National Library of Energy BETA

Sample records for reflect energy charges

  1. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment ...

  2. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  3. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  4. Workplace Charging Challenge Partner: Alliant Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Workplace Charging Challenge Partner: Alliant Energy Joined the Challenge: March 2016 Headquarters: Madison, WI Charging Locations: Madison, WI Domestic Employees: 4,000 Alliant Energy is excited to offer electric vehicle charging at their office in Madison, WI. The charging stations are one component of an innovative energy education and research initiative that also includes a variety of solar components and battery energy

  5. Wireless Charging | Department of Energy

    Energy Savers [EERE]

    Wireless Charging Wireless Charging 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss103_miller_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Wireless Charging Wireless Plug-in Electric Vehicle (PEV) Charging Wireless Plug-in Electric Vehicle (PEV) Charging

  6. Reflection Survey | Open Energy Information

    Open Energy Info (EERE)

    (Gritto, Et Al.) Rye Patch Area Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Reflection Survey At Rye Patch Area (Laney, 2005) Rye Patch Area Federal...

  7. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team's Reflect Home does just that by...

  8. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  9. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  10. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  11. Workplace Charging Challenge Partner: NRG Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG Energy Workplace Charging Challenge Partner: NRG Energy Workplace Charging Challenge Partner: NRG Energy Joined the Challenge: February 2013 Headquarters: Princeton, NJ Charging Locations: Princeton, NJ; Phoenix, AZ; Carlsbad, CA; Emeryville, CA; Los Angeles, CA; Houston, TX Domestic Employees: 8,000 NRG Energy is a Fortune 500 company and a leader in changing how people think about and use energy. NRG offers workplace charging to its employees, alongside a corporate incentive for employees

  12. Workplace Charging Challenge Partner: DTE Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DTE Energy Workplace Charging Challenge Partner: DTE Energy Workplace Charging Challenge Partner: DTE Energy Joined the Challenge: March 2013 Headquarters: Detroit, MI Charging Locations: Ann Arbor, MI; Belleville, MI; Bloomfield Township, MI; Clinton Township, MI; Clinton Township, MI; Detroit, MI; Detroit, MI; Detroit, MI; Detroit, MI Domestic Employees: 10,000 DTE Energy seeks to be a premier, full-service, energy and energy-technology company providing solutions to meet the needs of 21st

  13. Workplace Charging Challenge Partner: Xcel Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Workplace Charging Challenge Partner: Xcel Energy Joined the Challenge: November 2014 Headquarters: Minneapolis, MN Charging Locations: St. Paul, MN; Denver, CO; Platteville, CO Domestic Employees: 12,500 Xcel Energy delivers clean, renewable energy and is committed to supporting the use of plug-in electric vehicles (PEVs). The company is an active partner with local governments, business and nonprofits in their efforts to bring PEVs

  14. Workplace Charging Challenge Partner: TECO Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECO Energy Workplace Charging Challenge Partner: TECO Energy Workplace Charging Challenge Partner: TECO Energy Joined the Challenge: May 2014 Headquarters: Tampa, FL Charging Locations: Tampa, FL; Winter Haven, FL; Apollo Beach, FL; Plant City, FL; Dade City, FL; Ruskin, FL; Mulberry, FL Domestic Employees: 2,500 TECO Energy, the parent company of Tampa Electric, has made the advancement of electric transportation one of its top strategic initiatives. In support of this effort, Tampa Electric

  15. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition to the three types above, wireless charging uses an electro-magnetic field to transfer electricity to an EV without a cord. The Department of Energy is supporting ...

  16. Energy storage device with large charge separation

    DOE Patents [OSTI]

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  17. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  18. Workplace Charging Challenge Partner: Vermont Energy Investment Corporation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Joined the Challenge: May 2014 Headquarters: Burlington, VT Charging Location: Burlington, VT Domestic Employees: 321 Vermont Energy Investment Corporation (VEIC) is a mission-driven nonprofit dedicated to reducing the economic and environmental costs of energy use. VEIC developed

  19. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo

  20. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications. Radiolysis charging can be conducted on aqueous and non-aqueous battery ...

  1. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge energy.govnode955366">Join the...

  2. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  3. Workplace Charging Challenge Partner: ReVision Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ReVision Energy Workplace Charging Challenge Partner: ReVision Energy Workplace Charging Challenge Partner: ReVision Energy Joined the Challenge: December 2015 Headquarters: Portland, ME Charging Locations: Brentwood, NH; Portland, ME Domestic Employees: 125 ReVision Energy's mission is to reduce fossil fuel consumption and carbon emissions. Since 50% of all carbon emissions in their region come from transportation, the company is embracing workplace charging as a critical path to

  4. Clean Energy Transition: Reflections on the Past Decade

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Transition: Reflections on the Past Decade NREL Industry Growth Forum Dr. Dan E. Arvizu Laboratory Director November 2015 2 Energy Market Fundamentals Globally...

  5. Thirteen Major Companies Join Energy Department's Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge | Department of Energy Major Companies Join Energy Department's Workplace Charging Challenge Thirteen Major Companies Join Energy Department's Workplace Charging Challenge January 31, 2013 - 11:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Energy Secretary Steven Chu announced 13 major U.S. employers and eight stakeholder groups have joined the new Workplace Charging Challenge to help expand access to workplace charging stations for American workers across the

  6. Workplace Charging Challenge Partner: National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NREL) | Department of Energy Renewable Energy Laboratory (NREL) Workplace Charging Challenge Partner: National Renewable Energy Laboratory (NREL) Workplace Charging Challenge Partner: National Renewable Energy Laboratory (NREL) Joined the Challenge: February 2015 Headquarters: Golden, CO Charging Location: Golden, CO Domestic Employees: 2,656 NREL's mission is to develop renewable energy and energy efficiency technologies and practices, advance related science and engineering, and transfer

  7. Workplace Charging Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Workplace Charging Presentation Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of supporting these sustainable transportation technologies at your organization. File Workplace Charging Ambassador Outreach Presentation Template More Documents & Publications Workplace Charging Toolkit: Workshop Outreach Presentation Template Workplace

  8. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOE Patents [OSTI]

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  9. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  10. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  11. Solar Reflection Panels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Solar Reflection Panels Sandia National Laboratories Contact SNL About This ...

  12. Workplace Charging Challenge Partner: NYSERDA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NYSERDA Workplace Charging Challenge Partner: NYSERDA Workplace Charging Challenge Partner: NYSERDA Joined the Challenge: December 2014 Headquarters: Albany, NY Charging Location: Albany, NY Domestic Employees: 335 NYSERDA is a public benefit corporation that offers objective information and analysis, innovative programs, technical expertise, and funding to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. NYSERDA professionals

  13. Workplace Charging Challenge: Ambassadors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Ambassadors Workplace Charging Challenge: Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as ambassadors to promote and support workplace charging. Ambassadors, including Clean Cities coalitions across the country, are organizations that are knowledgeable about local incentives, best practices for workplace charging, and other aspects of plug-in electric vehicle (PEV) community readiness. Challenge partners can benefit from working with ambassadors in

  14. Workplace Charging Challenge Partner: lynda.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lynda.com Workplace Charging Challenge Partner: lynda.com Workplace Charging Challenge Partner: lynda.com Joined the Challenge: March 2013 Headquarters: Carpinteria, CA Charging Locations: Carpinteria, CA; San Francisco, CA Domestic Employees: 350 lynda.com demonstrates an ongoing commitment to its employees and to sustainability through its participation in the U.S. Department of Energy's Workplace Charging Challenge. The company offers free, on-site plug-in electric vehicle (PEV) charging to

  15. Confined energy distribution for charged particle beams

    DOE Patents [OSTI]

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  16. Workplace Charging Challenge Partner: UCLA Smart Grid Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joined the Challenge: September 2014 Headquarters: Los Angeles, CA Charging Locations: Los Angeles, CA; Santa Monica, CA Domestic Employees: 31,000 UCLA Smart Grid Energy Research ...

  17. Workplace Charging Challenge Partner: ABB, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ABB, Inc. Workplace Charging Challenge Partner: ABB, Inc. Workplace Charging Challenge Partner: ABB, Inc. Joined the Challenge: June 2013 Headquarters: Cary, NC Charging Locations: New Berlin, WI; Raleigh, NC; Houston, TX Domestic Employees: 20,000 Operating in nearly 100 countries around the world, ABB is a global power and automation leader dedicated to energy efficiency solutions and smart grid technology. Multimedia Watch a video by Workplace Charging Partner ABB Inc. View more videos on the

  18. Workplace Charging Challenge Partner: Black & Veatch | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Joined the Challenge: November 2015 Headquarters: Overland Park, KS Charging Location: Overland Park, KS Domestic Employees: 7,120 Black & Veatch is an independent engineering, consulting, and construction firm working in water, energy and telecommunications. The company supported the design and construction of the world's largest DC fast charging network in

  19. Workplace Charging Challenge Partner: Utilidata | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilidata Workplace Charging Challenge Partner: Utilidata Workplace Charging Challenge Partner: Utilidata Joined the Challenge: June 2015 Headquarters: Providence, RI Charging Location: Providence, RI Domestic Employees: 50 Utilidata is proud to join the U.S. Department of Energy's Workplace Charging Challenge. Through its efforts, Utilidata is helping to reduce petroleum use and greenhouse gas emissions while also providing a valuable employee benefit. Utilidata is pleased to support this

  20. Workplace Charging Challenge Summit 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Challenge partners and ambassadors from across the country convened at the Workplace Charging Challenge Summit 2014 to network with their peers, participate in interactive breakout sessions, and return to their workplaces with new ideas and resources for accomplishing their workplace charging goals. The Summit featured presentations by Department of Energy (DOE) leadership and plug-in electric

  1. Conditions for reflection and transmission of an ion acoustic soliton in a dusty plasma with variable charge dust

    SciTech Connect (OSTI)

    Malik, Hitendra K.; Tomar, Renu; Dahiya, Raj P.

    2014-07-15

    Modified Korteweg-de Vries (mKdV) equations are derived for the incident, reflected, and transmitted waves in order to examine the soliton reflection and its transmission through an inhomogeneous plasma comprising ions, dust grains with fluctuating charge and two types of electrons, namely nonisothermal electrons and isothermal electrons. All the mKdV equations are coupled at the point of reflection and solved for the reflected soliton. Unlike others, a relation is established between the velocity shifts of the incident, reflected and transmitted solitons, and based on a critical value of the shift of incident soliton the strengths of the soliton reflection and transmission are talked about. Conditions are obtained for the soliton reflection and its transmission, and a comparative study is made for the two cases of fixed and fluctuating charges on the dust grains.

  2. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  3. Reflection Survey (Ozkocak, 1985) | Open Energy Information

    Open Energy Info (EERE)

    Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Additional References Retrieved from "http:...

  4. Workplace Charging Challenge Partner: E Source | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E Source Workplace Charging Challenge Partner: E Source Workplace Charging Challenge Partner: E Source Joined the Challenge: December 2015 Headquarters: Boulder, CO Charging Location: Boulder, CO Domestic Employees: 92 E Source works with utilities and large corporate energy users to advance the efficient use of energy. The company strives to practice "walking its talk" by instituting sustainable behaviors in its work environment. Providing its employees with a plug-in electric vehicle

  5. Workplace Charging Challenge Partner: Google | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Google Workplace Charging Challenge Partner: Google Workplace Charging Challenge Partner: Google Joined the Challenge: January 2013 Headquarters: Mountain View, CA Charging Location: Mountain View, CA Domestic Employees: 25,000 Google believes that plug-in electric vehicles (PEVs) are game-changers in the effort to reduce transportation's carbon footprint, improve air quality, and increase the adoption of intermittent renewable energy sources. To support its corporate car share program and

  6. Workplace Charging Challenge Partner: National Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Workplace Charging Challenge Partner: National Grid Workplace Charging Challenge Partner: National Grid Joined the Challenge: February 2013 Headquarters: Waltham, MA Charging Locations: Waltham, MA; Worcester, MA; Providence, RI Domestic Employees: 16,600 As a leading international electricity and gas company, National Grid is committed to creating new, sustainable energy solutions for the future and modernizing the region's electricity system. National Grid strives to provide plug-in

  7. ChargePoint America | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt073_vss_gogineni_2012_o.pdf More Documents & Publications ChargePoint America Electric Drive Vehicle Infrastructure Deployment Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  8. Workplace Charging Challenge Partner: National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL's mission is to develop renewable energy and energy efficiency technologies and practices, advance related science and engineering, and transfer knowledge and innovations. A ...

