National Library of Energy BETA

Sample records for reflectance atr modes

  1. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sign up to be a Technical Reviewer NSUF needs technical reviewers to help read and evaluate project proposals. Two to three technical experts who are familiar with current DOE programs are needed to peer review each proposal, comment and score. Fill out the form below to get involved and become an NSUF technical reviewer. You are currently not logged in to the system. Please choose an option below... I have an ATR NSUF User Name and Password. I DO NOT have an ATR NSUF User Name and Password. Log

  2. Method of fabricating reflection-mode EUV diffraction elements

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2002-01-01

    Techniques for fabricating a well-controlled, quantized-level, engineered surface that serves as substrates for EUV reflection multilayer overcomes problems associated with the fabrication of reflective EUV diffraction elements. The technique when employed to fabricate an EUV diffraction element that includes the steps of: (a) forming an etch stack comprising alternating layers of first and second materials on a substrate surface where the two material can provide relative etch selectivity; (b) creating a relief profile in the etch stack wherein the relief profile has a defined contour; and (c) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. For a typical EUV multilayer, if the features on the substrate are larger than 50 nm, the multilayer will be conformal to the substrate. Thus, the phase imparted to the reflected wavefront will closely match that geometrically set by the surface height profile.

  3. PUREX new substation ATR

    SciTech Connect (OSTI)

    Nelson, D.E.

    1997-05-12

    This document is the acceptance test report (ATR) for the New PUREX Main and Minisubstations. It covers the factory and vendor acceptance and commissioning test reports. Reports are presented for the Main 5 kV substation building, the building fire system, switchgear, and vacuum breaker; the minisubstation control building and switch gear; commissioning test; electrical system and loads inspection; electrical utilities transformer and cable; and relay setting changes based on operational experience.

  4. Method of fabricating reflection-mode EUV diffusers

    DOE Patents [OSTI]

    Anderson, Erik; Naulleau, Patrick P.

    2005-03-01

    Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.

  5. Measuring Photochemical Kinetics in Submonolayer Films by Transient ATR Spectroscopy on a Multimode Planar Waveguide

    SciTech Connect (OSTI)

    Simon, Anne M.; Marucci, Nicole E.; Saavedra, S. Scott

    2011-07-15

    Understanding the kinetics of reactions in molecular thin films can aid in the molecular engineering of organic photovoltaics and biosensors. Using two analytical methods, transient absorbance spectroscopy (TAS) and attenuated total reflectance (ATR), in a relatively simple arrangement when compared with previous TAS/ATR instruments to interrogate molecular structure and photochemistry at interfaces. The multimode planar waveguide geometry provides a significant path length enhancement relative to a conventional transmission geometry, making it feasible to perform measurements on low-surface-coverage films. This work demonstrates that TAS/ATR can be used to probe structure and photochemical kinetics in molecular films at extremely low surface coverages.

  6. Reflection of a TE-polarised Gaussian beam from a layered structure under conditions of resonance excitation of waveguide modes

    SciTech Connect (OSTI)

    Sokolov, V I; Marusin, N V; Molchanova, S I; Savelyev, A G; Khaydukov, E V; Panchenko, V Ya

    2014-11-30

    The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depth of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)

  7. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs and having the PCPs also function as ECPs will require significant safety basis changes requiring DOE approval. 2. Evaluation Criteria #4 (Use of new technology). The use of VFD and VFD “pump catcher” technology for the PCPs is not currently in use and has not been previously formally reviewed/approved by DOE for ATR. It is noted that VFD technology has several decades of commercial use and experience. However, the ATR probabilistic risk assessment will have to be updated, reflecting the changes for supplying ECP flows including VFD reliability, to confirm that the proposed activity maintains or reduces the CDF for the ATR. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). It is expected that the proposed activity will result in a revised list of safety-related SSCs. Specifically, as currently proposed, the existing ECPs will be deleted from the list. The PCPs and their associated components, picking up the ECP function, will be classified as safety-related active Seismic Category I.

  8. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  9. ATR National Scientific User Facility 2009 Annual Report

    SciTech Connect (OSTI)

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  10. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRCs current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols and in-core instrumentation under the ATR Modeling, Simulation and V&V Upgrade initiative, as well as the work to replace nuclear instrumentation under the ATR Life Extension Project (LEP) and provide support to the ATR NSUF.

  11. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOE Patents [OSTI]

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  12. Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR

    Broader source: Energy.gov [DOE]

    Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR Stuart Jensen October 21, 2014

  13. Validation of HELIOS for ATR Core Follow Analyses

    SciTech Connect (OSTI)

    Bays, Samuel E.; Swain, Emily T.; Crawford, Douglas S.; Nigg, David W.

    2015-03-01

    This work summarizes the validation analyses for the HELIOS code to support core design and safety assurance calculations of the Advanced Test Reactor (ATR). Past and current core safety assurance is performed by the PDQ-7 diffusion code; a state of the art reactor physics simulation tool from the nuclear industry’s earlier days. Over the past twenty years, improvements in computational speed have enabled the use of modern neutron transport methodologies to replace the role of diffusion theory for simulation of complex systems, such as the ATR. More exact methodologies have enabled a paradigm-shift away from highly tuned codes that force compliance with a bounding safety envelope, and towards codes regularly validated against routine measurements. To validate HELIOS, the 16 ATR operational cycles from late-2009 to present were modeled. The computed power distribution was compared against data collected by the ATR’s on-line power surveillance system. It was found that the ATR’s lobe-powers could be determined with ±10% accuracy. Also, the ATR’s cold startup shim configuration for each of these 16 cycles was estimated and compared against the reported critical position from the reactor log-book. HELIOS successfully predicted criticality within the tolerance set by the ATR startup procedure for 13 out of the 16 cycles. This is compared to 12 times for PDQ (without empirical adjustment). These findings, as well as other insights discussed in this report, suggest that HELIOS is highly suited for replacing PDQ for core safety assurance of the ATR. Furthermore, a modern verification and validation framework has been established that allows reactor and fuel performance data to be computed with a known degree of accuracy and stated uncertainty.

  14. AGR-2 Data Qualification Report for ATR Cycle 154B

    SciTech Connect (OSTI)

    Binh Pham; Jeff Einerson

    2014-01-01

    This report provides the data qualification status of Advanced Gas Reactor-2 (AGR-2) fuel irradiation experimental data from Advanced Test Reactor (ATR) Cycle 154B as recorded in the Nuclear Data Management and Analysis System (NDMAS). This is the last cycle of AGR-2 irradiation, as the test train was pulled from the ATR core during the outage portion of ATR Cycle 155A. The AGR-2 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates including new Fission Product Monitoring (FPM) downstream flows from Fission Product Monitoring System (FPMS) detectors, pressure, and moisture content), and FPMS data (release rates and release-to-birth rate ratios [R/Bs]) for each of the six capsules in the AGR-2 experiment. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) comprised of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. The Data Review Committee reviewed the data acquisition process, considered whether the data met the requirements for data collection as specified in QA-approved Very High Temperature Reactor (VHTR) data collection plans, examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report.

  15. Analysis of the ATR fuel element swaging process

    SciTech Connect (OSTI)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  16. In-core flux sensor evaluations at the ATR critical facility

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois Villard

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by the Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.

  17. Transfer of polarized 3He ions in the AtR beam transfer line

    SciTech Connect (OSTI)

    Tsoupas N.; MacKay, W.W.; Meot, F.; Roser, T.; Trbojevic, D.

    2012-05-20

    In addition to collisions of electrons with various unpolarized ion species as well as polarized protons, the proposed electron-hadron collider (eRHIC) will facilitate the collisions of electrons with polarized {sup 3}He ions. The AGS is the last acceleration stage, before injection into one of the RHIC's collider ring for final acceleration. The AtR (AGS to RHIC) transfer line will be utilized to transport the polarized {sup 3}He ions from AGS into one of the RHIC's collider rings. Some of the peculiarities of the AtR line's layout (simultaneous horizontal and vertical bends) may degrade the matching of the stable spin direction of the AtR line with that of RHIC's. In this paper we discuss possible simple modifications of the AtR line to accomplish a perfect matching of the stable spin direction of the injected {sup 3}He beam with the stable spin direction at the injection point of RHIC.

  18. IN-CORE FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY.

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois VIllard

    2014-12-01

    As part of an Idaho State University (ISU)–led Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) collaborative project that includes Idaho National Laboratory (INL) and the French Alternative Energies and Atomic Energy Commission (CEA), flux detector evaluations were completed to compare their accuracy, response time, and longduration performance. Special fixturing, developed by INL, allows real-time flux detectors to be inserted into various Advanced Test Reactor Critical Facility (ATRC) core positions to perform lobe power measurements, axial flux profile measurements, and detector crosscalibrations. Detectors initially evaluated in this program included miniature fission chambers, specialized self-powered neutron detectors (SPNDs), and specially developed commercial SPNDs. Results from this program provide important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and yield new flux data required for benchmarking models in the ATR Life Extension Program (LEP) Modeling Update Project.

  19. Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect (OSTI)

    MacLean, Heather J.; Hayes, Steven L.

    2007-07-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels. (authors)

  20. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    SciTech Connect (OSTI)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.

  1. ATR LEU Monolithic Foil-Type Fuel with Integral Cladding Burnable Absorber Neutronics Performance Evaluation

    SciTech Connect (OSTI)

    Gray Chang

    2012-03-01

    The Advanced Test Reactor (ATR), currently operating in the United States, is used for material testing at very high neutron fluxes. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting HEU driven reactor cores to low-enriched uranium (LEU) cores. The burnable absorber - 10B, was added in the inner and outer plates to reduce the initial excess reactivity, and to improve the peak ratio of the inner/outer heat flux. The present work investigates the LEU Monolithic foil-type fuel with 10B Integral Cladding Burnable Absorber (ICBA) design and evaluates the subsequent neutronics operating effects of this proposed fuel designs. The proposed LEU fuel specification in this work is directly related to both the RERTR LEU Development Program and the Advanced Test Reactor (ATR) LEU Conversion Project at Idaho National Laboratory (INL).

  2. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect (OSTI)

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at CAES by Boise State PI Janelle Wharry and Cory Dolph. PI Corey Dolph returned in early November to complete their research by performing nanoindentation on unirradiated specimens that will be used as a baseline for their research.

  3. Damped Modes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... . . . . . . . . 95 4.4 Percentage of electromagnetic energy in total energy of POD modes . ... 102 4.9 Nonlinear energy transfer k ' y spectrum of POD modes . . . . . . . . . . . . . . ...

  4. Validation of ATR Fission Power Deposition Fraction in HEU and LEU Fuel Plates

    SciTech Connect (OSTI)

    G. S. Chang

    2008-09-01

    The Advanced Test Reactor (ATR) is a high power (250 MW), high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2s. Because of its high power and large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. A detailed plate-by-plate MCNP ATR full core model has been developed and validated for the low-enriched uranium (LEU) fuel conversion feasibility study. Using this model, an analysis has been performed to determine the LEU density and U-235 enrichment required in the fuel meat to yield equivalent K-eff versus effective full power days (EFPDs) between the HEU and LEU cores. This model has also been used to optimize U-235 content of the LEU core, minimizing the differences in K-eff and heat flux profile between the HEU and LEU cores at 115 MW total core power for 125 EFPDs. The LEU core conversion feasibility study evaluated foil type (U-10Mo) fuel with the LEU reference design of 19.7 wt% U-235 enrichment. The LEU reference design has a fixed fuel meat thickness of 0.330 mm and can sustain the same operating cycle length as the HEU fuel. Heat flux and fission power density are parameters that are proportional to the fraction of fission power deposited in fuel. Thus, the accurate determination of the fraction of fission power deposited in the fuel is important to ATR nuclear safety. In this work, a new approach was developed and validated, the Tally Fuel Cells Only (TFCO) method. This method calculates and compares the fission power deposition fraction between HEU and LEU fuel plates. Due to the high density of the U-10Mo LEU fuel, the fission ?-energy deposition fraction is 37.12%, which is larger than the HEUs ?-energy deposition fraction of 19.7%. As a result, the fuel decay heat cooling will need to be improved. During the power operation, the total fission energy (200 MeV per fission) deposition fraction of LEU and HEU are 90.9% and 89.1%, respectively.

  5. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  6. AGR-3/4 Final Data Qualification Report for ATR Cycles 151A through 155B-1

    SciTech Connect (OSTI)

    Pham, Binh T.

    2015-03-01

    This report provides the qualification status of experimental data for the entire Advanced Gas Reactor 3/4 (AGR 3/4) fuel irradiation. AGR-3/4 is the third in a series of planned irradiation experiments conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for the AGR Fuel Development and Qualification Program, which supports development of the advanced reactor technology under the INL ART Technology Development Office (TDO). The main objective of AGR-3/4 irradiation is to provide a known source of fission products for subsequent transport through compact matrix and structural graphite materials due to the presence of designed-to-fail fuel particles. Full power irradiation of the AGR 3/4 test began on December 14, 2011 (ATR Cycle 151A), and was completed on April 12, 2014 (end of ATR Cycle 155B) after 369.1 effective full power days of irradiation. The AGR-3/4 test was in the reactor core for eight of the ten ATR cycles between 151A and 155B. During the unplanned outage cycle, 153A, the experiment was removed from the ATR northeast flux trap (NEFT) location and stored in the ATR canal. This was to prevent overheating of fuel compacts due to higher than normal ATR power during the subsequent Powered Axial Locator Mechanism cycle, 153B. The AGR 3/4 test was inserted back into the ATR NEFT location during the outage of ATR Cycle 154A on April 26, 2013. Therefore, the AGR-3/4 irradiation data received during these 2 cycles (153A and 153B) are irrelevant and their qualification status isnot included in this report. Additionally, during ATR Cycle 152A the ATR core ran at low power for a short enough duration that the irradiation data are not used for physics and thermal calculations. However, the qualification status of irradiation data for this cycle is still covered in this report. As a result, this report includes data from 8 ATR Cycles: 151A, 151B, 152A, 152B, 154A, 154B, 155A, and 155B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). The AGR 3/4 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates, pressure, and moisture content), and Fission Product Monitoring System (FPMS) data (release rates, release to birth rate ratios [R/Bs], and particle failure counts) for each of the twelve capsules in the AGR 3/4 experiment. During Outage Cycle 155A, fourteen flow meters were installed downstream from fourteen FPMS monitors to measure flows from the monitors; qualification status of these data are also included in the report. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) composed of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. For ATR Cycles 151A through 154B, the DRC convened on February 12, 2014, reviewed the data acquisition process, and considered whether the data met the requirements for data collection as specified in QA approved INL ART TDO data collection plans. The DRC also examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report. The qualification status of AGR-3/4 irradiation data during the first six cycles were previously reported in INL/EXT-14-31186 document. This report presents data qualification status for the entire AGR-3/4 irradiation.

  7. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may be requested prior to a visit: Valid driver's license with picture. Valid passport. Current U.S. government or government contractor badge. For non-U.S. citizens,...

  8. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards 13 rapid turnaround research proposals * Nuclear Energy Infrastructure Database * Access to IVEM-Tandem Facility now offered through NSUF Calendar Calendar link - image...

  9. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forgot Your Password? Enter your Username to receive your password. Login: * Submit

  10. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Account Instructions 1) All fields are required. 2) Passwords require at least one special character (examples !#$%^&*?, etc.). 3) Passwords must be at least seven (7) characters. Create a New Account First Name: Required Last Name: Required Phone Number: Required Invalid Email Email: Required Institution: Required Address: Required City: Required State: Required Zip: Required Join the Nuclear Science User Facilities Organization. Login: Required Password: Required Confirm Password:

  11. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please enter your login information below. Log In Login: * Password: * Log In Create a New Account Forgot Password

  12. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invalid message ID Object reference not set to an instance of an object. Email: Invalid Email Format Required Name: Required Subject: Required Message: Required Security Code: Type the code from the image Send Message

  13. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    previous daynext daytodaySelect date Calendar Title and navigation Title and navigation << < May, 2016 > << May, 2016 S M T W T F S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Day Week Month Agenda May, 2016 Sun Mon Tue Wed Thu Fri Sat 01 May 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01 Jun 2 3 4 View Edit Delete New Appointment New Recurring Appointment Go to today

  14. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... resistance of novel ODS alloy RT-IE View Details 13-439 ... Zhang Primary Water Stress Corrosion Cracking (PWSCC) ... RT-PIE View Details 15-600 ANL - Argonne National ...

  15. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on capability enhancements, research areas of interest for calls for proposals, and lessons learned. It also serves as an avenue for interactions between the Executive...

  16. ATR NSUF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Privacy Notice NSUF collects and stores the following information automatically: Internet Protocol (IP) address of the domain from which you access the Internet (e.g.,...

  17. REFLECT HOME

    Broader source: Energy.gov [DOE]

    Sacramento is nicknamed the City of Trees, so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team’s Reflect Home does just that by embracing the city’s sense of expansive greenery.

  18. Independent Review of AFC 2A, 2B, and 2E ATR Irradiation Tests

    SciTech Connect (OSTI)

    M. Cappiello; R. Hobbins; K. Penny; L. Walters

    2014-01-01

    As part of the Department of Energy Advanced Fuel Cycle program, a series of fuels development irradiation tests have been performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. These tests are providing excellent data for advanced fuels development. The program is focused on the transmutation of higher actinides which best can be accomplished in a sodium-cooled fast reactor. Because a fast test reactor is no longer available in the US, a special test vehicle is used to achieve near-prototypic fast reactor conditions (neutron spectra and temperature) for use in ATR (a water-cooled thermal reactor). As part of the testing program, there were many successful tests of advanced fuels including metals and ceramics. Recently however, there have been three experimental campaigns using metal fuels that experienced failure during irradiation. At the request of the program, an independent review committee was convened to review the post-test analyses performed by the fuels development team, to assess the conclusions of the team for the cause of the failures, to assess the adequacy and completeness of the analyses, to identify issues that were missed, and to make recommendations for improvements in the design and operation of future tests. Although there is some difference of opinion, the review committee largely agreed with the conclusions of the fuel development team regarding the cause of the failures. For the most part, the analyses that support the conclusions are sufficient.

  19. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    SciTech Connect (OSTI)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  20. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    SciTech Connect (OSTI)

    Field, Kevin G.; Howard, Richard H.

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys, hence promoting FCCI between the fuel-clad systems. The other factor was to develop a test bed where multiple candidate alloys could be evaluated within a single irradiation test train, thereby reducing overall costs and increasing efficiency in alloy screening efforts. A collaboration between ORNL and INL was developed to facilitate the completion of the test bed for FCCI testing. The report highlights the activities related to the development of the ATF-1 ORNL FCCI rodlets for irradiation in INL’s ATR as part of the on-going ATF-1 experiments.

  1. Mode Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mode Analyses of Gyrokinetic Simulations of Plasma Microturbulence by David R. Hatch A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at The University of Wisconsin - Madison 2010 c Copyright by David R. Hatch 2010 All Rights Reserved i For Jen and Owen ii ACKNOWLEDGEMENTS I would like to thank my advisor, Paul Terry, who provided me with a research topic which I have found engaging and challenging, and has also offered an ideal

  2. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect (OSTI)

    Dan Ogden

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  3. Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project

    SciTech Connect (OSTI)

    Heather J. MacLean; Kumar Sridharan; Timothy A. Hyde

    2008-06-01

    The performance of advanced nuclear systems critically relies on the performance of the materials used for cladding, duct, and other structural components. In many proposed advanced systems, the reactor design pushes the temperature and the total radiation dose higher than typically seen in a light water reactor. Understanding the stability of these materials under radiation is critical. There are a large number of materials or material systems that have been developed for greater high temperature or high dose performance for which little or no information on radiation response exists. The goal of this experiment is to provide initial data on the radiation response of these materials. The objective of the UW experiment is to irradiate materials of interest for advanced reactor applications at a variety of temperatures (nominally 300°C, 400°C, 500°C, and 700°C) and total dose accumulations (nominally 3 dpa and 6 dpa). Insertion of this irradiation test is proposed for September 2008 (ATR Cycle 143A).

  4. MOX and MOX with 237Np/241Am Inert Fission Gas Generation Comparison in ATR

    SciTech Connect (OSTI)

    G. S. Chang; M. Robel; W. J. Carmack; D. J. Utterbeck

    2006-06-01

    The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel with MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.

  5. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly ReportJanuary 2015

    SciTech Connect (OSTI)

    Soelberg, Renae

    2015-01-01

    Highlights; Mike Worley and Shane Johnson visited INL Jan. 22 for an NSUF strategy discussion; Rory Kennedy attended a NSLS-2 Beamline Advisory Team meeting at Brookhaven; Provided a final cost estimate to the NSUF Program Office in support of the NEET/NSUF proposal, Metal-ceramic and metal-metal composites for extreme radiation and temperature environment: An in situ interface stability and mechanical behavior study by high energy x-ray diffraction with a synchrotron probe.; Assisted in the development of conceptual designs and performed a preliminary thermal hydraulic analysis for two NEET/NSUF proposals. The challenge for both experiments is to provide high (>1000 C and up to 1600 C)) specimen temperatures in a small space (0.5" diameter ATR Outboard A-position) without overheating the coolant. Several designs were analyzed and found to be feasible, although detailed design and analysis will be required after the projects are awarded; and A single USU TEM specimen is packaged and awaiting shipment from MFC to CAES. Once at CAES, SEM, TEM and LEAP analysis will be performed. Professor Ban has requested additional sub-samples to be made to take back to his laboratory at USU for thermal diffusivity studies.

