacement for, a real window, and accorded it much higher ratings for realism and preference than a static image.

Radikovic, Adrijan Silvester

2004-12-01T23:59:59.000Z

188

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

189

Window Types | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Types Window Types Window Types June 18, 2012 - 8:06am Addthis A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto What does this mean for me? If you have old windows, they are likely losing large amounts of energy through the frames and glazing. By upgrading old windows, you can reduce heating and cooling costs in your home. Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance of the frame can contribute to a window's

190

Selecting windows for energy efficiency  

SciTech Connect

New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

1997-05-01T23:59:59.000Z

191

Secure Windows Dr. Bernd Borchert  

E-Print Network (OSTI)

Secure Windows Dr. Bernd Borchert WSI für Informatik Univ. Tübingen #12;Problem: Trojans Server Windows" Server (encoding) Internet #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows" #12;Server (encoding) Internet Solution: ,,Secure Windows

Borchert, Bernd

192

High Performance Windows Volume Purchase: Subscribe to Windows...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Windows Volume Purchase Event News and Updates to someone by E-mail Share High Performance Windows Volume Purchase: Subscribe to Windows Volume Purchase Event News and...

193

Design of traveling wave windows for the PEP-II RF coupling network  

SciTech Connect

The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed.

Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

1995-05-01T23:59:59.000Z

194

Seasonal thermal energy balances for window shade management  

SciTech Connect

The hourly net energy transfer was determined for a typical meteorological year for windows oriented to the cardinal directions using seven types of interior coverings. Seasonal data are presented for the cases of using no interior shading, shades closed all the time, shades closed during the day and shades opened during the day. The number of plates of glass, window orientation and shade transmission characteristics were found to be important.

Colliver, D.G.; Parker, B.F.; Walton, L.R.

1983-06-01T23:59:59.000Z

195

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows  

E-Print Network (OSTI)

Collaborative Sharing of Windows between MacOS X, the X Window System and Windows Daniel Stødle This paper investigates how one best can share windows between many different computers in a collaborative application. We present an architecture of a system allowing windows on MacOS X to be shared with computers

Bjørndalen, John Markus

196

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows?  

E-Print Network (OSTI)

Left-over Windows Cause Window Clutter... But What Causes Left-over Windows? Julie Wagner1 that they can return to later. However, users also struggle with window clutter, facing an increasing number of `left-over windows' that get in the way. Our goal is to understand how users create and cope with left

197

The Efficient Windows Collaborative  

SciTech Connect

The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

Petermann, Nils

2006-03-31T23:59:59.000Z

198

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

windows, and are available in a range of materials. If you have old windows in your home, replacing them with new, energy-efficient windows will most likely return your...

199

AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS  

E-Print Network (OSTI)

Through Sash/Frame Cracks . Window Operation Types . . . . .Window Operation Types . . . . .Air Leakage of Installed Windows Scattergram of Field

Weidt, John

2013-01-01T23:59:59.000Z

200

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows 7, Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not...

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Replacement Compare Annual Energy Costs for Replacement Windows in a Typical House Use the Window Selection Tool to compare the annual energy performance of different window...

202

6.2.285. OOF.Windows  

Science Conference Proceedings (OSTI)

... Open or raise the Layer Editor window. OOF.Windows.Messages; OOF.Windows.OOF2 -- Raise the main OOF2 window. ...

2013-07-05T23:59:59.000Z

203

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Research Energy Systems Integration Advancement ofintegration issues related to using EC windows within a whole building energy efficient systemenergy- savings benefit with EC-daylighting-HVAC integration (assuming a conventional VAV system

2006-01-01T23:59:59.000Z

204

Windows as Luminaires  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows with low-e coatings have already captured a 35% market share in the U.S, with sales of 25 million square meters (270 million square feet) per year. Fig. 1 is based on a...

205

Laser having improved windows  

SciTech Connect

A discharge tube for a gaseous laser is terminated with windows made of crystalline quartz which do not fluoresce in the presence of high energy, visible and ultraviolet light radiation.

Alves, R.W.; Costich, V.R.

1976-11-23T23:59:59.000Z

206

Walls and Windows  

SciTech Connect

Energy travels in and out of a building through the walls and windows by means of conduction, convection, and radiation. The walls and windows, complex systems in themselves, are part of the overall building system. A wall system is composed of multiple layers that work in concert to provide shelter from the exterior weather. Wall systems vary in the degree to which they provide thermal resistance, moisture resistance, durability, and thermal storage. High tech windows are now available that can resist radiation heat transfer while still providing light and visibility. The combination of walls and windows within the building system can be adapted to meet a wide range of environmental conditions, recognizing that the best building envelope system for one climate may not be the first choice for another location.

Stovall, Therese K [ORNL

2007-01-01T23:59:59.000Z

207

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1998-05-19T23:59:59.000Z

208

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

Phillips, H.L.; Elliott, T.S.

1997-03-11T23:59:59.000Z

209

Windows with complex shading  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal properties MoWiTT measured system SHGC to check method The transmission of solar energy through a complicated system such as a window with a venetian blind andor...

210

Available Technologies: Superinsulated Commercial Window ...  

Superinsulated Commercial Window Framing System. IB-3155. APPLICATIONS OF TECHNOLOGY: Window and faade framing systems for non-residential building c ...

211

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick...

212

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... a DOS window to run gsaskit.exe and an unzip program (for example Winzip) to unpack Tcl/Tk and EXPGUI. For newer versions of Windows, the ...

213

Window Daylighting Demo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

214

Window Daylighting Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

215

Delineating the conformal window  

E-Print Network (OSTI)

We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings.

Mads T. Frandsen; Thomas Pickup; Michael Teper

2010-07-09T23:59:59.000Z

216

Determining the Solar Optical Properties of Windows with Shading Devices-  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining the Solar Optical Properties of Windows with Shading Devices- Determining the Solar Optical Properties of Windows with Shading Devices- New Measurement and Modeling Techniques Speaker(s): Nathan Kotey Date: October 5, 2009 - 12:00pm Location: 90-3122 The global interest to reduce energy use in buildings has focussed new efforts to more aggressively reduce energy used by all major building components, such as window systems. Although good progress has been made in reducing heat loss, the contribution of windows to heat gain, peak cooling loads and cooling energy consumption is increasingly viewed globally as a problem. While glass coatings provide some control, shading devices on windows have the potential to do an even better job to reduce peak cooling load and annual energy consumption because there are more design parameters

217

Design options for low-conductivity window frames  

Science Conference Proceedings (OSTI)

The window industry's commercialization of low-emissivity coatings and low-conductivity gas-filling over the past few years has helped to drastically reduce heat transfer rates through the glazed areas of windows. However, few changes have taken place in the design and construction of window frames and edges, leaving these elements to account for most of the heat transfer through today's state-of-the-art windows. This paper presents design and material requirements for the manufacture of low-conductivity window frames obtained through the use of finite element computer modeling. Such frames will compliment and not degrade today's most energy-efficient insulated glass units. 7 refs., 2 figs., 5 tabs.

Byars, N.; Arasteh, D.

1990-10-01T23:59:59.000Z

218

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

219

Storm Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Windows Storm Windows Storm Windows June 18, 2012 - 8:20am Addthis An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. Interior storm windows improved the energy efficiency of a daycare center with windows on the north elevation. | Photo courtesy of Larry Kinney,

220

Windows: Technical paper with comments  

SciTech Connect

Functional requirements of windows are examined including window location; hardware design, operation, and placement; energy conservation needs; and egress requirements. Basic window styles and design characteristics are described. Problems confronting persons with disabilities are identified and recommendations are made on the development of minimum functional and safety specifications for windows.

Woods, W.

1984-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Why packages? The Windows tools  

E-Print Network (OSTI)

Why packages? The Windows tools A sample package Going further Package Development in Windows from August 13, 2008; updated November 23, 2012 1 of 45 #12;Why packages? The Windows tools A sample of packages 2 The Windows tools The main tools Missing pieces Installing the tools 3 A sample package Getting

Murdoch, Duncan

222

Highly Insulating Windows - Fram  

NLE Websites -- All DOE Office Websites (Extended Search)

Frames Frames Research performed at the Norwegian University of Science and Technology and LBNL has identified various highly insulating frame solutions. A report was released in 2007 describing some of these frames. This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m2K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC.

223

Euclid's Windows and our Mirrors Review of Euclid's Window by Leonard Mlodinow  

E-Print Network (OSTI)

for the cardboard figures that he paints. Disoriented by ideas and by individuals whose feelings and behavior the author about the material, I certainly found it an occasion to reflect on what I would have liked of reconciling it with the differential geometry of relativity; particles #12; Review of Euclid's Windows 2

Langlands, Robert

224

Intensity offset and correction of solid spectral library samples measured behind glass  

SciTech Connect

Accurate and calibrated diffuse reflectance spectra libraries of solids are becoming more important for hyperspectral and multispectral remote sensing exploitation. Many solids are in the form of powders or granules and in order to measure their diffuse reflectance spectra in the laboratory, it is often necessary to place the samples behind a transparent medium such as glass or quartz for the UV, visible or near-infrared spectral regions to prevent their unwanted dispersal into the instrument or laboratory environment. Using both experimental and theoretical methods we have found that for the case of fused quartz this leads to an intensity offset in the reflectance values. Although expected dispersive effects were observed for the fused quartz window in the UV, the measured hemispherical reflectance values are predominantly vertically shifted by the reflectance from the air-quartz and sample-quartz interfaces with intensity dependent offsets leading to measured values up to nearly ?6% too high for a 2% reflectance surface, ?3.8% too high for 10% reflecting materials, approximately correct (to within experimental error) for 40% to 60% diffuse reflecting surfaces, and ?2% too low for 99% reflecting Spectralon surfaces. For the diffuse reflectance case, the measured values are uniformly too low due to the glass, with differences nearly 6% too high for reflectance values approaching 99%. The deviations arise from the added reflections from the quartz surfaces as verified by theory, modeling and experiment. Empirical correction factors were implemented into post-processing software to redress the artifact for hemispherical and diffuse reflectance data across the 300 nm to 2300 nm range.

Bernacki, Bruce E.; Redding, Rebecca L.; Su, Yin-Fong; Brauer, Carolyn S.; Johnson, Timothy J.

2013-05-18T23:59:59.000Z

225

Adaptive Liquid Crystal Windows  

SciTech Connect

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMIs roll-to-roll process, proved by making 1ft 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31T23:59:59.000Z

226

Starburst99 for Windows  

E-Print Network (OSTI)

We describe a Windows compatible version of the evolutionary synthesis code Starburst99. Starburst99 for Windows was developed from the public UNIX based version at STScI. We converted the original Fortran77 source code into a version for a Win32 environment with an Absoft Fortran Pro x86 compiler. Extensive testing showed no significant numerical differences in comparison with the previous UNIX version. The software application consists of the source code, executable, and a number of auxiliary files. The package installs on any PC running Windows 2000, XP, or Vista and can be obtained as freeware at http://www.stsci.edu/science/starburst/PCStarburst99.html. We give an overview of the different running modes and provide instructions for getting started with the initial set-up.

Claus Leitherer; Julia Chen

2008-11-14T23:59:59.000Z

227

Patching the thermal hole of windows  

SciTech Connect

Materials research is being applied to the significant reduction of undesired heat gains and losses through apertures. This paper summarizes the background and recent progress supporting the development of vacuum and electrochromic windows at SERI. Evacuated glazings now under investigation feature a thin-film, transparent infrared reflector, spherical glass spacers, and laser-welded edges. We believe that these features will result in an overall glazing R-value of 10 or more, maintainable over architectural lifetimes. Technical issues discussed include thermal and mechanical stress, optimal spacer configuration, and gaseous diffusion. The electrochromic work has concentrated on achieving large differences in the transmissivity of window glazing by using thin, transparent films that respond to small electrical potential by becoming, reversibly, partially colored or opaque. Color memory, bleaching rates, and alternative transparent solid-state conductors are discussed.

Potter, T.F.

1985-04-01T23:59:59.000Z

228

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 (7.2.29 -- December 29 2013) Release Notes Updated: 12/29/13 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2.29 (December 29, 2013) Program Changes Glazing System Shading System Details For shading system in a Glazing System Library construction, the emittances, conductance and TIR are not displayed, as they are only available after a calculation has been completed. Perforated Screens An input value for "Effective Openness Factor" has been added to the Shading Layer Library for perforated screens. At a future date, we will update the program to calculate this value automatically.

229

LBNL Windows & Daylighting Software -- WINDOW Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Vacuum Glazing Modeling Vacuum Glazing Modeling It is now possible to model vacuum glazing in WINDOW 7. The first step is to define a new vacuum "gap" in the "Gap Library" (formerly the Gas Library). Then that vacuum gap is used in a glazing system to calculate the thermal characteristics of the glazing system with a vacuum gap. Gap Library The Gas Library has been renamed the Gap Library. To define a vacuum gap, check the "Vacuum" checkbox (this is only available for single gases, not gas mixtures). When this box is checked, new input variables will appear, including the vacuum pressure, the specific heat ratio and molecular weight of the vacuum gas. It is also necessary to define a pillar system for the vacuum gap. Pillar Definition Double click the double arrow to the right of the Pillar Definition pulldown to define a new pillar system. Define the shape and dimensions of the pillar system.

230

LBNL Window & Daylighting Software -- RESFEN: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Windows 95, Windows 98, Windows 2000, Windows XP, or Windows NT CPU TYPE Pentium (a 133 MHz pentium will take about 40 seconds to perform a...

231

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

a DOE2 input file from WINDOW 5 Last update: 02012008 01:19 PM Creating a DOE-2 Input File for One Window In the WINDOW Window Library, which defines a complete window including...

232

Calcium fluoride window mounting  

SciTech Connect

A technique has been developed for joining a large calcium fluoride crystal to a stainless-steel flange by means of a silver transition ring. The process involves both vacuum brazing using a copper-silver alloy and air brazing using silver chloride. This paper describes the procedure used in fabricating a high-vacuum leak-tight calcium fluoride window assembly.

Berger, D.D.

1982-10-01T23:59:59.000Z

233

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

234

Window To The Stars  

E-Print Network (OSTI)

We present Window To The Stars, a graphical user interface to the popular TWIN single/binary stellar evolution code, for novices, students and professional astrophysicists. It removes the drudgery associated with the traditional approach to running the code, while maintaining the power, output quality and flexibility a modern stellar evolutionist requires. It is currently being used for cutting edge research and interactive teaching.

Robert G. Izzard; Evert Glebbeek

2006-07-27T23:59:59.000Z

235

Superconducting radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1997-01-01T23:59:59.000Z

236

Superconductive radiofrequency window assembly  

DOE Patents (OSTI)

The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

1998-01-01T23:59:59.000Z

237

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Efficient Windows Collaborative Welcome to the Efficient Windows Collaborative YOUR GATEWAY TO INFORMATION ON HOW TO CHOOSE ENERGY-EFFICIENT RESIDENTIAL WINDOWS 101 Efficient Windows Collaborative (EWC) members have made a commitment to manufacture and promote energy-efficient windows. This site provides unbiased information on the benefits of energy-efficient windows, descriptions of how they work, and recommendations for their selection and use. Selecting Windows for New Construction Window Selection Tool Selection Process Design Guidance Installation Selecting Replacement Windows Window Selection Tool Assessing Replacement Options Selection Process Design Guidance Installation Understanding Windows Benefits of Energy Efficient Windows Design Considerations How to Measure Performance Window Technologies

238

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.2 is not compatible with THERM 7.1....