  9. AVTA: Hasdec DC Fast Charging Testing Results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy GE Smart Grid Capable AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon GE Smart Grid Capable AC Level 2 - January 2014 More Documents & Publications AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge

    Hasdec DC fast charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon DC Conductive EVSE Testing - Hasetec DC

  10. Improved Method to Measure Glare and Reflected Solar Irradiance - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Improved Method to Measure Glare and Reflected Solar Irradiance Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (767 KB) Solar glare from aerial view Solar glare from aerial view Typical solar glare Typical solar glare

  11. Workplace Charging Success: lynda.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lynda.com Workplace Charging Success: lynda.com October 2, 2014 - 6:05pm Addthis Workplace Charging Success: lynda.com lynda.com paved the way in the online learning space long before the age of broadband and digital video. Once again, the company finds itself at the forefront of innovation - this time in sustainability. lynda.com, alongside other environmentally-conscious employers across the U.S., joined the Department of Energy's Workplace Charging Challenge. As a partner in the Challenge

  12. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect (OSTI)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  13. Charged-particle multiplicity at LHC energies

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  14. Polarization-dependent infrared reflectivity study of Sr???Ca????Cu??O?? under pressure: Charge dynamics, charge distribution, and anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frank, S.; Huecker, M.; Huber, A.; Ammerahl, U.; Kuntscher, C. A.

    2014-12-18

    We present a polarization-dependent infrared reflectivity study of the spin-ladder compound Sr???Ca????Cu??O?? under pressure. The optical response is strongly anisotropic, with the highest reflectivity along the ladders/chains (E?c) revealing a metallic character. For the polarization direction perpendicular to the ladder plane, an insulating behavior is observed. With increasing pressure the optical conductivity for E?c shows a strong increase, which is most pronounced below 2000cm?. According to the spectral weight analysis of the E?c optical conductivity the hole concentration in the ladders increases with increasing pressure and tends to saturate at high pressure. At ~7.5 GPa the number of holes permoreCu atom in the ladders has increased by ??=0.09(0.01), and the Cu valence in the ladders has reached the value +2.33. The optical data suggest that Sr???Ca????Cu??O?? remains electronically highly anisotropic up to high pressure, also at low temperatures.less

  15. Polarization-dependent infrared reflectivity study of Sr???Ca????Cu??O?? under pressure: Charge dynamics, charge distribution, and anisotropy

    SciTech Connect (OSTI)

    Frank, S.; Huecker, M.; Huber, A.; Ammerahl, U.; Kuntscher, C. A.

    2014-12-18

    We present a polarization-dependent infrared reflectivity study of the spin-ladder compound Sr???Ca????Cu??O?? under pressure. The optical response is strongly anisotropic, with the highest reflectivity along the ladders/chains (E?c) revealing a metallic character. For the polarization direction perpendicular to the ladder plane, an insulating behavior is observed. With increasing pressure the optical conductivity for E?c shows a strong increase, which is most pronounced below 2000cm?. According to the spectral weight analysis of the E?c optical conductivity the hole concentration in the ladders increases with increasing pressure and tends to saturate at high pressure. At ~7.5 GPa the number of holes per Cu atom in the ladders has increased by ??=0.09(0.01), and the Cu valence in the ladders has reached the value +2.33. The optical data suggest that Sr???Ca????Cu??O?? remains electronically highly anisotropic up to high pressure, also at low temperatures.

  16. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  17. Energy transfer through a multi-layer liner for shaped charges

    DOE Patents [OSTI]

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  18. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOE Patents [OSTI]

    Douglas, David R.; Benson, Stephen V.

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  19. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect (OSTI)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 310{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  20. Sandia Energy - Improved Method to Measure Glare and Reflected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more accurate method of measuring the irradiance from solar reflections using a digital camera. Measurements of reflected solar irradiance is of great importance to...

  1. Leading the Charge: Doug MacCourt Advises Tribes on Energy Policy

    Broader source: Energy.gov [DOE]

    Leading the Charge is a regular feature spotlighting the movers and shakers in energy development on tribal lands.

  2. Energy Storage Systems Considerations for Grid-Charged Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    This paper calculates battery power and energy requirements for grid-charged hybrid electric vehicles (HEVs) with different operating strategies.

  3. Save at the Pump and Charge While You Work | Department of Energy

    Energy Savers [EERE]

    at the Pump and Charge While You Work Save at the Pump and Charge While You Work May 22, 2013 - 4:46pm Addthis An increasing number of employers are offering workplace charging. | Photo courtesy of Biogen Idec, Inc., a partner of the Workplace Charging Challenge. An increasing number of employers are offering workplace charging. | Photo courtesy of Biogen Idec, Inc., a partner of the Workplace Charging Challenge. Natalie Committee Communications Specialist, Office of Energy Efficiency and

  4. Workplace Charging Challenge: Signage Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Signage Guidance Workplace Charging Challenge: Signage Guidance Electric vehicle parking signage. No parking except for electric vehicle charging. Signage for plug-in electric vehicle (PEV) charging stations is an important consideration at workplaces that offer access to charging. Appropriate charging station signage can: Help PEV drivers navigate to and identify charging stations Optimize use of EVSE by helping all drivers understand that parking spaces at charging stations are for

  5. Workplace Charging Equipment and Installation Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  6. Workplace Charging Toolkit: Outreach Letter Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Letter Template Workplace Charging Toolkit: Outreach Letter Template Reach out to employers in your community who may be interested in offering workplace charging with this template. File General Outreach Letter Template File Clean Cities Branded Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker

  7. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOE Patents [OSTI]

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  8. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EV Models Saving Money Vehicle Charging EV Benefits EV Stories EV Basics Most ... Most public charging uses Level 2 or DC fast-charge electric vehicle supply equipment ...

  9. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  10. DC Fast Charging at the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging at the Workplace DC Fast Charging at the Workplace Most employers offering plug-in electric vehicle (PEV) charging install Level 1 or Level 2 charging stations, but there are some cases where employers may want to consider installing DCFC. Level 1 and Level 2 charging can meet the needs of most employees that are parked during an average workday. During one hour of charging, Level 1 charging can replenish 2 to 5 miles of range and Level 2 charging can add about 10-20 miles of

  11. ADA Requirements for Workplace Charging Installation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging Presentation Request for Proposal Guidance

  12. Workplace Charging Challenge Partner: Eli Lilly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Joined the Challenge: January 2013 Headquarters: Indianapolis, IN Charging Location: Indianapolis, IN Domestic Employees: 17,000 In 2012, Lilly installed several workplace charging stations at its two main campuses in Indianapolis, Indiana. Employee engagement is important to the company and the demand for plug-in electric vehicle (PEV) charging is on the rise. Lilly continues to monitor

  13. Workplace Charging Challenge Partner: FCA US LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCA US LLC Workplace Charging Challenge Partner: FCA US LLC Workplace Charging Challenge Partner: FCA US LLC Joined the Challenge: January 2013 Headquarters: Auburn Hills, MI Charging Location: Auburn Hills, MI Domestic Employees: 44,000 FCA US LLC currently has six plug-in electric vehicle (PEV) charging stations available for employee use at its Auburn Hills headquarters. In support of the DOE's Workplace Charging Challenge, FCA US LLC will continue to evaluate existing and future workplace

  14. Workplace Charging Challenge Partner: JEA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JEA Workplace Charging Challenge Partner: JEA Workplace Charging Challenge Partner: JEA Joined the Challenge: February 2015 Headquarters: Jacksonville, FL Charging Location: Jacksonville, FL Domestic Employees: 1,600 By joining the Workplace Charging Challenge, JEA celebrates its community leadership role in the advancement of PEVs. JEA is actively engaged with the community to increase the awareness and education of the benefits of driving electric. Through the Workplace Charging Challenge, JEA

  15. Workplace Charging Toolkit: Press Release Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Press Release Template Workplace Charging Toolkit: Press Release Template Raise the profile of employers in the community who are offering workplace charging and encourage the adoption of workplace charging among other employers through this press release template. File General Press Release Template File Clean Cities Branded Press Release Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Outreach Letter

  16. Workplace Charging at University Campuses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at University Campuses Workplace Charging at University Campuses College and universities across the nation are educating our future workforce and doubling as hubs for innovation and technology. Higher education campuses are among a growing number of organizations at the forefront of promoting plug-in electric vehicle (PEV) adoption and its associated charging infrastructure. The Workplace Charging Challenge's case study, Workplace Charging: Charging Up University Campuses, explores the

  17. Reflection Survey At Coso Geothermal Area (1989) | Open Energy...

    Open Energy Info (EERE)

    1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Coso Geothermal Area (1989) Exploration Activity Details Location Coso...

  18. Reflection Survey At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At The Needles Area (DOE GTP) Exploration Activity...

  19. Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  20. Reflection Survey At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Wister Area (DOE GTP) Exploration Activity Details...

  1. Reflection Survey At Coso Geothermal Area (2008) | Open Energy...

    Open Energy Info (EERE)

    field, which lies within an extensional step-over between dextral faults, is a young, actively developing metamorphic core complex. The reflection images were processed...

  2. Using Solar Power to Supplement Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Solar Power to Supplement Workplace Charging Using Solar Power to Supplement Workplace Charging Installing plug-in electric vehicle (PEV) charging stations at the workplace demonstrates a commitment towards a greener campus. With workplace charging, most employees plug in their PEVs during the day, when the sun is shining. Using solar power to supplement electricity from the grid can help employers further reduce their carbon footprint by off-setting the mid-day electricity consumption of

  3. Workplace Charging Challenge Overview Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Factsheet Workplace Charging Challenge Overview Factsheet Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our nation's PEV charging infrastructure and offering a valuable employee benefit. A full transition to electric-drive vehicles (including all-electric vehicles, plug-in hybrid electric vehicles, and

  4. Workplace Charging Challenge Partner: BookFactory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BookFactory Workplace Charging Challenge Partner: BookFactory Workplace Charging Challenge Partner: BookFactory Joined the Challenge: April 2013 Headquarters: Dayton, OH Charging Location: Dayton, OH Domestic Employees: 32 BookFactory, a veteran-owned small business, has incorporated sustainability into every aspect of the company. To fuel the management team's passion for electric vehicles, BookFactory installed one Level 2 charging station and one Level 3 charger, which is capable of providing

  5. Workplace Charging Challenge Partner: Caltech | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Caltech Workplace Charging Challenge Partner: Caltech Workplace Charging Challenge Partner: Caltech Joined the Challenge: March 2016 Headquarters: Pasadena, CA Charging Locations: Pasadena, CA Domestic Employees: 5,000 As part of Caltech's commitment to encourage alternative transportation and support electric vehicles, 54 Level 2 stations have been installed in the California parking structure in February 2016. Caltech has developed the Adaptive Charging Station which allows a large number of

  6. Workplace Charging Challenge Partner: DIRECTV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIRECTV Workplace Charging Challenge Partner: DIRECTV Workplace Charging Challenge Partner: DIRECTV Joined the Challenge: November 2014 Headquarters: El Segundo, CA Charging Locations: El Segundo, CA; Marina Del Ray, CA; Englewood, CO Domestic Employees: 17,150 DIRECTV is committed to reducing its overall footprint, and reducing greenhouse gas emissions from its employees' commutes is one strategy for accomplishing that. DIRECTV currently provides 21 plug-in electric vehicle charging stations

  7. Workplace Charging Challenge Partner: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Connect Workplace Charging Challenge Partner: EV Connect Workplace Charging Challenge Partner: EV Connect Joined the Challenge: January 7, 2015 Headquarters: Los Angeles, CA Charging Location: Los Angeles, CA Domestic Employees: 20 EV Connect develops and produces electric vehicle charging solutions. Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Meet Challenge Partners

  8. Workplace Charging Challenge Partner: Raytheon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raytheon Workplace Charging Challenge Partner: Raytheon Workplace Charging Challenge Partner: Raytheon Joined the Challenge: February 2013 Headquarters: Waltham, MA Charging Locations: El Segundo, CA; Dulles, VA; Tewksbury, MA; Aurora, CO; McKinney, TX; Woburn, MA; Largo, FL Domestic Employees: 60,000 Raytheon has installed fifteen dual 220-volt plug-in electric vehicle (PEV) charging stations spread across six operating locations in California, Colorado, Massachusetts, Texas and Virginia.