  6. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  7. Scintillator reflective layer coextrusion

    DOE Patents [OSTI]

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  8. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  9. AGR-2 Final Data Qualification Report for U.S. Capsules - ATR Cycles 147A Through 154B

    SciTech Connect (OSTI)

    Pham, Binh T; Einerson, Jeffrey J

    2014-07-01

    This report provides the data qualification status of AGR-2 fuel irradiation experimental data in four U.S. capsules from all 15 Advanced Test Reactor (ATR) Cycles 147A, 148A, 148B, 149A, 149B, 150A, 150B, 151A, 151B, 152A, 152B, 153A, 153B, 154A, and 154B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). Thus, this report covers data qualification status for the entire AGR-2 irradiation and will replace four previously issued AGR-2 data qualification reports (e.g., INL/EXT-11-22798, INL/EXT-12-26184, INL/EXT-13-29701, and INL/EXT-13-30750). During AGR-2 irradiation, two cycles, 152A and 153A, occurred when the ATR core was briefly at low power, so AGR-2 irradiation data are not used for physics and thermal calculations. Also, two cycles, 150A and 153B, are Power Axial Locator Mechanism (PALM) cycles when the ATR power is higher than during normal cycles. During the first PALM cycle, 150A, the experiment was temporarily moved from the B-12 location to the ATR water canal and during the second PALM cycle, 153B, the experiment was temporarily moved from the B-12 location to the I-24 location to avoid being overheated. During the Outage cycle, 153A, seven flow meters were installed downstream from seven Fission Product Monitoring System (FPMS) monitors to measure flows from the monitors and these data are included in the NDMAS database. The AGR-2 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates including new FPM downstream flows, pressure, and moisture content), and FPMS data (release rates and release-to-birth rate ratios [R/Bs]) for each of the four U.S. capsules in the AGR-2 experiment (Capsules 2, 3, 5, and 6). The final data qualification status for these data streams is determined by a Data Review Committee comprised of AGR technical leads, Very High Temperature Reactor (VHTR) Program Quality Assurance (QA), and NDMAS analysts. The Data Review Committee, which convened just before each data qualification report was issued, reviewed the data acquisition process, considered whether the data met the requirements for data collection as specified in QA-approved VHTR data collection plans, examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in each report. This report performs the following tasks: (1) combine existing qualification status of all AGR-2 data, (2) provide FPMS data qualification update and new release-to-birth ratio (R/B) data calculated using daily calculated birthrates, and (3) revise data qualification status of TC readings for some TCs in Capsule 6 based on their differences relative to calculated temperatures at TC locations. A total of 17,001,695 TC temperature and sweep gas data records were received and processed by NDMAS for four U.S. capsules during AGR-2 irradiation. Of these records, 9,655,474 (56.8% of the total) were determined to be Qualified; 5,792,052 (34.1% of the total) were determined to be Failed; and 1,554,169 (9.1% of the total) were determined to be Trend. For the first nice cycles, from ATR Cycle 147A to 151B, data records are 5- minute or 10-minute averaged values provided on weekly basis in EXCEL spreadsheets. For the last six cycles, ATR Cycle 152A through 154B, data records are instantaneous measurements recorded every minute and provided by .csv text files automatically every 2 hours. Therefore, the number of processed irradiation data was increased substantially from ATR Cycle 152A. For TC temperature data, there were 6,857,675 records and of these data 5,288,249 records (77.1% of the total TC data) were Failed due to TC instrument failures and 418,569 records (6.1% of the total TC data) were Trend due to large differences between TC readings and calculated values. By the end of Cycle 154A, all TCs in the AGR-2 test train failed. The overall percentage of Failed TC records is high, to some extent, because TCs failed toward the end of irradiation when the recording frequency was higher. For sweep gas data, there were 10,1

  10. Measured thermal and fast neutron fluence rates, ATR Cycle 100-BC, April 23, 1993--May 13, 1993

    SciTech Connect (OSTI)

    Smith, L.D.; Murray, R.K.; Rogers, J.W.

    1993-07-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for ATR Cycle 100-BC which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains fluence rate values corresponding to the particular elevations (relative to the 80 ft. core elevation) where the measurements were taken. The data in this report consists of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, (3) plots of both the thermal and fast neutron fluence rates, and (4) a magnetic record (3.5 inch diskette) containing a listing of only the fast neutron fluence rates, their assigned elevations and proper header identification of all monitor positions contained herein. The fluence rates reported are for the average power levels given in the table of power history and distribution. All {open_quotes}H{close_quotes} holder monitor wires for this cycle are 54 inches long. All {open_quotes}SR{close_quotes} holder monitor wires for this cycle are 55 inches long. This length allows measurement of the full core region and makes the first count elevation 24.73 inches above core midplane. Due to the safety rod problems in the west lobe, {open_quotes}BR{close_quotes} holders were used in the W-1, 2, 3, and 4 positions. All {open_quotes}BR{close_quotes} holder monitor wires for this cycle are 56.25 inches long. The distance from the end of the wires to the first count position was 4.25 inches for all wires counted from this cycle. The results from the measurements in the W-1, 2, 3, 4 monitor positions indicate that the safety rod followers were rotated to a different azimuthal orientation relative to the normal orientation. The results indicate that the rotation was counterclockwise from their normal orientation. This is the same condition observed starting with Cycle 99-B.

  11. Cluster Compatibility Mode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hopper Cluster Compatibility Mode Cluster Compatibility Mode Overview Hopper compute nodes run a stripped down Linux operating system called compute node Linux (CNL). Some...

  12. Cluster Compatibility Mode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster Compatibility Mode Cluster Compatibility Mode Edison compute nodes run a stripped-down Linux operating system called Compute Node Linux (CNL). Some standard Linux services,...

  13. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  14. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  15. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    SciTech Connect (OSTI)

    Kevin G. Field; Richard Howard; Michael Teague

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items to form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.

  16. List mode multichannel analyzer

    DOE Patents [OSTI]

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  17. Kink modes in pedestal

    SciTech Connect (OSTI)

    Wang, Z. T.; College of Physics Science and Technology, Sichuan University, Chengdu 610065 ; He, Z. X.; Dong, J. Q.; Wang, Z. H.; Xu, M.; Xu, X. L.; Mou, M. L.; Sun, T. T.; Huang, J.; Chen, S. Y.; Tang, C. J.

    2014-03-15

    Kink modes are investigated in pedestal for shaped tokamaks. An analytic combining criterion is presented. It lies on the middle of the sufficient criterion of Lortz and necessary criterion of Mercier giving a more restricted necessary criterion. Growth rates and mode structure are calculated. For large poloidal mode number, the modes are highly localized in both poloidal and radial directions. The modes increase rapidly when they approach to the resonant surface. They are typical of edge localized modes (ELMs). It is assumed that the modes vanish inside the next resonant surface, then, there seems to be a second stable region. Several mitigation methods for controlling ELMs are proposed.

  18. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  19. Reflective diffraction grating

    DOE Patents [OSTI]

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  20. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  1. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  2. AGR-3/4 Data Qualification Report for ATR Cycles 151A, 151B, 152A, 152B, 154A, and 154B

    SciTech Connect (OSTI)

    Binh T. Pham

    2014-02-01

    This data report provides the qualification status of Advanced Gas Reactor-3/4 (AGR-3/4) fuel irradiation experimental data from Advanced Test Reactor (ATR) Cycles 151A, 151B, 152A, 152B, 154A, and 154B, as recorded in the Nuclear Data Management and Analysis System (NDMAS). Of these cycles, ATR Cycle 152A is a low power cycle that occurred when the ATR core was briefly at low power. The irradiation data are not used for physics and thermal calculation, but the qualification status of these cycle data is still covered in this report. On the other hand, during ATR Cycles 153A (unplanned Outage cycle) and 153B (Power Axial Locator Mechanism [PALM] cycle), the AGR-3/4 was pulled out from the ATR core and stored in the canal to avoid being overheated. Therefore, qualification of the AGR-3/4 irradiation data from these 2 cycles was excluded in this report. By the end of ATR Cycle 154B, AGR-3/4 was irradiated for a total of 264.1 effective full power days. The AGR-3/4 data streams addressed in this report include thermocouple (TC) temperatures, sweep gas data (flow rates, pressure, and moisture content), and Fission Product Monitoring System (FPMS) data (release rates and release-to-birth rate ratios [R/Bs]) for each of the twelve capsules in the AGR-3/4 experiment. The final data qualification status for these data streams is determined by a Data Review Committee (DRC) composed of AGR technical leads, Sitewide Quality Assurance (QA), and NDMAS analysts. The DRC convened on February 12, 2014, reviewed the data acquisition process, and considered whether the data met the requirements for data collection as specified in QA-approved Very High Temperature Reactor (VHTR) Technology Development Office (TDO) data collection plans. The DRC also examined the results of NDMAS data testing and statistical analyses, and confirmed the qualification status of the data as given in this report.

  3. Renewable liquid reflection grating

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  4. DETERMINATION OF THE QUANTITY OF I-135 RELEASED FROM THE AGR-1 TEST FUELS AT THE END OF ATR OPERATING CYCLE 138B

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; J. B. Walter; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a multiple fueled-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and ended with shutdown of the reactor for a brief outage on February 10, 2007 at 0900. The AGR-1 experiment will continue cyclical irradiation for about 2.5 years. In order to allow estimation of the amount of radioiodine released during the first cycle, purge gas flow to all capsules continued for about 4 days after reactor shutdown. The FPMS data acquired during part of that shutdown flow period has been analyzed to elucidate the level of 135I released during the operating cycle.

  5. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a ‘demonstration’ size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  6. A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors

    SciTech Connect (OSTI)

    Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

    2011-05-01

    A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Department of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

  7. AGR-2 Data Qualification Report for ATR Cycles 147A, 148A, 148B, and 149A

    SciTech Connect (OSTI)

    Michael L. Abbott; Keith A. Daum

    2011-08-01

    This report presents the data qualification status of fuel irradiation data from the first four reactor cycles (147A, 148A, 148B, and 149A) of the on-going second Advanced Gas Reactor (AGR-2) experiment as recorded in the NGNP Data Management and Analysis System (NDMAS). This includes data received by NDMAS from the period June 22, 2010 through May 21, 2011. AGR-2 is the second in a series of eight planned irradiation experiments for the AGR Fuel Development and Qualification Program, which supports development of the very high temperature gas-cooled reactor (VHTR) under the Next Generation Nuclear Plant (NGNP) Project. Irradiation of the AGR-2 test train is being performed at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and is planned for 600 effective full power days (approximately 2.75 calendar years) (PLN-3798). The experiment is intended to demonstrate the performance of UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Data qualification status of the AGR-1 experiment was reported in INL/EXT-10-17943 (Abbott et al. 2010).

  8. Gamma-Ray Simulated Spectrum Deconvolution of a LaBr₃ 1-in. x 1-in. Scintillator for Nondestructive ATR Fuel Burnup On-Site Predictions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Navarro, Jorge; Ring, Terry A.; Nigg, David W.

    2015-03-01

    A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less

  9. Cluster Compatibility Mode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the needed runtime environment. Users can also compile codes for CCM on Hopper. All compilers available to Hopper's native programming environment (Extreme Scalability Mode, ESM...

  10. AGR-2 Data Qualification Report for ATR Cycles 149B, 150A, 150B, 151A, and 151B

    SciTech Connect (OSTI)

    Michael L. Abbott; Binh T. Pham

    2012-06-01

    This report provides the data qualification status of AGR-2 fuel irradiation experimental data from Advanced Test Reactor (ATR) cycles 149B, 150A, 150B, 151A, and 151B), as recorded in the Nuclear Data Management and Analysis System (NDMAS). The AGR-2 data streams addressed include thermocouple temperatures, sweep gas data (flow rate, pressure, and moisture content), and fission product monitoring system (FPMS) data for each of the six capsules in the experiment. A total of 3,307,500 5-minute thermocouple and sweep gas data records were received and processed by NDMAS for this period. There are no AGR-2 data for cycle 150A because the experiment was removed from the reactor. Of these data, 82.2% were determined to be Qualified based on NDMAS accuracy testing and data validity assessment. There were 450,557 Failed temperature records due to thermocouple failures, and 138,528 Failed gas flow records due to gas flow cross-talk and leakage problems that occurred in the capsules after cycle 150A. For FPMS data, NDMAS received and processed preliminary release rate and release-to-birth rate ratio (R/B) data for the first three reactor cycles (cycles 149B, 150B, and 151B). This data consists of 45,983 release rate records and 45,235 R/B records for the 12 radionuclides reported. The qualification status of these FPMS data has been set to In Process until receipt of QA-approved data generator reports. All of the above data have been processed and tested using a SAS-based enterprise application software system, stored in a secure Structured Query Language database, and made available on the NDMAS Web portal (http://ndmas.inl.gov) for both internal and external VHTR project participants.

  11. Low reflectance high power RF load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  12. Zero-mode waveguides

    DOE Patents [OSTI]

    Levene, Michael J.; Korlach, Jonas; Turner, Stephen W.; Craighead, Harold G.; Webb, Watt W.

    2007-02-20

    The present invention is directed to a method and an apparatus for analysis of an analyte. The method involves providing a zero-mode waveguide which includes a cladding surrounding a core where the cladding is configured to preclude propagation of electromagnetic energy of a frequency less than a cutoff frequency longitudinally through the core of the zero-mode waveguide. The analyte is positioned in the core of the zero-mode waveguide and is then subjected, in the core of the zero-mode waveguide, to activating electromagnetic radiation of a frequency less than the cut-off frequency under conditions effective to permit analysis of the analyte in an effective observation volume which is more compact than if the analysis were carried out in the absence of the zero-mode waveguide.

  13. Interaction of mineral surfaces with simple organci molecules by diffuse reflectance IR spectroscopy (DRIFT)

    SciTech Connect (OSTI)

    Joan Thomas; Michael Kelley

    2007-06-18

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on ?-alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto ?-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  14. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  15. reflecting-behavioral-processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reflecting Behavioral Processes In Integrated Models Of Activity-Travel Demand And Dynamic Network Supply: A Novel Event-Based Framework Presentation at Argonne TRACC March 16, 2012 10:00 AM(CDT) TRACC Conference Room: Building 222, Room D-233 Dr. Karthik Charan Konduri School of Sustainable Energy and the Built Environment Arizona State University Abstract The developments in the microsimulation modeling of two key components of the transportation system, namely, activity-travel demand and

  16. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect (OSTI)

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H., E-mail: RMichelsen@rmc.edu [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)] [Department of Chemistry, Randolph-Macon College, P.O. Box 5005, Ashland, Virginia 23005 (United States)

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  17. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  18. Radial reflection diffraction tomography

    DOE Patents [OSTI]

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  19. Radial Reflection diffraction tomorgraphy

    DOE Patents [OSTI]

    Lehman, Sean K

    2013-11-19

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  20. Renewable liquid reflecting zone plate

    DOE Patents [OSTI]

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  1. Synthesize Modes and Correlate

    Energy Science and Technology Software Center (OSTI)

    2005-10-01

    SMAC is an automated experimental modal parameter extraction package which determines the natural frequencies of vibration, viscous damping ratios and mode shapes from experimental accelerance frequency response functions (FRFs). It is written in the MATLAB interpretive matrix language and has a graphical user interface.

  2. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  3. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  4. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  5. Constraining primordial vector mode from B-mode polarization

    SciTech Connect (OSTI)

    Saga, Shohei; Ichiki, Kiyotomo; Shiraishi, Maresuke E-mail: maresuke.shiraishi@pd.infn.it

    2014-10-01

    The B-mode polarization spectrum of the Cosmic Microwave Background (CMB) may be the smoking gun of not only the primordial tensor mode but also of the primordial vector mode. If there exist nonzero vector-mode metric perturbations in the early Universe, they are known to be supported by anisotropic stress fluctuations of free-streaming particles such as neutrinos, and to create characteristic signatures on both the CMB temperature, E-mode, and B-mode polarization anisotropies. We place constraints on the properties of the primordial vector mode characterized by the vector-to-scalar ratio r{sub v} and the spectral index n{sub v} of the vector-shear power spectrum, from the Planck and BICEP2 B-mode data. We find that, for scale-invariant initial spectra, the ?CDM model including the vector mode fits the data better than the model including the tensor mode. The difference in ?{sup 2} between the vector and tensor models is ??{sup 2}=3.294, because, on large scales the vector mode generates smaller temperature fluctuations than the tensor mode, which is preferred for the data. In contrast, the tensor mode can fit the data set equally well if we allow a significantly blue-tilted spectrum. We find that the best-fitting tensor mode has a large blue tilt and leads to an indistinct reionization bump on larger angular scales. The slightly red-tilted vector mode supported by the current data set can also create O(10{sup -22})-Gauss magnetic fields at cosmological recombination. Our constraints should motivate research that considers models of the early Universe that involve the vector mode.

  6. Reflection Survey | Open Energy Information

    Open Energy Info (EERE)

    (Gritto, Et Al.) Rye Patch Area Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Reflection Survey At Rye Patch Area (Laney, 2005) Rye Patch Area Federal...

  7. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team's Reflect Home does just that by...

  8. SU-E-T-322: The Evaluation of the Gafchromic EBT3 Film in Low Dose 6 MV X-Ray Beams with Different Scanning Modes

    SciTech Connect (OSTI)

    Lee, H; Sung, J; Yoon, M; Kim, D; Chung, W

    2014-06-01

    Purpose: We have evaluated the response of the Gafchromic EBT3 film in low dose for 6 MV x-ray beams with two scanning modes, the reflection scanning mode and the transmission scanning mode. Methods: We irradiated the Gafcromic EBT3 film using a 60 degree enhanced dynamic wedge (EDW) with 6 MV x-ray beams from Clinac iX Linear accelerator (Varian Medical Systems, Palo Alto, CA). The irradiated Gafchromic EBT3 film was scanned with different scanning modes, the reflection scanning mode and the transmission scanning mode. The scanned Gafchromic EBT3 film was analyzed with MATLAB. Results: When 7.2 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was 0.54 cGy with reflection scanning mode and was 0.88 cGy with transmission scanning mode. When 24 cGy was irradiated to the Gafchromic EBT3 film, the uncertainty was similar to the case of 7.2 cGy irradiation showing 0.51 cGy of uncertainty with reflection scanning mode and 0.87 cGy of uncertainty with transmission scanning mode. The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation. Conclusion: The result suggests that the reflection mode should be used in Gafchromic EBT3 film for low irradiation.

  9. A protocol for EBT3 radiochromic film dosimetry using reflection scanning

    SciTech Connect (OSTI)

    Papaconstadopoulos, Pavlos Hegyi, Gyorgy; Seuntjens, Jan; Devic, Slobodan

    2014-12-15

    Purpose: To evaluate the performance of the EBT3 radiochromic film dosimetry system using reflection measurements and to suggest a calibration protocol for precise and accurate reflection film dosimetry. Methods: A set of 14 Gafchromic EBT3 film pieces were irradiated to various doses ranging from 0 to 8 Gy and subsequently scanned using both the reflection and transmission mode. Scanning resolution varied from 50 to 508 dpi (0.50.05 mm/pixel). Both the red and green color channels of scanned images were used to relate the film response to the dose. A sensitivity, uncertainty, and accuracy analysis was performed for all scanning modes and color channels. The total uncertainty, along with the fitting and experimental uncertainty components, was identified and analyzed. A microscope resolution target was used to evaluate possible resolution losses under reflection scanning. The calibration range was optimized for reflection scanning in the low (<2 Gy) and high (>2 Gy) dose regions based on the reported results. Results: Reflection scanning using the red channel exhibited the highest sensitivity among all modes, being up to 150% higher than transmission mode in the red channel for the lowest dose level. Furthermore, there was no apparent loss in resolution between the two modes. However, higher uncertainties and reduced accuracy were observed for the red channel under reflection mode, especially at dose levels higher than 2 Gy. These uncertainties were mainly attributed to saturation effects which were translated in poor fitting results. By restricting the calibration to the 02 Gy dose range, the situation is reversed and the red reflection mode was superior to the transmission mode. For higher doses, the green channel in reflection mode presented comparable results to the red transmission. Conclusions: A two-color reflection scanning protocol can be suggested for EBT3 radiochromic film dosimetry using the red channel for doses less than 2 Gy and the green channel for higher doses. The precision and accuracy are significantly improved in the low dose region following such a protocol.

  10. Electron geodesic acoustic modes in electron temperature gradient mode turbulence

    SciTech Connect (OSTI)

    Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-08-15

    In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

  11. Entanglement entropy in quantum spin chains with broken reflection symmetry

    SciTech Connect (OSTI)

    Kadar, Zoltan; Zimboras, Zoltan

    2010-09-15

    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.

  12. Waveguides having patterned, flattened modes

    DOE Patents [OSTI]

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  13. Waveguides having patterned, flattened modes

    DOE Patents [OSTI]

    Messerly, Michael J; Pax, Paul H; Dawson, Jay W

    2015-11-05

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  14. Mode-locked solid state lasers using diode laser excitation

    DOE Patents [OSTI]

    Holtom, Gary R.

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  15. Reflective coherent spatial light modulator

    DOE Patents [OSTI]

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  16. Reflected beam illumination microscopy using a microfluidics...

    Office of Scientific and Technical Information (OSTI)

    Reflected beam illumination microscopy using a microfluidics device - progress report 6152014. Citation Details In-Document Search Title: Reflected beam illumination microscopy ...

  17. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    DOE Patents [OSTI]

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  18. Multi-mode radio frequency device

    DOE Patents [OSTI]

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  19. AntiReflection Coating D

    SciTech Connect (OSTI)

    AIKEN,DANIEL J.

    1999-09-23

    Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub sc}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices.

  20. AGR-2 Data Qualification Report for ATR Cycles 151B-2, 152A, 152B, 153A, 153B and 154A

    SciTech Connect (OSTI)

    Binh T. Pham; Jeffrey J. Einerson

    2013-09-01

    This report documents the data qualification status of AGR-2 fuel irradiation experimental data from Advanced Test Reactor (ATR) Cycles 152A, 152B, 153A, 153B, and 154A, as recorded in the Nuclear Data Management and Analysis System (NDMAS). The AGR-2 data streams addressed include thermocouple (TC) temperatures, sweep gas data (flow rate, pressure, and moisture content), and fission product monitoring system (FPMS) data for each of the six capsules in the experiment. A total of 13,400,520 every minute instantaneous TC and sweep gas data records were received and processed by NDMAS for this period. Of these data, 8,911,791 records (66.5% of the total) were determined to be Qualified based on NDMAS accuracy testing and data validity assessment. For temperature, there were 4,266,081 records (74% of the total TC data) that were Failed due to TC instrument failures. For sweep gas flows, there were 222,648 gas flow records (2.91% of the flow data) that were Failed. The inlet gas flow failures due to gas flow cross-talk and leakage problems that occurred after Cycle 150A were corrected by using the same gas mixture in all six capsules and the Leadout. For FPMS data, NDMAS received and processed preliminary release rate and release-to-birth rate ratio (R/B) data for three reactor cycles (Cycles 149B, 150B, and 151A) . This data consists of 45,983 release rate records and 45,235 R/B records for the 12 radionuclides reported. The qualification status of these FPMS data has been set to In Process until receipt of Quality Assurance-approved data generator reports. All of the above data have been processed and tested using a SAS-based enterprise application software system, stored in a secure Structured Query Language database, made available on the NDMAS Web portal (http://ndmas.inl.gov), and approved by the INL STIM for release to both internal and appropriate external Very High Temperature Reactor Program participants.

  1. Mirror: Visually reflecting C{sup ++}

    SciTech Connect (OSTI)

    Orosco, R.; Campo, M.; Sole, J.P.

    1995-12-31

    Reflection is the ability of a system to inspect and change a model of itself. This ability allows to transparently control and extend the functionality of an existing system without performing any changes to the system itself. In dynamic object-oriented languages like CLOS or Smalltalk. the reflective ability is supported directly by the language. In C++, in contrast, reflection must be provided by some form of code annotation and pre-processing. In most cases, this approach either requires modification of the system code, or just supports the reflection of entire classes but not the reflection of determined objects. This work presents the Mirror environment that supports C++ reflective programming through visual association of meta-classes to classes. It allows full transparent reflection of objects using three-dimensional presentations of the different architecture levels. The environment adds reflective ability to C++ classes without any code modification visible to the user, as well as dynamically selective reflection of objects.

  2. Discharge lamp with reflective jacket

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  3. Current Mode Logic Fan Out

    Energy Science and Technology Software Center (OSTI)

    2011-05-07

    Current mode logic is used in high speed timing systems for particle accelerators due to the fast rise time of the electrical signal. This software provides the necessary documentation to produce multiple copies of a single input for distribution to multiple devices. This software supports the DOE mission by providing a method for producing high speed signals in accelerator timing systems.