239

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

a copy of THERM 7 Beta Knowledge Base Release Notes Forum Documentation Get a copy of WINDOW 7.1 to accompany THERM 7 Beta -- NOTE: WINDOW 7.0 is not compatible with THERM 7.1....

240

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radiance in WINDOW 7 beta August 3rd, 2012 Last Updated: 08032012 This package will add the capability to generate basic Radiance images from within WINDOW. You need to...

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Expert Meeting Report: Windows Options for New and Existing Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Options for New and Existing Homes Windows Options for New and Existing Homes Expert Meeting Report: Windows Options for New and Existing Homes The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and

242

A Design Guide for Early-Market Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

243

Windows Installation Information for EXPGUI  

Science Conference Proceedings (OSTI)

... in liveplot for example) can take 3-5 times longer in Windows than in ... display a plot, I get no plot (and possibly the DOS window disappears without ...

244

Nanolens Window Coatings for Daylighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

245

Nanolens Window Coatings for Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanolens Window Coatings for Nanolens Window Coatings for Daylighting Kyle J. Alvine Pacific Northwest National Laboratory Kyle.alvine@pnnl.gov / (509) - 372 - 4475 April 4 th , 2013 Demonstration of the effect To develop a novel, low-cost window coating to double daylight penetration to offset lighting energy use 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: PNNL is developing a novel, low-cost window coating to redirect daylight deeper into buildings to significantly offset lighting energy.

246

AttrActive Windows: Dynamic Windows for Digital Bulletin Boards  

E-Print Network (OSTI)

In this paper we describe AttrActive Windows, a novel interface for presenting live, interactive, multimedia content on a network of public, digital, bulletin boards. Implementing a paper flyer metaphor, AttrActive Windows are paper-like in appearance and are attached to a virtual corkboard by virtual pushpins. Windows can therefore appear in different orientations, creating an attractive, informal look. Attractive Windows can also have autonomous behaviors that are consistent with the corkboard metaphor, like fluttering in the wind. We describe the AttrActive Windows prototype, and offer the results of an initial evaluative user study.

Laurent Denoue; Les Nelson; Elizabeth Churchill

2003-01-01T23:59:59.000Z

247

A professor's life, simplified Windows  

E-Print Network (OSTI)

A professor's life, simplified Windows® 7 makes a professor's "technology life" easier. Now, using programs quickly. Windows Search finds virtually anything on your PC instantly­ files, photos, documents, even a buried e-mail. 2. Helps you get started faster Windows7 operating system is not tardy. It starts

Bernstein, Phil

248

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect to LinkedIn Visit us on Facebook Visit us on Twitter Send Email Efficient Windows Collaborative New Construction Windows Window Selection Tool Selection Process Design...

249

Simulating Complex Window Systems using BSDF Data  

E-Print Network (OSTI)

Simulating Complex Window Systems using BSDF Data MariaJune 2009 Simulating Complex Window Systems using BSDF Datathe performance of conventional window systems. Complex

Konstantoglou, Maria

2011-01-01T23:59:59.000Z

250

Window performance for human thermal comfort  

E-Print Network (OSTI)

of Heat Transfer through Windows. ASHRAE Transactions 93,Performance of Vinyl-framed Windows. Proc. 5 th Conf. Onet al. 2003b, "Operable Windows, Personal Control & Occupant

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

251

Operable windows, personal control and occupant comfort.  

E-Print Network (OSTI)

ASHRAEs permission. Operable Windows, Personal Control, andcontrol of operable windows in naturally-ventilated officeences on the operation of windows in a naturally venti-

Brager, Gail; Paliaga, Gwelen; de Dear, Richard

2004-01-01T23:59:59.000Z

252

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

LaFrance. 2006. Zero Energy Windows. Proceedings of the2003. Future Advanced Windows for Zero-Energy Homes. and cooling energy use of windows in residential buildings

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

253

LBNL Windows & Daylighting Software -- THERM: System Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS OPERATING SYSTEM Program has been tested on Microsoft Windows XP, Windows 2000TM.. Older version of Microsoft Windows might work, but are not supported. (The...

254

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Selection Tool: Existing Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a...

255

BT::Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagram showing a zoned window wall Diagram showing a zoned window wall Electrochromic windows in a bleached state (left) or colored state (right). This website provides...

256

Windows, Doors, & Skylights | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows, Doors, & Skylights Windows, Doors, & Skylights Windows, Doors, & Skylights Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Windows affect home aesthetics as well as energy use. Learn more about energy-efficient windows. Energy-efficient windows, doors, and skylights-also known as fenestration-can help lower a home's heating, cooling, and lighting costs. Learn about the energy performance ratings to consider when selecting windows, doors, and skylights, and how to maximize their energy efficiency in your home. Featured Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto

257

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

8 8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3) Triple-Glazed (2) with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas (3) Note(s): Source(s): The Efficient Windows Collaborative (http://www.efficientwindows.org) 0.14 0.33 0.56 1) Spectrally selective. 2) Includes double glazing with suspended film. 3) Center of glass properties, does not include frame or installation

258

Energy Efficient Electrochromic Windows Incorporating Ionic Liquids  

SciTech Connect

One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

2008-11-30T23:59:59.000Z

259

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

6 6 2005 Residential Prime Window Stock (Million Households) Double Pane Census Division New England 5.3 Middle Atlantic 15.0 East North Central 17.3 West North Central 7.7 South Atlantic 21.3 East South Central 6.8 West South Central 12.1 Mountain 7.3 Pacific 16.4 United States 109.2 Selected States New York 7.0 Florida 6.7 Texas 7.6 California 12.0 Note(s): Source(s): 1) Respondents were shown pictures of different types of window glass and were asked "Which picture best describes the type of glass in the windows of your home/apartment?" 2) An additional 1.3 million households not counted here use other types of windows such as triple-pane windows. EIA, 2005 Residential Energy Consumption Survey, Tables HC 11.5, HC 12.5, HC 13.5, HC 14.5, and HC 15.5, April 2008. 5.1 2.5

260

Evaluation of seismic capacity of glovebox windows using deformation tests  

SciTech Connect

With the increasing emphasis on worker safety, gloveboxes are being relied upon in Safety Analyses to be a confinement boundary. Many of the accident scenarios result in a requirement that these gloveboxes be seismically qualified. Since there is currently no validated experience data category for gloveboxes, the qualification has generally been done by analysis. The weak link in assuring confinement integrity by analysis is in characterizing the glass and glass-to-glovebox seal in the analytical models. engineering judgement as to whether the windows will survive a seismic event based on total calculated deflection at the window. Most often the windows are assumed to lose their confinement capability during an earthquake. A quantitative basis is needed in order to evaluate the seismic capacity of these windows. A series of deformation tests are being performed at the Savannah River Site on glovebox mock-ups. This paper presents the results of the first two of these tests, including displacement profiles and leak rate data. Methods for using this data for evaluating the windows for seismic loads are proposed.

Hargett, S.T.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE)  

E-Print Network (OSTI)

WindowsMillenniumEdition (Me) Windows98/98SecondEdition(SE) Windows2000Professional WindowsXPHomeEdition WindowsXPProfessional Installation Guide Installing Nikon View 4 and Supporting Software Windows software (such as Cumulus) Mac OS Nikon D1 Nikon D1X Nikon D1H Windows Millennium Edition (Me) Windows 98

Kleinfeld, David

262

Window Interfaces: A Taxonomy of Window Manager User Interfaces  

E-Print Network (OSTI)

This article presents a taxonomy for the user-visible parts of window managers. It is interesting that there are actually very few significant differences, and the differences can be classified in a taxonomy with fairly limited branching. This taxonomy should be useful in evaluating the similarities and differences of various window managers, and it will also serve as a guide for the issues that need to be addressed by designers of future window manager user interfaces. The advantages and disadvantages of the various options are also presented. Since many modern window managers allow the user interface to be customized to a large degree, it is important to study the choices available. A window manager is a software package that helps the user monitor and control different contexts by separating them physically onto different parts of one or more display screens. At its simplest, a window manager provides many separate terminals on the same screen, each with its own connection to a time-sharing computer. At its most advanced, a window manager supports many different activities, each of which uses many windows, and each window, in turn, can contain many different kinds of information including text, graphics, and even video. Window managers are sometimes implemented as part of a computers operating system and sometimes as a server that can be used if desired. They September 1988 0272-1;1618810900-0065s0100 198R ltEE 65

Brad A. Myers

1988-01-01T23:59:59.000Z

263

DOE-2 Input File From WINDOW  

NLE Websites -- All DOE Office Websites (Extended Search)

an EnergyPlus input file from WINDOW 5 Last update: 12232008 01:54 PM Creating an EnergyPlus Input File for One Window In the WINDOW Window Library, which defines a complete...

264

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Glazing Types Window Technologies: Glazing Types Glazing Improvements There are three fundamental approaches to improving the energy performance of glazing products (two or more of these approaches may be combined). The first approach is to alter the glazing material itself by changing its chemical composition or physical characteristics. An example of this is tinted glazing. The second approach is to apply a coating to the glazing material surface. Reflective coatings and films were developed to reduce heat gain and glare, and more recently, low-emittance coatings have been developed to improve both heating and cooling season performance. The third approach is to assemble various layers of glazing and control the properties of the spaces between the layers. These strategies include the use of two or more panes or films,

265

Energy Savings with Smart Window Technology  

Window / faade manufacturer Added value / higher margin Construction company Smart Window investment balanced by reduced ... Transport Vehicles

266

BSP 930 WINDOWS NT SECURITY CHECKLIST  

Science Conference Proceedings (OSTI)

MICROSOFT WINDOWS NT 3.51/4.0 SECURITY CHECKLIST. Domain Name_____. ... 3.0, WINDOWS NT ACCOUNT POLICIES, ...

267

Image Windows - description of data types  

Science Conference Proceedings (OSTI)

... image, or RGB color image. cstack Stack of color (RGB) images. FRED (text) window; Dialog; (various) graphics windows.

268

Windows 7 -kyttjrjestelmn ominaisuudet, kytt ja Windows XP -vertailu.  

E-Print Network (OSTI)

??Tmn opinnytetyn tutkimuskohteena oli Windows 7 -kyttjrjestelm. Sen ominaisuuksia ja kytt arvioitiin kyttjn nkkulmasta. Lisksi selvitettiin mm. asennusvaihtoehtoja, kyttjrjestelmn versioiden eroja ja toimintoihin sek so-velluksiin (more)

Nevala, Jukka

2010-01-01T23:59:59.000Z

269

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools Tools Looking for windows for a new home? Use the Window Selection Tool to compare annual energy performance for windows in new construction. Window Selection Tool Looking for replacement windows? Use the Window Selection Tool to compare annual energy performance for replacement windows. Window Selection Tool Window Selection Tool Use the Window Selection Tool for new or replacement windows to compare the annual energy performance of different window types and design conditions for a typical house. Find manufacturers who offer windows and skylights within the generic results shown. Learn more about manufacturers' specific product options. Use the Window Selection Tool to: Compare how various window or skylight types affect estimated energy cost for a typical house in your location.

270

Design and prototype of a partial window replacement to improve the energy efficiency of 90-year-old MIT buildings  

E-Print Network (OSTI)

The existing windows of the 90-year-old buildings on the main MIT campus are not energy efficient and compromise comfort levels. The single panes of glass allow too much heat transfer and solar heat gain. In addition, the ...

Chen, YunJa

2007-01-01T23:59:59.000Z

271

Beam line windows at LAMPF  

Science Conference Proceedings (OSTI)

The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented.

Brown, R.D.; Grisham, D.L.; Lambert, J.E.

1985-01-01T23:59:59.000Z

272

Windows for energy efficient buildings  

SciTech Connect

Information is compiled and reviewed on energy efficient windows. The status, support organization, and descriptions of some research, development, demonstration, and applications program of energy efficient windows are presented. Information about contract opportunities and recently awarded contracts is included. New products, materials, components, patents, and legislation are summarized. Information on industry organizations, literature, publications, and reports is included. A matrix of numerical performance data of window thermal barriers is presented. (MCW)

1980-01-01T23:59:59.000Z

273

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for Replacement Windows Selection Process for Replacement Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Assess Your Existing Windows Assess whether your windows should be repaired, retrofitted, or replaced. While most new windows have labels indicating their energy properties, such information is not often available for existing windows. Download Window Energy Efficiency Checklist for assistance. Window Replacement

274

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Replacement Windows for Existing Homes Homes Replacement Windows for Existing Homes Homes Window Selection Tool Use the Window Selection Tool for existing homes (replacement windows) to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Assessing Options This section provides guidance the options available to improve the performance of your existing windows or to replace them. You can assess whether to repair, retrofit or replace your existing windows. Window Selection Process This section provides step-by-step guidance on the window selection process for replacement windows including issues of code, energy, durability, and installation.

275

Visual and energy performance of switchable windows with antireflection coatings  

Science Conference Proceedings (OSTI)

The aim of this project was to investigate how the visual appearance and energy performance of switchable or smart windows can be improved by using antireflective coatings. For this study clear float glass, low-e glass and electrochromic glass were treated with antireflection (AR) coatings. Such a coating considerably increases the transmittance of solar radiation in general and the visible transmittance in particular. For switchable glazing based on absorptive electrochromic layers in their dark state it is necessary to use a low-emissivity coating on the inner pane of a double glazed window in order to reject the absorbed heat. In principle all surfaces can be coated with AR coatings, and it was shown that a thin AR coating on the low-e surface neither influences the thermal emissivity nor the U-value of the glazing. The study showed that the use of AR coatings in switchable glazing significantly increases the light transmittance in the transparent state. It is believed that this is important for a high level of user acceptance of such windows. (author)

Jonsson, Andreas; Roos, Arne [Department of Engineering Sciences, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden)

2010-08-15T23:59:59.000Z

276

A review of electrochromic window performance factors  

SciTech Connect

The performance factors which will influence the market acceptance of electrochromic windows are reviewed. A set of data representing the optical properties of existing and foreseeable electrochromic window devices was generated. The issue of reflective versus absorbing electrochromics was explored. This data was used in the DOE 2.1 building energy model to calculate the expected energy savings compared to conventional glazings. The effects of several different control strategies were tested. Significant energy and peak electric demand benefits were obtained for some electrochromic types. Use of predictive control algorithms to optimize cooling control may result in greater energy savings. Initial economic results considering annual savings, cooling equipment cost savings, and electrochromic window costs are presented. Calculations of thermal and visual comfort show additional benefits from electrochromics but more work is needed to quantify their importance. The design freedom and aesthetic possibilities of these dynamic glazings should provide additional market benefits, but their impact is difficult to assess at this time. Ultimately, a full assessment of the market viability of electrochromics must consider the impacts of all of these issues.

Selkowitz, S.E.; Rubin, M.; Lee, E.S.; Sullivan, R.; Finlayson, E.; Hopkins, D.