  9. Workplace Charging Challenge Partner: The Hartford | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Hartford Workplace Charging Challenge Partner: The Hartford Workplace Charging Challenge Partner: The Hartford Joined the Challenge: April 2013 Headquarters: Hartford, CT Charging Locations: Hartford, CT; Windsor, CT; Simsbury, CT Domestic Employees: 20,000 With more than 200 years of expertise, The Hartford is a leader in property and casualty insurance, group benefits and mutual funds. In 2011, The Hartford installed 6 charging stations at its three main campuses in Hartford, Simsbury and

  10. Workplace Charging Challenge Partner: Verizon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verizon Workplace Charging Challenge Partner: Verizon Workplace Charging Challenge Partner: Verizon Joined the Challenge: January 2013 Headquarters: New York, NY Charging Locations: Twinsburg, OH; Huntington Beach, CA; Irvine, CA; Basking Ridge, NJ; Irving, TX Domestic Employees: 180,000 Verizon is committed to sustainability in all areas of our business, including making 'green driving' more convenient. Verizon now has three workplaces with charging stations: a retail store, data center, and

  11. Workplace Charging Challenge: Join the Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Join the Challenge Workplace Charging Challenge: Join the Challenge Workplace Charging Challenge: Join the Challenge The Workplace Charging Challenge aims to have 500 U.S. employers join the initiative as partners by 2018. Partners set a minimum goal of providing charging for a portion of plug-in electric vehicle (PEV) driving employees and a best practice goal of meeting all employee demand. As of January 2016, more than 250 employers joined as Challenge partners and the installation of

  12. Workplace Charging Challenge Partner: Ulster County | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ulster County Workplace Charging Challenge Partner: Ulster County Workplace Charging Challenge Partner: Ulster County Joined the Challenge: October 2015 Headquarters: Kingston, NY Charging Locations: Kingston, NY; Ellenville, NY Domestic Employees: 1,270 Ulster County Executive Michael P. Hein's Sustainable Ulster County: Greener By Design initiative aims to substantially reduce the environmental footprint of county government operations, including employee commutes, which account for

  13. New Management Team Takes Charge at Renewable Energy Lab - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL New Management Team Takes Charge at Renewable Energy Lab Alliance for Sustainable Energy to lead Research, Commercialization Mission October 1, 2008 A new management team takes charge at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today. The Alliance for Sustainable Energy, LLC was awarded a five-year contract to manage and operate the Laboratory on July 29. The new equally-owned management entity pairs two non-profit organizations-Midwest Research

  14. Workplace Charging Challenge Partner: APEI | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APEI Workplace Charging Challenge Partner: APEI Workplace Charging Challenge Partner: APEI Joined the Challenge: August 2014 Headquarters: Fayetteville, AR Charging Location: Fayetteville, AR Domestic Employees: 48 APEI is dedicated to developing electronic solutions which enable tomorrow's technology to be realized today. APEI is focused on "Doing More, Using Less", which is embodied in its our products as well as its our workplace philosophies. As an incentive for employees who have

  15. Workplace Charging Challenge Partner: Bloomberg LP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bloomberg LP Workplace Charging Challenge Partner: Bloomberg LP Workplace Charging Challenge Partner: Bloomberg LP Joined the Challenge: March 2013 Headquarters: New York, NY Charging Location: Skillman, NJ Domestic Employees: 10,262 An important objective of Bloomberg LP's sustainability efforts is to reduce carbon emissions from employees' commutes. The majority of Bloomberg LP's offices are located in dense urban areas, and the company encourages the use of public transportation and biking

  16. Workplace Charging Challenge Partner: Cigna | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cigna Workplace Charging Challenge Partner: Cigna Workplace Charging Challenge Partner: Cigna Joined the Challenge: June 2015 Headquarters: Bloomfield, CT Charging Locations: Bloomfield, CT; Windsor, CT; Phoenix, AZ Domestic Employees: 34,000 As a global health service leader, Cigna is dedicated to improving the wellbeing and health of people while remaining committed to sustainability. Because environmental health is directly connected to personal health, Cigna strives to engage its employees

  17. Workplace Charging Challenge Partner: Common Media | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Media Workplace Charging Challenge Partner: Common Media Workplace Charging Challenge Partner: Common Media Joined the Challenge: March 2016 Headquarters: Hadley, MA Charging Location: Hadley, MA Domestic Employees: 18 Common Media occupies a farmhouse in Hadley, MA directly off a bike path and just over the river from some really amazing restaurants, shops, and other great local businesses. While the company encourages employees to not only bike to and from work, we also encourage the

  18. Workplace Charging Challenge Partner: Dell Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Joined the Challenge: March 2013 Headquarters: Round Rock, TX Charging Locations: Round Rock, TX; Santa Clara, CA Domestic Employees: 40,000 Dell is committed to putting its technology and expertise to work where it can do the most good for people and planet. As part of that commitment, Dell seeks to minimize its environmental impact and help its team members do the same. Dell installed its

  19. Workplace Charging Challenge Partner: Facebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facebook Workplace Charging Challenge Partner: Facebook Workplace Charging Challenge Partner: Facebook Joined the Challenge: March 2013 Headquarters: Menlo Park, CA Charging Location: Menlo Park, CA Domestic Employees: 4,500 Facebook employees are early adopters and the company now has a significant number of plug-in electric vehicles (PEVs) on campus to respond to employee demand. As part of Facebook's aggressive Transportation Demand Management (TDM) program, the company has committed to

  20. Workplace Charging Challenge Partner: Genentech | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genentech Workplace Charging Challenge Partner: Genentech Workplace Charging Challenge Partner: Genentech Joined the Challenge: January 2016 Headquarters: South San Francisco, CA Charging Location: South San Francisco, CA Domestic Employees: 10,000 Genentech has offered alternative commuting options in the San Francisco Bay Area through its gRide program since 2006. These alternatives include "Genenbuses" from local communities, shuttles from public transportation, and incentives for

  1. Workplace Charging Challenge Partner: General Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Motors Workplace Charging Challenge Partner: General Motors Workplace Charging Challenge Partner: General Motors Joined the Challenge: January 2013 Headquarters: Detroit, MI Charging Locations: Detroit, MI; Warren, MI; Milford, MI; Hamtramck, MI; Pontiac, MI; Bay City, MI; Lake Orion, MI; Flint, MI; Saginaw, MI; Grand Rapids, MI; Trenton, MI; Torrance, CA; Palo Alto, CA; Thousand Oaks, CA; N. Hollywood, CA; Glendale, CA; Santa Fe Springs, CA; Ardsley, NY; Lockport, NY; Rochester, NY;

  2. Workplace Charging Challenge Partner: Legrand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legrand Workplace Charging Challenge Partner: Legrand Workplace Charging Challenge Partner: Legrand Joined the Challenge: November 2014 Headquarters: West Hartford, CT Charging Locations: West Hartford, CT; Syracuse, NY; Fairfield, NJ Domestic Employees: 2,500 Legrand specializes in products and systems for electrical installations and information networks and is committed to integrating sustainability into the way it conducts business. In alignment with its sustainability commitment, Legrand,

  3. Workplace Charging Challenge Partner: OSRAM SYLVANIA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OSRAM SYLVANIA Workplace Charging Challenge Partner: OSRAM SYLVANIA Workplace Charging Challenge Partner: OSRAM SYLVANIA Joined the Challenge: March 2013 Headquarters: Danvers, MA Charging Location: Danvers, MA Domestic Employees: 8,000 OSRAM SYLVANIA has a commitment to social and environmental sustainability worldwide. As a leader in innovative solutions, the company is dedicated to products and processes that contribute to solving global sustainability challenges, address economic needs, and

  4. Workplace Charging Challenge Partner: Organic Valley | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Valley Workplace Charging Challenge Partner: Organic Valley Workplace Charging Challenge Partner: Organic Valley Joined the Challenge: March 2015 Headquarters: La Farge, WI Charging Locations: N/A Domestic Employees: 802 Organic Valley is America's largest cooperative of organic farmers and a well-known organic brand. One of Organic Valley's goals is to promote a respect for the diversity, dignity, and interdependence of human, animal, plant, soil and global life. Organic Valley believes

  5. Workplace Charging Challenge Partner: Sloan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sloan Workplace Charging Challenge Partner: Sloan Workplace Charging Challenge Partner: Sloan Joined the Challenge: February 2016 Headquarters: Franklin Park, IL Charging Location: Franklin Park, IL Domestic Employees: 700 Sloan is a fourth generation, family-owned and operated business that is synonymous with sustainability, quality and ingenuity. Sloan's passion for sustainability and corporate citizenship can be seen throughout its facilities, and its mission is simple yet powerful: to

  6. Workplace Charging Challenge Partner: Thomas College | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas College Workplace Charging Challenge Partner: Thomas College Workplace Charging Challenge Partner: Thomas College Joined the Challenge: June 2015 Headquarters: Waterville, ME Charging Location: Waterville, ME Domestic Employees: 150 Thomas College is committed to supporting employee and student sustainability efforts. The College encourages employees to take the initiative to purchase plug-in electric vehicles (PEVs) by offering designated parking for PEVs. Thomas College installed one

  7. Workplace Charging Challenge Partner: Utah Paperbox | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Workplace Charging Challenge Partner: Utah Paperbox Joined the Challenge: May 2014 Headquarters: Salt Lake City, UT Charging Location: Salt Lake City, UT Domestic Employees: 220 Salt Lake City has a unique air quality problem. In the wintertime, the city gets temperature inversions which can trap pollution. This can make the city's air quality very unhealthy in a matter of days. While there is no magic bullet, Utah PaperBox

  8. Workplace Charging Challenge Partner: Zappos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zappos Workplace Charging Challenge Partner: Zappos Workplace Charging Challenge Partner: Zappos Joined the Challenge: April 2013 Headquarters: Las Vegas, NV Charging Location: Las Vegas, NV Domestic Employees: 1,500 Zappos strives to be a leader in the integration of sustainability, technology and customer service. As such, the downtown Las Vegas LEED Gold certified campus was created to blend Zappos' unique culture of customer service with that of the urban Las Vegas community, while also

  9. Workplace Charging Tools and Resources for Employees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools and Resources for Employees Workplace Charging Tools and Resources for Employees These publications, calculators and other online tools can help you inform employees about plug-in electric vehicles (PEVs) and charging infrastructure. You can post these links to your company's intranet and refer to the content in internal communications, such as blog posts or employee newsletters. Basics of PEV Technology and Charging Electric Vehicle Fact Sheet - This fact sheet provides an introduction to

  10. Workplace Charging Challenge: Engage Employees | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engage Employees Workplace Charging Challenge: Engage Employees After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your employees on why and how they can take advantage of this employee benefit. Use the resources below to engage PEV- and non-PEV driving employees alike. Educate and Engage Employees Top Ways to Promote PEVs at Work - Consider taking these actions to promote driving electric. Workplace Charging Tools and Resources -

  11. Lithium-Ion Battery with Higher Charge Capacity - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Battery with Higher Charge Capacity University of Minnesota DOE Grant ... An innovative zirconate-based cathode material developed at the University of Minnesota ...

  12. Power Charging and Supply System for Electric Vehicles - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Charging and Supply System for Electric Vehicles Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA versatile new power ...

  13. Charge stands (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Project Name Charge stands Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  14. EV Everywhere Charges Up the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... PEV's have won critical acclaim with awards such as winner of Consumer Reports' annual ... By providing workplace charging, these forward thinking employers are signaling that they ...

  15. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  16. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DOE Review of the Atmospheric Radiation Measurement (ARM) Climate Research Facility February 3-4, 2005 American Geophysical Union, Washington, D.C. June 2005 W.R. Ferrell Climate Change Research Division Pacific Northwest National Laboratory Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0502 CONTENTS 1. INTRODUCTION

  17. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  18. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Thermal Solar Thermal Return to Search NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date SkyFuel Inc. CO License Cooperative Research (CRADA) August 3, 2009 Video NREL Success Stories - SkyFuel Partnership Reflects Bright Future Summary Huge parabolic mirrors catching the sun's rays could crisscross America's deserts soon, thanks to a

  19. Two Men Charged With Wire Fraud | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Men Charged With Wire Fraud More Documents & Publications Savannah River Site Contractor Agrees to Pay 3.8 Million to Settle False Claims Act Allegations Indictment for Theft of ...

  20. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator...

  1. EV Everywhere: Charging at Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Using Level 2 EVSE requires drivers install special charging equipment as well as have a dedicated electrical circuit of 20 to 100 amps. Fortunately, most houses already have 240 V ...

  2. Workplace Charging Success: MetLife | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife Workplace Charging Success: MetLife October 2, 2014 - 6:26pm Addthis Workplace Charging Success: MetLife MetLife is talking the "green" talk and walking the walk. The insurance company has long encouraged its policyholders to live environmentally-conscious lifestyles, and continues to embrace emerging technologies, work with green products, and utilize environmentally-friendly services. As part of their commitment to environmental sustainability, MetLife provides alternative

  3. Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation

    SciTech Connect (OSTI)

    Steele, Lenora; Sampsel, Zachary N

    2014-07-21

    This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.