  4. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

  5. Microsoft Word - Rapid Reflective Facet Characterization Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... VSHOT uses a laser, reflected off the facet, and a target to characterize the location of the reflected vector. From this, the surface slope at each selected location can be ...

  6. NREL: Measurements and Characterization - Reflectance Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reflectance Spectroscopy In a fraction of a second, the photovoltaic (PV) Reflectometer measures the reflectance spectrum of a wafer or cell that is dimensionally within 6 in. × 6 in. The measured reflectance plots are deconvolved to derive physical parameters including surface roughness and texture, antireflective coating thickness, metallization area and height, and backside metallization properties. Pair of drawings showing how direct normal incident light reflects in a scatter from a rough

  7. Irradiation Planning for Fully-Ceramic Micro-encsapsulated fuel in ATR at LWR-relevant conditions: year-end report on FY-2011

    SciTech Connect (OSTI)

    Abderrafi M. Ougouag; R. Sonat Sen; Michael A. Pope; Brian Boer

    2011-09-01

    This report presents the estimation of required ATR irradiation levels for the DB-FCM fuel design (fueled with Pu and MAs). The fuel and assembly designs are those considered in a companion report [R. S. Sen et al., FCR&D-2011- 00037 or INL/EXT-11-23269]. These results, pertaining to the DB-FCM fuel, are definitive in as much as the design of said fuel is definitive. In addition to the work performed, as required, for DB-FCM fuel, work has started in a preliminary fashion on single-cell UO2 and UN fuels. These latter activities go beyond the original charter of this project and although the corresponding work is incomplete, significant progress has been achieved. However, in this context, all that has been achieved is only preliminary because the corresponding fuel designs are neither finalized nor optimized. In particular, the UO2 case is unlikely to result in a viable fuel design if limited to enrichment at or under 20 weight % in U-235. The UN fuel allows reasonable length cycles and is likely to make an optimal design possible. Despite being limited to preliminary designs and offering only preliminary conclusions, the irradiation planning tasks for UO2 and UN fuels that are summarized in this report are useful to the overall goal of devising and deploying FCM-LWR fuel since the methods acquired and tested in this project and the overall procedure for planning will be available for planning tests for the finalized fuel design. Indeed, once the fuel design is finalized and the expected burnup level is determined, the methodology that has been assembled will allow the prompt finalization of the neutronic planning of the irradiation experiment and would provide guidance on the expected experimental performance of the fuel. Deviations from the expected behavior will then have to be analyzed and the outcome of the analysis may be corrections or modifications for the assessment models as well as, possibly, fuel design modifications, and perhaps even variation of experimental control for future experimental phases. Besides the prediction of irradiation times, preliminary work was carried out on other aspects of irradiation planning. In particular, a method for evaluating the interplay of depletion, material performance modeling and irradiation is identified by reference to a companion report. Another area that was addressed in a preliminary fashion is the identification and selection of a strategy for the physical and mechanical design of the irradiation experiments. The principal conclusion is that the similarity between the FCM fuel and the fuel compacts of the Next Generation Nuclear Plant prismatic design are strong enough to warrant using irradiation hardware designs and instrumentation adapted from the AGR irradiation tests. Modifications, if found necessary, will probably be few and small, except as pertains to the water environment and its implications on the use of SiC cladding or SiC matrix with no additional cladding.

  8. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  9. Condenser optic with sacrificial reflective surface

    DOE Patents [OSTI]

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sung Hun

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  10. Continuous scanning mode for ptychography

    SciTech Connect (OSTI)

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; Robinson, Ian K.

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. The impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  11. FAST MODES AND DUSTY HORSESHOES IN TRANSITIONAL DISKS

    SciTech Connect (OSTI)

    Mittal, Tushar; Chiang, Eugene

    2015-01-01

    The brightest transitional protoplanetary disks are often azimuthally asymmetric: their millimeter-wave thermal emission peaks strongly on one side. Dust overdensities can exceed ?100:1, while gas densities vary by factors less than a few. We propose that these remarkable ALMA observationswhich may bear on how planetesimals formreflect a gravitational global mode in the gas disk. The mode is (1) fastits pattern speed equals the disk's mean Keplerian frequency; (2) of azimuthal wavenumber m = 1, displacing the host star from the barycenter; and (3) Toomre-stable. We solve for gas streamlines including the indirect stellar potential in the frame rotating with the pattern speed, under the drastic simplification that gas does not feel its own gravity. Near corotation, the gas disk takes the form of a horseshoe-shaped annulus. Dust particles with aerodynamic stopping times much shorter or much longer than the orbital period are dragged by gas toward the horseshoe center. For intermediate stopping times, dust converges toward a ?45 wide arc on the corotation circle. Particles that do not reach their final accumulation points within disk lifetimes, either because of gas turbulence or long particle drift times, conform to horseshoe-shaped gas streamlines. Our mode is not self-consistent because we neglect gas self-gravity; still, we expect that trends between accumulation location and particle size, similar to those we have found, are generically predicted by fast modes and are potentially observable. Unlike vortices, global modes are not restricted in radial width to the pressure scale height; their large radial and azimuthal extents may better match observations.

  12. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  13. Path planning during combustion mode switch

    DOE Patents [OSTI]

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  14. Waveguide mode converter and method using same

    DOE Patents [OSTI]

    Moeller, Charles P.

    1990-01-01

    A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.

  15. Optical waveguides having flattened high order modes

    DOE Patents [OSTI]

    Messerly, Michael Joseph; Beach, Raymond John; Heebner, John Edward; Dawson, Jay Walter; Pax, Paul Henry

    2014-08-05

    A deterministic methodology is provided for designing optical fibers that support field-flattened, ring-like higher order modes. The effective and group indices of its modes can be tuned by adjusting the widths of the guide's field-flattened layers or the average index of certain groups of layers. The approach outlined here provides a path to designing fibers that simultaneously have large mode areas and large separations between the propagation constants of its modes.

  16. Sandia National Laboratories: Mode Stirred Chamber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mode Stirred Chamber The Mode Stirred chamber is essentially a large microwave oven. It consists of a metal room that serves as a high-Q chamber and a metal paddle wheel to "stir" the chamber modes. Mixing the modes in this manner allows test objects, in a single orientation to be exposed to EM energy in many different angles of incidence and polarization. Electronic susceptibility tests can be performed, or test object electromagnetic transfer functions can be determined through

  17. Solar Reflection Panels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Solar Reflection Panels Sandia National Laboratories Contact SNL About This ...

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrate for the first time a lensless x-ray imaging technique involving holographic principles and carried out in reflection (as opposed to transmission) geometry. The...

  19. Identification coding schemes for modulated reflectance systems

    DOE Patents [OSTI]

    Coates, Don M.; Briles, Scott D.; Neagley, Daniel L.; Platts, David; Clark, David D.

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  20. Surface reflectance degradation by microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  1. Surface reflectance degradation by microbial communities

    SciTech Connect (OSTI)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  2. Transverse Mode Coupling Instability with Space Charge (Journal...

    Office of Scientific and Technical Information (OSTI)

    Transverse Mode Coupling Instability with Space Charge Citation Details In-Document Search Title: Transverse Mode Coupling Instability with Space Charge Transverse mode coupling ...

  3. Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad

    2015-03-10

    We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplifiedmore » model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.« less

  4. Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices

    SciTech Connect (OSTI)

    Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad

    2015-03-10

    We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplified model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.

  5. Glue Film Thickness Measurements by Spectral Reflectance

    SciTech Connect (OSTI)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  6. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    SciTech Connect (OSTI)

    Ghosh, Sabuj Shaw, Pankaj Kumar Saha, Debajyoti Janaki, M. S. Iyengar, A. N. Sekar

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  7. Bidirectional reflection functions from surface bump maps

    SciTech Connect (OSTI)

    Cabral, B.; Max, N.; Springmeyer, R.

    1987-04-29

    The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating the integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.

  8. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the sample in a manner consistent with either technique has prevented the use of coherent imaging techniques with reflective samples. Researchers working at Beamline 12.0.2 have...

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless...

  12. Preparing reflective substrate surfaces for laser treatment

    DOE Patents [OSTI]

    Flick, F.F.

    1984-11-21

    A coating of either copper oxide or felt tip pen ink is used on reflective copper or gold substrates to enhance laser beam coupling when the substrates are cut or welded with a laser.

  13. Reflectance thermometry in dynamic compression experiments. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Reflectance thermometry in dynamic compression experiments. Citation Details In-Document Search Title: Reflectance thermometry in dynamic compression experiments. Abstract not provided. Authors: Dolan, Daniel H., ; Ao, Tommy ; Seagle, Christopher T Publication Date: 2012-02-01 OSTI Identifier: 1118217 Report Number(s): SAND2012-0864C 481321 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: 9th International Temperature Symposium held

  14. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian; Kipling, Kent

    1999-01-01

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture.

  15. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, D.A.; Turner, B.; Kipling, K.

    1999-05-11

    A method wherein the light in a sulfur or selenium lamp is reflected through the fill a multiplicity of times to convert ultraviolet radiation to visible is disclosed. A light emitting device comprised of an electrodeless envelope which bears a light reflecting covering around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture. 20 figs.

  16. Origin of deep crustal reflections: Implications of coincident seismic refraction and reflection data in Nevada

    SciTech Connect (OSTI)

    Holbrook, W.S. (Woods Hole Oceanographic Institution, MA (USA)); Catchings, R.D. (U.S. Geological Survey, Menlo Park, CA (USA)); Jarchow, C.M. (Stanford Univ., CA (USA))

    1991-02-01

    The authors compare seismic refraction and reflection results along the PASSCAL/COCORP 40{degree}N transect in the northern Basin and Range of Nevada in order to determine the origin of the prominent reflections from the deep crystalline crust. Reflection data along the transect show a thick zone of discontinuous, subhorizontal reflections, beginning at 4-6 s two-way traveltime (10-20 km depth) and ending at 9-11 s (27-35 km). Two independently derived velocity models, based on refraction data, are largely similar and agree on many important aspects of the reflectivity-velocity relation. Both models show that the top of the reflective zone lies 3-8 km above a prominent mid-crustal velocity discontinuity, which is interpreted to separate bulk silicic from bulk dioritic-gabbroic crust; in most places, the silicic mid-crust is more strongly reflective than the mafic lower crust. This pattern is expected in areas where ductile shearing is the mechanism responsible for the reflectivity. One of the velocity models, however, suggests that, in places, the strongest reflectivity spans both the middle (6.1-6.3 km/s) and lower (6.6 km/s) crust; this pattern suggests that the combined influence of ductile strain fabrics and mafic intrusions gives rise to crustal reflections. Both models show that the lowermost crust and crust/mantle transition are highly reflective, also suggesting the presence of mafic and/or ultramafic intrusions. Thus the observed reflection patterns suggest that ductile shearing and the intrusion of mantle-derived magma - both of which are likely to have accompanied the extreme Cenozoic extension - are important factors in generating deep crustal reflections.

  17. Using X-mode L, R and O-mode reflectometry cutoffs to measure...

    Office of Scientific and Technical Information (OSTI)

    Using X-mode L, R and O-mode reflectometry cutoffs to measure scrape-off-layer density profiles for upgraded ORNL reflectometer on NSTX-U Citation Details In-Document Search Title:...

  18. Mode suppression means for gyrotron cavities

    DOE Patents [OSTI]

    Chodorow, Marvin; Symons, Robert S.

    1983-08-09

    In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.

  19. REFLECT: A computer program for the x-ray reflectivity of bent perfect crystals

    SciTech Connect (OSTI)

    Etelaeniemi, V.; Suortti, P.; Thomlinson, W. . Dept. of Physics; Brookhaven National Lab., Upton, NY )

    1989-09-01

    The design of monochromators for x-ray applications, using either standard laboratory sources on synchrotron radiation sources, requires a knowledge of the reflectivity of the crystals. The reflectivity depends on the crystals used, the geometry of the reflection, the energy range of the radiation, and, in the present case, the cylindrical bending radius of the optical device. This report is intended to allow the reader to become familiar with, and therefore use, a computer program called REFLECT which we have used in the design of a dual beam Laue monochromator for synchrotron angiography. The results of REFLECT have been compared to measured reflectivities for both bent Bragg and Laue geometries. The results are excellent and should give full confidence in the use of the program. 6 refs.

  20. High reflectance-low stress Mo-Si multilayer reflective coatings

    DOE Patents [OSTI]

    Montcalm, Claude; Mirkarimi, Paul B.

    2000-01-01

    A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  1. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOE Patents [OSTI]

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  2. Method of making reflecting film reflector

    DOE Patents [OSTI]

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  3. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  4. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  5. Reflection technique for thermal mapping of semiconductors

    DOE Patents [OSTI]

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are

  7. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  8. Mixed Mode Fuel Injector And Injection System

    DOE Patents [OSTI]

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  9. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for ? ? (?L)1/3(?c/?) somewhat less than 1, contrary to previous ideas. Only o mode is produced for ? and somewhat greater than 1.5. Here ?c is the (angular) electron cyclotron frequency, ? the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as ? increases. (4) As ? increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as ? increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 70%. (7) The interference effect and the disappearance of the x mode at ? somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion under these conditions might explain the weak total circular polarizations of type II and III solar radio bursts.

  10. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  11. Electrochromic window with high reflectivity modulation

    DOE Patents [OSTI]

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  12. Sandia Energy - Improved Method to Measure Glare and Reflected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more accurate method of measuring the irradiance from solar reflections using a digital camera. Measurements of reflected solar irradiance is of great importance to...

  13. Procedure for measuring the solar reflectance of flat or curved...

    Office of Scientific and Technical Information (OSTI)

    Procedure for measuring the solar reflectance of flat or curved roofing assemblies Citation Details In-Document Search Title: Procedure for measuring the solar reflectance of flat ...

  14. Measuring solar reflectance Part II: Review of practical methods...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Measuring solar reflectance Part II: Review of ... A companion article explored how solar reflectance varies with surface orientation and ...

  15. Whispering-gallery-mode-based seismometer

    SciTech Connect (OSTI)

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  16. Single mode pulsed dye laser oscillator

    DOE Patents [OSTI]

    Hackel, Richard P.

    1992-01-01

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability.

  17. Rotary Mode Core Sample System availability improvement

    SciTech Connect (OSTI)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  18. Single mode pulsed dye laser oscillator

    DOE Patents [OSTI]

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  19. Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas

    SciTech Connect (OSTI)

    Jung Yu, Dae; Kim, Kihong

    2013-12-15

    We study the effects of a random spatial variation of the plasma density on the mode conversion of electromagnetic waves into electrostatic oscillations in cold, unmagnetized, and stratified plasmas. Using the invariant imbedding method, we calculate precisely the electromagnetic field distribution and the mode conversion coefficient, which is defined to be the fraction of the incident wave power converted into electrostatic oscillations, for the configuration where a numerically generated random density variation is added to the background linear density profile. We repeat similar calculations for a large number of random configurations and take an average of the results. We obtain a peculiar nonmonotonic dependence of the mode conversion coefficient on the strength of randomness. As the disorder increases from zero, the maximum value of the mode conversion coefficient decreases initially, then increases to a maximum, and finally decreases towards zero. The range of the incident angle in which mode conversion occurs increases monotonically as the disorder increases. We present numerical results suggesting that the decrease of mode conversion mainly results from the increased reflection due to the Anderson localization effect originating from disorder, whereas the increase of mode conversion of the intermediate disorder regime comes from the appearance of many resonance points and the enhanced tunneling between the resonance points and the cutoff point. We also find a very large local enhancement of the magnetic field intensity for particular random configurations. In order to obtain high mode conversion efficiency, it is desirable to restrict the randomness close to the resonance region.

  20. The insensitivity of reflected sh waves to anisotropy in an underlaying layered medium

    SciTech Connect (OSTI)

    Schoenberg, M.; Costa, J. )

    1991-11-01

    This paper reports on propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane which is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a halfspace of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium I as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence.

  1. Failure modes in surface micromachined microelectromechanical actuators

    SciTech Connect (OSTI)

    Miller, S.L.; Rodgers, M.S.; LaVigne, G.; Sniegowski, J.J.; Clews, P.; Tanner, D.M.; Peterson, K.A.

    1998-03-01

    In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments.

  2. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    SciTech Connect (OSTI)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

  3. Particle Distribution Modification by Low Amplitude Modes

    SciTech Connect (OSTI)

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2009-08-28

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  4. Edge-localized-modes in tokamaks

    SciTech Connect (OSTI)

    Leonard, A. W.

    2014-09-15

    Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

  5. Characterization of background reflectivity for MEDUSA

    SciTech Connect (OSTI)

    Oldenborg, R. C.; Tiee, J. J.; Foy, B. R.; Petrin, R. R.; Wilson, C. W.

    2003-01-01

    The DARPA MEDUSA program goal is to detect, locate, and identify electro-optical threats in the vicinity of a moving platform. Laser sensing will be employed to find these threats by looking for anomalous reflections from threat sensors. However, the reflectivity variability (clutter) in both natural and manmade backgrounds will inherently limit target detection levels. In parallel with advanced component development by several aerospace contractors, a study of this clutter limitation was initiated in the long-wave (LW) and midwave (MW) infrared spectral regions to properly drive system design parameters. The analysis of clutter and associated limits on detection has been a major component of LANL efforts in laser remote sensing for non-proliferation. LANL is now analyzing existing data and conducting additional selected measurements in both the LWIR (9 and 10.6 pm) and MWIR (4.6 pm) in support of the DARPA program to increase our understanding of these clutter limitations and, thereby aid in the design and development of the MEDUSA system. The status of the LANL effort will be discussed. A variety of different natural and manmade target types have been investigated. Target scenes range from relatively low clutter sites typical of a southwestern desert to higher clutter downtown urban sites. Images are created by conducting raster scans across a scene interest. These images are then analyzed using data clustering techniques (e g K-means) to identify regions within the scene that contain similar reflectivity profiles. Data will be presented illustrating the reflectivity variability among different samples of the same target type, Le. within the same cluster, and among different data clusters. In general, it is found that the variability of reflectivities among similar targets is well represented by a log-normal distribution. Furthermore, manmade target tend to have higher reflectivities and more variability than natural targets. The implications of this observation for MEDUSA systems designed to locate and identify threat sensors will be discussed. The implications for chemical sensing applications will also be addressed.

  6. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    DOE Patents [OSTI]

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  7. Method for producing highly reflective metal surfaces

    DOE Patents [OSTI]

    Arnold, J.B.; Steger, P.J.; Wright, R.R.

    1982-03-04

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes depositing, by electrolysis, an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The mandrel then may be-re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  8. Mode Initialization for On-line Estimation of Power System Electromechanical Modes

    SciTech Connect (OSTI)

    Zhou, Ning; Trudnowski, Daniel; Pierre, John W.

    2009-03-18

    Measurement-based mode estimation methods are utilized to estimate electromechanical modes of a power system using phasor measurement units (PMU) data. These methods need to extract a certain amount of information before they can give useable mode estimation. Traditionally, the information is gathered solely from measurement data. Priori mode information from other resources (e.g. model eigenvalue analysis, engineering knowledge) are not fully utilized. For real time application, this means that mode estimation takes time to converge. By adding a mode regularization term in the objective function, this paper proposes a mode initialization method to include priori mode information in a regularized robust recursive least squares (R3LS) algorithm for on-line mode estimation. The proposed method is tested using a simple model, a 17 machine model and is shown to be able to shorten the convergence period of the R3LS algorithm. The proposed method is also applied on the measurement data recorded right before a major power outage in the western North American Grid on August 10th 1996 to show its potential applica-tion in detecting an approaching small signal stability problem.

  9. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  10. Reflective optical imaging method and circuit

    DOE Patents [OSTI]

    Shafer, David R.

    2001-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  12. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  13. Multiple-reflection optical gas cell

    DOE Patents [OSTI]

    Matthews, Thomas G.

    1983-01-01

    A multiple-reflection optical cell for Raman or fluorescence gas analysis consists of two spherical mirrors positioned transverse to a multiple-pass laser cell in a confronting plane-parallel alignment. The two mirrors are of equal diameter but possess different radii of curvature. The spacing between the mirrors is uniform and less than half of the radius of curvature of either mirror. The mirror of greater curvature possesses a small circular portal in its center which is the effective point source for conventional F1 double lens collection optics of a monochromator-detection system. Gas to be analyzed is flowed into the cell and irradiated by a multiply-reflected composite laser beam centered between the mirrors of the cell. Raman or fluorescence radiation originating from a large volume within the cell is (1) collected via multiple reflections with the cell mirrors, (2) partially collimated and (3) directed through the cell portal in a geometric array compatible with F1 collection optics.

  14. Light reflecting apparatus including a multi-aberration light reflecting surface

    DOE Patents [OSTI]

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  15. A light reflecting apparatus including a multi-aberration light reflecting surface

    DOE Patents [OSTI]

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  16. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited

  17. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited

  18. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited

  19. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited

  20. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.4.1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited

  1. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength)

  2. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength)

  3. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence optics Spatial resolution Diffraction limited (~wavelength)

  4. Transverse Mode Coupling Instability with Space Charge (Journal...

    Office of Scientific and Technical Information (OSTI)

    Transverse Mode Coupling Instability with Space Charge Citation Details In-Document Search Title: Transverse Mode Coupling Instability with Space Charge You are accessing a ...

  5. Fact #636: August 16, 2010 Transportation Energy Use by Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for ...

  6. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  7. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact 602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the ...

  8. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference ...

  9. Pairing Nambu-Goldstone Modes within Nuclear Density Functional...

    Office of Scientific and Technical Information (OSTI)

    Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details ... Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: ...

  10. Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean...

    Office of Scientific and Technical Information (OSTI)

    Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Citation Details In-Document Search Title: Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean ...

  11. Unbalanced edge modes and topological phase transition in gated...

    Office of Scientific and Technical Information (OSTI)

    Unbalanced edge modes and topological phase transition in gated trilayer graphene Title: Unbalanced edge modes and topological phase transition in gated trilayer graphene Authors: ...

  12. Polarization mode control of long-wavelength VCSELs by intracavity...

    Office of Scientific and Technical Information (OSTI)

    Polarization mode control of long-wavelength VCSELs by intracavity patterning Citation Details In-Document Search Title: Polarization mode control of long-wavelength VCSELs by ...

  13. Observation of Spontaneous Neoclassical Tearing Modes

    SciTech Connect (OSTI)

    E.D. Fredrickson

    2001-10-03

    We present data in this paper from the Tokamak Fusion Test Reactor (TFTR) which challenges the commonly held belief that extrinsic MHD events such as sawteeth or ELMs [edge localized modes] are required to provide the seed islands that trigger Neoclassical Tearing Modes (NTMs). While sawteeth are reported to provide the trigger for most of the NTMs on DIII-D [at General Atomics in San Diego, California] and ASDEX-U [at Max-Planck-Institut fuer Plasmaphysik in Garching, Germany], the majority of NTMs seen in TFTR occur in plasmas without sawteeth, that is which are above the beta threshold for sawtooth stabilization. Examples of NTMs appearing in the absence of any detectable extrinsic MHD activity will be shown. Conversely, large n=1 modes in plasmas above the NTM beta threshold generally do not trigger NTMs. An alternative mechanism for generating seed islands will be discussed.