1994-04-01T23:59:59.000Z

277

Buildings Energy Data Book: 5.2 Windows  

Buildings Energy Data Book (EERE)

5 5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 66% 25.2 100% 1990 4.9 14% 12.0 34% 18.7 53% 35.6 100% 1993 2.8 14% 17.2 84% 0.4 2% 20.4 100% 1995 5.5 12% 37.8 85% 1.3 3% 44.5 100% 1999 4.8 8% 55.2 89% 2.0 3% 62.0 100% 2001 3.9 7% 50.9 90% 1.5 3% 56.3 100% 2003 4.7 7% 55.9 89% 2.2 4% 62.8 100% 2005 4.2 6% 63.8 91% 2.5 3% 70.5 100% 2007 2.7 5% 55.0 93% 1.4 2% 59.1 100% 2009 1.6 4% 36.2 93% 1.2 3% 38.9 100% Note(s): 1) IG = insulated glazing. Source(s): Double Pane Single Pane Sealed IG (1) Other Total AAMA/NWWDA, Study of the U.S. Market for Windows and Doors, 1996, Table 22, p.49; AAMA/WDMA, Study of U.S. and Canadian Market for Windows and Doors, Apr. 2000, Exhibit E.7, p. 55; AAMA/WDMA, Study of the Market for U.S. Doors, Windows and Skylights, Apr. 2004, Exhibit D.4, p. 46; AAMA/WDMA, Study of U.S. Market for Windows, Doors, and Skylights, Apr. 2006, Exhibit D.8 Conventional Window Glass Usage, p. 50; AAMA/WDMA, Study of U.S.

278

Ring Ring Oy -yrityksen Windows XP -kyttjrjestelmst siirtyminen Windows 7 -kyttjrjestelmn ja yllpidon nkkulma.  

E-Print Network (OSTI)

??Opinnytetyn aiheena oli selvitt mill tapaa Windows XP -kyttjrjestelm eroaa Windows 7 -kyttjrjestelmst yllpidon nkkulmasta. Selvitys pohjautuu toimeksiantajan toiveeseen saada lis tietoa Windows 7 -kyttjrjestelmn (more)

Ritala, Ilkka

2011-01-01T23:59:59.000Z

279

Thermally insulated windows and doors  

SciTech Connect

Complete thermal insulation of metal rails and stiles in vertically or horizontally sliding or rolling windows or doors is provided by including in the frame thereof centered rigid plastic shapes which extend between panels of the windows or doors. All rails and stiles of each panel are thereby exposed only to either interior or exterior ambient temperatures.

Schmidt, D.F.

1979-05-01T23:59:59.000Z

280

The Window Strategy with Options  

E-Print Network (OSTI)

The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works and when to use it.

McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

1999-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Window Functions for CMB Experiments  

E-Print Network (OSTI)

We discuss the applicability and derivation of window functions for cosmic microwave background experiments on large and intermediate angular scales. These window functions describe the response of the experiment to power in a particular mode of the fluctuation spectrum. We give general formulae, illustrated with specific examples, for the most common observing strategies.

Martin White; Mark Srednicki

1994-02-15T23:59:59.000Z

282

Tokamak physics experiment: Diagnostic windows study  

SciTech Connect

We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

Merrigan, M.; Wurden, G.A.

1995-11-01T23:59:59.000Z

283

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

284

Traditional Glasses  

Science Conference Proceedings (OSTI)

Table 1   Glass product types and applications...plates, cups, bowls, serving dishes Fiberglass Wool: insulation, filters Textile: plastic or rubber tire reinforcements, fabrics,

285

Glass Fibers  

Science Conference Proceedings (OSTI)

Table 14   Compositional ranges for insulation-type glasses...from materials melted in a cupola with coke as fuel, all iron oxide

286

Thermally reversing window and stiffness transitions in chalcogenide glasses  

E-Print Network (OSTI)

the University of Utah Center for Simulations of Accidental Fires and Explosions, funded by the Department.; Daub, G. W. Anal. Chem. 1973, 45, 596. (23) Rogers, R. N. Thermochim. Acta 1974, 9, 444. (24) Kishore

Boolchand, Punit

287

Windows Vista Step by Step Deluxe Edition  

Science Conference Proceedings (OSTI)

The smart way to learn Windows Vista one step at a time! Updated with expanded coverage, this deluxe edition covers all of the latest Windows Vista features. You ll discover the smartest ways to stay organized with Windows Mail, Windows Contact, Windows ...

Joyce Cox; Joan Preppernau

2008-02-01T23:59:59.000Z

288

Glass Surfaces and Water in Glasses  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Glass and Optical Materials: Glass Surfaces and Water in Glasses Program Organizers: Jincheng Du, University of North Texas; John Kieffer,...

289

Does Transmission of Light through a Window Involve Physics at the Planck Scale? 1 Problem  

E-Print Network (OSTI)

While it would be generally considered that transmission of light through a glass window does not involve physics at the Planck length scale (sec. 26 of [1]), LP = hG/c3 ? 1.6 10 ?35 m, (1) a recent suggestion by Bekenstein [2, 3] is that it does. 1 The comment is that when a single photon of momentum p and energy E = pc enters a transparent block of mass M and index of refraction n, which block is initially at rest, the momentum of the photon 2 is reduced to p/ngroup ? p/n, and the momentum of the block is temporarily increased to P ? p(1?1/n) forthetimeinterval?t = ngroupL/c ? nL/c, where L is the length of the block, c is the speed of light in vacuum, and ngroup = c/vg = cdk/d? = d(?n)/d? = n + ?dn/d? ? n for glass. During this time interval the center of mass of the block 3 moves along the direction of the photon by a distance ?x = v?t = P ?t/M = (1 ? 1/n)pnL/Mc =(n ? 1)EL/Mc 2. For example, if n ? 1.5, E ? 2eV ? 3.2 10 ?19 J, L =0.01 m and M =0.1 kg,then?x ? 1.6 10 ?36 m ? 0.1LP. This indicates that the Planck scale is in some way relevant to transmission of light through a window. The argument is then that if space is grainy on the Planck scale (as suggested by Wheeler [6]), such a tiny displacement would be impossible, and the single photon would not be transmitted, but would be reflected. Hence, if the transmission coefficient of the window is smaller for a single photon than for a pulse, this could be evidence that space is grainy on the Planck scale. Can this be so? 2

Kirk T. Mcdonald

2013-01-01T23:59:59.000Z

290

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

7.0 7.0 Last Updated: 05/20/2013 EN 673 / ISO 10077 Using WINDOW 7 and THERM 7 for EN 673 / ISO 10077 Calculations If you are interested in using WINDOW and THERM for EN 673 / ISO 10077 calculations, we have added that option to WINDOW 7. The calculation is not fully automated in the program yet, so there are many steps and a spreadsheet for the final calculation. We are interested in feedback (email WINDOWHelp@lbl.gov) about the process and the results from anyone who tests this feature. CAUTION: Do not model shading systems with the EN 673 thermal model. The program will produce results but they will most likely not be correct. Download this zip file (EN673.zip) which contains the following: Description of how to use WINDOW 6 and THERM 6 for the EN 673 / ISO 10077 calculations (PDF file)

291

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Last Updated: 12/29/2013 If you find bugs, or have comments about this version, please do not hesitate to send an email to WINDOWHelp@lbl.gov to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.2 (7.2.29) (12/29/2013) Release Notes -- Please read these before running this version ! This version contains these new modeling features Honeycomb shades Dynamic Glazing (Thermochromic and Electrochromic) This version is compatible with THERM 7.1 Please send us emails as you find issues in the program -- that is the only way that we can make it more robust. We hope to iterate versions fairly quickly in the next month or so to get the bugs ironed out. Radiance for WINDOW 7 Get a copy of Radiance for WINDOW 7.2 Must be used with WINDOW 7.0.59 or later

292

LBNL Windows & Daylighting Software -- WINDOW5: Knowledge Base  

NLE Websites -- All DOE Office Websites (Extended Search)

6.3 Knowledge Base 6.3 Knowledge Base Tip - use the Find function in your browser to search this page Last update:11/04/13 01:16 PM Download WINDOW 6.3 Send feedback via email to WindowHelp@lbl.gov. Also as bugs and comments are submitted by testers, the will be posted on this Knowledge Base, so check here for the latest information about the program. CONTENTS INSTALLATION KNOWN BUGS ** Operating Systems -- Microsoft Windows 7 and Vista ** Environmental Conditions -- Kimura convection model not working Locked Files with Install/De-install Environmental Conditions -- Fixed Combined Coefficient Bug Installation Problems Error Message during Calc due to decimal point of "," Minimum computer requirements Importing THERM file into WINDOW generates "Unnamed file has a bad format" error message

293

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

Last Updated: 06262013 Complex Glazing System Modeling WINDOW 6.3 can be used to model complex glazing systems, in particular venetian blinds and roller shades (although not for...

294

LBNL Window & Daylighting Software -- WINDOW 6 Research Version  

NLE Websites -- All DOE Office Websites (Extended Search)

to report your findings. Getting feedback from users is how we improve the program. WINDOW 7.1 (7.1.73) (8302013) Release Notes -- Please read these before running this...

295

LBNL Windows & Daylighting Software -- WINDOW5.02: Version Fixes  

NLE Websites -- All DOE Office Websites (Extended Search)

opening an optics db as a W5 db 748 energy plus reports working properly for windows with 2 glazing systems 742 eliminated a memory leak related to Therm temperature...

296

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Windows Storm Windows Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by adding interior or exterior storm panels. Storm Window Panels exit disclaimer Storm windows can reduce the air leakage and improve the insulating value of existing windows. They can be installed on the interior or exterior side of windows, and can be mounted permanently or for seasonal use. Interior storm windows can be more easily installed and removed for ventilation or cleaning. Storm windows can reduce air leakage. However, it is important that humid

297

High Performance Windows Volume Purchase: For Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and mixed climates, R-5 windows on average reduce window heat loss by 40% and overall space conditioning costs by 10% relative to common ENERGY STAR windows. Promotion of high...

298

A Review of Electrochromic Window Performance Factors  

E-Print Network (OSTI)

0.30. The electrochromic windows were controlled to maintainSelkowitz, Solar Energy Mater. 22 (1991) 1. 2. Windows andDaylighting Group, Window 3.1, A PC Program for Analyzing

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

299

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE OF MANAGED WINDOW SYSTEMS S. E. Selkowitz and V.York, N.Y. , (1971). Windows for Energy Efficient Buildings,thermal performance of a window system are its overall heat

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

300

Occupant Response to Window Control Signaling Systems  

E-Print Network (OSTI)

A. (2002). Operablewindowsand HVACsystems. HPACSimulationoftheeffectsofwindowopeningandheatingDear,R. (2004). OperableWindows,PersonalControland

Ackerly, Katherine

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

AN ENERGY EFFICIENT WINDOW SYSTEM FINAL REPORT.  

E-Print Network (OSTI)

A. . .installed I. Prime windows -Residential -Mobile homesStorm wi ndows - 9.4 window area (in William M. Bethkeestimates ass consumption and window units. Table 9 B. Non-

Authors, Various

2011-01-01T23:59:59.000Z

302

Window Signaling Systems: Control Strategies & Occupant Behavior  

E-Print Network (OSTI)

and L.M Parkins. 1984. Window-Opening Behavior in OfficeOccupant Response to Window Control Signaling Systems," CBEDaly, A. 2002. Operable windows and HVAC systems. HPAC

Ackerly, Katie; Brager, Gail

2012-01-01T23:59:59.000Z

303

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

304

Performance Criteria for Residential Zero Energy Windows  

E-Print Network (OSTI)

building with no windows) Figure 3 Washington DC: Lines ofbuilding with no windows) Figure 8 Washington DC: Lines ofdynamic window. U-factor [W/(m^2-K)] Washington DC -

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

305

High Performance Solar Control Office Windows  

E-Print Network (OSTI)

Solar Control Office Windows William King December 1977 C'eSOLAR CONTROL OFFICE WINDOWS Wm. J. King KINETIC COATINGS,R. Berman. Consultation on window characteristics and aid in

King, William J.

2011-01-01T23:59:59.000Z

306

Solar Reflection Panels - Energy Innovation Portal  

Patent 7,077,532: Solar reflection panels A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front ...

307

Window Use in Mixed-Mode Buildings: A Literature Review  

E-Print Network (OSTI)

exhaust! functions! of! windows! Automated'operable'window'to! view8 level! windows. ! Multiwindow''Single'zone'air'conditioning' Window! or! wall! AC! units,!

Ackerly, Katie; Baker, Lindsay; Brager, Gail

2011-01-01T23:59:59.000Z

308

Window Programming in DFKI Oz  

E-Print Network (OSTI)

This paper describes how to do window programming in DFKI Oz. The DFKI Oz window interface is based on the Tk toolkit which in turn is based on the script language Tcl. It provides a high level abstraction of Tk widgets allowing for objectoriented and concurrent window programming. A generic translation scheme from Oz values to Tcl/Tk commands provides for minimality and flexibility on the Oz side. The Tcl/Tk interface is implemented in Oz using the open programming facilities and is an example of how to connect an external and sequential agent to Oz. Contents 1 Introduction 1 2 Crash Course to Window Programming 3 2.1 Widget creation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2 Widget hierarchy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Tickles and Tcl/Tk commands : : : : : : : : : : : : : : : : : : : : : 5 2.4 Geometry management : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2.5 Invoking widget commands : : : : : : : : : : : : ...

Michael Mehl

1995-01-01T23:59:59.000Z

309

LBNL Windows & Daylighting Software -- THERM  

NLE Websites -- All DOE Office Websites (Extended Search)

a problem with the software) Documentation Future Work Tutorials Two-Dimensional Building Heat-Transfer Modeling THERM is a state-of-the-art, Microsoft Windows-based computer...

310

----Google File System Windows IT  

E-Print Network (OSTI)

Essential ---- Google File System web Windows IT Google IT Google Google File System Google File System Datebase Google Google " " Goolge Goolge Google Google Goolge Google ()(,) Google ...... Google IT Google Google Google Google Google "Google " Google 10

311

Building Mathematics via Theorem Windows  

E-Print Network (OSTI)

Quantum mechanical model with singularities triplets is condisered. How life functions via mechanism which is built from what we call theorem windows we are trying to imagine and to model. Key words: singularities, quantum mechanics, life, reference system of life

Dainis Zeps

2009-01-01T23:59:59.000Z

312

Performance Criteria for Residential Zero Energy Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Criteria for Residential Zero Energy Windows Title Performance Criteria for Residential Zero Energy Windows Publication Type Conference Paper LBNL Report Number...

313

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

for your climate; additionally, the Window Selection Tool compares average simulated energy costs for your location based on various window types. The SHGC is the fraction of...

314

Windows 8 : Uudet ominaisuudet ja muutokset.  

E-Print Network (OSTI)

??Tm opinnytety esittelee Microsoft Windows 8 -kyttjrjestelmn uusia ominaisuuksia ja parannuksia Microsoftin edellisiin kyttjrjestelmiin. Opinnytetyn tavoitteena on hahmottaa Windows 8 -kyttjrjestelmn nkyvimpi udistuksia ja sit, (more)

Ylioja, Ilkka-Aleksi

2013-01-01T23:59:59.000Z

315

Brand Font Installation Guide Windows XP  

E-Print Network (OSTI)

Brand Font Installation Guide Windows XP Before starting ­ make sure to the specific font folder ­ when Windows detects installable font files, they will show

Stuart, Steven J.

316

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Frame Types - Metal Frames Metal Frames Aluminum Aluminum window frames are light, strong, durable, and easily extruded into the complex shapes required for window parts. Aluminum...