  4. Workplace Charging Challenge Partner: MetLife, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Workplace Charging Challenge Partner: MetLife, Inc. Joined the Challenge: May 2013 Headquarters: New York, NY Charging Locations: Aurora, IL; Bloomfield, CT; Bridgewater, NJ; Dayton, OH; Freeport, IL; Johnstown, PA; Morristown, NJ; Oriskany, NY; Scranton, PA; St. Louis, MO; Tampa, FL; Troy, NY; Tulsa, OK; Warwick, RI Domestic Employees: 30,887 MetLife embraces its role as a responsible corporate citizen through implementing energy

  5. Workplace Charging Success: Zappos.com | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zappos.com Workplace Charging Success: Zappos.com March 10, 2015 - 5:59pm Addthis Workplace Charging Success: Zappos.com Innovative Business Investing in Employees and Environment Zappos.com, the online retailer of shoes and apparel, takes one of its core values quite literally - "embrace and drive change." Zappos is incentivizing its employees to make sustainability a priority and to consider driving plug-in electric vehicles (PEVs) as an alternative mode of transportation. As Zappos

  6. Energy Jobs: Electric Vehicle Charging Station Installer | Department...

    Broader source: Energy.gov (indexed) [DOE]

    month of October we'll be profiling various EnergyJobs on Energy.gov as well as on Facebook and Twitter. Read about home energy auditor Kelly Cutchin, chemist Sarah Chinn or...

  7. Impact of Fast Charging on Life of EV Batteries (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Fast Charging on Life of EV Batteries Jeremy Neubauer 2 , Eric Wood 2 , Evan Burton 2 , Kandler Smith 2 , Ahmad A. Pesaran 1 1 (corresponding author) National Renewable Energy Laboratory, Golden, Colorado, ahmad.pesaran@nrel.gov 2 National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/PR-5400-63700 Introduction and Overview I.

  8. Ex Parte Memo on CAC/Dry Charged Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on CAC/Dry Charged Units Ex Parte Memo on CAC/Dry Charged Units On December 1, 2015, AHRI staff and representatives of stakeholders who manufacture central air conditioning and heat pump systems met with representatives from the Department of Energy (DOE) to seek clarification and guidance on the manufacture and importation of "replacement components" not pre-charged with R-22 for central air-conditioners and heat pump systems (dry-charged units). PDF icon December 1 2015 AHRI

  9. Technology available for license: Charging of liquid energy storage media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future always

  10. Leading the Charge: Harold Frank | Department of Energy

    Energy Savers [EERE]

    Harold Frank Leading the Charge: Harold Frank June 22, 2012 - 5:11pm Addthis Harold "Gus" Frank, Forest County Potawatomi Community Chairman and 2012 White House "Champion of Change". Photo from Potawatomi Traveling Times Harold "Gus" Frank, Forest County Potawatomi Community Chairman and 2012 White House "Champion of Change". Photo from Potawatomi Traveling Times Solar panels on the rooftop of the Forest County Potawatomi Tribe's administration building

  11. Leading the Charge: Tribal Women in Power | Department of Energy

    Energy Savers [EERE]

    Tribal Women in Power Leading the Charge: Tribal Women in Power October 22, 2012 - 4:19pm Addthis Andrea Alexander, Makah Tribe in Neah Bay (Washington)/Affiliated Tribes of Northwest Indians Andrea Alexander, Makah Tribe in Neah Bay (Washington)/Affiliated Tribes of Northwest Indians Kathy Mayo, Eagle Village in Upper Yukon (Alaska)/Tanana Chiefs Conference Kathy Mayo, Eagle Village in Upper Yukon (Alaska)/Tanana Chiefs Conference Tara Hess-McGeown, Washoe Tribe of Nevada and

  12. Trapping and Measuring Charged Particles in Liquids - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Trapping and Measuring Charged Particles in Liquids Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication Printable fact sheet (552 KB) Planar aqueous Paul trap (PAPT) devices and experimental platform Planar aqueous Paul trap (PAPT) devices and experimental platform Technology Marketing SummaryA nanoscale version of the Paul ion trap was developed by

  13. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin

    SciTech Connect (OSTI)

    Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

    1996-01-01

    Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

  14. Potential-energy surfaces for charge exchange between singly charged ions and a LiF surface

    SciTech Connect (OSTI)

    Wirtz, Ludger; Burgdoerfer, Joachim; Dallos, Michal; Mueller, Thomas; Lischka, Hans

    2003-09-01

    We analyze the adiabatic potential-energy surfaces relevant for neutralization of singly charged ions in slow vertical incidence onto a lithium fluoride surface. The surface is represented by a cluster of varying size augmented by point charges of alternating sign in order to include the proper Madelung potential of the ionic crystal. Our calculation proceeds on the multiconfiguration self-consistent-field and multireference configuration-interaction levels. Size-consistency corrections based on the Davidson correction and multireference averaged quadratic coupled cluster methods are included as well. We emphasize the importance of a proper treatment of electron correlation signifying the polarization of the surrounding cluster environment in ab initio calculations of charge transfer at surfaces. From the topology of the surfaces, in particular the existence or absence of avoided crossings (or, more generally, conical intersections), qualitative predictions for the neutralization process can be made. The comparative analysis of potential curves for H{sup +}, C{sup +}, S{sup +}, and Ne{sup +} projectiles provides an explanation for the recently observed threshold behavior for potential sputtering.

  15. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect (OSTI)

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  16. The charge ratio of the atmospheric muons at low energy

    SciTech Connect (OSTI)

    Bahmanabadi, M.; Samimi, J.; Sheidaei, F.; Ghomi, M. Khakian

    2006-10-15

    From the nature of the muon production processes, it can be seen that the ratio of positive to negative cosmic muons has important information in both 'the atmospheric neutrino problem', and 'the hadronic interactions'. We have carried out an experiment for the measurement of the muon charge ratio in the cosmic ray flux in momentum range 0.112-0.178 GeV/c. The muon charge ratio is found to be 1.21{+-}0.01 with a mean zenith angle of 32 deg. {+-}5 deg. . From the measurements it has been obtained a zenithal angle distribution of muons as I({theta})=I(0)cos{sup n}{theta} with n=1.95{+-}0.13. An asymmetry has been observed in East-West directions because of the geomagnetic field. Meanwhile, in about the same momentum range, positive and negative muons have been studied on the basis of Monte Carlo simulations of the extensive air shower developement (Cosmic Ray Simulations for Kascade), using the Quark Gluon String model with JETs model as generator.

  17. ETA-HTP08 Rechargeable Energy Storage System (RESS) Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ETA-HTP08 Revision 1 Effective October 1, 2004 Rechargeable Energy Storage System (RESS) ... with the requirements of the vehiclebattery supplier as stated in the Owner...

  18. A Summary of Recent Experimental Research on Ion Energy and Charge States of Pulsed Vacuum Arcs

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2008-06-16

    The paper reviews the results of vacuum arc experimental investigations made collaboratively by research groups from Berkeley and Tomsk over the last two years, i.e. since the last ISDEIV in 2006. Vacuum arc plasma of various metals was produced in pulses of a few hundred microseconds duration, and the research focussed on three topics: (i) the energy distribution functions for different ion charge states, (ii) the temporal development of the ion charge state distribution, and (iii) the evolution of the mean directed ion velocities during plasma expansion. A combined quadruple mass-to-charge and energy ana-lyzer (EQP by HIDEN Ltd) and a time-of-flight spectrometer were employed. Cross-checking data by those complimen-tary techniques helped to avoid possible pitfalls in interpre-tation. It was found that the ion energy distribution func-tions in the plasma were independent of the ion charge state, which implies that the energy distribution on a substrate are not equal to due to acceleration in the substrate's sheath. In pulsed arc mode, the individual ion charge states fractions showed changes leading to a decrease of the mean charge state toward a steady-state value. This decrease can be re-duced by lower arc current, higher pulse repetition rate and reduced length of the discharge gap. It was also found that the directed ion velocity slightly decreased as the plasma expanded into vacuum.

  19. Polarization-dependent infrared reflectivity study of Sr2.5Ca11.5Cu24O41 under pressure: Charge dynamics, charge distribution, and anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frank, S.; Huber, A.; Ammerahl, U.; Hücker, M.; Kuntscher, C. A.

    2014-12-18

    We present a polarization-dependent infrared reflectivity study of the spin-ladder compound Sr₂̣₅Ca₁₁̣₅Cu₂₄O₄₁ under pressure. The optical response is strongly anisotropic, with the highest reflectivity along the ladders/chains (E∥c) revealing a metallic character. For the polarization direction perpendicular to the ladder plane, an insulating behavior is observed. With increasing pressure the optical conductivity for E∥c shows a strong increase, which is most pronounced below 2000cm⁻¹. According to the spectral weight analysis of the E∥c optical conductivity the hole concentration in the ladders increases with increasing pressure and tends to saturate at high pressure. At ~7.5 GPa the number of holes permore » Cu atom in the ladders has increased by Δδ=0.09(±0.01), and the Cu valence in the ladders has reached the value +2.33. Thus, the optical data suggest that Sr₂̣₅Ca₁₁̣₅Cu₂₄O₄₁ remains electronically highly anisotropic up to high pressure, also at low temperatures.« less

  20. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior

    Broader source: Energy.gov [DOE]

    How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

  1. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  2. Observation of high iron charge states at low energies in solar energetic particle events

    SciTech Connect (OSTI)

    Guo, Z.; Mbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A.; Klecker, B.; Kartavykh, Y. Y.; Mason, G. M.

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ? 10-14 at low energies E ? 0.1 MeV nuc{sup 1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup 1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ? 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ? 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ?2 MK up to ?4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ? 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  3. EV Everywhere - Charge to Breakout Sessions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy NEWS MEDIA CONTACT 202-586-4940 The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2015 Fuel Economy Guide, providing consumers with a valuable resource to help them choose the most fuel-efficient and low greenhouse gas emitting vehicles that meet their needs. In comparison to previous years, the 2015 models include a greater number of fuel efficient and low-emission vehicles in a broader variety of classes and sizes. "Automakers'

  4. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk about their partnership to develop a thin film to substitute for bulkier glass mirrors on solar-collecting parabolic troughs. Learn more about NREL's Concentrating Solar Power Research

  5. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  6. Signatures of spin and charge energy scales in the local moment and

    Office of Scientific and Technical Information (OSTI)

    specific heat of the half-filled two-dimensional Hubbard model (Journal Article) | SciTech Connect Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model Citation Details In-Document Search Title: Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model Local moment formation driven by the on-site repulsion U is one of the most fundamental

  7. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles March 21, 2016 - 4:58pm Addthis All-electric and plug-in hybrid cars purchased in 2015 may be eligible for federal and state income tax credits. Photo by Dennis Schroeder/NREL All-electric and plug-in hybrid cars purchased in 2015 may be eligible for federal and state income tax credits. Photo by Dennis

  8. As Electric Vehicles Take Charge, Costs Power Down | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As Electric Vehicles Take Charge, Costs Power Down As Electric Vehicles Take Charge, Costs Power Down January 13, 2012 - 1:29pm Addthis Thanks to a cost-sharing project with the Energy Department, General Motors has been able to develop the capacity to build electric and hybrid motors internally. That capacity has made cars like the upcoming Chevy Spark EV (above) possible. | Image courtesy of General Motors. Thanks to a cost-sharing project with the Energy Department, General Motors has been

  9. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY

  10. Energy loss of MeV protons specularly reflected from metal surfaces

    SciTech Connect (OSTI)

    Juaristi, J.I.

    1996-05-01

    A parameter-free model is presented to study the energy loss of fast protons specularly reflected from metal surfaces. The contributions to the energy loss from excitation of valence-band electrons and ionization of localized target-atom electronic states are calculated separately. The former is calculated from the induced surface wake potential using linear response theory and the specular-reflection model, while the latter is calculated in the first Born approximation. The results obtained are in good agreement with available experimental data. However, the experimental qualitative trend of the energy loss as a function of the angle of incidence is obtained when the valence-band electron model is replaced by localized target atom electron states, though with a worse quantitative agreement. {copyright} {ital 1996 The American Physical Society.}

  11. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, ystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  12. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  13. Crystal surface symmetry from zone-axis patterns in reflection high-energy-electron diffraction

    SciTech Connect (OSTI)

    Shannon, M.D.; Eades, J.A.; Meichle, M.E.; Turner, P.S.; Buxton, B.F.