  14. Hydrogen local vibrational modes in semiconductors

    SciTech Connect (OSTI)

    McCluskey, M D

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  15. ISSUANCE 2016-02-09: Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

  16. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  17. Seismic reflection imaging at a Shallow Site

    SciTech Connect (OSTI)

    Milligan, P.; Rector, J.; Bainer, R.

    1997-01-01

    The objective of our studies was to determine the best seismic method to image these sediments, between the water table at 3 m depth to the basement at 35 m depth. Good cross-correlation between well logs and the seismic data was also desirable, and would facilitate the tracking of known lithological units away from the wells. For instance, known aquifer control boundaries may then be mapped out over the boundaries, and may be used in a joint inversion with reflectivity data and other non-seismic geophysical data to produce a 3-D image containing quantitative physical properties of the target area.

  18. Reflective optical imaging systems with balanced distortion

    DOE Patents [OSTI]

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  19. Reflective optical imaging system with balanced distortion

    DOE Patents [OSTI]

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  2. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  3. Reflection-Based Python-C++ Bindings

    SciTech Connect (OSTI)

    Generowicz, Jacek; Lavrijsen, Wim T.L.P.; Marino, Massimo; Mato, Pere

    2004-10-14

    Python is a flexible, powerful, high-level language with excellent interactive and introspective capabilities and a very clean syntax. As such, it can be a very effective tool for driving physics analysis. Python is designed to be extensible in low-level C-like languages, and its use as a scientific steering language has become quite widespread. To this end, existing and custom-written C or C++ libraries are bound to the Python environment as so-called extension modules. A number of tools for easing the process of creating such bindings exist, such as SWIG and Boost. Python. Yet, the process still requires a considerable amount of effort and expertise. The C++ language has few built-in introspective capabilities, but tools such as LCGDict and CINT add this by providing so-called dictionaries: libraries that contain information about the names, entry points, argument types, etc. of other libraries. The reflection information from these dictionaries can be used for the creation of bindings and so the process can be fully automated, as dictionaries are already provided for many end-user libraries for other purposes, such as object persistency. PyLCGDict is a Python extension module that uses LCG dictionaries, as PyROOT uses CINT reflection information, to allow /cwPython users to access C++ libraries with essentially no preparation on the users' behalf. In addition, and in a similar way, PyROOT gives ROOT users access to Python libraries.

  4. Lamp method and apparatus using multiple reflections

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.

    2001-01-01

    An electrodeless microwave discharge lamp includes an envelope with a discharge forming fill disposed therein which emits light, the fill being capable of absorbing light at one wavelength and re-emitting the absorbed light at a different wavelength, the light emitted from the fill having a first spectral power distribution in the absence of reflection of light back into the fill, a source of microwave energy coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed within the microwave cavity and configured to reflect at least some of the light emitted by the fill back into the fill while allowing some light to exit, the exiting light having a second spectral power distribution with proportionately more light in the visible region as compared to the first spectral power distribution, wherein the light re-emitted by the fill is shifted in wavelength with respect to the absorbed light and the magnitude of the shift is in relation to an effective optical path length.

  5. Method for producing highly reflective metal surfaces

    DOE Patents [OSTI]

    Arnold, Jones B.; Steger, Philip J.; Wright, Ralph R.

    1983-01-01

    The invention is a novel method for producing mirror surfaces which are extremely smooth and which have high optical reflectivity. The method includes electrolessly depositing an amorphous layer of nickel on an article and then diamond-machining the resulting nickel surface to increase its smoothness and reflectivity. The machined nickel surface then is passivated with respect to the formation of bonds with electrodeposited nickel. Nickel then is electrodeposited on the passivated surface to form a layer of electroplated nickel whose inside surface is a replica of the passivated surface. The electroplated nickel layer then is separated from the passivated surface. The mandrel then may be re-passivated and provided with a layer of electrodeposited nickel, which is then recovered from the mandrel providing a second replica. The mandrel can be so re-used to provide many such replicas. As compared with producing each mirror-finished article by plating and diamond-machining, the new method is faster and less expensive.

  6. Head-Tail Modes for Strong Space Charge

    SciTech Connect (OSTI)

    Burov, Alexey

    2008-12-01

    Head-tail modes are described here for the space charge tune shift significantly exceeding the synchrotron tune. General equation for the modes is derived. Spatial shapes of the modes, their frequencies, and coherent growth rates are explored. The Landau damping rates are also found. Suppression of the transverse mode coupling instability by the space charge is explained.

  7. High confinement mode and edge localized mode characteristics in a near-unity aspect ratio tokamak

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thome, Kathreen E.; Bongard, Michael W.; Barr, Jayson L.; Bodner, Grant M.; Burke, Marcus G.; Fonck, Raymond J.; Kriete, David M.; Perry, Justin M.; Schlossberg, David J.

    2016-04-27

    Tokamak experiments at near-unity aspect ratio A ≲ 1.2 offer new insights into the self-organized H-mode plasma confinement regime. In contrast to conventional A ~ 3 plasmas, the L–H power threshold PLH is ~15× higher than scaling predictions, and it is insensitive to magnetic topology, consistent with modeling. Edge localized mode (ELM) instabilities shift to lower toroidal mode numbers as A decreases. Furthermore, these ultralow-A operations enable heretofore inaccessible Jedge(R,t) measurements through an ELM that show a complex multimodal collapse and the ejection of a current-carrying filament.

  8. Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films

    SciTech Connect (OSTI)

    McKee, Kristopher; Meyer, Matthew; Smith, Emily

    2012-04-13

    Total internal reflection (TIR) Raman and reflectivity spectra were collected for nonresonant analytes as a function of incident angle at sapphire or sapphire/smooth 50 nm gold interfaces using 785 nm excitation. For both interfaces, the Raman signal as a function of incident angle is well-modeled by the calculated interfacial mean square electric field (MSEF) relative to the incident field times the thickness of the layer being probed in the Raman measurement (D{sub RS}). The Raman scatter was reproducibly enhanced at the interface containing a gold film relative to the sapphire interface by a factor of 4.34.6 for aqueous pyridine or 2.23.7 for neat nitrobenzene, depending on the analyzed vibrational mode. The mechanism for the increased Raman signal is the enhanced MSEF at incident angles where propagating surface plasmons are excited in the metal film. The background from the TIR prism was reduced by 8995% with the addition of the gold film, and the percent relative uncertainty in peak area was reduced from 15 to 1.7% for the 1347 cm1 mode of nitrobenzene. Single monolayers of benzenethiol (S/N = 6.8) and 4-mercaptopyridine (S/N = 16.5) on gold films were measured by TIR Raman spectroscopy with 785 nm excitation (210 mW) without resonant enhancement in 1 min.

  9. Power Supply Changes for NSTX Resistive Wall Mode Coils

    SciTech Connect (OSTI)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  10. Surface roughness effects on the solar reflectance of cool asphalt...

    Office of Scientific and Technical Information (OSTI)

    The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are ...

  11. High order reflectivity of graphite (HOPG) crystals for x ray...

    Office of Scientific and Technical Information (OSTI)

    High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV Citation Details In-Document Search Title: High order reflectivity of graphite (HOPG) crystals ...

  12. Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field

    SciTech Connect (OSTI)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2011-01-15

    We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersed in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.

  13. Effect of electron flow on the ordinary-extraordinary mode conversion

    SciTech Connect (OSTI)

    Jia Guozhang; Gao Zhe

    2011-10-15

    Ordinary-extraordinary mode conversion in the electron cyclotron frequency range is revisited in the presence of a flowing electron component. The analytical expressions of optimal parallel refraction index and conversion efficiency are obtained from a one-dimensional cold plasma model. The presence of flowing electrons leads to an outward shift of the conversion layer and therefore increases the optimal value of parallel refraction index. If this effect is not considered, the efficiency of mode conversion degenerates. In typical tokamak plasmas, this degeneration is about a few percentages, which may induce the reflection of several tens of kilowatts of power from the cutoff layer when injecting megawatts of ECRF power into fusion plasma.

  14. Control of reflected electromagnetic fields at an IFSAR antenna

    DOE Patents [OSTI]

    Allen, Steven E. (Albuquerque, NM); Brock, Billy C. (Albuquerque, NM)

    2003-12-09

    A system for reducing multi-path reflections from adjacent metal objects which cause distortion in an IFSAR includes a reflective cone extending between the top of the IFSAR and the skin of its aircraft, and a reflective shroud surrounding the IFSAR. Each of these components may be coated with radar absorbing material.

  15. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing

    DOE Patents [OSTI]

    Passain, Ali; Thundat, Thomas George; Tetard, Laurene

    2014-07-22

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  16. Dynamical dipole mode in fusion reactions

    SciTech Connect (OSTI)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-05-04

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the {sup 40}Ar+{sup 92}Zr and {sup 36}Ar+{sup 96}Zr fusion reactions at E{sub lab} = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the {gamma}-ray energy spectra and the {gamma}-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  17. Mode Selective Excitation Using Coherent Control Spectroscopy

    SciTech Connect (OSTI)

    Singh, Ajay K.; Konradi, Jakow; Materny, Arnulf; Sarkar, Sisir K.

    2008-11-14

    Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, femtosecond laser pulses are spectrally broad and therefore coherently excite several molecular modes. While the temporal resolution is high, usually no mode-selective excitation is possible. This paper demonstrates the feasibility of selectively exciting specific molecular vibrations in solution phase with shaped fs laser excitation using a feedback-controlled optimization technique guided by an evolutionary algorithm. This approach is also used to obtain molecule-specific CARS spectra from a mixture of different substances. The optimized phase structures of the fs pulses are characterized to get insight into the control process. Possible applications of the spectrum control are discussed.

  18. Electron acceleration by Z-mode and whistler-mode waves

    SciTech Connect (OSTI)

    Lee, K. H.; Omura, Y.; Lee, L. C.; Institute of Earth Science, Academia Sinica, Nankang, Taiwan

    2013-11-15

    We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 28 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.

  19. Stabilizing windings for tilting and shifting modes

    DOE Patents [OSTI]

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  20. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  1. Failure Mode and Effect Analysis (FMEA) Tutorial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mode and Effect Analysis (FMEA) Tutorial - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo (T-980)

    SciTech Connect (OSTI)

    Shiltsev, V.; Annala, G.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; /Brookhaven /CERN /Serpukhov, IHEP /INFN, Ferrara /PNPI, CSTD

    2010-05-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a 'post-collider beam physics running' period.

  3. LED structure with enhanced mirror reflectivity

    DOE Patents [OSTI]

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  4. High frequency pacing of edge localized modes by injection of...

    Office of Scientific and Technical Information (OSTI)

    High frequency pacing of edge localized modes by injection of lithium granules in DIII-D ... Title: High frequency pacing of edge localized modes by injection of lithium granules in ...

  5. Investigation of NO2 Oxidation Kinetics and Burning Mode for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO2 Oxidation Kinetics and Burning Mode for Medium Duty Diesel Particulate: Contrasting O2 and NO2 Oxidation Investigation of NO2 Oxidation Kinetics and Burning Mode for Medium ...

  6. Diagnostic for two-mode variable valve activation device

    DOE Patents [OSTI]

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  7. Commute Mode Switching Impact Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commute Mode Switching Impact Tool Commute Mode Switching Impact Tool Excel tool helps agencies project the impact that changes in employee commute modes would have on its employee commute emissions. The tool is designed to be used at the worksite level and summed up at the agency level. The output of this tool can help agencies establish appropriate greenhouse gas reduction targets for major worksites or clusters of worksites in common metropolitan areas. File Download the Commute Mode

  8. Viscoelastic modes in a strongly coupled, cold, magnetized dusty plasma

    SciTech Connect (OSTI)

    Banerjee, Debabrata; Mylavarapu, Janaki Sita; Chakrabarti, Nikhil

    2010-11-15

    A generalized hydrodynamical model has been used to study the low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to the strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.

  9. Controlling guided modes in plasmonic metal/dielectric multilayer waveguides

    SciTech Connect (OSTI)

    Wickremasinghe, N.; Wang, X.; Wagner, H. P.; Thompson, J.; Schmitzer, H.

    2015-06-07

    We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index when one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.

  10. Spontaneous Fission Modes and Lifetimes of Superheavy Elements in the Nuclear Density Functional Theory

    SciTech Connect (OSTI)

    Staszczak, A,

    2013-01-01

    Background: The reactions with the neutron-rich 48Ca beam and actinide targets resulted in the detection of new superheavy (SH) nuclides with Z=104 118. The unambiguous identification of the new isotopes, however, still poses a problem because their -decay chains terminate by spontaneous fission (SF) before reaching the known region of the nuclear chart. The understanding of the competition between -decay and SF channels in SH nuclei is, therefore, of crucial importance for our ability to map the SH region and to assess its extent.

    Purpose: We perform self-consistent calculations of the competing decay modes of even-even SH isotopes with 108 Z 126 and 148 N 188.

    Methods: We use the state-of-the-art computational framework based on self-consistent symmetry-unrestricted nuclear density functional theory capable of describing the competition between nuclear attraction and electrostatic repulsion. We apply the SkM* Skyrme energy density functional. The collective mass tensor of the fissioning superfluid nucleus is computed by means of the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (HFB) approach. This paper constitutes a systematic self-consistent study of spontaneous fission in the SH region, carried out at a full HFB level, that simultaneously takes into account both triaxiality and reflection asymmetry.

    Results: Breaking axial symmetry and parity turns out to be crucial for a realistic estimate of collective action; it results in lowering SF lifetimes by more than 7 orders of magnitude in some cases. We predict two competing SF modes: reflection symmetric modes and reflection asymmetric modes.

    Conclusions: The shortest-lived SH isotopes decay by SF; they are expected to lie in a narrow corridor formed by 280Hs, 284Fl, and 118284Uuo that separates the regions of SH nuclei synthesized in cold-fusion and hot-fusion reactions. The region of long-lived SH nuclei is expected to be centered on 294Ds with a total half-life of 1.5 days. Our survey provides a solid benchmark for the future improvements of self-consistent SF calculations in the region of SH nuclei.

  11. A reflective optical transport system for ultraviolet Thomson scattering

    Office of Scientific and Technical Information (OSTI)

    from electron plasma waves on OMEGA (Journal Article) | SciTech Connect A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical

  12. Reflection Survey At Coso Geothermal Area (1989) | Open Energy...

    Open Energy Info (EERE)

    1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso...

  13. Measuring solar reflectance Part I: Defining a metric that accurately...

    Office of Scientific and Technical Information (OSTI)

    I: Defining a metric that accurately predicts solar heat gain Citation Details In-Document Search Title: Measuring solar reflectance Part I: Defining a metric that accurately ...

  14. Surface roughness effects on the solar reflectance of cool asphalt...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Surface roughness effects on the solar reflectance of cool asphalt shingles Citation Details In-Document Search Title: Surface roughness effects on the solar ...

  15. Measurement of reflectivity of spherically bent crystals using...

    Office of Scientific and Technical Information (OSTI)

    electrons produced by laser-matter interaction In an experiment at the laser facility ECLIPSE of the CELIA laboratory, University of Bordeaux, we measure the reflectivity of ...

  16. Clean Energy Transition: Reflections on the Past Decade

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Transition: Reflections on the Past Decade NREL Industry Growth Forum Dr. Dan E. Arvizu Laboratory Director November 2015 2 Energy Market Fundamentals Globally...

  17. Combined Reflectivity/imaging Method for Assessing Diagnostic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with laser treatment to restore the reflectivity of diagnostic mirrors after degradation by plasma deposition. Multiple mirrors, including an aluminum first surface reference ...

  18. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) Exploration Activity Details Location Neal Hot Springs Geothermal Area Exploration Technique Reflection Survey Activity...

  19. Reflection Survey At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At The Needles Area (DOE GTP) Exploration Activity...

  20. Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  1. Reflection Survey At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Wister Area (DOE GTP) Exploration Activity Details...

  2. Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...

    Open Energy Info (EERE)

    Reflection Survey Activity Date Usefulness useful DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora...

  3. Reflection Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  4. Seismic Reflection Data and Conceptual Models for Geothermal...

    Open Energy Info (EERE)

    failure of seismic reflection data to image thesubsurface demonstrates the robust reliability of aconceptual model approach to geothermal exploration thatemphasizes the...

  5. Reflection Survey At Snake River Plain Region (DOE GTP) | Open...

    Open Energy Info (EERE)

    Community Login | Sign Up Search Page Edit with form History Reflection Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  6. Reflection Survey At Coso Geothermal Area (2008) | Open Energy...

    Open Energy Info (EERE)

    field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex. The reflection images were processed...

  7. A reflective optical transport system for ultraviolet Thomson...

    Office of Scientific and Technical Information (OSTI)

    transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA Citation Details In-Document Search Title: A reflective optical transport system for ...

  8. Reflection Survey At San Emidio Desert Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At San Emidio Desert Area (DOE GTP)...

  9. Synchrotron infrared reflectivity measurements of iron at high pressures

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Synchrotron infrared reflectivity measurements of iron at high pressures Citation Details In-Document Search Title: Synchrotron infrared reflectivity measurements of iron at high pressures The infrared reflectance of iron was studied using high-pressure synchrotron radiation methods up to 50 GPa at room temperature in a diamond anvil cell of 1000-8000 cm{sup -1} (1.25-10 {mu}m). The magnitude of the reflectivity shows a weak pressure

  10. Reflection Survey At Blue Mountain Geothermal Area (Melosh, Et...

    Open Energy Info (EERE)

    model of blue mountain. References Glenn Melosh, William Cumming, John Casteel, Kim Niggemann, Brian Fairbank (2010) Seismic Reflection Data and Conceptual Models for...

  11. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  12. Multi-mode ultrasonic welding control and optimization

    DOE Patents [OSTI]

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  13. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOE Patents [OSTI]

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  14. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  15. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  16. Parametric reflection upon cascade interaction of focused optical beams

    SciTech Connect (OSTI)

    Lobanov, V E; Sukhorukov, A P; Sukhorukova, A K

    2008-10-31

    The parametric reflection of a signal beam in the waist of the reference pump beam upon mismatched three-frequency interaction in a quadratically nonlinear medium is discussed. The critical angle of total internal reflection from the induced defocusing channel is found as a function of the beam waist parameters. It is shown that when the reference beam is focused, this angle increases and some distortions are introduced into the reflected wave due to a finite length of the waist. The modification of the cross section of a wave reflected from a convex parametric mirror is analysed. The optimal beam focusing geometry is found at which the distortions of the shape and divergence of the reflected wave are minimal. Under certain conditions, the signal wave also flows around a cylindrical inhomogeneity produced by the axially symmetric pump beam. The results of theoretical analysis and numerical simulation are in good agreement. (nonlinear optical phenomena)

  17. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    SciTech Connect (OSTI)

    Nakazaki, Nobuya Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-14

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl{sub 2} plasmas, as a function of rf bias power or ion incident energy E{sub i}, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on E{sub i}: one is the roughening mode at low E{sub i} < 200–300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing E{sub i}, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher E{sub i}, where the rms surface roughness decreases substantially with E{sub i} down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on E{sub i} were also observed in the etch rate versus √(E{sub i}) curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing E{sub i} were found to correspond to changes in the predominant ion flux from feed gas ions Cl{sub x}{sup +} to ionized etch products SiCl{sub x}{sup +} caused by the increased etch rates at increased E{sub i}, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  18. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOE Patents [OSTI]

    Chojnacki, E.P.

    1994-05-31

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer. 9 figs.

  19. Mode trap for absorbing transverse modes of an accelerated electron beam

    DOE Patents [OSTI]

    Chojnacki, Eric P.

    1994-01-01

    A mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around its aperture and extending radially out toward its absorbing material layer.

  20. Propagating and reflecting of spin wave in permalloy nanostrip with 360 domain wall

    SciTech Connect (OSTI)

    Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang

    2014-01-07

    By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360 domain wall in a nanostrip. It is found that propagating spin wave can drive a 360 domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360 domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360 domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360 domain wall normal mode, the 360 domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360 domain wall, we observed the Doppler effect clearly. After passing through a 360 domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360 domain walls that spin wave passing through.

  1. Mode locking and island suppression by resonant magnetic perturbations in

    Office of Scientific and Technical Information (OSTI)

    Rutherford regime (Journal Article) | SciTech Connect Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime Citation Details In-Document Search Title: Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance

  2. Spatiotemporal localized modes in PT-symmetric optical media (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Spatiotemporal localized modes in PT-symmetric optical media Citation Details In-Document Search Title: Spatiotemporal localized modes in PT-symmetric optical media We firstly obtain spatiotemporal localized mode solutions of a (3+1)-dimensional nonlinear Schrödinger equation in PT-symmetric potentials, and then discuss the linear stability of LMs, which are also tested by means of direct simulations. Moreover, phase switches and transverse power-flow density

  3. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect (OSTI)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  4. Microwave mode shifting antenna system for regenerating particulate filters

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  5. Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of

    Office of Scientific and Technical Information (OSTI)

    Three-dimensional Plasmas (Technical Report) | SciTech Connect Technical Report: Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas Citation Details In-Document Search Title: Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular

  6. Optimization to reduce fuel consumption in charge depleting mode

    SciTech Connect (OSTI)

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  7. Dual mode stereotactic localization method and application

    DOE Patents [OSTI]

    Keppel, Cynthia E.; Barbosa, Fernando Jorge; Majewski, Stanislaw

    2002-01-01

    The invention described herein combines the structural digital X-ray image provided by conventional stereotactic core biopsy instruments with the additional functional metabolic gamma imaging obtained with a dedicated compact gamma imaging mini-camera. Before the procedure, the patient is injected with an appropriate radiopharmaceutical. The radiopharmaceutical uptake distribution within the breast under compression in a conventional examination table expressed by the intensity of gamma emissions is obtained for comparison (co-registration) with the digital mammography (X-ray) image. This dual modality mode of operation greatly increases the functionality of existing stereotactic biopsy devices by yielding a much smaller number of false positives than would be produced using X-ray images alone. The ability to obtain both the X-ray mammographic image and the nuclear-based medicine gamma image using a single device is made possible largely through the use of a novel, small and movable gamma imaging camera that permits its incorporation into the same table or system as that currently utilized to obtain X-ray based mammographic images for localization of lesions.

  8. Pair breaking versus symmetry breaking: Origin of the Raman modes...

    Office of Scientific and Technical Information (OSTI)

    Pair breaking versus symmetry breaking: Origin of the Raman modes in superconducting cuprates Citation Details In-Document Search Title: Pair breaking versus symmetry breaking:...

  9. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in ...

  10. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). ...

  11. Strong ''Quantum'' Chaos in the Global Ballooning Mode Spectrum...

    Office of Scientific and Technical Information (OSTI)

    modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. ...

  12. Defense against common mode failures in protection system design

    SciTech Connect (OSTI)

    Wyman, R.H.; Johnson, G.L.

    1997-08-27

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ``fact-of-life`` in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D&D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D&D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ``defense-in-depth and diversity analysis`` has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided.

  13. Stability of coupled tearing and twisting modes in tokamaks

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable {open_quote}compound{close_quote} modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, {open_quote}compound{close_quote} modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-{beta} plasma, but twisting parity layers become more probable as the plasma {beta} is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up.