317

TMS PostScript Instruction: Microsoft Windows  

Science Conference Proceedings (OSTI)

Please note that these instructions were built using Microsoft Windows 2000 ... This guide is designed to help authors using the Windows operating system to...

318

Building Technologies Office: High Performance Windows Volume...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Office: High Performance Windows Volume Purchase to someone by E-mail Share Building Technologies Office: High Performance Windows Volume Purchase on Facebook...

319

High Performance Windows Volume Purchase: For Builders  

NLE Websites -- All DOE Office Websites (Extended Search)

For Builders to someone by E-mail Share High Performance Windows Volume Purchase: For Builders on Facebook Tweet about High Performance Windows Volume Purchase: For Builders on...

320

High Performance Windows Volume Purchase: For Manufacturers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Manufacturers to someone by E-mail Share High Performance Windows Volume Purchase: For Manufacturers on Facebook Tweet about High Performance Windows Volume Purchase: For...

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High Performance Windows Volume Purchase: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events to someone by E-mail Share High Performance Windows Volume Purchase: Events on Facebook Tweet about High Performance Windows Volume Purchase: Events on Twitter Bookmark High...

322

VisVIP: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... The Windows version of VisVIP comes with three sets of sample data, which ... sites using the "Load Site" button at the bottom of the control window. ...

323

High Performance Windows Volume Purchase: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by E-mail Share High Performance Windows Volume Purchase: News on Facebook Tweet about High Performance Windows Volume Purchase: News on Twitter Bookmark High...

324

Precision polarimetry with real-time mitigation of optical-window birefringence  

E-Print Network (OSTI)

Optical-window birefringence is frequently a major obstacle in many experiments measuring changes in the polarization state of light traversing a sample under investigation. It can contribute a signal indistinguishable from that due to the sample and complicate the analysis. Here, we explore a method to measure and compensate for the birefringence of an optical window using the reflection from the last optical surface before the sample. We demonstrate that this arrangement can cancel out false signals due to the optical-window to about 1 % for the values of optical-window birefringence less than 0.1 rad. I.

B. K. Park; A. O. Sushkov; D. Budker

2008-01-01T23:59:59.000Z

325

Closing the light gluino window  

E-Print Network (OSTI)

The running of the strong coupling constant, $R_{e^+e^-},R_Z$ and $R_\\tau$ is studied on the three-loop level. Based on experimental data of $R_{e^+e^-},R_Z$ and $R_\\tau$ and the LEP multijet analysis, the light gluino scenario is excluded to 99.97% CL (window I) and 99.89% CL (window III).

Ferenc Csikor; Zoltan Fodor

1997-12-04T23:59:59.000Z

326

A generalized window energy rating system for typical office buildings  

Science Conference Proceedings (OSTI)

Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

2010-07-15T23:59:59.000Z

327

Establishment of a Rating Program for Pre- and Post-Fabricated Windows  

SciTech Connect

This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

2011-08-01T23:59:59.000Z

328

Key Elements of and Materials Performance Targets for Highly Insulating Window Frames  

DOE Green Energy (OSTI)

The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

2011-03-28T23:59:59.000Z

329

Weathering and leaching of glass for solar heliostats  

DOE Green Energy (OSTI)

In order to assess the effects of weathering on the transmittance of glass, several old samples were collected from two desert environments for evaluation. The glass obtained by PNL at the Hanford reservation in Washington came from south-facing, vertical windows which were known to be over forty years old. The glass obtained by Sandia from Barstow, California, is estimated to be over twenty years old. To determine the durability of glasses proposed for heliostat mirrors, selected samples were leached in a Soxhlet apparatus and pH 4 and pH 9 buffer solutions. The glass samples produced by the float process are soda-lime-silica glasses, whereas the glass samples produced by the fusion process are aluminosilicate glasses. Results are presented and discussed. (WHK)

Rusin, J. M.

1979-03-01T23:59:59.000Z

330

Importance-driven compositing window management  

E-Print Network (OSTI)

In this paper we present importance-driven compositing window management, which considers windows not only as basic rectangular shapes but also integrates the importance of the windows content using a bottom-up visual attention model. Based on this information, importance-driven compositing optimizes the spatial window layout for maximum visibility and interactivity of occluded content in combination with see-through windows. We employ this technique for emerging window manager functions to minimize information overlap caused by popping up windows or floating toolbars and to improve the access to occluded window content. An initial user study indicates that our technique provides a more effective and satisfactory access to occluded information than the well-adopted Alt+Tab window switching technique and see-through windows without optimized spatial layout. Author Keywords compositing window management, visual saliency, space

Manuela Waldner; Markus Steinberger; Raphael Grasset; Dieter Schmalstieg

2011-01-01T23:59:59.000Z

331

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technologies: Operator Types Window Technologies: Operator Types Window Sash Operation When you select a window, there are numerous operating types to consider. Traditional operable window types include the projected or hinged types such as casement, awning, and hopper, and the sliding types such as double- and single-hung and horizontal sliding. In addition, the window market includes fixed windows, storm windows, sliding and swinging patio doors, skylights and roof windows, and window systems that can be added to a house to create bay or bow windows, miniature greenhouses, or full sun rooms. Looking for information on skylights? More information on skylights, light tubes, and their installation can be found here. Casement Casement windows are hinged at the sides. Hinged windows such as casements generally have lower air leakage rates than sliding windows from the same manufacturer because the sash closes by pressing against the frame. Casement windows project outward, providing significantly better ventilation than sliders of equal size. Because the sash protrudes from the plane of the wall, it can be controlled to catch passing breezes, but screens must be placed on the interior side. Virtually the entire casement window area can be opened, while sliders are limited to less than half of the window area. Casement

332

Empirical assessment of a prismatic daylight-redirecting window film in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Empirical assessment of a prismatic daylight-redirecting window film in a Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Title Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed Publication Type Conference Paper LBNL Report Number LBNL-6496E Year of Publication 2013 Authors Thanachareonkit, Anothai, Eleanor S. Lee, and Andrew McNeil Conference Name Illuminating Engineering Society (IES) Annual Conference 2013 Date Published 10/2013 Conference Location Huntington Beach, California Keywords building energy efficiency., daylighting, microstructure film, prismatic film, windows Abstract Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-to-wall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare= probability and other metrics used to evaluate visual discomfort.

333

Windows and daylighting: A brighter outlook  

Science Conference Proceedings (OSTI)

This is an overview of energy efficient window glazing and framing technology. The topics of the report include: windows and energy use, a point of view; a challenging federal opportunity; DOE window research; advanced optical technologies such as spectrally selective glazing, switchable glazing, super windows with low-emissivity coatings and noble gas fills; and performance evaluation and design tools.

Not Available

1994-11-01T23:59:59.000Z

334

UConnect Wireless Connection Windows 7 Configuration  

E-Print Network (OSTI)

UConnect Wireless Connection Windows 7 Configuration page 1 revised February, 2012 Configuring a UConnect Wireless Connection on Windows 7 1. Open the Network and Sharing Center a. Click the Windows icon screen, select Network and Sharing Center. #12;UConnect Wireless Connection Windows 7 Configuration page

Provancher, William

335

User Experience Design Guidelines for Windows Phone  

E-Print Network (OSTI)

User Experience Design Guidelines for Windows Phone The UI Design and Interaction Guide for Windows superseded by the User Experience Design Guidelines for Windows Phone on MSDN ® . There are six parts to the new guidelines: 1. The Windows Phone Platform: Takes a brief look at the types of applications

Narasayya, Vivek

336

Windows Server AppFabric provides  

E-Print Network (OSTI)

Windows Server AppFabric provides benefits in three key areas: Faster Web Apps Windows Server App that works with current ASP.Net applications. Simplified Composite Apps Windows Server AppFabric simplifies (benefits often associated with the cloud) with the help of Windows Server AppFabric. These, and countless

Narasayya, Vivek

337

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Windows Understanding Windows Benefits of Energy Efficient Windows The purpose for windows is to provide natural light, natural ventilation, and views to the outside. The benefits of high performance windows allows for Energy & Cost Savings, Improved Comfort, Less Condensation, Increased Light & View, Reduced Fading, and Lower HVAC Costs. Benefits of Energy Efficient Windows Design Considerations Windows are a complex and interesting element in residential design. New window products and technologies have changed the performance of windows in a radical way. Issues such as climate, orientation, shading, and window area all effect the energy performance, but human factor issues such as access to fresh air, daylight, and natural views impact the comfort of a home.

338

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Repair Existing Windows Repair Existing Windows Lead Paint and Window Replacement: Challenges and Opportunities In older homes, windows are a likely source of lead contamination in homes. Dust from lead paint can create serious health problems, especially in young children. While window replacement can increase lead dust during renovation, it can also permanently eliminate lead hazards by removing lead-painted windows. Download fact sheet» A variety of options exist for improving the energy-efficiency of your existing windows. Before investing in these options, check your windows for potential issues that may call for replacement instead: Moisture and mold between window frame and wall: If water and water vapors are allowed to penetrate around the window frame, the moisture can

339

Low heat transfer, high strength window materials  

DOE Patents (OSTI)

A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

Berlad, Abraham L. (Stony Brook, NY); Salzano, Francis J. (Patchogue, NY); Batey, John E. (Stony Brook, NY)

1978-01-01T23:59:59.000Z

340

Energy Savings from Window Attachments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Savings from Window Attachments  

NLE Websites -- All DOE Office Websites (Extended Search)

from from Window Attachments October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Lawrence Berkeley National Laboratory October 2013 Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared By: Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90R3111 Berkeley, CA 94720 Authors: D. Charlie Curcija Mehry Yazdanian Christian Kohler Robert Hart Robin Mitchell Simon Vidanovic 1 ENERGY SAVINGS FROM WINDOW ATTACHMENTS TABLE OF CONTENTS: TABLE OF CONTENTS:................................................................................................... 1 1. EXECUTIVE SUMMARY ......................................................................................... 3

342

Glass and Optical Materials  

Science Conference Proceedings (OSTI)

NMR Insight into Glass Formers and Modifiers NMR Studies on Biomaterials and Bioactive Glasses Non-Linear Optical Properties in Glasses.

343

Test for Modeling Windows in DOE 2.1E for Comparing the Window Library with the Shading Coefficient Method for a Single-Family Residence in Texas  

E-Print Network (OSTI)

This study examines the difference of the window simulation test between the Shading Coefficient (SC) and the Window Library (WL) Methods on DOE 2.1E of the 2000 IECC (International Energy Conservation Code) for single-family residences in Texas. The window simulation tests are performed using single-pane, double-pane, and low-e glass on two standard DOE 2.1E single-family house models: 1) the model which has the R-value for wall, roof and floor according to 2000 IECC (Quick Wall), and 2) the model which has the real wood frame wall and has the same R-value as the first one (Thermal Wall). The analysis showed different results according to the types of the glass, simulation method (Shading Coefficient or Window Library), and types of wall (quick wall and thermal wall). The saving of daily peak heating (kBtu/day) from single-pane to low-e glass on thermal mass and quick wall shows the most variation.

Kim, S.; Haberl, J. S.

2008-07-18T23:59:59.000Z

344

Vector Network Analyzer Techniques to measure WR340 Waveguide Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Vector Network Analyzer Techniques to Measure WR340 Waveguide Windows T. L. Smith ASD / RF Group Advanced Photon Source Argonne National Laboratory June 26, 2002 Table of Contents 1) Introduction 2) Objective 3) Full Two-Port Calibration 4) TRL (Thru-Reflect-Line) 5) TRL / WR340 Waveguide Window Measurement 6) Conclusions 7) References 1. Introduction In its fundamental form, network analysis involves the measurement of incident, reflected, and transmitted waves that travel along transmission lines. Measuring both magnitude and phase of components is important for several reasons. First, both measurements are required to fully characterize a linear network and ensure distortion- free transmission. To design effective matching networks, complex impedances must be

345

Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment  

SciTech Connect

This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

2012-06-01T23:59:59.000Z

346

Experimental study of full-size automated venetian blind windows  

SciTech Connect

This study presents an experimental study on full-size automated venetian blind window systems consisting of horizontal pivoted louvers installed and hermetically sealed between two glass panes. The experimental study was carried out using a test cell of 2.43 m high, 1.48 m wide, and 1.92 m deep. Various parameters were measured instantaneously and recorded using a data acquisition system: interior and exterior air temperatures; various surface temperatures; and total and direct solar radiations. A linearized numerical model was used to verify the experimental results.

Rheault, S.; Bilgen, E. (Ecole Polytechnique, Montreal, Quebec (Canada))

1990-01-01T23:59:59.000Z

347

Expert Meeting Report: Windows Options for New and Existing Homes  

SciTech Connect

The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

Ojczyk, C.; Carmody, J.; Haglund, K.

2013-05-01T23:59:59.000Z

348

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

349

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits of Efficient Windows Benefits of Efficient Windows Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation Energy & Cost Savings Energy efficient windows can substantially reduce the costs associated with heating and cooling. This section on Energy & Cost Savings illustrates these savings in both heating and cooling climates. Energy Savings Lower HVAC Costs High-performance windows not only provide reduced annual heating and cooling bills, they also reduce the peak heating and cooling loads. This section on Lower HVAC Cost illustrates how the use of high performance windows can help in reducing HVAC equipment sizing.

350

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing Window Replacement Options Assessing Window Replacement Options What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Performance Standards Energy Rating Programs Building America Program Documents Measure Guideline: Energy-Efficient Window Performance and Selection exit disclaimer Measure Guideline: Wood Window Repair, Rehabilitation, and Replacement exit disclaimer Whether you would like to improve the energy performance of your existing windows or replace them with new energy-efficient windows, several options are available. An energy audit can help you identify good strategies for more efficient windows and a more efficient house. Whichever energy efficiency measures you consider, the federal government as well as state, local, and utility programs may offer financing help or weatherization assistance.

351

3.4 Timeline Zoomable Window  

NLE Websites -- All DOE Office Websites (Extended Search)

.1 Zoomable and Scrollable Up: 3. Graphical User Interface .1 Zoomable and Scrollable Up: 3. Graphical User Interface Previous: 3.3 Legend Window Contents 3.4 Timeline Zoomable Window Figure 3.10: Initial display of the Timeline window of a 514 MB 16-process slog2 file with default preview resolution. Image timeline_popup Most of the advanced features in the SLOG-2 viewer are provided through a zoomable window. Jumpshot-4 has two zoomable windows: Timeline and Histogram. Figure 3.10 is the initial display of the Timeline window of a half-gigabyte 16-timeline slog2 file. The zoomable window consists of several concealable and removable components. In the center of the window is the zoomable and scrollable canvas. For the Timeline window, the center canvas is called the timeline canvas. Directly on top of the zoomable

352

Energy-Efficient Windows | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Efficient Windows Energy-Efficient Windows Energy-Efficient Windows June 18, 2012 - 8:39am Addthis Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. Energy-efficient windows provide space heating and lighting to this sunny kitchen. | Photo courtesy of Emily Minton-Redfield for Jim Logan Architects. What does this mean for me? The windows in your house let in light and air if they're operable, but they can also be weak spots in your home's thermal envelope. When replacing windows, purchase the most energy-efficient windows you can afford, because they will pay for themselves over their lifetimes. Windows provide our homes with light, warmth, and ventilation, but they can also negatively impact a home's energy efficiency. You can reduce energy

353

Translucent patchesdissolving windows  

Science Conference Proceedings (OSTI)

This paper presents motivation, design, and algorithms for using and implementing translucent, non-rectangular patches as a substitute for rectangular opaque windows. The underlying metaphor is closer to a mix between the architects yellow paper and ... Keywords: interaction techniques, interface metaphors, irregular shapes, pen based interfaces, translucency

Axel Kramer

1994-11-01T23:59:59.000Z

354

Paradox 7 for Windows 95  

Science Conference Proceedings (OSTI)

From the Publisher:Appropriate for either self-paced or group learning, this book provides an excellent way to learn Paradox 7.0 in a short period of time. The text/template package covers the most commonly used features of Paradox 7 for Windows 95.