    1984-11-26

    New experimental techniques, sensitive to crystal surface symmetry, for reflection high-energy-electron diffraction have been developed and applied to the (001) surface of MgO. The techniques map the variation of the intensity of one or more diffracted beams as a function of the incident-beam orientation. The symmetry of these surface zone-axis patterns has been studied theoretically and confirmed experimentally. The techniques are expected to provide a sensitive means of surface characterization.

  14. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  15. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  16. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect (OSTI)

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  17. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    SciTech Connect (OSTI)

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  18. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-01-01

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  19. Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Baldasaro, Paul F; Brown, Edward J; Charache, Greg W; DePoy, David M

    2000-09-05

    A method for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate (10) having a thickness (.beta.) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device (11), a metallized grid (12) and optionally an antireflective (AR) overcoating; and, the bottom surface (10') of the semiconductor wafer substrate (10) is provided with a highly reflecting coating which may comprise a metal coating (14) or a combined dielectric/metal coating (17).

  20. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  1. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect (OSTI)

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  2. Fundamental Studies of Charge Migration and Delocalization Relevant to Solar Energy Conversion

    SciTech Connect (OSTI)

    Michael J. Therien

    2012-06-01

    This program aimed to understand the molecular-level principles by which complex chemical systems carry out photochemical charge separation, transport, and storage, and how these insights could impact the design of practical solar energy conversion and storage devices. Towards these goals, this program focused on: (1) carrying out fundamental mechanistic and transient dynamical studies of proton-coupled electron-transfer (PCET) reactions; (2) characterizing and interrogating via electron paramagnetic resonance (EPR) spectroscopic methods novel conjugated materials that feature large charge delocalization lengths; and (3) exploring excitation delocalization and migration, as well as polaron transport properties of meso-scale assemblies that are capable of segregating light-harvesting antennae, nanoscale wire-like conduction elements, and distinct oxidizing and reducing environments.

  3. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOE Patents [OSTI]

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  4. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOE Patents [OSTI]

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  5. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  6. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  7. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect (OSTI)

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  8. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 1824 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110 analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110 analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  9. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmoreof atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.less

  10. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    SciTech Connect (OSTI)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  11. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less

  12. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    SciTech Connect (OSTI)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  13. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles and the associated need and desire for workplace charging Aid in forecasting similar workplace charging needs with commercial customers across the Duke Energy ...

  14. Integrated PEV Charging Solutions and Reduced Energy for Occupant Comfort (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Brochure on Vehicle Testing and Integration Facility, featuring the Vehicle Modification Facility, Vehicle Test Pad and ReCharge Integrated Demonstration System. Plug-in electric vehicles (PEVs) offer the opportunity to shift transportation energy demands from petroleum to electricity, but broad adoption will require integration with other systems. While automotive experts work to reduce the cost of PEVs, fossil fueled cars and trucks continue to burn hundreds of billions of gallons of petroleum each year - not only to get from point A to point B, but also to keep passengers comfortable with air conditioning and heat. At the National Renewable Energy Laboratory (NREL), three installations form a research laboratory known as the Vehicle Testing and Integration Facility (VTIF). At the VTIF, engineers are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle-grid integration and minimizing fuel consumption related to vehicle climate control. Part of NREL's Center for Transportation Technologies and Systems (CTTS), the VTIF is dedicated to renewable and energy efficient solutions. This facility showcases technology and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for electric vehicle (EV) components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies and industry partners. Research conducted at the VTIF examines the interaction of building energy systems, utility grids, renewable energy sources and PEVs, integrating energy management solutions, and maximizing potential greenhouse gas (GHG) reduction, while smoothing the transition and reducing costs for EV owners. NREL's collaboration with automakers, charging station manufacturers, utilities and fleet operators to assess technologies using VTIF resources is designed to enable PEV communication with the smart grid and create opportunities for vehicles to play an active role in building and grid management. Ultimately, this creates value for the vehicle owner and will help renewables be deployed faster and more economically, making the U.S. transportation sector more flexible and sustainable.

  15. The dynamics of energy and charge transfer in lead sulfide quantum dot solids

    SciTech Connect (OSTI)

    Lingley, Zachary; Lu, Siyuan; Madhukar, Anupam

    2014-02-28

    We report on a systematic time-resolved photoluminescence study of the competing energy and charge transfer rates in PbS QDs of differing sizes in the same QD solid as a function of both temperature and ligand-controlled different inter-QD average separations. This complements previous studies that typically varied only one parameter and reveals new aspects while also confirming some known features. For the smallest PbS QDs, the dominant decay process is nonradiative resonant energy transfer (NRET) to adjacent larger dots for all separations but at a rate that increases with decreasing temperature. For the largest QDs, NRET being forbidden, the decay is found to be exponential in the inter-QD separation consistent with carrier tunneling but, for each fixed tunneling distance, exhibiting a thermally activated tunneling carrier population with the activation energy dependent upon the ligand length controlling the inter-QD separation. A consistent understanding of this expanded and rich decay rate behavior of both large and small QDs, we show, can be obtained by accounting for the ligand length dependent (a) dielectric environment of the QD solid modeled using an effective medium description, (b) the energy cost of dissociating the exciton into electron and hole in neighboring QDs, and (c) the potential participation of midgap states. Implications of the findings for NRET based photovoltaics are discussed.

  16. Baryon number and electric charge fluctuations in Pb+Pb collisions at relativistic energies

    SciTech Connect (OSTI)

    Konchakovski, V. P.; Gorenstein, M. I.; Bratkovskaya, E. L.; Stoecker, H.

    2006-12-15

    Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus collisions are studied in Pb+Pb at SPS energies within the Hadron-String Dynamics (HSD) transport model. We reveal an important role of the fluctuations in the number of target nucleon participants. They strongly influence all measured fluctuations even in the samples of events with rather rigid centrality trigger. This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric charge in central collisions at 20A,30A,40A,80A, and 158A GeV are in a good agreement with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma. This demonstrates that the distortions of the initial fluctuations by the hadronization phase and, in particular, by the final resonance decays dominate the observable fluctuations.

  17. Reflection Survey At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Soda Lake Area (DOE GTP) Exploration Activity...

  18. Reflection Survey At Rye Patch Area (DOE GTP, 2011) | Open Energy...

    Open Energy Info (EERE)

    DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details...

  19. Reflection Survey At Hot Pot Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Pot Area (DOE GTP) Exploration Activity Details...

  20. Reflection Survey At New River Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At New River Area (DOE GTP) Exploration Activity...

  1. Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Fish Lake Valley Area (DOE GTP) Exploration...

  2. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 1 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth1"...

  3. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy...

    Open Energy Info (EERE)

    1 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 11 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth11" Showing 2...

  4. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 2 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth2"...

  5. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 3 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth3"...

  6. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 6 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth6"...

  7. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 8 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth8"...

  8. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 7 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth7"...

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 9 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth9"...

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 5 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth5"...

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 4 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth4"...

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy...

    Open Energy Info (EERE)

    2 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 12 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth12" Showing 2...

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy...

    Open Energy Info (EERE)

    0 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 10 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth10" Showing 2...

  14. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    SciTech Connect (OSTI)

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q?=?31eV for O{sup 7+}, while it is kT{sub q}/q?=?25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  15. Workplace Charging Challenge: Promote Charging at Work | Department of

    Energy Savers [EERE]

    Energy Plug-in Electric Vehicles & Batteries » Workplace Charging Challenge » Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can

  16. Workplace Charging Challenge: Install and Manage PEV Charging at Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Install and Manage PEV Charging at Work Workplace Charging Challenge: Install and Manage PEV Charging at Work pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and how to install charging stations to ensure a successful workplace charging

  17. Working Toward a Tech Sector that Reflects America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Toward a Tech Sector that Reflects America Working Toward a Tech Sector that Reflects America February 1, 2013 - 1:51pm Addthis Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Tech-ies mingled during a networking session after the White House Tech Inclusion Summit on January 31, 2013. (Photo credit: John Werner) Valerie Jarrett Senior Advisor to President Barack Obama Editor's Note: This blog was

  18. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  19. Evidence for MeV-particle emission from Ti charged with low-energy deuterium ions. Final report

    SciTech Connect (OSTI)

    Chambers, G.P.; Hubler, G.K.; Grabowski, K.S.

    1991-12-18

    Thin titanium films have been bombarded with low energy (350 eV) deuterium ions at high current density (0.2-0.4 mA.cm2) to investigate the reported occurrence of nuclear reactions at ambient temperatures in deuterium charged metals. A silicon charged particle detector was used to search for charged particles produced by such reactions. Evidence is reported for the detection of hydrogen isotopes with 5 MeV energy at a rate of 10-16 events/deuteron pair/s. Low energy deuterium (350 eV) ions produced by an ECR microwave source impinge normally on a thin metal film in vacuum, while a Si particle detector placed directly behind the film detects particle emission. The advantages of this method are rapid and efficient deuterium charging of any material (including insulators), high particle detection efficiency and sensitivity (low background), and the ability to measure the particle energy and determine the particle type. Titanium was chosen as the target because previous work by Jones had shown neutron emission and because Ti retains more hydrogen near room temperature than does PD.

  20. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  1. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  2. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  3. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  6. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  7. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  8. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  9. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  10. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  11. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  12. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    SciTech Connect (OSTI)

    Huo, Ming-Ming Zhang, Jian-Ping E-mail: hjhzlz@iccas.ac.cn; Department of Chemistry, Renmin University of China, Beijing 100872 ; Hu, Rong Xing, Ya-Dong Liu, Yu-Chen Ai, Xi-Cheng; Hou, Jian-Hui E-mail: hjhzlz@iccas.ac.cn

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ?}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ?0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup +} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup +} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  13. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect (OSTI)

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  14. U.S. Department of Energys EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In (Brochure), U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a sustainable business practice is

  15. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  16. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  17. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  18. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  19. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  20. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  1. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  2. AVTA: SPX AC Level 2 Charging System Testing Results | Department of Energy

    Energy Savers [EERE]

    SPX AC Level 2 Charging System Testing Results AVTA: SPX AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the SPX

  3. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  4. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    SciTech Connect (OSTI)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  5. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  6. Reflection High-Energy Electron Diffraction Beam-Induced Structural and Property Changes on WO3 Thin Films

    SciTech Connect (OSTI)

    Du, Yingge; Zhang, Hongliang; Varga, Tamas; Chambers, Scott A.

    2014-08-08

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO3 as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO3, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  7. Reflection high-energy electron diffraction beam-induced structural and property changes on WO{sub 3} thin films

    SciTech Connect (OSTI)

    Du, Y. Varga, T.; Zhang, K. H. L.; Chambers, S. A.

    2014-08-04

    Reduction of transition metal oxides can greatly change their physical and chemical properties. Using deposition of WO{sub 3} as a case study, we demonstrate that reflection high-energy electron diffraction (RHEED), a surface-sensitive tool widely used to monitor thin-film deposition processes, can significantly affect the cation valence and physical properties of the films through electron-beam induced sample reduction. The RHEED beam is found to increase film smoothness during epitaxial growth of WO{sub 3}, as well as change the electronic properties of the film through preferential removal of surface oxygen.

  8. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  9. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  10. Energy Storage System Considerations for Grid-Charged Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2005-09-01

    Provides an overview of a study regarding energy storage system considerations for a plug-in hybrid electric vehicle.

  11. Workplace Charging Challenge Partner: UCLA Smart Grid Energy Research Center (SMERC)

    Broader source: Energy.gov [DOE]

    UCLA Smart Grid Energy Research Center (SMERC) provides thought leadership via partnerships between utilities, government, policy makers, technology providers, electric vehicle manufacturers,...

  12. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  13. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  14. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOE Patents [OSTI]

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  15. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  16. Deployment of Behind-The-Meter Energy Storage for Demand Charge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... that fall below 40 watt-hours (Wh)square foot (sq. ... time shifting of energy usage) would have to be weighed ... In Figure 14, we explicitly compare the cases with and ...

  17. AVTA: GE Energy WattStation AC Level 2 Charging System Testing Results |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy PDF icon EV America Test Specifications PDF icon ETA-TP001 Implementation of SAE Standard J1263, February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques PDF icon ETA-TP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure PDF icon ETA-HP003 Implementation of SAE J1634, May 1993 - Hybrid Electric Vehicle Energy Consumption and Range Test Procedure PDF icon

  18. Dual initiation strip charge apparatus and methods for making...

    Office of Scientific and Technical Information (OSTI)

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of ...