  14. Evidence for breathing modes in direct current, pulsed, and high...

    Office of Scientific and Technical Information (OSTI)

    Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas Citation Details In-Document Search This content will become publicly...

  15. Sandia Energy - Turbulent Mixed-Mode Combustion Studied in a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Mixed-Mode Combustion Studied in a New Piloted Burner Home Transportation Energy CRF Office of Science Capabilities News News & Events Research & Capabilities Fuel...

  16. Adaptive Wavenumber Estimation for Mode Tracking in a Shallow...

    Office of Scientific and Technical Information (OSTI)

    Tracking in a Shallow Ocean Environment Citation Details In-Document Search Title: Adaptive Wavenumber Estimation for Mode Tracking in a Shallow Ocean Environment You are ...

  17. Plasmon modes of metallic nanowires including quantum nonlocal effects

    SciTech Connect (OSTI)

    Moradi, Afshin

    2015-03-15

    The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.

  18. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  19. Sandia Energy - Failure Mode and Effect Analysis (FMEA) Tutorial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Failure Mode and Effect Analysis (FMEA) Tutorial Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Tutorial on FMEA Process...

  20. Auroral Signatures of Ballooning Mode Near Substorm Onset: Open...

    Office of Scientific and Technical Information (OSTI)

    Onset: Open Geospace General Circulation Model Simulations Citation Details In-Document Search Title: Auroral Signatures of Ballooning Mode Near Substorm Onset: Open Geospace ...

  1. Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gnedin, Nickolay Y; Kravtsov, Andrey V; Rudd, Douglas H

    2011-06-02

    As emphasized by previous studies, proper treatment of the density fluctuation on the fundamental scale of a cosmological simulation volume - the 'DC mode' - is critical for accurate modeling of spatial correlations on scales ~> 10% of simulation box size. We provide further illustration of the effects of the DC mode on the abundance of halos in small boxes and show that it is straightforward to incorporate this mode in cosmological codes that use the 'supercomoving' variables. The equations governing evolution of dark matter and baryons recast with these variables are particularly simple and include the expansion factor, andmorehence the effect of the DC mode, explicitly only in the Poisson equation.less

  2. Spatiotemporal localized modes in PT-symmetric optical media...

    Office of Scientific and Technical Information (OSTI)

    We firstly obtain spatiotemporal localized mode solutions of a (3+1)-dimensional nonlinear Schrdinger equation in PT-symmetric potentials, and then discuss the linear stability ...

  3. Stabilization of tearing modes by oscillating the resonant surface

    SciTech Connect (OSTI)

    Yang Xiaoqing; Wang Shaojie; Yang Weihong

    2012-07-15

    The effects of the plasma current modulation on the linear instability of the tearing mode are numerically investigated. It is found that the tearing mode can be stabilized if the frequency of the modulation is suitable and the oscillation amplitude of the resonant surface position is large enough. The power needed for the lower-hybrid-current-drive to stabilize the tearing mode by oscillating the position of the resonant surface is comparable to the power consumption of the conventional method of tearing mode stabilization by using the electron-cyclotron-current-drive.

  4. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  5. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOE Patents [OSTI]

    Viswanathan, Vriddhachalam K.; Newnam, Brian E.

    1993-01-01

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 .mu.m, and preferably less than 100 .mu.m. An image resolution of features less than 0.05-0.1 .mu.m, is obtained over a large area field; i.e., 25.4 mm .times.25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  6. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOE Patents [OSTI]

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  7. Apparatus to study crystal channeling and volume reflection phenomena at

    Office of Scientific and Technical Information (OSTI)

    the SPS H8 beamline (Journal Article) | SciTech Connect Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline Citation Details In-Document Search Title: Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline A high performance apparatus has been designed and built by the H8-RD22 collaboration for the study of channeling and volume reflection phenomena in the interaction of 400 GeV/c protons with bent silicon

  8. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  9. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect (OSTI)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process can be employed on full scale solar modules, equipment must be developed for ion implanting large sheets of glass. A cost analysis shows that the process can be economical. Our finding is that the reduction of reflectance by ion beam surface modification is technically and economically feasible. The public will benefit directly from this work by the improvement of photovoltaic module efficiency, and indirectly by the greater understanding of the modification of glass surfaces by ion beams.

  10. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    SciTech Connect (OSTI)

    Fountaine, Katherine T.; Whitney, William S.; Atwater, Harry A.

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  11. NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk...

  12. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOE Patents [OSTI]

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  13. Measuring solar reflectance Part I: Defining a metric that accurately...

    Office of Scientific and Technical Information (OSTI)

    A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool ...

  14. High order reflectivity of graphite (HOPG) crystals for x ray...

    Office of Scientific and Technical Information (OSTI)

    In second order the integrated reflectivity decreases from 1.3 mrad at 12.6 keV to ... Country of Publication: United States Language: English Subject: 70 PLASMA PHYSICS AND FUSION; ...

  15. Measuring solar reflectance Part II: Review of practical methods...

    Office of Scientific and Technical Information (OSTI)

    solar position, and found that clear sky air mass 1 global horizontal (AM1GH) solar ... Rsub g,0more to within 0.006. The air mass 1.5 solar reflectance measured with ...

  16. Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode

    SciTech Connect (OSTI)

    Ichimura, Kouichi; Goto, Hayato

    2006-09-15

    We demonstrated coupling of rare-earth-metal ions in a crystal to a macroscopic cavity mode by observing optical bistability and normal-mode peaks due to sweeping-laser-induced population redistribution of the ions. The experimentally evaluated coupling constant between the individual ions and the single cavity mode is 15 kHz, which is comparable with or larger than the dissipation of the ions and will exceed the cavity dissipation with a narrowing of the mode waist of the cavity to the wavelength. The results advance the application of a coupled system of rare-earth-metal ions in a crystal and an optical cavity for quantum information processing.

  17. Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET

    Office of Scientific and Technical Information (OSTI)

    Crystals (Conference) | SciTech Connect Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals Citation Details In-Document Search Title: Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals Spectroscopy provides valuable information about the temperature and density of a compressed pellet in a plasma. Elliptically curved pentaerythritol (PET) crystals are used as components for spectrometers. Their elliptical geometry gives several

  18. Integrated X-ray Reflectivity Measurements for Elliptically Curved PET

    Office of Scientific and Technical Information (OSTI)

    Crystals (Conference) | SciTech Connect ray Reflectivity Measurements for Elliptically Curved PET Crystals Citation Details In-Document Search Title: Integrated X-ray Reflectivity Measurements for Elliptically Curved PET Crystals The elliptically curved pentaerythritol (PET) crystals used in the Supersnout 2 X-ray spectrometer on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) have been calibrated photometrically in the range of 5.5 to 16 keV. The

  19. Measurement of reflectivity of spherically bent crystals using Kα signal

    Office of Scientific and Technical Information (OSTI)

    from hot electrons produced by laser-matter interaction (Journal Article) | SciTech Connect Measurement of reflectivity of spherically bent crystals using Kα signal from hot electrons produced by laser-matter interaction Citation Details In-Document Search Title: Measurement of reflectivity of spherically bent crystals using Kα signal from hot electrons produced by laser-matter interaction In an experiment at the laser facility ECLIPSE of the CELIA laboratory, University of Bordeaux, we

  20. Signal Post-processing and Reflectivity Calibration of the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program 915 MHz Wind Profilers (Journal Article) | SciTech Connect Signal Post-processing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915 MHz Wind Profilers Citation Details In-Document Search Title: Signal Post-processing and Reflectivity Calibration of the Atmospheric Radiation Measurement Program 915 MHz Wind Profilers Authors: Tridon F. ; Luke E. ; Battaglia, A. ; Kollias, P. ; Williams, C. R. Publication Date: 2013-06-01 OSTI

  1. Repetitive output laser system and method using target reflectivity

    DOE Patents [OSTI]

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  2. Reflected beam illumination microscopy using a microfluidics device -

    Office of Scientific and Technical Information (OSTI)

    progress report 6/15/2014. (Technical Report) | SciTech Connect Technical Report: Reflected beam illumination microscopy using a microfluidics device - progress report 6/15/2014. Citation Details In-Document Search Title: Reflected beam illumination microscopy using a microfluidics device - progress report 6/15/2014. Abstract not provided. Authors: James, Conrad D. ; Finnegan, Patrick Sean ; Renzi, Ronald F. Publication Date: 2014-06-01 OSTI Identifier: 1171452 Report Number(s):

  3. Reflectance spectroscopy for high-speed temperature measurements.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Reflectance spectroscopy for high-speed temperature measurements. Citation Details In-Document Search Title: Reflectance spectroscopy for high-speed temperature measurements. Abstract not provided. Authors: Dolan, Daniel H., ; Seagle, Christopher T ; Ao, Tommy ; Herrmann, Mark Publication Date: 2013-05-01 OSTI Identifier: 1106087 Report Number(s): SAND2013-3898C 465305 DOE Contract Number: AC04-94AL85000 Resource Type:

  4. Rapid Solar Mirror Characterization with Fringe Reflection Techniques -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Rapid Solar Mirror Characterization with Fringe Reflection Techniques SOFAST: Sandia Optical Fringe Analysis Slope Tool Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (834 KB) SOFAST Imaging SOFAST Imaging Technology Marketing SummaryThis technology is an automated system in which the reflection of a mirror,

  5. Growth mode and strain relaxation of InAs on InP (111)A grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Li, H.; Daniels-Race, T.; Wang, Z.

    1999-03-01

    Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski{endash}Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. {copyright} {ital 1999 American Institute of Physics.}

  6. Bidirectional Reflection Distribution Functions from surface bump maps

    SciTech Connect (OSTI)

    Cabral, B.K.

    1988-06-17

    The interaction of light and matter define what we see. This interaction can be characterized by a function which relates incoming light to the distribution of outgoing or reflected light. The Bidirectional Reflection Distribution Function (BRDF) is just such a function. Computer graphics scientists attempting to model this function have made simplifying assumptions about the reflecting surfaces. These simpler models have produced adequate results but only handle very uniform or isotropic surface characteristics. Reality on the other hand is filled with a variety of surface textures which result in a variety of BRDFs. This thesis broadens the class of BRDFs which can be used in computer graphics to render objects more realistically. It presents two enhancements to previous work done by the author. First, it describes a method for the approximation of surface absorption of light through the use of a computed geometric attentuation factor. This factor is computed by calculating the parts of the surface which are visible in the incident and reflecting directions. Specifically, it describes the algorithms and theory behind the visibility calculations and how it affects the reflection properties of the surface. Second, it describes a method for computing Fresnel's Law for conducting and dielectric surface materials and how Fresnel's Law affects surface reflectivity. This work also presents a method for rendering objects using the computed BRDFs. 38 refs., 29 figs., 2 tabs.

  7. ARM: Ka ARM Zenith Radar (KAZR): precipitation mode (Dataset...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Radar Doppler; Radar polarization; Radar reflectivity; Vertical ...

  8. Localized radio frequency communication using asynchronous transfer mode protocol

    DOE Patents [OSTI]

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  9. Nonlinear dynamics of multiple neoclassical tearing modes in tokamaks

    SciTech Connect (OSTI)

    Chandra, D.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Agullo, O.; Benkadda, S. [France-Japan Magnetic Fusion Lab, LIA 336, CNRS/Lab PIIM, UMR 6633, CNRS-Universite de Provence, 13397 Marseille (France); Garbet, X. [Association Euratom-CEA, DRFC, CEA Cadarache, 13108 St-Paul-Lez-Durance (France)

    2013-04-15

    Numerical simulations investigating the interaction of co-existent 2/1 and 3/1 neoclassical tearing modes are presented. The results obtained from an initial value 3D toroidal code that solves a set of generalized reduced MHD equations exhibit a host of complex phenomena arising from the coupling of the two modes. These include a modification of the island saturation widths of the two modes, a significant modification in the perpendicular flow patterns in the vicinity of the islands, and the excitation of geodesic acoustic mode like oscillations that lead to concomitant oscillations in the kinetic and magnetic energies of the islands. These oscillations only occur in the presence of the neoclassical stress tensor contribution and are absent for two coupled classical tearing modes.

  10. B-mode polarization in Einstein-aether theory

    SciTech Connect (OSTI)

    Nakashima, Masahiro; Kobayashi, Tsutomu

    2011-10-15

    We study how the dynamical vector degree of freedom in modified gravity affects the CMB B-mode polarization in terms of the Einstein-aether theory. In this theory, vector perturbations can be generated from inflation, which can grow on superhorizon scales in the subsequent epochs and thereby leaves imprints on the CMB B-mode polarization. We derive the linear perturbation equations in a covariant formalism, and compute the CMB B-mode polarization using the CAMB code modified so as to incorporate the effect of the aether vector field. We find that the amplitude of the B-mode signal from the aether field can be larger than the contribution from the inflationary gravitational waves for reasonable initial conditions and for a viable range of model parameters, in which perturbation modes propagate superluminally. We also give an analytic argument explaining the shape of the spectrum based on the tight coupling approximation.

  11. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect (OSTI)

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  12. Gyrokinetics for high-frequency modes in tokamaks

    SciTech Connect (OSTI)

    Wang, Z. T.; Long, L. X.; Dong, J. Q.; He, Zhixiong; Wang, L.; Liu, Y.; Tang, C. J.

    2012-07-15

    Gyrokinetics for high-frequency modes in tokamaks is developed. It is found that the breakdown of the invariants by perturbed electromagnetic fields drives microinstability. The obtained diamagnetic frequency, {omega}{sup *}, is proportional to only the toroidal mode number rather than transverse mode numbers. Therefore, there is no nonadiabatic drive for axisymmetrical modes in gyrokinetics. Meanwhile, the conventional eikonal Ansatz breaks down for the axisymmetrical modes. The ion drift-cyclotron instability discovered in a mirror machine is found for the first time in the toroidal system. The growth rates are proportional to {rho}{sub i}/L{sub n}, and the slope changes with magnetic curvature. In spherical torus, where magnetic curvature is greater than that of traditional tokamaks, instability poses a potential danger to such devices.

  13. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect (OSTI)

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  14. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOE Patents [OSTI]

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique utilizes first means which defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different curvatures depending upon the astigmatism to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  15. One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies

    SciTech Connect (OSTI)

    Jia, Guo-Zhang; Gao, Zhe

    2014-12-15

    The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.

  16. Role of magnetic fluctuations in mode selection of magnetically driven instabilities

    SciTech Connect (OSTI)

    Dan, Jia-Kun Ren, Xiao-Dong; Huang, Xian-Bin; Ouyang, Kai; Chen, Guang-Hua

    2014-12-15

    The influences of magnetic fluctuations on quasiperiodic structure formation and fundamental wavelength selection of the instability have been studied using two 25-μm-diameter tungsten wires on a 100  ns rise time, 220 kA pulsed power facility. Two different load configurations were adopted to make end surfaces of electrodes approximately satisfy reflecting and absorbing boundary conditions, respectively. The experimental results that the fundamental wavelength in the case of absorbing boundary condition is about one half of that in the case of reflecting boundary condition have demonstrated that magnetic fluctuations appear to play a key role in mode selection of magnetically driven instabilities. The dominant wavelength should be proportional to magnetic field and inversely proportional to square root of mass density, provided that the magnetosonic wave propagating perpendicular to magnetic fields provides a leading candidate for magnetic fluctuations. Therefore, magnetic fluctuation is one of the three key perturbations, along with surface contaminants and surface roughness, that seeds magnetically driven instabilities.

  17. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    SciTech Connect (OSTI)

    Bluhm, Robert; Fung Shuhong; Kostelecky, V. Alan

    2008-03-15

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  18. Bunch mode specific rate corrections for PILATUS3 detectors

    SciTech Connect (OSTI)

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  19. Competition between modes with different axial structures in gyrotrons

    SciTech Connect (OSTI)

    Khutoryan, Eduard M.; Nusinovich, Gregory S.; Sinitsyn, Oleksandr V.

    2014-09-15

    This study was motivated by some experiments in which it was found that during the voltage rise, instead of expected excitation of a high-frequency parasitic mode, the excitation of a lower-frequency parasitic mode takes place in a certain range of voltages. For explaining this fact, the dependence of start currents of possible competing modes on the beam voltage was carried out in the cold-cavity approximation and by using the self-consistent approach. It was found that in the case of cavities, which consist of the combination of a section of constant radius waveguide and a slightly uptapered waveguide, these two approaches yield completely different results. Thus, experimentally observed excitation of the low-frequency parasitic mode can be explained by the self-consistent modification of the axial profile of the excited field, which has strong influence on the diffractive quality factor of competing modes. This modification is especially pronounced in the case of excitation of modes with many axial variations which can be excited in the region of beam interaction with the backward-wave component of such modes.

  20. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  1. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    SciTech Connect (OSTI)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan; Tian Zhanjun; Su Jiangtao; Li Hui; Ichimoto, Kiyoshi; Shibata, Kazunari

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, it transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.

  2. CMB hemispherical asymmetry: long mode modulation and non-Gaussianity

    SciTech Connect (OSTI)

    Namjoo, Mohammad Hossein; Baghram, Shant; Firouzjahi, Hassan; Abolhasani, Ali Akbar E-mail: abolhasani@ipm.ir E-mail: firouz@ipm.ir

    2014-08-01

    The observed hemispherical asymmetry in CMB map can be explained by modulation from a long wavelength super horizon mode which non-linearly couples to the CMB modes. We address the criticism in [1] about the role of non-Gaussianities in squeezed and equilateral configurations in generating hemispherical asymmetry from the long mode modulation. We stress that the modulation is sensitive to the non-Gaussianity in the squeezed limit. In addition, we demonstrate the validity of our approach in providing a consistency condition relating the amplitude of dipole asymmetry to f{sub NL} in the squeezed limit.

  3. Separating and combining single-mode and multimode optical beams

    DOE Patents [OSTI]

    Ruggiero, Anthony J; Masquelier, Donald A; Cooke, Jeffery B; Kallman, Jeffery S

    2013-11-12

    Techniques for combining initially separate single mode and multimode optical beams into a single "Dual Mode" fiber optic have been developed. Bi-directional propagation of two beams that are differentiated only by their mode profiles (i.e., wavefront conditions) is provided. The beams can be different wavelengths and or contain different modulation information but still share a common aperture. This method allows the use of conventional micro optics and hybrid photonic packaging techniques to produce small rugged packages suitable for use in industrial or military environments.

  4. Simulation of peeling-ballooning modes with pellet injection

    SciTech Connect (OSTI)

    Chen, S. Y.; Huang, J.; Sun, T. T.; Tang, C. J.; Wang, Z. H.

    2014-11-15

    The influence of pellet ablation on the evolution of peeling-ballooning (P-B) modes is studied with BOUT++ code. The atoms coming from pellet ablation can significantly reshape the plasma pressure profile, so the behaviors of P-B modes and edge localized mode (ELM) are modified dramatically. This paper shows that the energy loss associated with an ELM increases substantially over that without the pellet, if the pellet is deposited at the top of the pedestal. On the contrary, for pellet deposition in the middle of the pedestal region the ELM energy loss can be less.

  5. Multiprocessor system with multiple concurrent modes of execution

    DOE Patents [OSTI]

    Ahn, Daniel; Ceze, Luis H; Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2013-12-31

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  6. Research Needs: Glass Solar Reflectance and Vinyl Siding

    SciTech Connect (OSTI)

    Hart, Robert; Curcija, Charlie; Arasteh, Dariush; Goudey, Howdy; Kohler, Christian; Selkowitz, Stephen

    2011-07-07

    The subject of glass solar reflectance and its contribution to permanent vinyl siding distortion has not been extensively studied, and some phenomena are not yet well understood. This white paper presents what is known regarding the issue and identifies where more research is needed. Three primary topics are discussed: environmental factors that control the transfer of heat to and from the siding surface; vinyl siding properties that may affect heat build-up and permanent distortion; and factors that determine the properties of reflected solar radiation from glass surfaces, including insulating window glass. Further research is needed to fully characterize the conditions associated with siding distortion, the scope of the problem, physical properties of vinyl siding, insulating window glass reflection characteristics, and possible mitigation or prevention strategies.

  7. DYNA3D Non-reflecting Boundary Conditions - Test Problems

    SciTech Connect (OSTI)

    Zywicz, E

    2006-09-28

    Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

  8. Fiber optic moisture sensor with moisture-absorbing reflective target

    DOE Patents [OSTI]

    Kirkham, Randy R.

    1987-01-01

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  9. Corrosion-resistant multilayer structures with improved reflectivity

    DOE Patents [OSTI]

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  10. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  11. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  12. Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Capolino, Filippo

    2016-01-25

    In this study, we investigate the effect on wave propagation of array packing and electromagnetic coupling between spheres in a three-dimensional (3D) lattice of microspheres with large permittivity that exhibit strong magnetic polarizability. We report on the complex wavenumber of Bloch waves in the lattice when each sphere is assumed to possess both electric and magnetic dipoles and full electromagnetic coupling is accounted for. While for small material-filling fractions we always determine one dominant mode with low attenuation constant, the same does not happen for large filling fractions, when electromagnetic coupling is included. In the latter case we peculiarly observemore » two dominant modes with low attenuation constant, dominant in different frequency ranges. The filling fraction threshold for which two dominant modes appear varies for different metamaterial constituents, as proven by considering spheres made by either titanium dioxide or lead telluride. As further confirmation of our findings, we retrieve the complex propagation constant of the dominant mode(s) via a field fitting procedure employing two sets of waves (direct and reflected) pertaining to two distinct modes, strengthening the presence of the two distinct dominant modes for increasing filling fractions. However, given that one mode only, with transverse polarization, at any given frequency, is dominant and able to propagate inside the lattice, we are able to accurately treat the metamaterial that is known to exhibit artificial magnetism as a homogeneous material with effective parameters, such as the refractive index. Results clearly show that the account of both electric and magnetic scattering processes in evaluating all electromagnetic intersphere couplings is essential for a proper description of the electromagnetic propagation in lattices.« less

  13. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  14. Visible Reflectivity System for High-Pressure Studies. (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Journal Article: Visible Reflectivity System for High-Pressure Studies. Citation Details In-Document Search Title: Visible Reflectivity System for High-Pressure Studies. Authors: Seagle, Christopher T ; Dolan, III, Daniel H Publication Date: 2013-04-01 OSTI Identifier: 1073453 Report Number(s): SAND2013-2893J Journal ID: ISSN 0034-6748 DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Review of

  15. Investigation of dominant spin wave modes by domain walls collision

    SciTech Connect (OSTI)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S.

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1?mT to 1?mT. For nanowire with film thickness below 5?nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300?nm apart for them to be free of interference from the spin waves.

  16. Stability of short wavelength tearing and twisting modes

    SciTech Connect (OSTI)

    Waelbroeck, F.L.

    1998-09-22

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known {Delta}{prime} stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting {Delta}{prime} for a model high-beta equilibrium with circular flux surfaces.

  17. High-Power Microwave Transmission and Mode Conversion Program

    SciTech Connect (OSTI)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  18. Combustion mode switching with a turbocharged/supercharged engine

    DOE Patents [OSTI]

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  19. Coherence area profiling in multi-spatial-mode squeezed states

    SciTech Connect (OSTI)

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show that the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.