Betsy Newberry

1997-05-01T23:59:59.000Z

355

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows for New Construction Windows for New Construction Window Selection Tool Use the Window Selection Tool for new construction to compare performance of 20 different window types in your location. The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. Window Selection Tool Window Selection Process This section provides step-by-step guidance on the window selection process for new construction windows including issues of code, energy, durability, and installation. Design Guidance This section provides Design Guides that examine the energy use impacts of new windows for homes in hot, mixed and cold climates. They show the the impact of orientation, window area, and shading. The energy use has been calculated for various window design variations including 5 orientations (equal, north, east, south, and west), 3 glazing areas, 20 glazing types, and 5 shading conditions.

356

Stained glass : an investigation into the design potentials of an architectural material  

E-Print Network (OSTI)

Colored glass is a building material usually associated with churches or days of bygone glory. Yet the material would apparently have much to offer in window openings, curtain walls, even as structural block in the creating ...

Ransom, Shirley Anne

1986-01-01T23:59:59.000Z

357

LBNL Window & Daylighting Software -- CGDB  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The LBNL WINDOW and THERM simulation programs (versions 6 and higher) have the capability to model "complex glazing systems" which include woven shades, venetian blinds, fritted glass, and other systems that can be characterized by BSDF (Bi-Directional Scattering Distribution Function) files. To support the modeling of these complex systems, it is necessary to characterize the optical and thermal properties of the materials and the systems being modeled. The Complex Glazing Database (CGDB) contains the data needed to model various manufacturers' systems. LBNL is still developing the measuring and submittal procedures so that manufacturers can submit measured data for review and inclusion in future CGDB releases. When these procedures are complete, it is hoped that manufacturers will measure and submit data for their products to LBNL for inclusion in the CGDB. In a similar process to the IGDB (International Glazing Database) it is envisioned that the CGDB will be released multiple times per year as new materials and systems are measured and added to the database.

358

High Performance Windows Volume Purchase: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources to someone by E-mail Share High Performance Windows Volume Purchase: Information Resources on Facebook Tweet about High Performance Windows Volume Purchase: Information Resources on Twitter Bookmark High Performance Windows Volume Purchase: Information Resources on Google Bookmark High Performance Windows Volume Purchase: Information Resources on Delicious Rank High Performance Windows Volume Purchase: Information Resources on Digg Find More places to share High Performance Windows Volume Purchase: Information Resources on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Information Resources Numerous publications will be available to help educate buyers, product

359

LBNL Window & Daylighting Software -- RESFEN  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEM REQUIREMENTS GET A COPY DOCUMENTATION KNOWLEDGE BASE Overview Today's energy-efficient windows can dramatically lower the heating and cooling costs associated with windows while increasing occupant comfort and minimizing window surface condensation problems. However, consumers are often confused about how to pick the most efficient window for a residence. Product information typically offers window properties: U-factors or R-values, Solar Heat Gain Coefficients or Shading Coefficients, and air leakage rates. However, the relative importance of these properties depends on site- and building-specific conditions. Furthermore, these properties are based on static evaluation conditions that are very different from the real situation a window will be used in.

360

Measured winter performance of storm windows  

SciTech Connect

Direct comparison measurements were made between various prime/storm window combinations and a well-weatherstripped, single-hung replacement window with a low-E selective glazing. Measurements were made using an accurate outdoor calorimetric facility with the windows facing north. The doublehung prime window was made intentionally leaky. Nevertheless, heat flows due to air infiltration were found to be small, and performance of the prime/storm combinations was approximately what would be expected from calculations that neglect air infiltration. Prime/low-E storm window combinations performed very similarly to the replacement window. Interestingly, solar heat gain was not negligible, even in north-facing orientation.

Klems, Joseph H.

2002-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WINDOW 6.2/THERM 6.2 Research Version User Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

WINDOW 6.2/THERM 6.2 Research Version User Manual WINDOW 6.2/THERM 6.2 Research Version User Manual Title WINDOW 6.2/THERM 6.2 Research Version User Manual Publication Type Report LBNL Report Number LBNL-813E Year of Publication 2008 Authors Mitchell, Robin, Christian Kohler, Joseph H. Klems, Michael D. Rubin, Dariush K. Arasteh, Charlie Huizenga, Tiefeng Yu, and Dragan C. Curcija Call Number LBNL-813E Abstract WINDOW 6 and THERM 6 Research Versions are software programs developed at Lawrence Berkeley National Laboratory (LBNL) for use by manufacturers, engineers, educators, students, architects, and others to determine the thermal and solar optical properties of glazing and window systems. WINDOW 6 and THERM 6 are significant updates to LBNL's WINDOW 5 and THERM 5 computer program because of the added capability to model complex glazing systems, such as windows with shading systems, in particular venetian blinds. Besides a specific model for venetian blinds and diffusing layers, WINDOW 6 also includes the generic ability to model any complex layer if the Transmittance and Reflectance are known as a function of incoming and outgoing angles.

362

Lighting energy savings potential of split-pane electrochromic windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting energy savings potential of split-pane electrochromic windows Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Title Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Publication Type Journal Article LBNL Report Number LBNL-6152E Year of Publication 2013 Authors Fernandes, Luis L., Eleanor S. Lee, and Gregory J. Ward Journal Energy and Buildings Volume 61 Pagination 8-20 Abstract A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62% and 53%, respectively without and with overhang)lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48% and 37%, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

363

THERM 5 / WINDOW 5 NFRC simulation manual  

E-Print Network (OSTI)

2.6.7. Special Products Glass blocks present a very specialthe gap between the glass layers blocks a significant amountPlastic blocks, w h i c h have a lower U-factor than glass,

Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

2003-01-01T23:59:59.000Z

364

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Sash Replacement Sash Replacement DIY Network: How to Install a Window Sash Replacement Kit The DIY Network experts show you how to remove the window sash from an old double-hung window and install a new energy-saving sash replacement kit: How to Install a Window Sash Replacement Kit exit disclaimer . Sash replacement may be an alternative to a full window replacement or an insert window into an existing frame. The physical condition of the existing window must be good-there should be no moisture or air leakage. An energy auditor or replacement contractor may help you determine if a sash replacement is a viable option based on your homes window and wall conditions. Many manufacturers offer replacement sash kits, which include jamb liners to ensure good operability and fit. This option allows for relatively easy

365

Measured winter performance of storm windows  

E-Print Network (OSTI)

or Prime/Storm Replacement Window Thermal Watts Solar WattsFactor and Solar Heat Gain Coefficient Prime or Prime/Stormdesigned interior storm window. ) Solar Heat Gain One does

Klems, Joseph H.

2002-01-01T23:59:59.000Z

366

RUGGED CERAMIC WINDOW FOR RF APPLICATIONS  

Science Conference Proceedings (OSTI)

High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

MIKE NEUBAUER

2012-11-01T23:59:59.000Z

367

An analysis of residential window waterproofing systems  

E-Print Network (OSTI)

The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for Installation of Exterior Windows, Doors and Skylights". ...

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

368

Linux-kyttj Windows-aktiivihakemistossa.  

E-Print Network (OSTI)

??Tmn tyn tarkoituksena oli tutkia ja toteuttaa Linux-kyttjrjestelmst kirjautumista Windows-aktiivihakemistoon. Tm saavutettiin luomalla aktiivihakemiston toimialueeseen kyttj, jonka oli tarkoitus pysty kirjautumaan sek Windows- ett Linux-kyttjrjestelmist (more)

Metsjoki, Kari

2008-01-01T23:59:59.000Z

369

Windows Phone abonento steb?jimo sistema.  

E-Print Network (OSTI)

??Magistro darbe nagrin?jamos iuolaikin?s Microsoft kompanijos sukurtos technologijos: operacin?s sistemos, skirtos mobiliems ?renginiams Windows Phone 7 ir Windows Mobile 6, program? k?rimas, remiantis Silverlight (more)

Krav?enko,; Andrej

2011-01-01T23:59:59.000Z

370

GPS Meteorology: Sliding-Window Analysis  

Science Conference Proceedings (OSTI)

The sliding-window technique uses a moving time window to select GPS data for processing. This makes it possible to routinely incorporate the most recently collected data and generate estimates for atmospheric delay or precipitable water in (near)...

James Foster; Michael Bevis; Steven Businger

2005-06-01T23:59:59.000Z

371

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylight and view are two of the fundamental attributes of a window. Unfortunately, windows can also be the source of significant solar heat gain during times when it is...

372

Experimental observation of a complex periodic window  

E-Print Network (OSTI)

The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.

D. M. Maranho; M. S. Baptista; J. C. Sartorelli; I. L. Caldas

2007-12-22T23:59:59.000Z

373

WebCAT: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... WebCAT. Note: Windows ME does not ship with a webserver; Apache can be installed. Download and Install, Download ...

374

Stanek Windows | Open Energy Information  

Open Energy Info (EERE)

Stanek Windows Stanek Windows Jump to: navigation, search Name Stanek Windows Address 4565 Willow Parkway Place Cuyahoga Heights, Ohio Zip 44125 Sector Buildings, Efficiency Product Consulting; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education Phone number 216-341-7700 Website http://www.stanekwindows.com Coordinates 41.435755°, -81.650183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.435755,"lon":-81.650183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

700 MHz window R & D at LBNL  

E-Print Network (OSTI)

foil ($1036.5/150", 3 windows) 1. Measure ceramic and keeperCBP tech note 230 700 MHz Window R&D at LBNL R. Rimmer, G.001-99 2A "700 MHz RF Window" from LANL. The Conceptual

Rimmer, R.A.; Koehler, G.; Saleh, T.; Weidenbach, R.

2000-01-01T23:59:59.000Z

376

Manahmen fr MS Windows Betriebssysteme Gerd Hofmann  

E-Print Network (OSTI)

Ma?nahmen für MS Windows Betriebssysteme Gerd Hofmann IT-Sicherheitsforum - Betriebssystemsicherheit 24. Juni 2004 #12;24.06.04 gerd.hofmann@rrze.uni-erlangen.de 2Windows Sicherheit Vorstellung Gerd-85-28920 RRZE: Raum RZ 2.013 #12;24.06.04 gerd.hofmann@rrze.uni-erlangen.de 3Windows Sicherheit Inhaltsliste

Fiebig, Peter

377

Microsoft Windows Server 2008 Administrator Series  

E-Print Network (OSTI)

Microsoft Windows Server 2008 Administrator Series Led by: Dianne Burke, MCSE and UM Faculty Member emergency such as a medical emergency to drop out of either one of Windows Server 2008 class before on Microsoft Windows Server 2008. The series prepares IT Professionals for the Microsoft Certified Technology

Crone, Elizabeth

378

Dell recommends Windows 7. Colorado State University  

E-Print Network (OSTI)

Dell recommends Windows® 7. Print Page Colorado State University E-quote Number: 1005723185631 E Dell Latitude E6520 - Fully Customizable Qty 1 Latitude E6520, Genuine Windows® 7 Professional Latitude E6520 Latitude E6520 Operating Systems Genuine Windows® 7 Professional, No Media, 64- bit, English

379

Focus Windows: A Tool for Automated Provers ?  

E-Print Network (OSTI)

Focus Windows: A Tool for Automated Provers ? Florina Piroi Research Institute For Symbolic or understand the validity of a particular step. Focus windows were #12;rst introduced as a technique for proof the implementation and the use of the focus windows technique in the frame of the Theorema system [3]. One

380

Computing & Communications WIRELESS SETUP FOR WINDOWS 7  

E-Print Network (OSTI)

Computing & Communications WIRELESS SETUP FOR WINDOWS 7 For assistance during the configuration access to the WLAN and have laptops and desktops which use the Windows 7 operating system. It is provided. Requirements: A laptop with Windows 7 operating system with latest service pack and patches applied. A wireless

Warkentin, Ian G.

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Windows Server 2008 R2 Licensing Guide  

E-Print Network (OSTI)

Windows Server 2008 R2 Licensing Guide m Your Comprehensive Resource for Licensing and Pricing #12;2 Table of Contents Summary 3 Table of Windows Server 2008 R2 Core Product Offerings 3 License Terms ­ Windows Server 2008 R2 Product Line Updates 4 Edition Comparison by Server Role 5 New and Updated Features

Narasayya, Vivek

382

A Host Intrusion Prevention System for Windows Operating Systems  

Science Conference Proceedings (OSTI)

this technique to Windows OS, also because Windows kernel structures ... vention System (HIPS) for Windows OS that immediately detects security rules.

383

WINDOW 5 Final Pre-Release User's Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

A PC Program WINDOW 6.2 THERM 6.2 Research Version User Manual For Analyzing Window Thermal Performance Windows & Daylighting Group Building Technologies Program Environmental...

384

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

This attachment, Advancement of Electrochromic Windows:attachments to the Advancement of Electrochromic Windows:attachment to the final report for the Advancement of Electrochromic Windows

2006-01-01T23:59:59.000Z

385

BREWSTER WINDOW AND WINDOWLESS RESONANT SPECTROPHONES FOR INTRACAVITY OPERATION  

E-Print Network (OSTI)

to 6 KHz measured with windows attached. Variation of thethe spectrophone is operated with windows. Table IV. Factorsto Applied Physics BREWSTER WINDOW AND WINDOWLESS RESONANT

Gerlach, Robert

2012-01-01T23:59:59.000Z

386

Evolution of the Thrombolytic Treatment Window for Acute Ischemic Stroke  

E-Print Network (OSTI)

is the ultimate goal, regardless of an expanded time window.the Thrombolytic Treatment Window for Acute Ischemic Strokefor treatment in this time window. Expanding the time for

Stemer, Andrew; Lyden, Patrick

2010-01-01T23:59:59.000Z

387

A first-generation prototype dynamic residential window  

E-Print Network (OSTI)

Prototype Dynamic Residential Window Christian Kohler, HowdyGoudey, and Dariush Arasteh Windows and Daylighting Grouphighly efficient dynamic window that maximizes solar heat

Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

2004-01-01T23:59:59.000Z

388

Window signalling systems: control strategies and occupant behaviour  

E-Print Network (OSTI)

Occupant response to window control signaling systems (CBEDaly, A. (2002). Operable windows and HVAC systems. HPACK. (2008). The use of windows as controls for indoor

Ackerly, Katie; Brager, Gail

2013-01-01T23:59:59.000Z

389

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network (OSTI)

December 3-5, 1979 THE MOBILE WINDOW THERMAL TEST FACILITY (Orlando, Florida. The Mobile Window Thermal Test Facility (Press, 197 . THE NOBILE WINDOW THERMAL TEST FACILITY (

Klems, J. H.

2011-01-01T23:59:59.000Z

390

Microsoft Windows Server 2003 security enhancements and new features .  