  19. Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables

    SciTech Connect (OSTI)

    Schlichting, Soeren; Pratt, Scott

    2011-01-15

    Relativistic heavy ion collisions provide laboratory environments from which one can study the creation of a novel state of matter, the quark-gluon plasma. The existence of such a state is postulated to alter the mechanism and evolution of charge production, which then becomes manifest in charge correlations. We study the separation of balancing charges at kinetic freeze-out by analyzing recent results on balancing charge correlations for Au + Au collisions at {radical}(s{sub NN})=200 GeV. We find that in central collisions, the spatial points from which balancing charges are emitted are characterized by smaller relative angles. These results are consistent with the expectation that charge production occurred later in the collision, as would be expected for delayed hadronization. An alternative explanation would be that the charges were produced early, perhaps with a different mechanism where the charge production mechanism was altered from string breaking which tends to separate the charges in relative rapidity. The alternative explanation would also rely on the diffusion of charges being small. In addition we calculate the contributions from charge-balance correlations to STAR's local parity violation observable. We find that local charge conservation, when combined with elliptic flow, explains the bulk of STAR's measurement.

  20. C{sub 6}H{sub 6}/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    SciTech Connect (OSTI)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-28

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  1. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  2. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  3. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Update 2014 U.S. Department of Energy Sarah Olexsak Workplace Charging Challenge 2 Ambassador employer workshops & recognition events Workplace Charging Challenge 3 ...

  4. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  5. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected tomore » collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  6. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    SciTech Connect (OSTI)

    Franz, Robert; Polcik, Peter; Anders, Andr

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  7. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  8. Charge-state-resolved ion energy distribution functions of cathodic vacuum arcs: A study involving the plasma potential and biased plasmas

    SciTech Connect (OSTI)

    Anders, Andre; Oks, Efim

    2007-02-15

    Charge-state-resolved ion energy distribution functions were measured for pulsed cathodic arcs taking the sheath into account that formed between the plasma and the entrance of a combined energy and mass spectrometer. An electron emitting probe was employed to independently determine the plasma potential. All results were obtained by averaging over several individual measurements because the instantaneous energy distributions and the plasma potential show large amplitude fluctuations due to the explosive nature of the arc plasma generation. It was found that the ion energy distribution functions in the plasma were independent of the ion charge state. This is in contrast to findings with continuously operating, direct-current arcs that employ a magnetic field at the cathode to steer the cathode spot motion. The different findings indicate the important role of the magnetic steering field for the plasma properties of direct-current arcs. The results are further supported by experiments with 'biased plasmas' obtained by shifting the potential of the anode. Finally, it was shown that the ion energy distributions were broader and shifted to higher energy at the beginning of each arc pulse. The characteristic time for relaxation to steady state distributions is about 100 {mu}s.

  9. Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-01-01

    A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

  10. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  11. REFLECT HOME

    Broader source: Energy.gov [DOE]

    Sacramento is nicknamed the City of Trees, so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team’s Reflect Home does just that by embracing the city’s sense of expansive greenery.

  12. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Siemens-VersiCharge Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Siemens-VersiCharge AC Level 2 - November

  13. Workplace Charging - Attracting Tenants through Charged Up Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy - Attracting Tenants through Charged Up Facilities Workplace Charging - Attracting Tenants through Charged Up Facilities Nationwide, leased facilities constitute almost half of workplaces. Competitive property managers are constantly looking for new, innovative offerings to attract tenants, including advanced building designs and services, mass transit accessibility, and energy-efficient certifications. As more plug-in electric vehicles (PEVs) hit the road across the

  14. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  15. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office: Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by

  16. Tunable resonant sensing means to sense a particular frequency in a high energy charged particle beam and generate a frequency-domain signal in response

    DOE Patents [OSTI]

    Nakamura, Michiyuki; Nolan, Marvin L.

    1988-01-01

    A frequency domain sensing system is disclosed for sensing the position of a high energy beam of charged particles traveling within a housing which comprises a plurality of sensors positioned in the wall of the housing radially around the axis of the beam. Each of the sensors further comprises a first electrode of predetermined shape received in a bore in the housing to define a fixed capacitance and an inductance structure attached to the electrode to provide an inductance for the sensing means which will provide an LC circuit which will resonate at a predetermined frequency known to exist in the beam of charged particles. The sensors are further provided with tuning apparatus associated with the inductance structure to vary the amount of the inductance to thereby tune the sensors to the predetermined frequency prior to transmission of the signal to signal detection circuitry.

  17. Workplace Charging: Comparison of Sustainable Commuting Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI ...

  18. HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging HPSS Charging NERSC uses Storage Resource Units (SRUs) to help manage HPSS storage. The goal is to provide a balanced computing environment with appropriate amounts of storage and adequate bandwidth to keep the compute engines fed with data. Performance and usage tracking allows NERSC to anticipate demand and maintain a responsive storage environment. Storage management also recognizes storage as a distinct resource in support of an increasing amount of data intensive computing. Storage

  19. Workplace Charging Challenge Partner: Northwest Evaluation Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NWEA) | Department of Energy Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Joined the Challenge: July 2015 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 400 Northwest Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is

  20. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut Joined the Challenge: February 2015 Headquarters: Storrs, CT Charging Location: Storrs, CT Domestic Employees: 4,816 The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits

  1. Search for Higgs boson production in oppositely charged dilepton and missing energy events in pp̄ collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-08-20

    We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H→WW decays. The events are selected from data corresponding to 8.6 fb⁻¹ of integrated luminosity in pp̄ collisions at √s=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

  2. Search for Higgs boson production in oppositely charged dilepton and missing energy events in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Prez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Faur, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garca-Gonzlez, J. A.; Garca-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.

    2012-08-20

    We present a search for the standard model Higgs boson using events with two oppositely charged leptons and large missing transverse energy as expected in H?WW decays. The events are selected from data corresponding to 8.6 fb? of integrated luminosity in pp? collisions at ?s=1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. No significant excess above the standard model background expectation in the Higgs boson mass range this search is sensitive to is observed, and upper limits on the Higgs boson production cross section are derived.

  3. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  4. Medium-modified jets and initial state fluctuations as sources of charge correlations measured at energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect (OSTI)

    Petersen, Hannah; Bass, Steffen A.; Renk, Thorsten

    2011-01-15

    We investigate the contribution of medium-modified jets and initial state fluctuations to the asymmetry in charged-particle production with respect to the reaction plane. This asymmetry has been suggested as a compelling signature for the chiral magnetic effect in QCD and makes the study of conventional scenarios for the creation of such charged-particle multiplicity fluctuations a timely endeavor. The different path-length combinations of jets through the medium in noncentral heavy ion collisions result in finite correlations of like and different charged particles emitted in the different hemispheres. Our calculation is based on the combination of jet events from Yet another Jet Energy-Loss Model (YaJEM) and a bulk-medium evolution. It is found that the jet production probabilities are too small to observe this effect. The influence of initial state fluctuations on this observable is explored by using an event-by-event (3+1)-dimensional hybrid approach that is based on Ultra-relativistic Quantum Molecular Dynamics (UrQMD) with an ideal hydrodynamic evolution. In this calculation, momentum conservation and elliptic flow are explicitly taken into account. The asymmetries in the initial state are translated to a final state momentum asymmetry by the hydrodynamic flow profile. Dependent on the size of the initial state fluctuations, the resulting charged-particle asymmetries are in qualitative agreement with the preliminary STAR (solenoid tracker at the Relativistic Heavy Ion Collider) results. The multiparticle correlation as proposed by the PHENIX Collaboration can, in principle, be used to disentangle the different contributions, however, in practice, is affected substantially by the procedure to subtract trivial resonance decay contributions.

  5. Effects of roughness and temperature on low-energy hydrogen positive and negative ion reflection from silicon and carbon surfaces

    SciTech Connect (OSTI)

    Tanaka, N.; Kato, S.; Miyamoto, T.; Wada, M.; Nishiura, M.; Tsumori, K.; Matsumoto, Y.; Kenmotsu, T.; Okamoto, A.; Kitajima, S.; Sasao, M.; Yamaoka, H.

    2014-02-15

    Angle-resolved energy distribution functions of positive and negative hydrogen ions produced from a rough-finished Si surface under 1 keV proton irradiation have been measured. The corresponding distribution from a crystalline surface and a carbon surface are also measured for comparison. Intensities of positive and negative ions from the rough-finished Si are substantially smaller than those from crystalline Si. The angular distributions of these species are broader for rough surface than the crystalline surface. No significant temperature dependence for positive and negative ion intensities is observed for all samples in the temperature range from 300 to 400 K.

  6. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Employers Take Charge | Department of Energy Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update

  7. EV Everywhere - Charge to Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    Name or Ancillary Text eere.energy.gov EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24,...

  8. AVTA: ChargePoint AC Level 2 Charging System Testing Results | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy ChargePoint AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon ChargePoint AC Level 2 - February 2012 More Documents & Publications AVTA: EVSE Charging Protocol for On and Off-Peak Demand AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: ChargePoint America Recovery Act project map of charging units

  9. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Joined the Challenge: June 2014 Headquarters: Argonne, IL Charging Location: Argonne, IL Domestic Employees: 3,400 Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and

  10. Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters

    SciTech Connect (OSTI)

    Duanmu, Kaining; Truhlar, Donald G.

    2015-04-30

    We report a systematic study of small silver clusters, Agn, Agn+, and Agn–, n = 1–7. We studied all possible isomers of clusters with n = 5–7. We tested 42 exchange–correlation functionals, and we assess these functionals for their accuracy in three respects: geometries (quantitative prediction of internuclear distances), structures (the nature of the lowest-energy structure, for example, whether it is planar or nonplanar), and energies. We find that the ingredients of exchange–correlation functionals are indicators of their success in predicting geometries and structures: local exchange–correlation functionals are generally better than hybrid functionals for geometries; functionals depending on kinetic energy density are the best for predicting the lowest-energy isomer correctly, especially for predicting two-dimensional to three-dimenstional transitions correctly. The accuracy for energies is less sensitive to the ingredient list. Our findings could be useful for guiding the selection of methods for computational catalyst design.

  11. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Joined the Challenge: May 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 12 Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower

  12. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Broader source: Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  13. reflecting-behavioral-processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reflecting Behavioral Processes In Integrated Models Of Activity-Travel Demand And Dynamic Network Supply: A Novel Event-Based Framework Presentation at Argonne TRACC March 16, 2012 10:00 AM(CDT) TRACC Conference Room: Building 222, Room D-233 Dr. Karthik Charan Konduri School of Sustainable Energy and the Built Environment Arizona State University Abstract The developments in the microsimulation modeling of two key components of the transportation system, namely, activity-travel demand and

  14. Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory

    SciTech Connect (OSTI)

    Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

    2009-08-01

    Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

  15. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; et al

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (π±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, Pt2 < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx or W',more » is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and Pt2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π+ and π-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less

  16. Workplace Charging Challenge Partner: Louisiana State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Joined the Challenge: October 2015 Headquarters: Baton Rouge, LA Charging Location: Baton Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy

  17. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  18. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  19. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    storms in a state that averages 27 tornadoes yearly. Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  20. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Random | Alphabetical | Rating (High to Low) | Rating (Low to High) STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  1. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Affordable, Solar, Innovation--or EASI--House. Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  2. REFLECT HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to serve a family "from a full nest to an empty nest." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  3. Survey Says: Workplace Charging is Growing in Popularity and Impact |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact November 18, 2014 - 3:54pm Addthis Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Sarah Olexsak Workplace Charging

  4. Workplace Charging Toolkit: Workshop Invitation Template | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Invitation Template Workplace Charging Toolkit: Workshop Invitation Template Engage possible workplace charging event attendees with this template invitation. File General Workshop Invitation Template File Clean Cities Branded Workshop Invitation Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Agenda Template Workplace Charging Toolkit: Workshop Host Outreach

  5. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  6. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  7. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you ...

  8. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect (OSTI)

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  9. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  10. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    SciTech Connect (OSTI)

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, A.; Baker, O. K.; Benmouna, N.; Bertoncini, C.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Breuer, H.; Christy, M. E.; Connell, S. H.; Cui, Y.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Fenker, H. C.; Frolov, V. V.; Gan, L.; Gaskell, D.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Hungerford, E.; Jiang, X.; Jones, M.; Joo, K.; Kalantarians, N.; Kelly, J. J.; Keppel, C. E.; Kubarovsky, V.; Li, Y.; Liang, Y.; Mack, D.; Malace, S. P.; Markowitz, P.; McGrath, E.; McKee, P.; Meekins, D. G.; Mkrtchyan, A.; Moziak, B.; Niculescu, G.; Niculescu, I.; Opper, A. K.; Ostapenko, T.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tang, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Wang, M.; Warren, G.; Wesselmann, F. R.; Wojtsekhowski, B.; Wood, S. A.; Xu, C.; Yuan, L.; Zheng, X.