  20. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  1. Ordinary mode instability associated with thermal ring distribution

    SciTech Connect (OSTI)

    Hadi, F.; Qamar, A.; Yoon, P. H.

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  2. Slant-hole collimator, dual mode sterotactic localization method

    DOE Patents [OSTI]

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  3. Charging system with galvanic isolation and multiple operating modes

    DOE Patents [OSTI]

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  4. Dose Rate Calculations for Rotary Mode Core Sampling Exhauster

    SciTech Connect (OSTI)

    FOUST, D.J.

    2000-10-26

    This document provides the calculated estimated dose rates for three external locations on the Rotary Mode Core Sampling (RMCS) exhauster HEPA filter housing, per the request of Characterization Field Engineering.

  5. Coherence area profiling in multi-spatial-mode squeezed states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.

    2015-09-12

    The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less

  6. Dual sensitivity mode system for monitoring processes and sensors

    DOE Patents [OSTI]

    Wilks, Alan D.; Wegerich, Stephan W.; Gross, Kenneth C.

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  7. Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene.

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene. Citation Details In-Document Search Title: Growth Mode and Substrate Symmetry Dependent Strain in Epitaxial Graphene. Abstract not provided. Authors: Ohta, Taisuke ; Biedermann, Laura Butler ; Beechem Iii, Thomas Edwin ; Howell, Stephen Wayne ; Schmidt, Diedrich A. Publication Date: 2010-06-01 OSTI Identifier: 1123545 Report Number(s): SAND2010-3581J 492436 DOE Contract Number:

  8. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric

    Office of Scientific and Technical Information (OSTI)

    Fields (Journal Article) | SciTech Connect Journal Article: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Citation Details In-Document Search Title: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively

  9. Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Citation Details In-Document Search Title: Adaptive Particle Filtering for Mode Tracking: A Shallow Ocean Application Authors: Candy, J V Publication Date: 2011-07-12 OSTI Identifier: 1117989 Report Number(s): LLNL-CONF-491045 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: OCEANS'11, Kona, HI, United States, Sep 19 - Sep 22, 2011

  10. Adaptive Wavenumber Estimation for Mode Tracking in a Shallow Ocean

    Office of Scientific and Technical Information (OSTI)

    Environment (Conference) | SciTech Connect Adaptive Wavenumber Estimation for Mode Tracking in a Shallow Ocean Environment Citation Details In-Document Search Title: Adaptive Wavenumber Estimation for Mode Tracking in a Shallow Ocean Environment Authors: Candy, J V Publication Date: 2012-06-28 OSTI Identifier: 1059076 Report Number(s): LLNL-CONF-563556 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: IEEE OCEANS '12, Hampton Roads, VA,

  11. Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details In-Document Search This content will become publicly available on April 11, 2017 Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: Hinohara, Nobuo ; Nazarewicz, Witold Publication Date: 2016-04-11 OSTI Identifier: 1246764 Grant/Contract Number: SC0013365; SC0008511 Type: Publisher's Accepted Manuscript Journal Name: Physical Review

  12. Parametrically Adaptive Wavenumber Processing for Mode Tracking in a

    Office of Scientific and Technical Information (OSTI)

    Shallow Ocean Environment (Conference) | SciTech Connect Parametrically Adaptive Wavenumber Processing for Mode Tracking in a Shallow Ocean Environment Citation Details In-Document Search Title: Parametrically Adaptive Wavenumber Processing for Mode Tracking in a Shallow Ocean Environment Authors: Candy, J V Publication Date: 2013-08-05 OSTI Identifier: 1096593 Report Number(s): LLNL-CONF-642197 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference:

  13. Auroral Signatures of Ballooning Mode Near Substorm Onset: Open Geospace

    Office of Scientific and Technical Information (OSTI)

    General Circulation Model Simulations (Journal Article) | SciTech Connect Auroral Signatures of Ballooning Mode Near Substorm Onset: Open Geospace General Circulation Model Simulations Citation Details In-Document Search Title: Auroral Signatures of Ballooning Mode Near Substorm Onset: Open Geospace General Circulation Model Simulations Authors: Raeder, J ; Zhu, P ; Ge, Y ; Siscoe, G Publication Date: 2012-01-01 OSTI Identifier: 1211702 Resource Type: Journal Article Resource Relation:

  14. Rotary mode core sampling approved checklist: 241-TX-113

    SciTech Connect (OSTI)

    Fowler, K.D.

    1998-08-03

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-113 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  15. Rotary mode core sampling approved checklist: 241-TX-116

    SciTech Connect (OSTI)

    FOWLER, K.D.

    1999-02-24

    The safety assessment for rotary mode core sampling was developed using certain bounding assumptions, however, those assumptions were not verified for each of the existing or potential flammable gas tanks. Therefore, a Flammable Gas/Rotary Mode Core Sampling Approved Checklist has been completed for tank 241-TX-116 prior to sampling operations. This transmittal documents the dispositions of the checklist items from the safety assessment.

  16. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Print Sunday, 14 October 2012 00:00 The ocean is an important source of uranium if it can be extracted economically. Extraction of uranium from seawater is very challenging, not only because it is in an extremely low concentration, but also because

  17. Adaptive sliding mode control for a class of chaotic systems

    SciTech Connect (OSTI)

    Farid, R.; Ibrahim, A.; Zalam, B.

    2015-03-30

    Chaos control here means to design a controller that is able to mitigating or eliminating the chaos behavior of nonlinear systems that experiencing such phenomenon. In this paper, an Adaptive Sliding Mode Controller (ASMC) is presented based on Lyapunov stability theory. The well known Chua's circuit is chosen to be our case study in this paper. The study shows the effectiveness of the proposed adaptive sliding mode controller.

  18. Mode dependent lattice thermal conductivity of single layer graphene

    SciTech Connect (OSTI)

    Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei

    2014-10-21

    Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000 K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

  19. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  20. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  1. Ion-acoustic shocks with self-regulated ion reflection and acceleratio...

    Office of Scientific and Technical Information (OSTI)

    Ion-acoustic shocks with self-regulated ion reflection and acceleration Citation Details ... Title: Ion-acoustic shocks with self-regulated ion reflection and acceleration Authors: ...

  2. Implementation of solar-reflective surfaces: Materials and utility programs

    SciTech Connect (OSTI)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  3. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    SciTech Connect (OSTI)

    SMALLEY, J.L.

    1999-05-18

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR).

  4. Microsoft PowerPoint - 15.1500_Michael Deane [Compatibility Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    00Michael Deane Compatibility Mode Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode PDF icon Microsoft PowerPoint - 15.1500Michael Deane Compatibility Mode...

  5. Microsoft PowerPoint - 16.0805_Tom Fox [Compatibility Mode] ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05Tom Fox Compatibility Mode Microsoft PowerPoint - 16.0805Tom Fox Compatibility Mode PDF icon Microsoft PowerPoint - 16.0805Tom Fox Compatibility Mode More Documents &...

  6. An analytical and numerical study of the nonlinear reflection at a stress-free surface

    SciTech Connect (OSTI)

    Romer, Anne Kim, Jin-Yeon; Jacobs, Laurence J.

    2015-03-31

    Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic waves generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on a perturbation method. Here, the model is chosen to mimic an experimental setup where the longitudinal wave is generated at oblique angle using a wedge transducer. Due to the mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stress-free boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid interaction with diffracted waves.

  7. AXISYMMETRIC SCATTERING OF p MODES BY THIN MAGNETIC TUBES

    SciTech Connect (OSTI)

    Hindman, Bradley W.; Jain, Rekha

    2012-02-10

    We examine the scattering of acoustic p-mode waves from a thin magnetic fibril embedded in a gravitationally stratified atmosphere. The scattering is mediated through the excitation of slow sausage waves on the magnetic tube, and only the scattering of the monopole component of the wave field is considered. Since such tube waves are not confined by the acoustic cavity and may freely propagate along the field lines removing energy from the acoustic wave field, the excitation of fibril oscillations is a source of acoustic wave absorption as well as scattering. We compute the mode mixing that is achieved and the absorption coefficients and phase shifts. We find that for thin tubes the mode mixing is weak and the absorption coefficient is small and is a smooth function of frequency over the physically relevant band of observed frequencies. The prominent absorption resonances seen in previous studies of unstratified tubes are absent. Despite the relatively small absorption, the phase shift induced can be surprisingly large, reaching values as high as 15 Degree-Sign for f modes. Further, the phase shift can be positive or negative depending on the incident mode order and the frequency.

  8. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  9. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.4.1 Beamline 5.4.1 Print Wednesday, 16 June 2010 16:03 Infrared spectromicroscopy GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics Bend magnet Energy range 0.05-1.00 eV Frequency range 650 - 10,000 cm-1 Interferometer resolution Up to 0.125 cm-1 Endstations FTIR bench and IR microscope (N2 purged) Characteristics Computerized sample stage, 0.1-micron resolution; reflection, transmission, and attenuated total reflectance (ATR) modes; polarizing and UV fluorescence

  10. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect (OSTI)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  11. Method and apparatus for inspecting reflection masks for defects

    DOE Patents [OSTI]

    Bokor, Jeffrey; Lin, Yun

    2003-04-29

    An at-wavelength system for extreme ultraviolet lithography mask blank defect detection is provided. When a focused beam of wavelength 13 nm is incident on a defective region of a mask blank, three possible phenomena can occur. The defect will induce an intensity reduction in the specularly reflected beam, scatter incoming photons into an off-specular direction, and change the amplitude and phase of the electric field at the surface which can be monitored through the change in the photoemission current. The magnitude of these changes will depend on the incident beam size, and the nature, extent and size of the defect. Inspection of the mask blank is performed by scanning the mask blank with 13 nm light focused to a spot a few .mu.m in diameter, while measuring the reflected beam intensity (bright field detection), the scattered beam intensity (dark-field detection) and/or the change in the photoemission current.

  12. Improved Method to Measure Glare and Reflected Solar Irradiance - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Improved Method to Measure Glare and Reflected Solar Irradiance Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (767 KB) Solar glare from aerial view Solar glare from aerial view Typical solar glare Typical solar glare

  13. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds K. Ivanova, H. N. Shirer, and E. E. Clothiaux Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction The state variables of the atmosphere exhibit correlations at various spatial and temporal scales. These correlations are crucial for understanding short- and long-term trends in climate. Cirrus clouds are important

  14. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  15. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  16. Ultrafast transient reflectance of epitaxial semiconducting perovskite thin films

    SciTech Connect (OSTI)

    Smolin, S. Y.; Guglietta, G. W.; Baxter, J. B. E-mail: smay@coe.drexel.edu; Scafetta, M. D.; May, S. J. E-mail: smay@coe.drexel.edu

    2014-07-14

    Ultrafast pump-probe transient reflectance (TR) spectroscopy was used to study carrier dynamics in an epitaxial perovskite oxide thin film of LaFeO{sub 3} (LFO) with a thickness of 40 unit cells (16?nm) grown by molecular beam epitaxy on (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). TR spectroscopy shows two negative transients in reflectance with local maxima at ?2.5?eV and ?3.5?eV which correspond to two optical transitions in LFO as determined by ellipsometry. The kinetics at these transients were best fit with an exponential decay model with fast (540 ps), medium (?200 ps), and slow (??3?ns) components that we attribute mainly to recombination of photoexcited carriers. Moreover, these reflectance transients did not completely decay within the observable time window, indicating that ?10% of photoexcited carriers exist for at least 3?ns. This work illustrates that TR spectroscopy can be performed on thin (<20?nm) epitaxial oxide films to provide a quantitative understanding of recombination lifetimes, which are important parameters for the potential utilization of perovskite films in photovoltaic and photocatalytic applications.

  17. Reflection seismic mapping of an abandoned coal mine, Belleville, Illinois

    SciTech Connect (OSTI)

    Anderson, N.; Hinds, R.; Roark, M.

    1997-10-01

    Old mine location maps (1958 vintage) indicate that the northwestern part of an undeveloped property near the town of Belleville, St. Clair County, Illinois, is situated above an abandoned and now water-filled, room-and-pillar type coal mine. The central and southeast parts of the Belleville property are shown as overlying intact (non-mined) coal. The coal unit mined at the Belleville site, the Herrin No. 6 is Pennsylvanian in age and about 2.5 m thick at a depth of around 40 m. The current owners of the Belleville property want to construct a large building on the central and southeast parts of the site, but have been concerned about the accuracy of the old mine location maps because of recent mine-related surface subsidence in areas designated on the maps as not mined. To ensure that the proposed new development is located on structurally stable ground, a grid of ten high-resolution reflection seismic lines was acquired on-site. On these reflection seismic data, mined-out areas can be visually identified and differentiated from non-mined areas. The interpretation of the reflection seismic data was constrained and validated by 15 test boreholes. These seismic and borehole data confirm that the central and southeast parts of the property have not been mined extensively. Development of the Belleville site has proceeded with confidence.

  18. Inversion of seismic reflection traveltimes using a nonlinear optimization scheme

    SciTech Connect (OSTI)

    Pullammanappallil, S.K.; Louie, J.N. (Univ. of Nevada, Reno, NV (United States). Mackay School of Mines)

    1993-11-01

    The authors present the use of a nonlinear optimization scheme called generalized simulated annealing to invert seismic reflection times for velocities, reflector depths, and lengths. A finite-difference solution of the eikonal equation computes reflection traveltimes through the velocity model and avoids ray tracing. They test the optimization scheme on synthetic models and compare it with results from a linearized inversion. The synthetic tests illustrate that, unlike linear inversion schemes, the results obtained by the optimization scheme are independent of the initial model. The annealing method has the ability to produce a suite of models that satisfy the data equally well. They make use of this property to determine the uncertainties associated with the model parameters obtained. Synthetic examples demonstrate that allowing the reflector length to vary, along with its position, helps the optimization process obtain a better solution. The authors put this to use in imaging the Garlock fault, whose geometry at depth is poorly known. They use reflection times picked from shot gathers recorded along COCORP Mojave Line 5 to invert for the Garlock fault and velocities within the Cantil Basin below Fremont Valley, California. The velocities within the basin obtained by their optimization scheme are consistent with earlier studies, though their results suggest that the basin might extend 1--2 km further south. The reconstructed reflector seems to suggest shallowing of the dip of the Garlock fault at depth.

  19. Nonlinear gyrofluid computation of edge localized ideal ballooning modes

    SciTech Connect (OSTI)

    Kendl, Alexander; Scott, Bruce D.; Ribeiro, Tiago T.

    2010-07-15

    Three-dimensional electromagnetic gyrofluid simulations of the ideal ballooning mode blowout scenario for tokamak edge localized modes are presented. Special emphasis is placed on diagnosis of the linear, overshoot, and decay phases. The saturation process is energy transfer to self-generated edge turbulence, which exhibits an ion temperature gradient mode structure. Convergence in the decay phase is found only if the spectrum reaches the ion gyroradius. The equilibrium is a self-consistent background whose evolution is taken into account. Approximately two-thirds of the total energy in the edge layer is liberated in the blowout. Parameter dependence with respect to plasma pressure and the ion gyroradius is studied. Despite the violent nature of the short-lived process, the transition to nonlinearity is very similar to that found in generic tokamak edge turbulence.

  20. Lasing modes in polycrystalline and amorphous photonic structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng Fatt; Rooks, Michael J.; Solomon, Glenn S.; Cao Hui

    2011-09-15

    We systematically studied the lasing characteristics in photonic polycrystalline and amorphous structures. 2D arrays of air holes were fabricated in a GaAs membrane. InAs quantum dots embedded in the membrane provide gain for lasing under optical pumping. The lasing modes are spatially localized, and blue shift as the structural order becomes short ranged. Our three-dimensional numerical simulations reveal that the out-of-plane leakage of the lasing mode dominates over the in-plane leakage. The lasing modes in a photonic polycrystalline move away from the center frequency of the photonic band gap to reduce the out-of-plane leakage. In a photonic amorphous structure, the short-range order improves optical confinement and enhances the quality factor of resonances. Understanding the behavior of photonic polycrystalline laser and amorphous laser opens the possibility of controlling lasing characteristic by varying the degree of structural order.

  1. Overview of Common Mode Outages in Power Systems

    SciTech Connect (OSTI)

    Papic, Milorad; Awodele , Kehinde; Billinton, Roy; Dent, Chris; Eager, Dan; Hamoud, Gomaa; Jirutitijaroen, Panida; Kumbale, Murali; Mitra, Joydeep; Samaan, Nader A.; Schneider, Alex; Singh, Chanan

    2012-11-10

    This paper is a result of ongoing activity carried out by Probability Applications for Common Mode Events (PACME) Task Force under the Reliability Risk and Probability Applications (RRPA) Subcommittee. The paper is intended to constitute a valid source of information and references about dealing with common-mode outages in power systems reliability analysis. This effort involves reviewing published literature and presenting state-of-the-art research and practical applications in the area of common-mode outages. Evaluation of available outage statistics show that there is a definite need for collective effort from academia and industry to not only recommended procedures for data collection and monitoring but also to provide appropriate mathematical models to assess such events.

  2. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect (OSTI)

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  3. Asymmetric tearing mode in the presence of viscosity

    SciTech Connect (OSTI)

    Militello, F.; Grasso, D.; Marchetto, C.; Ottaviani, M.

    2011-11-15

    The linear stability of the tearing mode (TM) in a plasma column is investigated in the presence of viscosity and finite equilibrium current density gradients (i.e., asymmetries). It is shown that for low {beta}, both effects are essential in order to properly describe the mode behaviour close to marginality. In particular, the theory introduces a critical threshold for the destabilization, such that the perturbation grows only if {Delta}'>{Delta}'{sub cr}. The value of {Delta}'{sub cr} depends on the equilibrium configuration and on the plasma parameters. Most importantly, {Delta}'{sub cr} can take negative values, thus allowing unstable tearing modes for {Delta}' < 0 (even in the absence of bootstrap current).

  4. Linear mode conversion of Langmuir/z-mode waves to radiation in plasmas with various magnetic field strength

    SciTech Connect (OSTI)

    Kim, Eun-Hwa; Johnson, Jay R.; Cairns, Iver H.

    2013-12-15

    Linear mode conversion of Langmuir/z waves to electromagnetic radiation near the plasma and upper hybrid frequency in the presence of density gradients is potentially relevant to type II and III solar radio bursts, ionospheric radar experiments, pulsars, and continuum radiation for planetary magnetospheres. Here, we study mode conversion in warm, magnetized plasmas using a numerical electron fluid simulation code when the density gradient has a wide range of angle, δ, to the ambient magnetic field, B{sub 0}, for a range of incident Langmuir/z wavevectors. Our results include: (1) Left-handed polarized ordinary (oL) and right-handed polarized extraordinary (xR) mode waves are produced in various ranges of δ for Ω{sub 0} = (ωL/c){sup 1/3}(ω{sub ce}/ω) < 1.5, where ω{sub ce} is the (angular) electron cyclotron frequency, ω is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light; (2) the xR mode is produced most strongly in the range, 40° < δ < 60°, for intermediately magnetized plasmas with Ω{sub 0} = 1.0 and 1.5, while it is produced over a wider range, 0° ≤ δ ≤ 90°, for weakly magnetized plasmas with Ω{sub 0} = 0.1 and 0.7; (3) the maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%–99% and the corresponding energy conversion efficiencies are 5%–14% (depending on the adiabatic index γ and β = T{sub e}/m{sub e}c{sup 2}, where T{sub e} is the electron temperature and m{sub e} is the electron) for various Ω{sub 0}; (4) the mode conversion window becomes wider as Ω{sub 0} and δ increase. Hence, the results in this paper confirm that linear mode conversion under these conditions can explain the weak total circular polarization of interplanetary type II and III solar radio bursts because a strong xR mode can be generated via linear mode conversion near δ ∼ 45°.

  5. Non-linear mode interaction between spin torque driven and damped modes in spin torque nano-oscillators

    SciTech Connect (OSTI)

    Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.; Ebels, U.; Delaët, B.

    2015-05-11

    The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currents and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.

  6. Strong coupling of plasmon and nanocavity modes for dual-band, near-perfect absorbers and ultrathin photovoltaics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Wangperawong, Artit; Roelofs, Katherine E.; Bent, Stacey F.

    2016-01-29

    In this study, when optical resonances interact strongly, hybridized modes are formed with mixed properties inherited from the basic modes. Strong coupling therefore tends to equalize properties such as damping and oscillator strength of the spectrally separate resonance modes. This effect is here shown to be very useful for the realization of near-perfect dual-band absorption with ultrathin (~10 nm) layers in a simple geometry. Absorber layers are constructed by atomic layer deposition of the heavy-damping semiconductor tin monosulfide (SnS) onto a two-dimensional gold nanodot array. In combination with a thin (55 nm) SiO2 spacer layer and a highly reflective Almore » film on the back, a semiopen nanocavity is formed. The SnS-coated array supports a localized surface plasmon resonance in the vicinity of the lowest order antisymmetric Fabry–Perot resonance of the nanocavity. Very strong coupling of the two resonances is evident through anticrossing behavior with a minimum peak splitting of 400 meV, amounting to 24% of the plasmon resonance energy. The mode equalization resulting from this strong interaction enables simultaneous optical impedance matching of the system at both resonances and thereby two near-perfect absorption peaks, which together cover a broad spectral range. When paired with the heavy damping from SnS band-to-band transitions, this further enables approximately 60% of normal incident solar photons with energies exceeding the band gap to be absorbed in the 10 nm SnS coating. Thereby, these results establish a distinct relevance of strong coupling phenomena to efficient, nanoscale photovoltaic absorbers and more generally for fulfilling a specific optical condition at multiple spectral positions.« less

  7. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  8. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  9. LOCAL MEASUREMENTS OF TEARING MODE FLOWS AND THE MHD DYNAMO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOCAL MEASUREMENTS OF TEARING MODE FLOWS AND THE MHD DYNAMO IN THE MST REVERSED-FIELD PINCH by David A. Ennis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the University of Wisconsin-Madison 2008 i Local Measurements of Tearing Mode Flows and the MHD Dynamo in the MST Reversed-Field Pinch David A. Ennis Under the supervision of Dr. Darren J. G. Craig and Professor Stewart C. Prager At the University of Wisconsin-Madison

  10. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    SciTech Connect (OSTI)

    L.E. Zakharov

    2010-11-22

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the ?-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  11. Accelerator-mode-based technique for studying quantum chaos

    SciTech Connect (OSTI)

    D'Arcy, M.B.; Godun, R.M.; Cassettari, D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Summy, G.S. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078-3072 (United States)

    2003-02-01

    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wave packets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing-wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.

  12. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOE Patents [OSTI]

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  13. Nonlinear normal modes modal interactions and isolated resonance curves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweepmore » excitations of increasing amplitudes.« less

  14. Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners

    Energy Savers [EERE]

    Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners and Central Air Conditioning Heat Pumps July 8, 2014 On June 27, 2011, the Department of Energy (DOE) published in the Federal Register a direct final rule (DFR) under the Energy Policy and Conservation Act (EPCA), 42 U.S.C. §§ 6291-6309, which set forth amended energy conservation standards for central air conditioners and central air conditioning heat pumps (CAC/HP), including a new standard for off mode electrical

  15. Wind Turbine Gearbox Failure Modes - A Brief (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.; McDade, M.; Errichello, R.