E-Print Network (OSTI)

??The purpose of this thesis is to discuss the new features and enhancements of Windows Server 2003. Windows NT and Windows 2000 were known to (more)

Montehermoso, Ronald Centeno.

2004-01-01T23:59:59.000Z

391

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

T. Wilmert. 2004. Window Systems for High Performanceof electrochromic windows: a pilot study, Building andfor an Electrochromic Window Wall Attached are curtainwall

2006-01-01T23:59:59.000Z

392

Modeling Windows in Energy Plus with Simple Performance Indices  

E-Print Network (OSTI)

Modeling Windows in Energy Plus with Simple Performanceof California. Modeling Windows in Energy Plus with SimpleE+), cannot use standard window performance indices (U,

Arasteh, Dariush

2010-01-01T23:59:59.000Z

393

Polarizer reflectivity variations  

SciTech Connect

On Shiva the beam energy along the chain is monitored using available reflections and/or transmission through beam steering, splitting, and polarizing optics without the intrusion of any additional glass for diagnostics. On the preamp table the diagnostic signal is obtained from the signal transmitted through turning mirrors. At the input of each chain the signal is obtained from the transmission through one of the mirrors used for the chain input alignment sensor (CHIP). At the chain output the transmission through the final turning mirror is used. These diagnostics have proved stable and reliable. However, one of the prime diagnostic locations is at the output of the beta rod. The energy at this location is measured by collecting small reflections from the last polarizer surface of the beta Pockels cell polarizer package. Unfortunately, calibration of this diagnostic has varied randomly, seldom remaining stable for a week or more. The cause of this fluctuation has been investigated for the past year and'it has been discovered that polarizer reflectivity varies with humidity. This report will deal with the possible causes that were investigated, the evidence that humidity is causing the variation, and the associated mechanism.

Ozarski, R.G.; Prior, J.

1980-02-22T23:59:59.000Z

394

EMasticWindows: improvedSpatial Layoutand Rapid MuRipmeWindow Operations  

E-Print Network (OSTI)

Symposium of the Washington, DC Chapter of the ACM, (1991), pp. t21-131. 16. Malone, T. W., How do peopleEMasticWindows: improvedSpatial Layoutand Rapid MuRipmeWindow Operations Eser Kandogan Department)405-2680 ben@cs.umd.edu ABSTRACT Most windowing systems follow the independent overlap- ping windows approach

Shneiderman, Ben

395

Environmental WindowsEnvironmental Windows Real Problems and PotentialReal Problems and Potential  

E-Print Network (OSTI)

Environmental WindowsEnvironmental Windows Real Problems and PotentialReal Problems and Potential Window - a period during which dredging may occur Seasonal Restriction - a period during which dredging and effective management guidelines such as dredging windows..." #12;Schubel et al. 1979. A conceptual framework

US Army Corps of Engineers

396

Purged window apparatus utilizing heated purge gas  

DOE Patents (OSTI)

A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

Ballard, Evan O. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

397

Rigid thin windows for vacuum applications  

DOE Patents (OSTI)

A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

Meyer, Glenn Allyn (Danville, CA); Ciarlo, Dino R. (Livermore, CA); Myers, Booth Richard (Livermore, CA); Chen, Hao-Lin (Lafayette, CA); Wakalopulos, George (Pacific Palisades, CA)

1999-01-01T23:59:59.000Z

398

Hydroxyls and Glass Surface Reactivity  

Science Conference Proceedings (OSTI)

Field Assisted Viscous Flow and Crystallization in a Sodium Aluminosilicate Glass Glass Ceramics ... Terahertz Properties of Lithium Iron Phosphate Glasses.

399

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Standards Performance Standards Even the expert eye cannot easily tell an efficient window from a conventional window. That is why energy ratings, endorsement programs and consumer incentives play an important role in creating awareness for window energy efficiency among consumers, builders, architects and performance standard programs. Learn about NFRC certification and labeling Learn about ENERGY STAR® for windows, doors and skylights High Performance Windows and Low-E Storm Windows Volume Purchase Program Utility and State Incentives for energy efficiency improvements Building Codes Most locations have building energy codes that mandate minimum performance levels for windows, doors, and skylights. The builder, contractor or homeowner must adhere to the code requirements, which typically cover

400

High Performance Windows Volume Purchase: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to Contacts to someone by E-mail Share High Performance Windows Volume Purchase: Contacts on Facebook Tweet about High Performance Windows Volume Purchase: Contacts on Twitter Bookmark High Performance Windows Volume Purchase: Contacts on Google Bookmark High Performance Windows Volume Purchase: Contacts on Delicious Rank High Performance Windows Volume Purchase: Contacts on Digg Find More places to share High Performance Windows Volume Purchase: Contacts on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources Contacts Web site and High Performance Windows Volume Purchase Program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensure Proper Installation of New Windows Ensure Proper Installation of New Windows Information Regarding Lead-based Hazards Comprehensive information about lead paint exit disclaimer by U.S. EPA Literature ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org exit disclaimer Water Management Guide, Joseph W. Lstiburek, Energy & Environmental Building Association. www.eeba.org exit disclaimer Proper installation is necessary for optimal window performance, to ensure an airtight fit and avoid water leakage. Always follow manufacturers installation guidelines and use trained professionals for window installation. The Importance of Quality Window Installation Quite simply, windows are only as good as their installation. Proper installation will:

402

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Selection Process for New Windows Selection Process for New Windows What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs How is window performance measured? U-factor Solar Heat Gain Coefficient Visible Transmittance Air Leakage Condensation Resistance Are there financing and incentive programs? Overview of Utility and State Programs Building Codes Energy Rating Programs 1. Meet the Energy Code and Look for the ENERGY STAR® Windows must meet the locally applicable energy code requirements. Windows that are ENERGY STAR qualified typically meet or exceed energy code requirements. A home's climate and location determine the relative importance of heating and cooling energy use, the applicable building energy code requirements, and the qualification criteria for ENERGY STAR windows. ENERGY STAR

403

Stereo matching via selective multiple windows  

E-Print Network (OSTI)

Window-based correlation algorithms are widely used for stereo matching due to their computational efficiency as compared to global algorithms. In this paper, a multiple window correlation algorithm for stereo matching is presented which addresses the problems associated with a fixed window size. The developed algorithm differs from the previous multiple window algorithms by introducing a reliability test to select the most reliable window among multiple windows of increasing sizes. This ensures that at least one window is large enough to cover a region of adequate intensity variations while at the same time small enough to cover a constant depth region. A recursive computation procedure is also used to allow a computationally efficient implementation of the algorithm. The outcome obtained from a standard set of images with known disparity maps shows that the generated disparity maps are more accurate as compared to two popular stereo matching local algorithms.

Satyajit Anil Adhyapak; Nasser Kehtarnavaz; Mihai Nadin

2007-01-01T23:59:59.000Z

404

While-you-wait window load study predicts costs of comparative glazings  

SciTech Connect

This paper presents a brief-case packaged program, networked by phone to a central computer which provides an on-the-spot window load study and printout. This commercial energy simulation report (ESPCOM), five pages long, can predict actual window energy consumption in commercial buildings to within two percent annually. It is designed for buildings which have at least 5000 square feet of surface glass. ESPCOM considers a building's architectural, engineering and operational data, then determines the five-year estimated savings which can be expected of the present glazing system versus the system enhanced with any three of a series of 17 professional grade insulating films.

1984-07-01T23:59:59.000Z

405

Field Evaluation of Low-E Storm Windows  

E-Print Network (OSTI)

EVALUATION OF LOW-E STORM WINDOWS By S. Craig Drumheller-performance of low emittance (low-e) storm windows with bothstandard clear storm windows and no storm windows was

Drumheller, S. Craig

2009-01-01T23:59:59.000Z

406

Hunting for the Conformal Window  

E-Print Network (OSTI)

Undeniably, the imminent activity of LHC and the quest for the nature of physics beyond the standard model have raised renewed interest in the conformal and quasi-conformal behaviour of gauge field theories with matter content. Theoretically driven questions seem to now acquire a strong experimental appeal and might guide us towards a more realistic string theory to field theory connection, originally inspired by the AdS/CFT conjecture. In this brief report, we discuss the state of the art of our search for the conformal window in the SU(3) colour-gauge theory with fermions in the fundamental representation.

A. Deuzeman; M. P. Lombardo; E. Pallante

2008-10-17T23:59:59.000Z

407

The Window Market in Texas: Opportunities for Energy Savings and Demand Reduction  

E-Print Network (OSTI)

The use of high performance windows represents a promising opportunity to reduce energy consumption and summer electrical demand in homes and commercial buildings in Texas and neighboring states. While low-e glass coatings and other energy efficiency features have become standard features in windows in states with building energy codes, their sales in the Texas market remain limited. This paper presents findings from a pilot energy efficiency program sponsored by American Electric Power Company (AEP). The Texas Window Initiative (TWI) has conducted over 160 on-site training sessions for hardware store sales personnel and builders across the AEP service areas in Texas over the past two years. Companion promotional activities have also been completed. The past one and a half years have witnessed a very significant increase in the market penetration of energy efficient windows in the AEP service area; from about 2.5% of total window sales in early 2000 to roughly 25% (according to preliminary data) by the end of 2001.1 Some of this increase is attributable to TWI's activities, although other factors may be responsible for a portion of this increase as well. The market for windows in Texas is described. TWI's approach to promoting energy efficient windows is reviewed. Initial impact estimates from TWI's activities are presented. The technical potential for energy savings and utility peak demand reduction from the installation of energy efficient windows in Texas is presented. The paper also provides some speculation on how the window market might be impacted by the adoption of building energy codes in Texas.

Zarnikau, J.; Campbell, L.

2002-01-01T23:59:59.000Z

408

Infrared Thermography Measurements of Window Thermal Test Specimen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrared Thermography Measurements of Window Thermal Test Specimen: Surface Temperatures Title Infrared Thermography Measurements of Window Thermal Test Specimen: Surface...

409

Glue Film Thickness Measurements by Spectral Reflectance  

SciTech Connect

Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be 0.5 ?m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

B. R. Marshall

2010-09-20T23:59:59.000Z

410

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Windows Measuring Performance: ENERGY STAR® Windows Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. View the criteria for windows for the ENERGY STAR Most Efficient Program. Energy Star Most Efficient Program The Department of Energy (DOE) and the Environmental Protection Agency (EPA) have developed an ENERGY STAR exit disclaimer designation for products meeting certain energy performance criteria. Windows that have the ENERGY STAR designation will be labeled showing the zones in which it is qualified. Since energy efficient performance of windows, doors, and skylights varies by climate, product recommendations are given for four U.S. climate zones. For making comparisons among ENERGY STAR products, use the NFRC label or

411

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fresh Air Fresh Air Windows provide the primary means to control air flow in most homes. People open windows to provide fresh air, ventilate odors and smoke, dissipate heat and moisture, and create air movement on hot days. While exhaust fans and central air systems can mechanically ventilate a room, opening a room to the outdoors is perceived as more direct and natural. Guidelines for Providing Fresh Air Place operable windows in all rooms to give occupants opportunity for fresh air. Provide cross-ventilation by placing window openings on opposite walls in line with the prevailing winds. Use casement windows to direct and control ventilation. Use operable skylights or roof windows to enhance ventilation. Use landscape elements to direct breezes. In order to ensure that all residences have access to the healthful aspects

412

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for Replacement Windows Design Guidance for Replacement Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

413

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Considerations for Window Performance Considerations for Window Performance Advanced window technologies can have a major effect on comfort and on the annual energy performance of a house. However, there is a broader and possibly more significant impact of the recent revolution in window performance. Because the new glazing technologies provide highly effective insulating value and solar protection, there are important implications for how a house is designed. There is a long-established set of window design guidelines and assumptions intended to reduce heating and cooling energy use. These are based, in part, on the historical assumption that windows were the weak link in the building envelope. These assumptions frequently created limitations on design freedom or generated conflicts with other performance requirements,

414

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing & Incentives Financing & Incentives Financing or incentive programs may be available to you if: You intend to replace old windows with high-performance, energy efficient windows. You plan to build a new home with windows that keep energy costs low and provide for a comfortable interior. If you are looking for utility programs within your state that can help you finance such an investment in efficient windows, download an overview of utility and state programs. Incentives and Rebates for Energy-Efficient Windows Offered through Utility and State Programs Utility and State Incentives We have provided an overview of utility and state programs that can help you as a resident, building owner, or builder to finance improvements in window energy efficiency. Download an overview of utility and state

415

Modeling window optics for building energy analysis  

SciTech Connect

This report discusses modeling the optics of windows for the purposes of simulating building energy requirements or daylighting availability. The theory for calculating the optical performance of conventional windows is reviewed. The simplifications that might commonly be made in creating computational models are analyzed. Some of the possibilities for more complex windows are analyzed, and the type of model and data that would be necessary to simulate such windows in a building energy analysis program are determined. It is shown that the optical performance of different window types can be simulated with models which require varying amounts of memory or computing time. It is recommended that a building energy analysis program have all models available and use the most efficient for any given window.

Walton, G.N.

1986-07-01T23:59:59.000Z

416

Hybrid window layer for photovoltaic cells  

SciTech Connect

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-10-04T23:59:59.000Z

417

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Guidance for New Windows Design Guidance for New Windows Opportunities for Design Improvements Energy-efficient windows offer benefits under diverse design conditions. Window performance can be improved by taking orientation, window area and shading into account. Fine-tuning your window selection to the houses conditions and optimizing these conditions where possible helps further cut heating and cooling demand. Besides long-term energy savings, these upfront opportunities may be available: Smaller HVAC equipment: Lower heating and cooling demand means optimum equipment is smaller and costs less. ENERGY STAR Homes recognition: High-performance design can allow homes to be recognized by the ENERGY STAR program. Many States and localities offer design help and/or incentives for ENERGY STAR homes.

418

Building Energy Software Tools Directory: Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Window WINDOW screenshot. Calculates thermal performance of fenestration products; heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). Screen Shots Keywords fenestration, thermal performance, solar optical characteristics, windows, glazing Validation/Testing N/A Expertise Required Some knowledge about windows. Users 2000+ in the U.S. and abroad. Audience Manufacturers, engineers, architects, researchers, sales personnel. Input Interactive program: user-provided data files for frames (from the THERM program) and glazing layers (from the Optics program) optional. Output Reports for the total window can be saved to disk or printed; files can be generated to be used as input to the DOE-2 and EnergyPlus programs;

419

Hybrid window layer for photovoltaic cells  

DOE Patents (OSTI)

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH)

2010-02-23T23:59:59.000Z

420

Hybrid window layer for photovoltaic cells  

DOE Patents (OSTI)

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Metallic Glass II  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... Application of Metallic Glass for High Performance Si Solar Cell: ... of the metallic glasses during heating is dependent on the thermal stability of...

422

DOE Glass Publications Portal  

Office of Scientific and Technical Information (OSTI)

coated glass products. The Glass IOF is sponsored by the Department of Energy (DOE) Energy Efficiency & Renewable Energy (EERE) Industrial Technologies Program (ITP) which...

423

Bulk Metallic Glasses IX  

Science Conference Proceedings (OSTI)

... of elements to form metallic-glass alloys] have resulted in the required cooling rate ... Bauschinger Effect in Metallic Glass Nanowires under Cyclic Loading.

424

Bulk Metallic Glasses XI  

Science Conference Proceedings (OSTI)

Jul 15, 2013 ... A Bulk Metallic Glass with Record-breaking Damage Tolerance ... Oxidation on the Surface Characteristics of Zr-based Bulk Metallic Glasses.