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (?) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W2 > 4 GeV2 and range in four-momentum transfer squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, Pt2 < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark ? pion production mechanisms. The x, z and Pt2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for ?+ and ?-) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.

  11. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  12. Workplace Charging Challenge Partner: Southern California Edison |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Edison Workplace Charging Challenge Partner: Southern California Edison Workplace Charging Challenge Partner: Southern California Edison Joined the Challenge: February 2013 Headquarters: Rosemead, CA Charging Location: Rosemead, CA Domestic Employees: 13,000 Southern California Edison (SCE) installed 49 Level 2 Electric Vehicle Service Equipment (EVSEs) at various locations between 2010-2012 for both employee and fleet charging. In early 2013, SCE began a

  13. Workplace Charging Challenge Partner: WESCO International, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Joined the Challenge: April 2013 Headquarters: Pittsburgh, PA Charging Locations: Pittsburgh, PA; Phoenix, AZ Domestic Employees: 7,000 As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting

  14. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  15. Solid state cloaking for electrical charge carrier mobility control

    DOE Patents [OSTI]

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  16. Leading the Charge: Jim Manion

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands.

  17. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at ${\\sqrt{s} = 8}$ s = 8 TeV using the ATLAS experiment

    SciTech Connect (OSTI)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data sample corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.

  18. Search for metastable heavy charged particles with large ionisation energy loss in pp collisions at $${\\sqrt{s} = 8}$$ s = 8 TeV using the ATLAS experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-03

    Many extensions of the Standard Model predict the existence of charged heavy long-lived particles, such as R-hadrons or charginos. These particles, if produced at the Large Hadron Collider, should be moving non-relativistically and are therefore identifiable through the measurement of an anomalously large specific energy loss in the ATLAS pixel detector. Measuring heavy long-lived particles through their track parameters in the vicinity of the interaction vertex provides sensitivity to metastable particles with lifetimes from 0.6 ns to 30 ns. A search for such particles with the ATLAS detector at the Large Hadron Collider is presented, based on a data samplemore » corresponding to an integrated luminosity of \\(18.4\\) fb\\(^{-1}\\) of pp collisions at \\(\\sqrt{s} = 8\\) TeV. No significant deviation from the Standard Model background expectation is observed, and lifetime-dependent upper limits on R-hadrons and chargino production are set. Gluino R-hadrons with 10 ns lifetime and masses up to 1185 GeV are excluded at 95 \\(\\%\\) confidence level, and so are charginos with 15 ns lifetime and masses up to 482 GeV.« less

  19. Workplace Charging Challenge MidProgram Review Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MidProgram Review Webinar Workplace Charging Challenge MidProgram Review Webinar Read the text version. More Documents & Publications Workplace Charging Management Policies Webinar Workplace Charging Management Policies Webinar Workplace Charging Plug-In Electric Vehicle Ride and Drive Webinar Ride and Drive Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar

  20. Workplace Charging Challenge Partner: Telefonix, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. Joined the Challenge: October 2014 Headquarters: Waukegan, IL Charging Location: Waukegan, IL Domestic Employees: 94 As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) charging stations, workplace charging is a part of the Telefonix company ethos. Telefonix currently has two PEV charging stations installed, which support the three PEVs

  1. Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems | Department of Energy Fraunhofer Center for Sustainable Energy Systems Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems Workplace Charging Challenge Partner: Fraunhofer Center for Sustainable Energy Systems Joined the Challenge: May 2013 Headquarters: Boston, MA Charging Location: Albuquerque, NM Domestic Employees: 60 The Fraunhofer Center for Sustainable Energy Systems (CSE) is a not-for-profit applied R&D laboratory dedicated to

  2. Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2011-08-01

    A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.

  3. Scintillator reflective layer coextrusion

    DOE Patents [OSTI]

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  4. Workplace Charging Challenge: Promote Charging at Work

    Broader source: Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  5. Workplace Charging Challenge: Sample Workplace Charging Policy

    Broader source: Energy.gov [DOE]

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  6. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  7. Workplace Charging Challenge Partner: Eastern Connecticut State University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Joined the Challenge: September 2015 Headquarters: Willimantic, CT Charging Location: Willimantic, CT Domestic Employees: 980 As part of the University's commitment to Sustainability, Eastern Connecticut State University installed its first Level 2 charging station in December 2014, creating

  8. Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Invite employers in your community that already have charging to speak on an employer experience panel. File General Speaker Outreach Letter Template File Clean Cities Branded Speaker Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Charging Infrastructure Group D Breakout Report | Department of Energy d_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group C Breakout Report EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out

  10. Workplace Charging Challenge Partner: Concurrent Design, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Workplace Charging Challenge Partner: Concurrent Design, Inc. Joined the Challenge: February 2014 Headquarters: Austin, TX Charging Location: Austin, TX Domestic Employees: 18 Concurrent Design is committed to clean energy, and is purpose-built to support the development of clean energy products. Concurrent Design aims to have no upstream fossil fuels involved in vehicle charging at their office.

  11. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  12. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  13. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  14. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, ... by increasing charging available in the workplace, is essential to making that transition. ...

  15. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    work EV Ambassador Work Attach "Ask me about my ... 13 ChargePoint charging stations scattered throughout ... GMP will provide on-site test drives GMP will offer ...

  16. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  17. Workplace Charging Challenge Partner: Intertek Center for Evaluation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Technology (CECET) | Department of Energy Intertek Center for Evaluation of Clean Energy Technology (CECET) Workplace Charging Challenge Partner: Intertek Center for Evaluation of Clean Energy Technology (CECET) Workplace Charging Challenge Partner: Intertek Center for Evaluation of Clean Energy Technology (CECET) Joined the Challenge: September 2015 Headquarters: Phoenix, AZ Charging Location: Phoenix, AZ Domestic Employees: 28 Intertek CECET is an advanced vehicle testing

  18. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  19. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  20. Workplace Charging Challenge Partner: Clarkson University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Clarkson University Workplace Charging Challenge Partner: Clarkson University Workplace Charging Challenge Partner: Clarkson University Joined the Challenge: August 2015 Headquarters: Potsdam, NY Charging Location: Potsdam, NY Domestic Employees: 800 Clarkson University has pledged to include sustainability in everything it does on campus. Sustainability initiatives include the locally generated renewable electricity used to meet over half of its energy needs, sustainability concepts

  1. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  2. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Joined the Challenge: July 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 6,985 Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's

  3. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University Joined the Challenge: August 2015 Headquarters: Cheney, WA Charging Locations: N/A Domestic Employees: 1,989 In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing

  4. Workplace Charging Challenge Partner: Heartland Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Joined the Challenge: June 2014 Headquarters: Normal, IL Charging Location: Normal, IL Domestic Employees: 872 Heartland Community College values ethical decision-making and responsible use of environmental, financial, and community resources to promote a sustainable future. The college installed two Level 2

  5. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Joined the Challenge: October 2013 Headquarters: Portland, OR Charging Locations: Portland, OR; Gresham, OR; Beaverton, OR; Salem, OR; Tualatin, OR; Wilsonville, OR; Woodburn, OR; Oregon City, OR; Clackamas, OR Domestic Employees: 2,596 Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric

  6. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  7. Model-Independent Characterization of Charge Diffusion in Thick Fully

    Office of Scientific and Technical Information (OSTI)

    Depleted CCDs (Journal Article) | SciTech Connect Model-Independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs Citation Details In-Document Search Title: Model-Independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs We present a new method to measure charge diffusion in charge-coupled devices (CCDs). The method is based on a statistical characterization of the shapes of charge clouds produced by low-energy X-rays using known properties of the

  8. Workplace Charging Challenge Mid-Program Review: Promising Progress from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Employers | Department of Energy Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers December 1, 2015 - 9:56am Addthis Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Sarah Olexsak Workplace Charging Challenge Coordinator The EV Everywhere Workplace Charging Challenge is celebrating a major milestone - it's now halfway to its

  9. Workplace Charging Challenge Partner: AeroVironment, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Joined the Challenge: August 2014 Headquarters: Monrovia, CA Charging Locations: Monrovia, CA; Simi Valley, CA Domestic Employees: 625 AeroVironment, a developer and innovator of unmanned aircraft systems, EV charging solutions, and innovative technology systems, leads by example with workplace charging strategies. AeroVironment has about 20 electric

  10. Workplace Charging Challenge Partner: City of Sacramento | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sacramento Workplace Charging Challenge Partner: City of Sacramento Workplace Charging Challenge Partner: City of Sacramento Joined the Challenge: February 2013 Headquarters: Sacramento, CA Charging Location: Sacramento, CA Domestic Employees: 3,792 In 2012, Sacramento's City Council adopted a resolution to proceed with a contract to implement "Electric Vehicle Charging Stations in Various City Public Parking Garages." The City of Sacramento installed a total of 28 charging

  11. Proton's Weak Charge Determined for First Time | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton's Weak Charge Determined for First Time Proton's Weak Charge Determined for First Time Q-weak at Jefferson Lab has measured the proton's weak charge Q-weak at Jefferson Lab has measured the proton's weak charge. NEWPORT NEWS, VA, Sept. 17, 2013 - Researchers have made the first experimental determination of the weak charge of the proton in research carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). The results, accepted for

  12. An Updated Annual Energy Outlook 2009 Reference Case Reflecting Provisions of the American Recovery and Reinvestment Act and Recent Changes in the Economic Outlook

    Reports and Publications (EIA)

    2009-01-01

    This report updates the Reference Case presented in the Annual Energy Outlook 2009 based on recently enacted legislation and the changing macroeconomic environment.

  13. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... assumptions that residential charging remains the dominant method will guide this study. ... when running low on energy. 2.1 Driving Profiles To simulate fast charge usage based on ...

  14. Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Act | Department of Energy Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of Justice press release announcing that a federal grand jury in the Eastern District of Tennessee has charged a former contract worker, Roy Lynn Oakley, at East Tennessee Technology Park with converting to his own use restricted government materials utilized for uranium enrichment and

  15. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  16. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  17. Reflective diffraction grating

    DOE Patents [OSTI]

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  18. Tandem resonator reflectance modulator

    DOE Patents [OSTI]

    Fritz, Ian J. (Albuquerque, NM); Wendt, Joel R. (Albuquerque, NM)

    1994-01-01

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors.

  19. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  20. High order reflectivity of graphite (HOPG) crystals for x ray...

    Office of Scientific and Technical Information (OSTI)

    High order reflectivity of graphite (HOPG) crystals for x ray energies up to 22 keV Citation Details In-Document Search Title: High order reflectivity of graphite (HOPG) crystals ...

  1. Surface reflectance degradation by microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  2. Surface reflectance degradation by microbial communities

    SciTech Connect (OSTI)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  3. Leading the Charge: Christine Klein

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands. In this issue, we talk to Christine Klein, an adopted Haida who is leading efforts to help Alaska Native villages address their energy challenges in her role as Vice President and Chief Operating Officer of the Calista Corporation.

  4. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  5. Theoretical investigation of the origin of the multipeak structure of kinetic-energy-release spectra from charge-resonance-enhanced ionization of H{sub 2}{sup +} in intense laser fields

    SciTech Connect (OSTI)

    He Haixiang; Guo Yahui [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); China and Graduate School of the Chinese Academy of Sciences, Beijing, 10039 (China); Lu Ruifeng [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhang Peiyu; Han Keli; He Guozhong [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2011-09-15

    The dynamics of hydrogen molecular ions in intense laser pulses (100 fs, I = 0.77 x 10{sup 14} W/cm{sup 2} to 2.5 x 10{sup 14} W/cm{sup 2}) has been studied, and the kinetic-energy-release spectra of Coulomb explosion channel have been calculated by numerically solving the time-dependent Schroedinger equation. In a recent experiment, a multipeak structure from charge-resonance-enhanced ionization is interpreted by a vibrational 'comb' at a critical nuclear distance. We found that the peaks could not be attributed to a single vibrational level but a collective contribution of some typical vibrational states in our calculated Coulomb explosion spectra, and the main peak shifts toward the low-energy region with increasing vibrational level, which is also different from the explanation in that experiment. We have also discussed the proton's kinetic-energy-release spectra for different durations with the same laser intensity.

  6. Workplace Charging Challenge: Higher Education PEV Charging Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace ...