    2011-10-01

    Wind turbine gearboxes are not always meeting 20-year design life. Premature failure of gearboxes increases cost of energy, turbine downtime, unplanned maintenance, gearbox replacement and rebuild, and increased warranty reserves. The problem is widespread, affects most Original Equipment Manufacturers, and is not caused by manufacturing practices. There is a need to improve gearbox reliability and reduce turbine downtime. The topics of this presentation are: GRC (Gearbox Reliability Collaborative) technical approach; Gearbox failure database; Recorded incidents summary; Top failure modes for bearings; Top failure modes for gears; GRC test gearbox; Bearing nomenclature; Test history; Real damage; Gear sets; Bearings; Observations; and Summary. 5 refs.

  16. Nonlinear normal modes modal interactions and isolated resonance curves

    SciTech Connect (OSTI)

    Kuether, Robert J.; Renson, L.; Detroux, T.; Grappasonni, C.; Kerschen, G.; Allen, M. S.

    2015-05-21

    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balance technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. Furthermore, the practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.

  17. Mechanism of force mode dip-pen nanolithography

    SciTech Connect (OSTI)

    Yang, Haijun E-mail: swguo@sjtu.edu.cn; Xie, Hui; Rong, Weibin; Sun, Lining; Wu, Haixia; Guo, Shouwu E-mail: swguo@sjtu.edu.cn

    2014-05-07

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and Z-scan voltage variations during the FMDPN. The operation parameters including the relative trigger threshold and surface delay parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  18. TM01-mode microwave propagation property analysis for plasmas with

    Office of Scientific and Technical Information (OSTI)

    disk-plate windows by a finite-difference time-domain method (Journal Article) | SciTech Connect TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Citation Details In-Document Search Title: TM01-mode microwave propagation property analysis for plasmas with disk-plate windows by a finite-difference time-domain method Numerical studies of microwave propagation properties in a conical horn and an adjustable

  19. Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and

    Office of Scientific and Technical Information (OSTI)

    Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  20. Unusual layer-dependent charge distribution, collective mode coupling, and

    Office of Scientific and Technical Information (OSTI)

    superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  1. Alternative Fuels Data Center: Clean Cities Reflects on 20 Years of

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Clean Cities Reflects on 20 Years of Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Clean Cities Reflects on 20 Years of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Clean Cities Reflects on 20 Years of Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Clean Cities Reflects on 20 Years of Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Clean Cities Reflects on 20 Years of

  2. Nonlinear simulations of peeling-ballooning modes with anomalous electron viscosity and their role in edge localized mode crashes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, X. Q.; Dudson, B.; Snyder, P. B.; Umansky, M. V.; Wilson, H.

    2010-10-22

    A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects (diamagnetic drift, E×B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnection, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity under the assumption that the electron viscosity is comparable to the anomalous electron thermal diffusivity, it is found from simulations using a realisticmore » high-Lundquist number that the pedestal collapse is limited to the edge region and the edge localized mode (ELM) size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs.« less

  3. Localized Ballooning Modes in Compact Quasiaxially Symmetric Stellarators

    SciTech Connect (OSTI)

    M.H. Redi; J. Canik; R.L. Dewar; E.D. Fredrickson; W.A. Cooper; J.L. Johnson; S. Klasky

    2001-06-14

    Understanding of ballooning mode stability boundaries may lead to performance improvement of toroidal devices through control of plasma disruptions. Toroidally localized ballooning modes have been found as precursors to high-beta plasma disruptions on the Tokamak Fusion Test Reactor (TFTR) arising in conditions of n=1 kink mode asymmetry. Recent optimization has shown that magnetohydrodynamic (MHD) stability as well as good particle confinement are likely to be achievable in the National Compact Stellarator Experiment (NCSX), a compact, quasiaxially symmetric stellarator (QAS) for values of the plasma near beta = 4%. The configuration, with a major radius of 1.42 m, an aspect ratio of 4.4, a toroidal magnetic field 1.2-1.7 T and 6 MW of neutral-beam heating, is stable to MHD instabilities, and is expected to be limited by high-n kink and ballooning modes. This paper describes the ballooning eigenvalue isosurfaces for NCSX, the first step in an examination of the kinetic stabilization of the ballooning beta limit using a hybrid WKB approach.

  4. Nonlinear dynamics of large amplitude modes in a magnetized plasma

    SciTech Connect (OSTI)

    Brodin, G.; Stenflo, L.

    2014-12-15

    We derive two equations describing the coupling between electromagnetic and electrostatic oscillations in one-dimensional geometry in a magnetized cold and non-relativistic plasma. The nonlinear interaction between the wave modes is studied numerically. The effects of the external magnetic field strength and the initial electromagnetic polarization are of particular interest here. New results can, thus, be identified.

  5. Stress Induced Degradation Modes in CIGSS Minimodules (Presentation)

    SciTech Connect (OSTI)

    Kempe, M. D.; Terwilliger, K.; Tarrant, D.

    2008-05-01

    The experimental objectives of this report are: (1) compare the performance of modules exposed to high temperature and humidity; (2) determine the effects of different encapsulants on long term stability of CIGSS modules; and (3) analyze failure modes to determine areas in need of improvement.

  6. Critical {delta}{sup '} for stability of viscoresistive tearing modes

    SciTech Connect (OSTI)

    Grasso, D.; Hastie, R. J.; Porcelli, F.; Tebaldi, C.

    2008-07-15

    An analytic expression for the stability threshold of linear tearing modes is derived. The magnetized plasma is described in terms of a standard viscoresistive magnetohydrodynamic model. The analytic derivation requires an extension of the standard layer equation that represents an approximation of the full model in the vicinity of the reconnecting layer. The analytic result is checked against numerical simulations, showing excellent agreement.

  7. Cosmic super-strings and Kaluza-Klein modes

    SciTech Connect (OSTI)

    Dufaux, Jean-Franois

    2012-09-01

    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.

  8. Microsoft PowerPoint - ARM_2009_Poster.ppt [Compatibility Mode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity be achieved with the WSR- 88D? Sensitivity of the WSR-88D with the 'cloud' signal processing Polarimetric fields, differential reflectivity Z DR Reflectivity Z ,...

  9. Northwest Energy Innovations (TRL 5 6 System)- WETNZ MtiMode Wave Energy Converter Advancement Project

    Broader source: Energy.gov [DOE]

    Northwest Energy Innovations (TRL 5 6 System) - WETNZ MtiMode Wave Energy Converter Advancement Project

  10. Polarization Studies of Resonant Forbidden Reflections in Liquid Crystals

    SciTech Connect (OSTI)

    Fernandes, P.; Barois, P.; Nguyen, H. T.; Wang, S. T.; Liu, Z. Q.; McCoy, B. K.; Huang, C. C.; Pindak, R.; Caliebe, W.

    2007-11-30

    We report the results of resonant x-ray diffraction experiments performed on thick films of a biaxial liquid crystal made of achiral bent-core molecules. Polarization properties of forbidden reflections are observed as a function of the sample rotation angle {phi} about the scattering vector Q for the first time on a fluid material. The experimental data are successfully analyzed within a tensor structure factor model by taking the nonperfect alignment of the liquid crystal into account. The local structure of the B{sub 2} mesophase is hence determined to be SmC{sub S}P{sub A}.

  11. Fresnel reflection from a cavity with net roundtrip gain

    SciTech Connect (OSTI)

    Mansuripur, Tobias S.; Mansuripur, Masud

    2014-03-24

    A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in field amplitude, yet applying the Fresnel formalism to Maxwell's equations admits a convergent solution. We describe this solution mathematically and provide additional insight by demonstrating the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have often been overlooked in the literature, and a clear understanding of their behavior yields insight to negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal reflection, and the negative-index lens.

  12. Axisymmetric oscillation modes of a double droplet system

    SciTech Connect (OSTI)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) the pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)?R3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. In particular, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =?/??R? , where ? is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.

  13. Axisymmetric oscillation modes of a double droplet system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  14. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOE Patents [OSTI]

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  15. Pulsation modes of long-period variables in the period-luminosity plane

    SciTech Connect (OSTI)

    Soszyński, I.; Udalski, A.; Wood, P. R. E-mail: udalski@astrouw.edu.pl

    2013-12-20

    We present a phenomenological analysis of long-period variables (LPVs) in the Large Magellanic Cloud with the aim of detecting pulsation modes associated with different period-luminosity (PL) relations. Among brighter LPVs, we discover a group of triple-mode semi-regular variables with the fundamental, first-overtone, and second-overtone modes simultaneously excited, which fall on PL sequences C, C', and B, respectively. The mode identification in the fainter red giants is more complicated. We demonstrate that the fundamental-mode pulsators partly overlap with the first-overtone modes. We show a possible range of fundamental mode and first overtone periods in the PL diagram.

  16. Benchmark Evaluation of Plutonium Hemispheres Reflected by Steel and Oil

    SciTech Connect (OSTI)

    John Darrell Bess

    2008-06-01

    During the period from June 1967 through September 1969 a series of critical experiments was performed at the Rocky Flats Critical Mass Laboratory with spherical and hemispherical plutonium assemblies as nested hemishells as part of a Nuclear Safety Facility Experimental Program to evaluate operational safety margins for the Rocky Flats Plant. These assemblies were both bare and fully or partially oil-reflected. Many of these experiments were subcritical with an extrapolation to critical configurations or critical at a particular oil height. Existing records reveal that 167 experiments were performed over the course of 28 months. Unfortunately, much of the data was not recorded. A reevaluation of the experiments had been summarized in a report for future experimental and computational analyses. This report examines only fifteen partially oil-reflected hemispherical assemblies. Fourteen of these assemblies also had close-fitting stainless-steel hemishell reflectors, used to determine the effective critical reflector height of oil with varying steel-reflector thickness. The experiments and their uncertainty in keff values were evaluated to determine their potential as valid criticality benchmark experiments of plutonium.

  17. Diffuse reflectance FTIR of stains on grit blasted metals

    SciTech Connect (OSTI)

    Powell, G.L.; Hallman, R.L. Jr.; Cox, R.L.

    1997-08-09

    Diffuse reflectance mid-infrared Fourier transform (DRIFT) spectroscopy has been applied to the detection of oil contamination on grit-blasted metals. The object of this application is to detect and discriminate between silicone and hydrocarbon oil contamination at levels approaching 10 mg/m{sup 2}. A portable FTIR spectrometer with dedicated diffuse reflectance optics was developed for this purpose. Using translation devices positioned by instructions from the spectrometer operating system, images of macroscopic substrates were produced with millimeter spatial resolution. The pixels that comprise an image are each a full mid-infrared spectrum with excellent signal-to-noise, each determined as individual files and uniquely saved to disc. Reduced spectra amplitudes, based on peak height, area, or other chemometric techniques, mapped as a function of the spatial coordinates of the pixel are used to display the image. This paper demonstrates the application of the technique to the analysis of stains on grit-blasted metals, including the calibration of the method, the inspection of substrates, and the migration of oil contamination.

  18. Progress toward achieving a commercially viable solar reflective material

    SciTech Connect (OSTI)

    Kennedy, C.E.; Smilgys, R.V. |

    1998-06-01

    Solar thermal technologies use large mirrors to concentrate sunlight for renewable power generation. The development of advanced reflector materials is important to the viability of electricity production by solar thermal energy systems. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. Production processes associated with candidate materials must be scalable to mass production techniques. A promising low-cost construction uses a stainless steel foil substrate with a silver reflective layer protected by an optically transparent oxide topcoat. Thick (2 to 4 micron), dense alumina coatings provide durable protective layers. The excellent performance of alumina-coated reflector materials in outdoor and accelerated testing suggests that a larger field trial of the material is warranted. The key to producing a greater quantity of material for field deployment and testing without incurring substantial capital is the use of a chilled drum coater. An existing chamber is being modified, and the deposition rate will be increased prior to the installation of a drum coater to produce 1-ft wide by 10-ft long strips of solar reflector material. The production and performance of these materials are discussed.

  19. In-flight observations of low-mode ρR asymmetries in NIF implosions

    SciTech Connect (OSTI)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Doppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  20. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; et al

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which aremore » interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  1. Doubly resonant optical parametric oscillator synchronously pumped by a frequency-doubled, mode-locked, and Q -switched diode laser pumped neodymium yttrium lithium fluoride laser

    SciTech Connect (OSTI)

    Maker, G.T. ); Ferguson, A.I. )

    1990-04-23

    We report on the synchronous pumping of an optical parametric oscillator (OPO) using a frequency-doubled, mode-locked, and {ital Q}-switched diode laser pumped yttrium lithium fluoride laser. Using a 1 W pump diode, frequency modulation mode locking, and acousto-optic {ital Q} switching, a pulse envelope of 75 ns duration and 45 {mu}J of energy in 21 ps pulses at 360 MHz repetition rate was obtained. This was frequency doubled in 90{degree} phase-matched MgO:LiNbO{sub 3} with 47% energy conversion efficiency. The doubly resonant OPO based upon temperature-tuned MgO:LiNbO{sub 3} had an energy conversion efficiency of 20% at degeneracy. The tuning range of 983--1119 nm was limited by the mirror reflectivities.

  2. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect (OSTI)

    Olmedo, Oscar; Vourlidas, Angelos; Zhang Jie; Cheng Xin

    2012-09-10

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  3. Compact representation of radiation patterns using spherical mode expansions

    SciTech Connect (OSTI)

    Simpson, T.L.; Chen, Yinchao . Dept. of Electrical and Computer Engineering)

    1990-07-15

    This report presents the results of an investigation of SM (Spherical Mode) expansions as a compact and efficient alternative to the use of current distributions for generating radiation patterns. The study included three areas: (1) SM expansion from the radiation pattern; (2) SM expansion from the antenna current; and (3) Literature search. SM expansions were obtained from radiation patterns during the initial phase of this study. Although straightforward in principal, however, this technique was found to be awkward for the treatment on theoretical radiation patterns. It is included here for completeness and for possible use to summarize experimental results in a more meaningful way than with an exhaustive display of amplitude with azimuth and elevation angles. In essence, the work in this area served as as warm-up problem to develop our skills in computing and manipulating spherical modes as mathematical entities. 6 refs., 21 figs., 6 tabs.

  4. Active/passive mode-locked laser oscillator

    DOE Patents [OSTI]

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  5. Theoretic base of Edge Local Mode triggering by vertical displacements

    SciTech Connect (OSTI)

    Wang, Z. T.; He, Z. X.; Wang, Z. H.; Wu, N.; Tang, C. J.

    2015-05-15

    Vertical instability is studied with R-dependent displacement. For Solovev's configuration, the stability boundary of the vertical instability is calculated. The pressure gradient is a destabilizing factor which is contrary to Rebhan's result. Equilibrium parallel current density, j{sub //}, at plasma boundary is a drive of the vertical instability similar to Peeling-ballooning modes; however, the vertical instability cannot be stabilized by the magnetic shear which tends towards infinity near the separatrix. The induced current observed in the Edge Local Mode (ELM) triggering experiment by vertical modulation is derived. The theory provides some theoretic explanation for the mitigation of type-I ELMS on ASDEX Upgrade. The principle could be also used for ITER.

  6. Present and Future Modes of Low Frequency Climate Variability

    SciTech Connect (OSTI)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  7. The whistler mode refractive index as a function of gyrofrequency

    SciTech Connect (OSTI)

    Albert, J. M.

    2011-08-15

    The refractive index for a constant-frequency whistler mode wave in an electron-proton plasma is considered as a function of position, through the local gyrofrequencies {Omega}{sub e,i}. The full cold plasma dispersion relation is used. The wave frequency can take any value up to the smaller of {Omega}{sub e} and the plasma frequency {omega}{sub pe}, but {omega}{sub pe} is allowed to take any fixed value, as is the wavenormal angle. It is rigorously established that the refractive index is a decreasing function of {Omega}{sub e}. One application of this is to finding locations of Landau and cyclotron resonances, to evaluate the effects of whistler mode waves on radiation belt electrons.

  8. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  9. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; Kronfeld, Andreas S.

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  10. Development and Use of the Dual-Mode Plasma Torch

    SciTech Connect (OSTI)

    Womack, R.; Shuey, M.

    2002-02-26

    After several years of development, a commercially available high-temperature treatment system has been developed and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing, unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and costs associated with conventional sorting, characterizing and handling. Plasma technology can also be used to treat previous conditioned waste packages that no longer meet the current acceptance criteria for final disposal. Plasma treatment can result, in many cases, in a substantial volume reduction, which lowers the final disposal costs. This paper covers the recently patented dual mode plasma torch design(1), the lessons learned that fostered its development and the advantages it brings to radioactive waste processing. This paper also provides current full scale Plasma Arc Centrifugal Treatment (PACT) project status and how the dual mode torch is being used in the PACT system.

  11. Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas

    SciTech Connect (OSTI)

    Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; Consejo Nacional de Investigaciones Cientficas y Tcnicas , Bariloche ; Garca-Martnez, P. L.; Lifschitz, A. F.

    2013-07-15

    A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.

  12. Reduction in Vehicle Temperatures and Fuel Use from Cabin Ventilation, Solar-Reflective Paint, and a New Solar-Reflective Glazing

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Meyer, J.; Rustagi, M.; Olson, K.; Kogler, R.

    2007-05-01

    An analysis to determine the impact of reducing the thermal load on a vehicle using solar-reflective paint and glazing.

  13. V-142: Oracle Java Reflection API Flaw Lets Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Oracle Java Reflection API Flaw Lets Remote Users Execute Arbitrary Code V-142: Oracle Java Reflection API Flaw Lets Remote Users Execute Arbitrary Code April 25, 2013 - 12:14am...

  14. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations This...

  15. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of ... A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of ...

  16. Understanding the H-Mode Pedestal, Gyrokinetic Simulations and Their

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications | Princeton Plasma Physics Lab January 7, 2016, 10:30am to 11:45am Colloquia MBG AUDITORIUM Understanding the H-Mode Pedestal, Gyrokinetic Simulations and Their Implications Dr. Mike Kotschenreuther University of Texas, Austin ThC07Jan2016_MKotschenreuther Colloquium Committee: The Princeton Plasma Physics Laboratory 2015-2016 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future

  17. Dynamical dipole mode in fusion reactions with exotic nuclear beams

    SciTech Connect (OSTI)

    Baran, V.; Rizzo, C.; Colonna, M.; Toro, M. Di; Pierroutsakou, D.

    2009-02-15

    We report the properties of the prompt dipole radiation, produced via a collective bremsstrahlung mechanism, in fusion reactions with exotic beams. We show that the {gamma} yield is sensitive to the density dependence of the symmetry energy below/around saturation. Moreover, we find that the angular distribution of the emitted photons from such fast collective mode can represent a sensitive probe of its excitation mechanism and of fusion dynamics in the entrance channel.

  18. Raman scattering in a whispering mode optical waveguide

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1982-01-01

    A device and method for Raman scattering in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature .rho. p for confining the beam to increase intensity. A Raman scattering medium is disposed in the optical path of the beam as it propagates along the waveguide. Raman scattering is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  19. with multiple torsional modes and when there are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    multiple torsional modes and when there are hydrogen bonds formed for some of the geometries. The presence of hydrogen bonds particularly compli- cates things by coupling some of the other vibrational motions to the torsional motions. In particular, many of the bending frequencies become quite strongly de- pendent on the torsional geometry. Truhlar has devel- oped a method that treats this difficulty by explicitly considering the contributions from each of the differ- ent torsional minima. The

  20. Composite slip table of dissimilar materials for damping longitudinal modes

    DOE Patents [OSTI]

    Gregory, Danny L. (Albuquerque, NM); Priddy, Tommy G. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM); Woodall, Tommy D. (Albuquerque, NM)

    1991-01-01

    A vibration slip table for use in a vibration testing apparatus. The table s comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes.

  1. Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  2. Mode and Intermediate Waters in Earth System Models

    SciTech Connect (OSTI)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  3. Optical pumping in a whispering mode optical waveguide

    DOE Patents [OSTI]

    Kurnit, Norman A.

    1984-01-01

    A device and method for optical pumping in a whispering mode optical waveguide. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction pathlengths which are achieved in a small volume.

  4. BES Web Highlight: Single-mode gallium nitride nanowire lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Highlight: Single-mode gallium nitride nanowire lasers - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  5. Optical pumping in a whispering-mode optical waveguide

    DOE Patents [OSTI]

    Kurnit, N.A.

    1981-08-11

    A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

  6. Vibrational modes of ultrathin carbon nanomembrane mechanical resonators

    SciTech Connect (OSTI)

    Zhang, Xianghui E-mail: elke.scheer@uni-konstanz.de; Angelova, Polina; Gölzhäuser, Armin; Waitz, Reimar; Yang, Fan; Lutz, Carolin; Scheer, Elke E-mail: elke.scheer@uni-konstanz.de

    2015-02-09

    We report measurements of vibrational mode shapes of mechanical resonators made from ultrathin carbon nanomembranes (CNMs) with a thickness of approximately 1 nm. CNMs are prepared from electron irradiation induced cross-linking of aromatic self-assembled monolayers and the variation of membrane thickness and/or density can be achieved by varying the precursor molecule. Single- and triple-layer freestanding CNMs were made by transferring them onto Si substrates with square/rectangular orifices. The vibration of the membrane was actuated by applying a sinusoidal voltage to a piezoelectric disk on which the sample was glued. The vibrational mode shapes were visualized with an imaging Mirau interferometer using a stroboscopic light source. Several mode shapes of a square membrane can be readily identified and their dynamic behavior can be well described by linear response theory of a membrane with negligible bending rigidity. By applying Fourier transformations to the time-dependent surface profiles, the dispersion relation of the transverse membrane waves can be obtained and its linear behavior verifies the membrane model. By comparing the dispersion relation to an analytical model, the static stress of the membranes was determined and found to be caused by the fabrication process.

  7. A Prescription for List-Mode Data Processing Conventions

    SciTech Connect (OSTI)

    Beddingfield, David H.; Swinhoe, Martyn Thomas; Huszti, Jozsef; Newell, Matthew R.

    2015-10-08

    There are a variety of algorithmic approaches available to process list-mode pulse streams to produce multiplicity histograms for subsequent analysis. In the development of the INCC v6.0 code to include the processing of this data format, we have noted inconsistencies in the “processed time” between the various approaches. The processed time, tp, is the time interval over which the recorded pulses are analyzed to construct multiplicity histograms. This is the time interval that is used to convert measured counts into count rates. The observed inconsistencies in tp impact the reported count rate information and the determination of the error-values associated with the derived singles, doubles, and triples counting rates. This issue is particularly important in low count-rate environments. In this report we will present a prescription for the processing of list-mode counting data that produces values that are both correct and consistent with traditional shift-register technologies. It is our objective to define conventions for list mode data processing to ensure that the results are physically valid and numerically aligned with the results from shift-register electronics.