425

Analysis of surface contaminants on beryllium windows  

SciTech Connect

It is known that various crystalline and liquid compounds form on the downstream surfaces of beryllium windows exposed to air. It is also known that the integrity of such windows may be compromised resulting in leaks through the window. The purpose of this report is to document the occurrences described as they pertain to the NSLS and to analyze, where possible, the various substances formed.

Gmur, N.F.

1986-12-01T23:59:59.000Z

426

Available Technologies: Electrochromic Windows with Multiple ...  

Berkeley Lab researchers led by Andr Anders and Cesar Clavero have improved the properties of electrochromic windows with a novel design called the switchable ...

427

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance Measuring Performance What are the benefits of energy-efficient windows? Energy & Cost Savings Improved Comfort Less Condensation Increased Light & View Reduced Fading Lower HVAC Costs Looking for information on windows for a new house? Window Selection Tool Selection Process Design Guidance Installation Looking for information on replacement windows? Window Selection Tool Assessing Options Selection Process Design Guidance Installation U-factor The rate of heat loss is indicated in terms of the U-factor (U-value) of a window assembly. This section on U-factor describes what a U-factor is and it's importance in the heat loss through a window assembly. U-factor Solar Heat Gain Coefficient (SHGC) The SHGC is the fraction of incident solar radiation admitted through a window, both directly transmitted and absorbed and subsequently released inward. This section on Solar Heat Gain Coefficient describes what a SHGC is and it's importance in the amount of heat gain through a window assembly.

428

List of Windows Incentives | Open Energy Information  

Open Energy Info (EERE)

Windows Incentives Windows Incentives Jump to: navigation, search The following contains the list of 604 Windows Incentives. CSV (rows 1-500) CSV (rows 501-604) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - CitySmart Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Schools Boilers Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Furnaces Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Roofs Windows Yes AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) Utility Rebate Program Texas Commercial Industrial Institutional Local Government Nonprofit Schools

429

A New Kind of Power Window  

Science Conference Proceedings (OSTI)

Nov 5, 2010 ... The material could be used to develop transparent solar panels or even windows that absorb solar energy to generate electricity.

430

Contoured insulation window for evacuated solar collector  

SciTech Connect

An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

1980-02-05T23:59:59.000Z

431

Wide Electrochemical Window Solvents - Energy Innovation Portal  

Biomass and Biofuels; ... This solvent has such a wide electrochemical window and such powerful solvating properties that it is an excellent target solvent ...

432

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

created by the window, door, and skylight industry. It is composed of manufacturers, suppliers, code officials, researchers, and government agencies. The NFRC has developed a...

433

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Membership Who are the EWC members? The EWC is made up of manufacturers, suppliers, and affiliates to the window industry Manufacturers: producers of whole fenestration products...

434

Window performance for human thermal comfort  

E-Print Network (OSTI)

Transfer through Windows. ASHRAE Transactions 93, 1425 -1431. 3. ASHRAE Handbook Fundamentals, 1997.ASHRAE Inc. 4. ASHRAE Standard 55-2004, Thermal

Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

2006-01-01T23:59:59.000Z

435

3.2 Logfile Convertor Window  

NLE Websites -- All DOE Office Websites (Extended Search)

SLOG-2 file and close the window Since the Logfile Convertor launches a separate Java process to do the logfile conversion, it requires certain parameters to launch the...

436

Manufacturing of diamond windows for synchrotron radiation  

Science Conference Proceedings (OSTI)

A new diamond window construction is presented and explicit manufacturing details are given. This window will increase the power dissipation by about a factor of 4 over present day state of the art windows to absorb 600 W of power. This power will be generated by in-vacuum undulators with the storage ring ALBA operating at a design current of 400 mA. Extensive finite element (FE) calculations are included to predict the windows behavior accompanied by explanations for the chosen boundary conditions. A simple linear model was used to cross-check the FE calculations.

Schildkamp, W.; Nikitina, L. [Synchrotron ALBA, CELLS, Carretera BP 1413, km 3.3, 08290 Cerdanyola del Valles (Spain)

2012-09-15T23:59:59.000Z

437

Performance tests of large thin vacuum windows  

Science Conference Proceedings (OSTI)

Tests of thin composition vacuum windows of the type used for the Tagger in Hall B at the Thomas Jefferson National Accelerator Facility are described. Three different tests have been performed. These include: (1) measurement of the deformation and durability of a window under long term (>8 years) almost continuous vacuum load, (2) measurement of the deformation as a function of flexing of the window as it is cycled between vacuum and atmosphere, and (3) measurement of the relative diffusion rate of gas through a variety of thin window membranes.

Hall Crannell

2011-02-01T23:59:59.000Z

438

Windows Phone 7:n ja Androidin kommunikointi.  

E-Print Network (OSTI)

??Opinnytetyss tutkittiin lypuhelimien kommunikointia ja datan siirtoa. lypuhelimet siirtvt tietoa palvelimen kautta toisille lypuhelimille, tm mahdollistaa keskitetyn ja hallittavan tiedonsiirron. Opinnytetyss tutkittiin Windows Phone 7- (more)

Vuolle, Jani

2013-01-01T23:59:59.000Z

439

High order Parzen windows and randomized sampling.  

E-Print Network (OSTI)

???In the thesis, high order Parzen windows are studied for understanding some algorithms in learning theory and randomized sampling in multivariate approximation. Our ideas are (more)

Zhou, Xiangjun (???)

2009-01-01T23:59:59.000Z

440

Digital Windows: cause + effect between reality + virtuality.  

E-Print Network (OSTI)

??Digital Windows allow real people in the real world to interact with virtual objects in a virtual world through a direct relationship between real-space and (more)

Sumsion, F

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

WebCAT: Installation Instructions for Windows  

Science Conference Proceedings (OSTI)

... Requirements, WebCAT can be installed on Windows systems running IIS, PWS, or Apache web servers and on Unix systems running Apache. ...

442

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections gives a dimensionless rating titled, Condensation...

443

Window Design and Enhancement using Chebyshev.  

E-Print Network (OSTI)

??This paper presents a new and versatile framework to window design based on a semi-infinite linear programming approach by using the Dual Nestled Complex Approximation (more)

Tran, To; Dahl, Mattias; Claesson, Ingvar

2004-01-01T23:59:59.000Z

444

Applicability of Solar Airflow Windows  

E-Print Network (OSTI)

Accurate prediction of the performance of Solar Air Windows (SAWs) operating in various climates under real conditions has not been investigated. This paper reports the results of numerical simulations of SAWs carried out using ANSYS-CFX considering real boundary conditions. In order to determine the feasibility of SAWs, their performance has been examined in two similar office buildings located at two different climates. Each building has 30% of its south facing wall covered with SAWs in the spandrel areas. The results of the numerical simulations of the SAW operating in supply mode in January indicated that that for an office building located in Ottawa, Canada, 6% of its ventilation load and 12% of its heating load could be supplied by SAWs during a sunny day. Operating in exhaust mode in June, SAWs could be used to provide about 14% of the ventilation load of the office building located in Dubai, UAE.

Hamed, M. S.; Friedrich, K.; Razaqpur, G.; Foo, S.

2010-01-01T23:59:59.000Z

445

V-022: Attachmate Reflection Products Java Multiple Vulnerabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Attachmate Reflection Products Java Multiple Vulnerabilities 2: Attachmate Reflection Products Java Multiple Vulnerabilities V-022: Attachmate Reflection Products Java Multiple Vulnerabilities November 13, 2012 - 1:00am Addthis PROBLEM: Attachmate Reflection Products Java Multiple Vulnerabilities PLATFORM: Reflection X 2011 Reflection Suite for X 2011 Reflection for Secure IT Server for Windows Reflection for Secure IT Client and Server for UNIX ABSTRACT: Security issues related to Reflection PKI Services Manager REFERENCE LINKS: PKI Services Manager Technical Note 2560 Secunia Advisory SA51256 CVE-2012-0551 CVE-2012-1711 CVE-2012-1713 CVE-2012-1716 CVE-2012-1717 CVE-2012-1718 CVE-2012-1719 CVE-2012-1720 CVE-2012-1721 CVE-2012-1722 CVE-2012-1723 CVE-2012-1724 CVE-2012-1725 CVE-2012-1726 IMPACT ASSESSMENT: High DISCUSSION: Attachmate has acknowledged multiple vulnerabilities in some Reflection

446

High Performance Windows Volume Purchase: About the High Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program to someone by E-mail Share High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Facebook Tweet about High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Twitter Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Google Bookmark High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Delicious Rank High Performance Windows Volume Purchase: About the High Performance Windows Volume Purchase Program on Digg Find More places to share High Performance Windows Volume Purchase:

447

Improving the thermal performance of vinyl-framed windows  

Science Conference Proceedings (OSTI)

Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [2.86 W/m{sup 2}{center_dot}K] and 0.30 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [1.70 W/m{sup 2}{center_dot}K]). Turning such windows into ``superwindows,`` windows with a U-value of 0.20 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (1.14 W/m{sup 2}{center_dot}K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (0.57 W/m{sup 2}{center_dot}K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

Beck, F.A.; Arasteh, D.

1992-10-01T23:59:59.000Z

448

Improving the thermal performance of vinyl-framed windows  

Science Conference Proceedings (OSTI)

Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h[center dot]ft[sup 2][center dot][degree]F [2.86 W/m[sup 2][center dot]K] and 0.30 Btu/h[center dot]ft[sup 2][center dot][degree]F [1.70 W/m[sup 2][center dot]K]). Turning such windows into superwindows,'' windows with a U-value of 0.20 Btu/h[center dot]ft[sup 2][center dot][degree]F (1.14 W/m[sup 2][center dot]K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h[center dot]ft[sup 2][center dot][degree]F (0.57 W/m[sup 2][center dot]K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

Beck, F.A.; Arasteh, D.

1992-10-01T23:59:59.000Z

449

Multiply glazed window and door assemblies with screened breathing passages  

SciTech Connect

This patent describes a multiply glazed, vented window or door assembly comprising: spaced apart glass panes sealably secured perimetrally in parallel side sash members and parallel upper and lower sash members. At least one of the sash members has in its outer surface, a linear groove perimetrally aligned with the space between the panes and further having a breathing port extending from the marginal wall of the groove through to the space between the panes; an elongate flat plate having fine perforations and parallel end flanges projecting generally perpendicularly therefrom, fitting into and sealing off the groove at spaced distances from the port to provide an air circulation manifold under the plate. The plate is sufficiently long to have sufficient perforations to provide a cross-sectional area which correlates with the cross-sectional area of the port; and means for securing the plate in place.

Chludil, S.T.

1987-04-14T23:59:59.000Z

450

Technology Advancements to Lower Costs of Electrochromic Window Glazing  

DOE Green Energy (OSTI)

An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, the

Mark Burdis; Neil Sbar

2008-07-13T23:59:59.000Z

451

Information acquisition in minimal window search  

Science Conference Proceedings (OSTI)

The alpha-beta tree search algorithm can be improved through the use of minimal windows. Branches are searched with a minimal window [a,a+l] with the expectancy that this will show the sub-tree to be inferior. If not, then that sub-tree must be re-searched. ...

Alexander Reinefeld; Jonathan Schaeffer; T. A. Marsland

1985-08-01T23:59:59.000Z

452

Prospects for highly insulating window systems  

SciTech Connect

Windows and other fenestration systems are often considered the weakest links in energy-efficient residences. This opinion is reinforced by building standards, audit guidelines, and standard window performance evaluation techniques geared toward sizing building HVAC equipment. In this paper we show that it should be possible to design highly insulating windows (U < 0.12 Btu/hr-ft/sup 2/-F) with high solar transmittances (SC > 0.6). If we then view annual window performance from the basic perspective of control of energy flows, we conclude that it should thus be possible to develop a new generation of ''super window'' that will outperform the best insulated wall or roof for any orientation even in a northern climate. We review several technical approaches that suggest how such a window system might be designed and built. These include multiglazed windows having one or more low-emittance coatings and gas-filled or evacuated cavities. Another approach uses a layer of transparent silica aerogel, a microporus material having a conductivity in air of about R7 per inch. We conclude by presenting data on annual energy performance in a cold climate for a range of ''super windows''. 8 refs., 6 figs.

Arasteh, D.; Selkowitz, S.

1985-04-01T23:59:59.000Z

453

Measure Guideline: Window Repair, Rehabilitation, and Replacement  

SciTech Connect

This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

Baker, P.

2012-12-01T23:59:59.000Z

454

Dell recommends Windows 8. Redefine mobility.  

E-Print Network (OSTI)

Dell recommends Windows 8. Redefine mobility. Rethink tablets. The new XPSTM 10 tablet. Designed" Full HD touchscreen optimized for Windows 8. Dell.com Price: $1,499 $ 99999 ·3rd Gen Intel® CoreTM i7

Suzuki, Masatsugu

455

Dell recommends Windows Dell InspironTM  

E-Print Network (OSTI)

Dell recommends Windows® 7. Dell InspironTM 14R Member Price: $ 69999 · 2nd Gen Intel® CoreTM i5-2450M Processor · Genuine Windows® 7 Home Premium · 6GB Memory*; 500GB* Hard Drive Buy a Dell

Suzuki, Masatsugu

456

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Benefits: Energy & Cost Savings Benefits: Energy & Cost Savings The following information is an example of energy and cost savings for Boston and Phoenix. See the sidebar to the right for information on energy use for generic window products in your city or region. Heating Season Savings U-Factor In climates with a significant heating season, non-energy efficient windows can represent a major source of unwanted heat loss, discomfort, and condensation problems. In recent decades, windows have undergone a technological revolution. It is now possible to have lower heat loss, less air leakage, and warmer window surfaces that improve comfort and minimize condensation. The graphs below illustrate the simulated savings in heating season costs associated with energy efficient windows for a typical

457

X-Windows Acceleration via NX  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Windows Acceleration via NX X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly improve the speed of X-Windows applications running at NERSC. See Using NX. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011 January 2011 September 2010 Last edited: 2013-04-02 15:13:27

458

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Lower HVAC Costs Lower HVAC Costs HVAC sizing tools Several computation procedures exist for proper sizing of HVAC equipment. The most prominent ones, which are also recommended by the ENERGY STAR Homes program, are ACCA Manual J exit disclaimer and the ASHRAE Handbook of Fundamentals. Factors to be considered: The energy performance of the windows themselves must be considered in load calculations. NFRC-certified window performance values significantly increase the accuracy of these calculations. Window orientation and overhangs must be taken into account. Overhangs are an important factor influencing solar gains through windows. Where internal shades and blinds will be actively used, these should also be accounted for in load calculations. High-performance windows not only provide reduced annual heating and

459

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior Shading Exterior Shading Window Attachments For detailed information on storm windows and other window attachments, visit www.windowattachments.org exit disclaimer , a site supported by Lawrence Berkeley National Laboratory, Building Green, and the U.S. Department of Energy. DOE's Energy Savers You can improve the energy efficiency of existing windows by various additions to an existing window. Awnings exit disclaimer Blinds exit disclaimer Draperies exit disclaimer Overhangs exit disclaimer Shades exit disclaimer Shutters exit disclaimer Awnings in Residential Buildings Study showing that awnings have advantages that contribute to more sustainable buildings. Download Awnings in Residential Buildings exit disclaimer The most effective way of reducing solar heat gain is to block the sun's

460

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications: Books Fact Sheets & Publications: Books Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Residential Windows: A Guide to New Technology and Energy Performance, 3rd Edition John Carmody, Stephen Selkowitz, Dariush Arasteh and Lisa Heschong Residential Windows The Department of Energy's Windows and Glazing Research Program supported the development of this book. Support was provided

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THERM 5 / WINDOW 5 NFRC simulation manual  

SciTech Connect

This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

2003-06-01T23:59:59.000Z

462

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

463

Glass Cookware Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Glass Cookware Safety Glass Cookware Safety Under the wrong conditions, glass cookware can crack, break or shatter. Glass cookware is tempered (heat resistant). However, there are many steps to follow to ensure safe use of glass cookware. Glass Cookware Steps: If the steps are not followed, glass cookware can shatter unexpectedly. shatters, (it looks as if it has exploded) If glass bakeware is chipped, cracked, or scratched, it's time for it to be retired from service. It is more likely to shatter! Don't take glass bakeware directly from the freezer to the oven, or vice versa. Allow the oven to fully preheat before putting glassware inside. Don't add liquid to glassware that is already hot. Cover the bottom of glass bakeware with liquid before cooking meat or vegetables.

464

Building Technologies Office: Windows, Skylights, and Doors Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

465

Holography of the Conformal Window  

E-Print Network (OSTI)

Inspired by the model of Jarvinen and Kiritsis, we present a simple holographic model for the on set of chiral symmetry breaking at the edge of the conformal window in QCD in the Veneziano limit. Our most naive model enforces the QCD two loop running coupling on a D3/D7 holographic brane system. The mass of the holographic field, describing the chiral condensate in the model, is driven below the BF bound when the running is sufficiently strong, triggering chiral symmetry breaking for N_f/N_c<2.9. This model though contains too great a remnant of supersymmetry and does not correctly encode the perturbative anomalous dimensions of QCD. In a second model we impose the QCD anomalous dimension result and find chiral symmetry breaking sets in for N_f/N_c=4 at a BKT-type phase transition. In this case the transition is triggered when the anomalous dimension of the mass operator \\gamma_m=1.

Raul Alvares; Nick Evans; Keun-Young Kim

2012-04-11T23:59:59.000Z

466

WINDOW 3. 1: A PC program for analyzing window thermal performance: Program description and tutorial  

SciTech Connect

WINDOW 3.1 is a public-domain computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for analyzing heat transfer through window systems. The program uses an iterative technique to calculate the one-dimensional temperature profile across a user-defined window system. From this data, window system performance indices, e.g., U-value and shading coefficients, are calculated. WINDOW 2.0, incorporates several technical additions and many new user-friendly features, while continuing to provide a consistent and versatile heat transfer analysis method. The user can vary environmental conditions, window tilt, number of glazing layers, layer properties (thermal infrared, solar and visible optical properties, and thermal conductance), gap widths, composition of gap gas or gas mixture fill, and spacer and frame materials. 7 refs., 3 figs.

1988-10-01T23:59:59.000Z

467

AN ASSESSMENT OF MCNP WEIGHT WINDOWS  

SciTech Connect

The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomings of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.

J. S. HENDRICKS; C. N. CULBERTSON

2000-01-01T23:59:59.000Z

468

Observational Window Functions in Planet Transit Searches  

E-Print Network (OSTI)

Window functions describe, as a function of orbital period, the probability that an existing planetary transit is detectable in one's data for a given observing strategy. We show the dependence of this probability upon several strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, and transit duration. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of the window function, we explicitly address non-correlated (gaussian or white) noise and correlated (red) noise and discuss how these two different noise components affect window functions in different manners.

Kaspar von Braun; David R. Ciardi

2007-11-27T23:59:59.000Z

469

The Conformal Window from the Worldline Formalism  

E-Print Network (OSTI)

We use the worldline formalism to derive a universal relation for the lower boundary of the conformal window in non-supersymmetric QCD-like theories. The derivation relies on the convergence of the expansion of the fermionic determinant in terms of Wilson loops. The expansion shares a similarity with the lattice strong coupling expansion and the genus expansion in string theory. Our result relates the lower boundary of the conformal window in theories with different representations and different gauge groups. Finally, we use SQCD to estimate the boundary of the conformal window in QCD-like theories and compare it with other approaches.

Adi Armoni

2009-07-23T23:59:59.000Z

470

Glass Working, Use and Discard  

E-Print Network (OSTI)

of the glass object, be it glass block or glass vessel. Thisglass would have been reheated and cast, probably into blocks

Nicholson, Paul

2011-01-01T23:59:59.000Z

471

Progress in short period multilayer coatings for water window applications  

E-Print Network (OSTI)

mirrors for the water window, Optics Letters, Volume 28,K alpha Line in the Water Window Region, Applied Optics,coatings for water window applications E.M. Gullikson, F.

Gullikson, E.M.; Salmassi, F.; Aquila, A.L.; Dollar, F.

2008-01-01T23:59:59.000Z

472

Window signalling systems: control strategies and occupant behaviour  

E-Print Network (OSTI)

Parkins, L. M. (1984). Window-opening behav- ior in officeDaly, A. (2002). Operable windows and HVAC systems. HPACK. (2008). The use of windows as controls for indoor

Ackerly, Katie; Brager, Gail

2013-01-01T23:59:59.000Z

473

Ventanas : windows to new cultures in Spanish Class  

E-Print Network (OSTI)

SAN DIEGO Ventanas: Windows to New Cultures in Spanish Class23 Chapter V. Ventanas: Windows to New Cultures in SpanishOF THE THESIS Ventanas: Windows to New Cultures in Spanish

Collins, Karina

2009-01-01T23:59:59.000Z

474

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network (OSTI)

for a view 1.5 m from the window looking at the side wall.potential for switchable windows. In Proceedings of thelarge-area electrochromic windows in commercial buildings.

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

475

Separation of High Order Harmonics with Fluoride Windows  

E-Print Network (OSTI)

Harmonics with Fluoride Windows T. K. Allison, 1,2? J. vanpropagation in a ?uoride window while still preserving theirfor MgF 2 , CaF 2 , and LiF windows for the third, ?fth, and

Allison, Tom

2010-01-01T23:59:59.000Z

476

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheets & Publications Fact Sheets & Publications Residential Windows: A Guide to New Technology and Energy Performance Available from Norton Professional Books. exit disclaimer Single copy price: $35.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer Window Systems for High-performance Buildings Available from Norton Professional Books. exit disclaimer Single copy price: $50.00 USA; volume discounts available from publisher. Available from Amazon. exit disclaimer State Fact Sheets for New and Existing Construction The EWC State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state.

477

What is the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the Efficient Windows Collaborative? What is the Efficient Windows Collaborative? The EWC is a coalition of window, door, skylight, and component manufacturers, research organizations, federal, state and local government agencies, and others interested in expanding the market for high-efficiency fenestration products. Its goals are to double the current market penetration of efficient window technologies, and to make NFRC labeling a near-universal practice in U.S. markets. The Alliance to Save Energy has the lead coordination and management role. Using its active involvement with the energy efficiency industry and its experience in promoting energy efficient products, the Alliance is committed to working with the fenestration industry to make the Collaborative an effective force in the marketplace.

478

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

479

Occupant Response to Window Control Signaling Systems  

E-Print Network (OSTI)

my window it will waste energy. Even so I open the windowthe windown wouldnt waste energy. MS Thesis, Dept. ofthepotentialforenergywasteandbalancingissues.

Ackerly, Katherine

2012-01-01T23:59:59.000Z

480

Windows 98 Registry Little Black Book  

Science Conference Proceedings (OSTI)

From the Publisher:Describes and demonstrates Windows 98 Registry functions and tools for customizing and optimizing personal computer systems through system properties, Device Manager, and various profiles. Translates the specialized language of the ...

Greg Holden

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "reflective window glass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Increasing TCPs initial window  

E-Print Network (OSTI)

The initial window MAY be two packets (instead of the current initial window of one packet). For packets of at most 1460 bytes, the initial window MAY be three packets. For packets of at most 1095 bytes, the initial window MAY be four packets. 2 The Burstiness of Current TCP in Slow-Start: cwnd = 1 packet:) send one data packet ( receive one ACK increase cwnd to 2 packets:) send two back-to-back packets ( receive one ACK (a delayed ACK) increase cwnd to 3 packets:) send three back-to-back packets 3 The Burstiness of Current TCP with a Dropped Ack: cwnd = N packets, N packets are in pipe: ( receive one ACK, acking two packets) send two back-to-back packets ( receive one ACK, acking two packets) send two back-to-back packets ONE ACK IS DROPPED IN THE NETWORK

Sally Floyd

1998-01-01T23:59:59.000Z

482

AEDG Implementation Recommendations: Daylighting Window Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Design The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on...

483

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

U-factor and R-value? While the U-factor is used to express the insulation value of windows, R-value is used for insulation in most other parts of the building envelope (walls,...

484

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Break Metal Non-metal Frames There is a variety of non-metal framing materials for windows including, wood, wood with metalvinyl cladding, vinyl, hybrid, and composites. This...

485

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Views Windows provide a connection with the natural environment and a relief from typical interior spaces. An enormous amount of information can be gathered by a simple glance out...

486

Insider Power Techniques for Microsoft Windows XP  

Science Conference Proceedings (OSTI)

Tweak Windows XP for ultimate performance with the undocumented secrets and hidden gems of the experts who work with the technology every day. Use their best techniques, practices, hacks, tricks, and workarounds to put all of your PC's muscle to ...

Paul Mcfedries; Austin Wilson; Geoff Winslow

2003-02-01T23:59:59.000Z

487

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylight Letting light into a house is an important function of windows. Even though people have become more reliant on electric light in their houses, good home design can provide...

488

Windows Public Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Windows Public Tools Windows Public Tools Windows Public Tools Windows TOOL DESCRIPTION KarlBridge The KarlBridge package by Doug Karl. A program that runs on a PC with two Ethernet boards, turning the PC into a sophisticated, high-level, packet-filtering bridge. It can filter packets based on any specified protocol, including IP, XNS, DECNET, LAT, IPX, AppleTalk, etc. FakeDOS FakeDoS is a PC password system that, when executed from the AUTOEXEC.BAT file, will present the user with an apparently normal DOS prompt on bootup. However, the system is actually waiting for the correct password to be typed in. LOCK'M-UP The LogTime program logs the current time into a file, maintaining the last 170 entries stored. This can be useful when placed in AUTOEXEC.BAT as a method of tracking the use of a computer.

489

Welcome to the Efficient Windows Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Measuring Performance: ENERGY STAR® Most Efficient Program 2013 Windows for residential buildings are eligible for ENERGY STAR Most Efficient recognition in 2013. The U.S. EPA will add qualifying models to the ENERGY STAR Most Efficient 2013 product list for windows from January 1, 2013 through December 31, 2013. The following products are not eligible for Most Efficient recognition in 2013: Windows for commercial buildings Doors Skylights Tubular Daylighting Devices Energy Star Most Efficient Program Energy Star Zones The ENERGY STAR Most Efficient designation recognizes the most efficient products among those that qualify for the ENERGY STAR. These exceptional products represent the leading edge in energy efficient products for a given year. Criteria Windows must be ENERGY STAR qualified consistent with applicable ENERGY

490

An analysis of residential window waterproofing systems.  

E-Print Network (OSTI)

??The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for (more)

Parsons, Austin, 1959-

2004-01-01T23:59:59.000Z

491

Good Technology, Inc. FIPS Crypto on Windows Mobile ...  

Science Conference Proceedings (OSTI)

... Good Technology, Inc. FIPS Crypto on Windows Mobile ... 1.1 06 Aug 2005 Richard Levenberg Good Technology Modifications for Windows CE 4.2 ...

2013-04-24T23:59:59.000Z

492

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

Electrochromic Windows. California Energy Commission, PIER.Electrochromic Windows. California Energy Commission, PIER.managed by the California Energy Commission (Commission),

2006-01-01T23:59:59.000Z

493

Window Manufacturer Sees Business Surge As Weatherization Supplier...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Manufacturer Sees Business Surge As Weatherization Supplier Window Manufacturer Sees Business Surge As Weatherization Supplier July 29, 2010 - 4:33pm Addthis Joshua DeLung...

494

Daylighting Window Film Shows Potential to Significantly Reduce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting Window Film Shows Potential to Significantly Reduce Lighting Energy Use in Buildings Outdoor view of the windows testbed facility. Indoor view showing how sunlight is...

495

Review - The Code of the City: Window on a Labyrinth  

E-Print Network (OSTI)

The Code of the City: Window on a Labyrinth Douglas C. Allenable service, opening a window on a serious and demanding

Allen, Douglas C

2007-01-01T23:59:59.000Z

496

Validation of the Window Model of the Modelica Buildings Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of the Window Model of the Modelica Buildings Library Title Validation of the Window Model of the Modelica Buildings Library Publication Type Report LBNL Report Number...

497

Lagrangean Duality Applied on Vehicle Routing with Time Windows  

E-Print Network (OSTI)

Nov 6, 2001 ... Lagrangean Duality Applied on Vehicle Routing with Time Windows ... with the Vehicle Routing Problem with Time Windows (VRPTW).

498

A Time Bucket Formulation for the TSP with Time Windows  

E-Print Network (OSTI)

Nov 10, 2009 ... The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of finding a ... To obtain a good partition of the time windows, we.

499

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

500

Testing and modeling of diffusion bonded prototype optical windows under ITER conditions  

SciTech Connect

Glass-metal joints are a part of ITER optical diagnostics windows. These joints must be leak tight for the safety (presence of tritium in ITER) and to preserve the vacuum. They must also withstand the ITER environment: temperatures up to 220 deg.C and fast neutron fluxes of {approx}3.10{sup 9} n/cm{sup 2}.s. At the moment, little information is available about glass-metal joints suitable for ITER. Therefore, we performed mechanical and thermal tests on some prototypes of an aluminium diffusion bonded optical window. Finite element modeling with Abaqus code was used to understand the experimental results. The prototypes were helium leaking probably due to very tiny cracks in the interaction layer between the steel and the aluminium. However, they were all able to withstand a thermal cycling test up to 200 deg. C; no damage could be seen after the tests by visual inspection. The prototypes successfully passed push-out test with a 500 N load. During the destructive push-out tests the prototypes broke at a 6-12 kN load between the aluminium layer and the steel or the glass, depending on the surface quality of the glass. The microanalysis of the joints has also been performed. The finite element modeling of the push-out tests is in a reasonable agreement with the experiments. According to the model, the highest thermal stress is created in the aluminium layer. Thus, the aluminium joint seems to be the weakest part of the prototypes. If this layer is improved, it will probably make the prototype helium leak tight and as such, a good ITER window candidate. (authors)

Jacobs, M. [Flemish Inst. for Technological Research, Mol (Belgium); Van Oost, G. [Dept. of Applied Physics, Ghent Univ., Ghent (Belgium); Degrieck, J.; De Baere, I. [Dept. of Materials Science and Engineering, Ghent Univ., Ghent (Belgium); Gusarov, A. [Belgian Nuclear Research Center, Mol (Belgium); Gubbels, F. [TNO, Eindhoven (Netherlands); Massaut, V. [Belgian Nuclear Research Center, Mol (Belgium)

2011-07-01T23:59:59.000Z