  8. Kink modes and surface currents associated with vertical displacement events

    SciTech Connect (OSTI)

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-15

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, q{sub axis}, remains fixed and the q{sub edge} systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when q{sub edge} drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  9. Copper-assisted, anti-reflection etching of silicon surfaces

    DOE Patents [OSTI]

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  10. Volume Reflection of a Proton Beam in a Bent Crystal

    SciTech Connect (OSTI)

    Ivanov, Yu. M.; Petrunin, A. A.; Skorobogatov, V. V.; Gavrikov, Yu. A.; Gelamkov, A. V.; Lapina, L. P.; Schetkovsky, A. I.; Vavilov, S. A.; Baranov, V. I.; Chesnokov, Yu. A.; Afonin, A. G.; Baranov, V. T.; Chepegin, V. N.; Guidi, V.; Vomiero, A.

    2006-10-06

    Volume reflection predicted in the mid-1980s by Taratin and Vorobiev has been observed for the first time in the interactions of a 70 GeV proton beam with a short bent crystal. Incident protons deviate from convex atomic planes in the bulk of the crystal as a result of coherent interaction with bent lattice around the tangency point of particle trajectory with a curved atomic plane. The deflection angle 2{theta}{sub R} was found to be (39.5{+-}2.0) {mu}rad, or (1.65{+-}0.08){theta}{sub c} in terms of the critical angle for channeling. The process has a large probability with respect to channeling and takes place in the angular range equal to the bend angle of atomic planes. It could possibly open new fields of application of crystals in high-energy particle beam optics.

  11. Aberration-free, all-reflective laser pulse stretcher

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Fochs, Scott N. (Livermore, CA)

    1999-09-28

    An all-reflective pulse stretcher for laser systems employing chirped-pulse amplification enables on-axis use of the focusing mirror which results in ease of use, significantly decreased sensitivity to alignment and near aberration-free performance. By using a new type of diffraction grating which contains a mirror incorporated into the grating, the stretcher contains only three elements: 1) the grating, 2) a spherical or parabolic focusing mirror, and 3) a flat mirror. Addition of a fourth component, a retro-reflector, enables multiple passes of the same stretcher resulting in stretching ratios beyond the current state of the art in a simple and compact design. The pulse stretcher has been used to stretch pulses from 20 fsec to over 600 psec (a stretching ratio in excess of 30,000).

  12. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    SciTech Connect (OSTI)

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  13. Spectroscopic Detection of Pathogens

    SciTech Connect (OSTI)

    ALAM,M. KATHLEEN; TIMLIN,JERILYN A.; MARTIN,LAURA E.; HJELLE,DRIAN; LYONS,RICK; GARRISON,KRISTIN

    2000-11-01

    The goal of this LDRD Research project was to provide a preliminary examination of the use of infrared spectroscopy as a tool to detect the changes in cell cultures upon activation by an infectious agent. Due to a late arrival of funding, only 5 months were available to transfer and setup equipment at UTTM,develop cell culture lines, test methods of in-situ activation and collect kinetic data from activated cells. Using attenuated total reflectance (ATR) as a sampling method, live cell cultures were examined prior to and after activation. Spectroscopic data were collected from cells immediately after activation in situ and, in many cases for five successive hours. Additional data were collected from cells activated within a test tube (pre-activated), in both transmission mode as well as in ATR mode. Changes in the infrared data were apparent in the transmission data collected from the pre-activated cells as well in some of the pre-activated ATR data. Changes in the in-situ activated spectral data were only occasionally present due to (1) the limited time cells were studied and (2) incomplete activation. Comparison of preliminary data to infrared bands reported in the literature suggests the primary changes seen are due an increase in ribonucleic acid (RNA) production. This work will be continued as part of a 3 year DARPA grant.

  14. ATR/TOR-201X(XXXX)-XXXX

    National Nuclear Security Administration (NNSA)

    AEROSPACE REPORT NO. TOR-2015-01848 Plutonium Disposition Study Options Independent Assessment Phase 1 Report Option 1: MOX Fuel Option 4: Downblend April 13, 2015 Matthew J. Hart 1 , Nichols F. Brown 2 , Mark J. Rokey 1 , Harold J. Huslage 3 , Denise J. Castro-Bran 4 , Norman Y. Lao 5 , Roland J. Duphily 5 , Vincent M. Canales 2 , Joshua P. Davis 6 , Whitney L. Plumb-Starnes 7 , Jya-Syin W. Chien 5 1 Civil Applications Directorate, Civil and Commercial Programs Division 2 Schedule and Cost

  15. ATR National Scientific User Facility 2013 Annual Report

    SciTech Connect (OSTI)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  16. ATR/TOR-201X(XXXX)-XXXX

    National Nuclear Security Administration (NNSA)

    ... and demolition (D&D) and return to green field. 28 9. Qualitative Assessment ... to accept and use MOX fuel; Duke Energy participated in some early testing of MOX ...

  17. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to make the system portable, compact, and lightweight. A variety of design alternatives are presented and evaluated. Finally, a GUI software package is developed to interface with several teleoperation unit components. These components include an industrial robot, electric motor, encoder, force/torque sensor, and CCD camera. The software includes features such as position scaling, force scaling, and rereferencing and is intended to provide a sound basis for the development of a multi-DOF FRMC system in the future.

  18. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  19. MIT's Plasma Science Fusion Center: I-Mode Powers Up on Alcator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I-Mode Powers Up on Alcator C-Mod Tokamak American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: MIT's Plasma Science Fusion Center: I-Mode Powers Up on...

  20. Toward a Single Mode Free Electron Laser for Coherent Hard X...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Toward a Single Mode Free Electron Laser for Coherent Hard X-Ray Experiments Citation Details In-Document Search Title: Toward a Single Mode Free Electron Laser...

  1. Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas...

    Office of Scientific and Technical Information (OSTI)

    H-mode Plasmas in the National Spherical Torus Experiment. Citation Details In-Document Search Title: Divertor Heat Flux Mitigation in High-Performance H-mode Plasmas ...

  2. In-gap collective mode spectrum of the topological Kondo insulator...

    Office of Scientific and Technical Information (OSTI)

    In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Title: In-gap collective mode spectrum of the topological Kondo insulator SmB 6 Authors: Fuhrman, W. T. ; ...

  3. Spin-polarized and valley helical edge modes in graphene nanoribbons...

    Office of Scientific and Technical Information (OSTI)

    Spin-polarized and valley helical edge modes in graphene nanoribbons Citation Details In-Document Search Title: Spin-polarized and valley helical edge modes in graphene nanoribbons ...

  4. Report 20.5: Chromaticity Shift Modes of LED PAR38 Lamps Operated...

    Energy Savers [EERE]

    5: Chromaticity Shift Modes of LED PAR38 Lamps Operated in Steady-State Conditions Report 20.5: Chromaticity Shift Modes of LED PAR38 Lamps Operated in Steady-State Conditions PDF ...

  5. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    SciTech Connect (OSTI)

    Moradi, Afshin

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  6. Curvature effect on tearing modes in presence of neoclassical friction

    SciTech Connect (OSTI)

    Maget, Patrick; Mellet, Nicolas; Meshcheriakov, Dmytro; Garbet, Xavier; Lütjens, Hinrich

    2013-11-15

    Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.

  7. Active control of the resistive wall mode with power saturation

    SciTech Connect (OSTI)

    Li Li; Liu Yue [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Liu Yueqiang [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2012-01-15

    An analytic model of non-linear feedback stabilization of the resistive wall mode is presented. The non-linearity comes from either the current or the voltage saturation of the control coil power supply. For the so-called flux-to-current control, the current saturation of active coils always results in the loss of control. On the contrary, the flux-to-voltage control scheme tolerates certain degree of the voltage saturation. The minimal voltage limit is calculated, below which the control will be lost.

  8. Entropy mode loops and cosmological correlations during perturbative reheating

    SciTech Connect (OSTI)

    Kaya, Ali; Kutluk, Emine Seyma E-mail: seymakutluk@gmail.com

    2015-01-01

    Recently, it has been shown that during preheating the entropy modes circulating in the loops, which correspond to the inflaton decay products, meaningfully modify the cosmological correlation functions at superhorizon scales. In this paper, we determine the significance of the same effect when reheating occurs in the perturbative regime. In a typical two scalar field model, the magnitude of the loop corrections are shown to depend on several parameters like the background inflaton amplitude in the beginning of reheating, the inflaton decay rate and the inflaton mass. Although the loop contributions turn out to be small as compared to the preheating case, they still come out larger than the loop effects during inflation.

  9. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    SciTech Connect (OSTI)

    Baker, C. J. Danielson, J. R. Hurst, N. C. Surko, C. M.

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ?90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ?70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  10. Composite slip table of dissimilar materials for damping longitudinal modes

    DOE Patents [OSTI]

    Gregory, D.L.; Priddy, T.G.; Smallwood, D.O.; Woodall, T.D.

    1991-06-18

    A vibration slip table for use in a vibration testing apparatus is disclosed. The tables comprised of at least three composite layers of material; a first metal layer, a second damping layer, and a third layer having a high acoustic velocity relative to the first layer. The different acoustic velocities between the first and third layers cause relative shear displacements between the layers with the second layer damping the displacements between the first and third layers to reduce the table longitudinal vibration modes. 6 figures.

  11. Mixed mode control method and engine using same

    DOE Patents [OSTI]

    Kesse, Mary L.; Duffy, Kevin P.

    2007-04-10

    A method of mixed mode operation of an internal combustion engine includes the steps of controlling a homogeneous charge combustion event timing in a given engine cycle, and controlling a conventional charge injection event to be at least a predetermined time after the homogeneous charge combustion event. An internal combustion engine is provided, including an electronic controller having a computer readable medium with a combustion timing control algorithm recorded thereon, the control algorithm including means for controlling a homogeneous charge combustion event timing and means for controlling a conventional injection event timing to be at least a predetermined time from the homogeneous charge combustion event.

  12. Exotic modes of excitation in proton rich nuclei

    SciTech Connect (OSTI)

    Paar, N.

    2011-11-30

    The framework of relativistic energy density functional has been applied in description of excitation phenomena in nuclei close to the proton drip line. In particular, low-lying dipole excitations have been studied using relativistic quasiparticle random phase approximation, based on effective Lagrangians with density dependent meson nucleon couplings. In the isovector dipole channel, the occurrence of pronounced low-lying dipole peaks is predicted, corresponding to the proton pygmy dipole resonance. Since this exotic mode still awaits its experimental confirmation, systematic calculations have been conducted within a pool of neutron deficient nuclei, in order to identify the best possible candidates for measurements.

  13. Diffractive optical elements for transformation of modes in lasers

    DOE Patents [OSTI]

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  14. Tunable dark modes in one-dimensional diatomic dielectric gratings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Bo; Majumdar, Arka; Wang, Feng

    2015-05-04

    Recently researchers have demonstrated ultra high quality factor (Q) resonances in one-dimensional (1D) dielectric gratings. Here we theoretically investigate a new class of subwavelength 1D gratings, namely diatomic gratings with two nonequivalent subcells in one period, and utilize their intrinsic dark modes to achieve robust ultra high Q resonances. Such diatomic gratings provide extra design flexibility, and enable high Q resonators using thinner geometry with smaller filling factors compared to conventional designs like the high contrast gratings (HCGs). More importantly, we show that these high Q resonances can be efficiently tuned in situ, making the design appealing in various applicationsmoreincluding optical sensing, filtering and displays.less

  15. Shape error analysis for reflective nano focusing optics

    SciTech Connect (OSTI)

    Modi, Mohammed H.; Idir, Mourad

    2010-06-23

    Focusing performance of reflective x-ray optics is determined by surface figure accuracy. Any surface imperfection present on such optics introduces a phase error in the outgoing wave fields. Therefore converging beam at the focal spot will differ from the desired performance. Effect of these errors on focusing performance can be calculated by wave optical approach considering a coherent wave field illumination of optical elements. We have developed a wave optics simulator using Fresnel-Kirchhoff diffraction integral to calculate the mirror pupil function. Both analytically calculated and measured surface topography data can be taken as an aberration source to outgoing wave fields. Simulations are performed to study the effect of surface height fluctuations on focusing performances over wide frequency range in high, mid and low frequency band. The results using real shape profile measured with long trace profilometer (LTP) suggest that the shape error of {lambda}/4 PV (peak to valley) is tolerable to achieve diffraction limited performance. It is desirable to remove shape error of very low frequency as 0.1 mm{sup -1} which otherwise will generate beam waist or satellite peaks. All other frequencies above this limit will not affect the focused beam profile but only caused a loss in intensity.

  16. Phase coherence and Andreev reflection in topological insulator devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less

  17. Three-dimensional light trap for reflective particles

    DOE Patents [OSTI]

    Neal, Daniel R.

    1999-01-01

    A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.

  18. Three-dimensional light trap for reflective particles

    DOE Patents [OSTI]

    Neal, D.R.

    1999-08-17

    A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.

  19. Criticality Benchmark Analysis of Water-Reflected Uranium Oxyfluoride Slabs

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess

    2009-11-01

    A series of twelve experiments were conducted in the mid 1950's at the Oak Ridge National Laboratory Critical Experiments Facility to determine the critical conditions of a semi-infinite water-reflected slab of aqueous uranium oxyfluoride (UO2F2). A different slab thickness was used for each experiment. Results from the twelve experiment recorded in the laboratory notebook were published in Reference 1. Seven of the twelve experiments were determined to be acceptable benchmark experiments for the inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. This evaluation will not only be available to handbook users for the validation of computer codes and integral cross-section data, but also for the reevaluation of experimental data used in the ANSI/ANS-8.1 standard. This evaluation is important as part of the technical basis of the subcritical slab limits in ANSI/ANS-8.1. The original publication of the experimental results was used for the determination of bias and bias uncertainties for subcritical slab limits, as documented by Hugh Clark's paper 'Subcritical Limits for Uranium-235 Systems'.

  20. Phase coherence and Andreev reflection in topological insulator devices

    SciTech Connect (OSTI)

    Finck, A. D. K.; Kurter, C.; Hor, Y. S.; Van Harlingen, D. J.

    2014-11-04

    Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Prot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.

  1. Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess; J. Blair Briggs; Clinton Gross

    2010-09-01

    A series of ten experiments were conducted at the Oak Ridge National Laboratory Critical Experiment Facility in December 1955, and January 1956, in an attempt to determine critical conditions for a slab of aqueous uranium oxyfluoride (UO2F2). These experiments were recorded in an Oak Ridge Critical Experiments Logbook and results were published in a journal of the American Nuclear Society, Nuclear Science and Engineering, by J. K. Fox, L. W. Gilley, and J. H. Marable (Reference 1). The purpose of these experiments was to obtain the minimum critical thickness of an effectively infinite slab of UO2F2 solution by extrapolation of experimental data. To do this the slab thickness was varied and critical solution and water-reflector heights were measured using two different fuel solutions. Of the ten conducted experiments eight of the experiments reached critical conditions but the results of only six of the experiments were published in Reference 1. All ten experiments were evaluated from which five critical configurations were judged as acceptable criticality safety benchmarks. The total uncertainty in the acceptable benchmarks is between 0.25 and 0.33 % ?k/keff. UO2F2 fuel is also evaluated in HEU-SOL-THERM-043, HEU-SOL-THERM-011, and HEU-SOL-THERM-012, but these those evaluation reports are for large reflected and unreflected spheres. Aluminum cylinders of UO2F2 are evaluated in HEU-SOL-THERM-050.

  2. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and

    Office of Scientific and Technical Information (OSTI)

    comparisons with experiment (Journal Article) | SciTech Connect Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment Citation Details In-Document Search Title: Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement

  3. Laser damage by ns and sub-ps pulses on hafnia/silica anti-reflection coatings on fused silica double-sided polished using zirconia or ceria and washed with or without an alumina wash step.

    SciTech Connect (OSTI)

    Bellum, John Curtis; Rambo, Patrick K.; Schwarz, Jens; Kletecka, Damon; Atherton, Briggs W.; Kimmel, Mark W.; Smith, Ian Craig; Smith, Douglas; Hobbs, Zachary

    2010-10-01

    Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm{sup 2} for 3.5 ns pulses and 1.8 J/cm{sup 2} for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm.

  4. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    SciTech Connect (OSTI)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  5. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-22

    the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating it. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

  6. Magnetic dipole excitations in nuclei: Elementary modes of nucleonic motion

    SciTech Connect (OSTI)

    Heyde, Kris; Neumann-Cosel, Peter von; Richter, Achim

    2010-07-15

    The nucleus is one of the most multifaceted many-body systems in the Universe. It exhibits a multitude of responses depending on the way one ''probes'' it. With increasing technical advancements of beams at the various accelerators and of detection systems the nucleus has, over and over again, surprised us by expressing always new ways of ''organized'' structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus discussed in the present review. We shall not just limit ourselves to presenting the by now large data set that has been obtained in the past two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5-9 MeV in deformed nuclei nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in spherical nuclei. To the contrary, the experimental evidence is put in the perspectives of understanding the atomic nucleus and its various structures of well-organized modes of motion and thus enlarges the discussion to more general fermion and bosonic many-body systems.

  7. Variational principles with Pad approximants for tearing mode analysis

    SciTech Connect (OSTI)

    Cole, Andrew J.; Finn, John M.

    2014-03-15

    Tearing modes occur in several distinct physical regimes, and it is often important to compute the inner layer response for these modes with various effects. There is a need for an approximate and efficient method of solving the inner layer equations in all these regimes. In this paper, we introduce a method of solving the inner layer equations based on using a variational principle with Pad approximants. For all the regimes considered, the main layer equations to be solved are inhomogeneous, and Pad approximants give a convenient and efficient method of satisfying the correct asymptotic behavior at the edge of the layer. Results using this variational principlePad approximant method in three of these regimes is presented. These regimes are the constant-? resistive-inertial (RI) regime, the constant-? viscoresistive regime, and the non-constant-? inviscid tearing regime. The last regime includes the constant-? RI regime and the inertial regime. The results show that reasonable accuracy can be obtained very efficiently with Pad approximants having a small number of parameters.

  8. Concentric core optical fiber with multiple-mode signal transmission

    DOE Patents [OSTI]

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  9. Concentric core optical fiber with multiple-mode signal transmission

    DOE Patents [OSTI]

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  10. High frequency pacing of edge localized modes by injection of lithium

    Office of Scientific and Technical Information (OSTI)

    granules in DIII-D H-mode discharges (Journal Article) | SciTech Connect High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: High frequency pacing of edge localized modes by injection of lithium granules in DIII-D H-mode discharges Authors: Bortolon, A. ; Maingi, R. ; Mansfield, D. K. ; Nagy, A. ; Roquemore, A. L. ; Baylor, L. R. ;

  11. Enforcement Policy Statement: Off Mode Standards for CAC/HP | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Policy Statement: Off Mode Standards for CAC/HP Enforcement Policy Statement: Off Mode Standards for CAC/HP July 8, 2014 DOE will not seek civil penalties for violation of the off mode electrical power consumption standard for central air conditioners or central air conditioning heat pumps (CAC/HP) until 180 days following publication of a final rule establishing a test method for measuring off mode electrical power consumption for CAC/HP. PDF icon Enforcement Policy: Off Mode

  12. Limits of ultrashort pulse generation in cw mode-locked dye lasers

    SciTech Connect (OSTI)

    Petrov, V.; Rudolph, W.; Stamm, U.; Wilhelmi, B.

    1989-08-01

    Essential mechanisms limiting the achievable pulse duration in synchronously pumped, hybrid-mode-locked, and passively mode-locked cw subpicosecond dye lasers are analyzed. The action of spontaneously emitted light is shown to be the detrimental factor in synchronous mode locking. The influence of this factor can be suppressed by a saturable absorber in the hybrid-mode-locked lasers. In this case as well as in the case of passive mode locking the combined action of group-velocity dispersion and Kerr-effect-type nonlinearity, though serving as an additional shortening mechanism, causes fluctuations of the pulse parameters and determines the limit of the steady-state regime.

  13. Double Beta Decay in Xenon-136: Measuring the Neutrino-Emitting Mode and

    Office of Scientific and Technical Information (OSTI)

    Searching for Majoron-Emitting Modes (Thesis/Dissertation) | SciTech Connect Double Beta Decay in Xenon-136: Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes Citation Details In-Document Search Title: Double Beta Decay in Xenon-136: Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes Authors: Herrin, Steven ; /Stanford U., Phys. Dept. /SLAC Publication Date: 2013-08-23 OSTI Identifier: 1091528 Report Number(s): SLAC-R-1034 DOE Contract

  14. Microsoft PowerPoint - 16.1330_Rimando 110316 rev3 [Compatibility Mode] |

    Office of Environmental Management (EM)

    Department of Energy 16.1330_Rimando 110316 rev3 [Compatibility Mode] Microsoft PowerPoint - 16.1330_Rimando 110316 rev3 [Compatibility Mode] PDF icon Microsoft PowerPoint - 16.1330_Rimando 110316 rev3 [Compatibility Mode] More Documents & Publications Microsoft PowerPoint - 01 Bosco PM Workshop BOSCO Feb22_2010PB final rcvd 5 Mar [Compatibility Mode] Microsoft PowerPoint - 16.0805_Tom Fox [Compatibility Mode] Microsoft PowerPoint - 15.1500_Michael Deane [Compatibility Mod

  15. Eddy current inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode

    DOE Patents [OSTI]

    Petrini, Richard R.; Van Lue, Dorin F.

    1983-01-01

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment (12) with a probe coil (11), and associated coaxial coil cable (13), coil energizing means (21), and circuit means (21, 12) responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube 17 of fiberoptic scope 10. The scope 10 is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means (19, 20) for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signalling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level.

  16. Eddy current inspection tool which is selectively operable in a discontinuity detection mode and a discontinuity magnitude mode

    DOE Patents [OSTI]

    Petrini, R.R.; Van Lue, D.F.

    1983-10-25

    A miniaturized inspection tool, for testing and inspection of metal objects in locations with difficult accessibility, which comprises eddy current sensing equipment with a probe coil, and associated coaxial coil cable, coil energizing means, and circuit means responsive to impedance changes in the coil as effected by induced eddy currents in a test object to produce a data output signal proportional to such changes. The coil and cable are slideably received in the utility channel of the flexible insertion tube of fiberoptic scope. The scope is provided with light transmitting and receiving fiberoptics for viewing through the flexible tube, and articulation means for articulating the distal end of the tube and permitting close control of coil placement relative to a test object. The eddy current sensing equipment includes a tone generator 30 for generating audibly signals responsive to the data output signal. In one selected mode of operation, the tone generator responsive to the output signal above a selected level generates a constant single frequency tone for signaling detection of a discontinuity and, in a second selected mode, generates a tone whose frequency is proportional to the difference between the output signal and a predetermined selected threshold level. 5 figs.

  17. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  18. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  19. System and methods for determining masking signals for applying empirical mode decomposition (EMD) and for demodulating intrinsic mode functions obtained from application of EMD

    DOE Patents [OSTI]

    Senroy, Nilanjan; Suryanarayanan, Siddharth

    2011-03-15

    A computer-implemented method of signal processing is provided. The method includes generating one or more masking signals based upon a computed Fourier transform of a received signal. The method further includes determining one or more intrinsic mode functions (IMFs) of the received signal by performing a masking-signal-based empirical mode decomposition (EMD) using the at least one masking signal.

  20. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    SciTech Connect (OSTI)

    Zhao, Qixiang Yu, Sheng; Zhang, Tianzhong; Li, Xiang

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing the mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.