  7. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOE Patents [OSTI]

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  8. Renewable liquid reflection grating

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  9. Leading the Charge: Native Leaders Give Tribes a Voice on White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leading the Charge is a regular Indian Energy Beat newsletter feature spotlighting the ...Summer 2014 issue of the DOE Office of Indian Energy newsletter, Indian Energy Beat. ...

  10. Low reflectance high power RF load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  11. Energy and charge transfers between (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (N719) and ZnO thin films

    SciTech Connect (OSTI)

    Ni Manman; Cheng Qiang; Zhang, W. F.

    2010-03-15

    ZnO thin films and (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (called N719) sensitized ZnO thin films are grown on fluorine-doped tin oxide (FTO) conducting glass substrates using laser molecular beam epitaxy. Ultraviolet-visible absorption, photoluminescence (PL), surface photovoltage spectroscopy, and Raman scattering are employed to probe into the transition process of photogenerated charges and the interaction between ZnO and N719. The experimental results indicate that there is a significant electronic interaction between N719 and ZnO through chemiadsorption. The interaction greatly enhances the photogenerated charge separation and thus the photovoltaic response of the ZnO film but remarkedly weakens its radiative recombination, i.e., PL, implying strong energy and charge transfer occurring between N719 and ZnO. In addition, a new PL peak observed at about 720 nm in N719 sensitized ZnO/FTO is attributed to the electron-hole recombination of N719.

  12. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect (OSTI)

    Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A; Johnson, Christi R; Collins, Case; Bouman, Charles; Abdulrahman, Hani; Foster, Benjamin

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measured reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.

  13. Workplace Charging Challenge Partner: State of New Mexico | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Mexico Workplace Charging Challenge Partner: State of New Mexico Workplace Charging Challenge Partner: State of New Mexico Joined the Challenge: January 2016 Headquarters: Santa Fe, NM Charging Location: Santa Fe, NM Domestic Employees: 22,796 The State of New Mexico's energy conservation and management program is coordinated through the state's Energy, Mineral and Natural Resources Department (EMNRD). The state's vision is to promote an environment where individuals, agencies and

  14. Workplace Charging Challenge Partner: Swarthmore College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Swarthmore College Workplace Charging Challenge Partner: Swarthmore College Workplace Charging Challenge Partner: Swarthmore College Joined the Challenge: November 2015 Headquarters: Swarthmore, PA Charging Location: Swarthmore, PA Domestic Employees: 1,135 Swarthmore College is strongly committed to environmental sustainability. Swarthmore signed the American Colleges and University Presidents' Climate Commitment in 2010 - establishing its 2035 carbon neutrality goal - and more

  15. Workplace Charging Challenge Partner: Washington Area New Automobile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dealers Association | Department of Energy Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Joined the Challenge: February 2015 Headquarters: Washington, DC Charging Location: Washington, DC Domestic Employees: 18 Washington Area New Automobile Dealers Association (WANADA) serves as the representative organization

  16. Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Instruction Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Inform speakers participating in the employer experience panel about their role in the event. File General Speaker Instruction Letter Template File Clean Cities Branded Speaker Instruction Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Host Outreach

  17. NREL: Awards and Honors - Current Interrupt Charging Algorithm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Interrupt Charging Algorithm for Lead-Acid Batteries Developers: Matthew A. Keyser, Ahmad A. Pesaran, and Mark M. Mihalic, National Renewable Energy Laboratory; Robert F....

  18. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  19. ChargePoint is Helping Electrify America's Transportation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of plug-in electric vehicles (PEVs), the Energy Department supported the ChargePoint America project in 2009 under the American Recovery and Reinvestment Act. At the...

  20. AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

  1. The impact of disorder on charge transport in three dimensional...

    Office of Scientific and Technical Information (OSTI)

    Title: The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures Efficient iso-entropic energy filtering of electronic waves can be ...

  2. Former Oak Ridge Bechtel Jacobs Employee Charged with Violating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Former Oak Ridge Bechtel Jacobs Employee Charged with Violating Atomic Energy Act Department of Justice press release announcing that a federal grand jury in the Eastern District ...

  3. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  4. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  5. Workplace Charging Challenge Partner: Alameda County, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alameda County, CA Workplace Charging Challenge Partner: Alameda County, CA Workplace Charging Challenge Partner: Alameda County, CA Joined the Challenge: January 2014 Headquarters: Oakland, CA Charging Locations: Alameda, CA; Hayward, CA; San Leandro, CA; Oakland, CA Domestic Employees: 8,000 Alameda County has fully embraced plug-in electric vehicles (PEVs) to help meet its Climate Action goals. In 2013, Alameda County installed its first 40 PEV charging stations, the majority of

  6. Workplace Charging Challenge Partner: Avista Utilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Joined the Challenge: November 2014 Headquarters: Spokane, WA Charging Location: Spokane, WA Domestic Employees: 1,643 Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for public and employee use in the Spokane

  7. Workplace Charging Challenge Partner: Bentley Systems, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Joined the Challenge: February 2013 Headquarters: Exton, PA Charging Locations: Huntsville, AL; Exton, PA Domestic Employees: 1,230 Bentley Systems has committed to installing at least one plug-in electric vehicle (PEV) charging location at one of its U.S. office locations. The company will monitor and assess colleague feedback and explore

  8. Workplace Charging Challenge Partner: City of Atlanta | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Atlanta Workplace Charging Challenge Partner: City of Atlanta Workplace Charging Challenge Partner: City of Atlanta Joined the Challenge: March 2014 Headquarters: Atlanta, GA Charging Location: Atlanta, GA Domestic Employees: 8,107 The City of Atlanta's provision of workplace charging builds upon a larger strategy to improve transportation in the region and provide sustainable transportation options. The first component focuses on increasing the adoption of alternative transportation

  9. Workplace Charging Challenge Partner: City of Benicia | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Benicia Workplace Charging Challenge Partner: City of Benicia Workplace Charging Challenge Partner: City of Benicia Joined the Challenge: June 2015 Headquarters: Benicia, CA Charging Location: Benicia, CA Domestic Employees: 400 The City of Benicia has applied for and received a number of grants to install plug-in electric vehicle (PEV) charging stations at city facilities. Through work with local and regional partners, it has installed 3 Level 2 stations at two different city

  10. Workplace Charging Challenge Partner: City of Fort Collins | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fort Collins Workplace Charging Challenge Partner: City of Fort Collins Workplace Charging Challenge Partner: City of Fort Collins Joined the Challenge: February 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 2,000 The City of Fort Collins has partnered with Drive Electric Northern Colorado to create infrastructure, policy, and awareness campaigns about electric vehicles. As of 2015, the City has 12 public charging stations that are capable

  11. Workplace Charging Challenge Partner: City of Hillsboro | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Joined the Challenge: July 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 750 The City of Hillsboro is proud to offer plug-in electric vehicle (PEV) charging for employees, its fleets, and the public at multiple locations in the downtown area. Beginning in 2009, the City has installed 35 EVSE, including the state's first Level

  12. Workplace Charging Challenge Partner: ClipperCreek, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ClipperCreek, Inc. Workplace Charging Challenge Partner: ClipperCreek, Inc. Workplace Charging Challenge Partner: ClipperCreek, Inc. Joined the Challenge: April 2014 Headquarters: Auburn, CA Charging Location: Auburn, CA Domestic Employees: 35 ClipperCreek is a leading manufacturer of Electric Vehicle Supply Equipment (EVSE). The company strives to advance the plug-in electric vehicle (PEV) market by helping to provide convenient PEV charging solutions. ClipperCreek has installed six

  13. Workplace Charging Challenge Partner: El Camino Real Charter High School |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Workplace Charging Challenge Partner: El Camino Real Charter High School Joined the Challenge: September 2014 Headquarters: Woodland Hills, CA Charging Location: Woodland Hills, CA Domestic Employees: 225 El Camino Real Charter High School (ECRCHS) has installed 4 plug-in electric vehicle (PEV) chargers, with plans to expand if demand increases. The charging

  14. Workplace Charging Challenge Partner: Ford Motor Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Workplace Charging Challenge Partner: Ford Motor Company Joined the Challenge: January 2013 Headquarters: Dearborn, MI Charging Location: Dearborn, MI Domestic Employees: 69,000 Ford's strong commitment to electrification includes six all-new electrified vehicles available in 2013-including three hybrid electric vehicles (HEVs) and three plug-in electric vehicles (PEVs). Workplace charging is consistent with

  15. Workplace Charging Challenge Partner: Gonzaga University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Gonzaga University Workplace Charging Challenge Partner: Gonzaga University Workplace Charging Challenge Partner: Gonzaga University Joined the Challenge: June 2015 Headquarters: Spokane, WA Charging Location: Spokane, WA Domestic Employees: 1,187 For Gonzaga University, installing plug-in electric vehicle charging stations is consummate with their mission to care for creation and be stewards of resources. As part of this missioned responsibility and in light of the growing pressures

  16. Workplace Charging Challenge Partner: Hewlett-Packard | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Workplace Charging Challenge Partner: Hewlett-Packard Joined the Challenge: February 2015 Headquarters: Palo Alto, CA Charging Locations: Boise, ID; Corvallis, OR; Fort Collins, CO; Fremont, CA; Houston, TX; Palo Alto, CA; Plano, TX; Roseville, CA; Sunnyvale, CA Domestic Employees: 302,000 Plug-in electric vehicle (PEV) charging ties directly into HP's Corporate Stewardship Objectives. Employee commuting accounts

  17. Workplace Charging Challenge Partner: Idaho Power Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Idaho Power Company Workplace Charging Challenge Partner: Idaho Power Company Workplace Charging Challenge Partner: Idaho Power Company Joined the Challenge: February 2016 Headquarters: Boise, ID Charging Locations: Boise, ID; Nampa, ID; Pocatello, ID; Twin Falls, ID; Payette, ID; Hailey, ID Domestic Employees: 2,011 In 2016, Idaho Power completed the installation of workplace charging facilities in employee parking lots across their service area. In an effort to promote workplace

  18. Workplace Charging Challenge Partner: Intel Corporation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Workplace Charging Challenge Partner: Intel Corporation Joined the Challenge: June 2014 Headquarters: Santa Clara, CA Charging Locations: Hillsboro, OR; Folsom, CA; Santa Clara CA; Chandler, AZ; Chandler, AZ Domestic Employees: 59,180 Intel is committed to being on the forefront of green initiatives and has invested heavily to supply over 100 plug-in electric vehicle charging stations at 7 of their major sites

  19. Workplace Charging Challenge Partner: JLA Public Involvement | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy JLA Public Involvement Workplace Charging Challenge Partner: JLA Public Involvement Workplace Charging Challenge Partner: JLA Public Involvement Joined the Challenge: March 2013 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 15 Purchasing a plug-in electric vehicle (PEV) and installing a charging station has expanded JLA Public Involvement's sustainability efforts and allowed them to achieve Gold certification in the City of Portland's Sustainability

  20. Workplace Charging Challenge Partner: Kaiser Permanente | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente Workplace Charging Challenge Partner: Kaiser Permanente Joined the Challenge: June 2014 Headquarters: Oakland, CA Charging Location: Roseville, CA Domestic Employees: 174,415 As part of its commitment to reducing greenhouse gas emissions and creating healthy communities, Kaiser Permanente plans to host plug-in electric vehicle charging stations at an initial 45 hospitals and other locations through 2015, with

  1. Workplace Charging Challenge Partner: Lane Regional Air Protection Agency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Workplace Charging Challenge Partner: Lane Regional Air Protection Agency Joined the Challenge: June 2014 Headquarters: Springfield, OR Charging Location: Springfield, OR Domestic Employees: 15 Lane Regional Air Protection Agency is committed to ensuring clean air for everyone in Lane County. By joining the Workplace Charging Challenge, LRAPA is setting an

  2. Workplace Charging Challenge Partner: MOM's Organic Market | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy MOM's Organic Market Workplace Charging Challenge Partner: MOM's Organic Market Workplace Charging Challenge Partner: MOM's Organic Market Joined the Challenge: September 2015 Headquarters: Rockville, MD Charging Location: Rockville, MD Domestic Employees: 889 Offering workplace charging is one of the ways MOM's Organic Market lives "Our Purpose" - to protect and restore the environment. MOM's employees are passionate environmentalists in all facets of their lives, including

  3. Workplace Charging Challenge Partner: Nissan North America, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nissan North America, Inc. Workplace Charging Challenge Partner: Nissan North America, Inc. Workplace Charging Challenge Partner: Nissan North America, Inc. Joined the Challenge: January 2013 Headquarters: Franklin, TN Charging Locations: Franklin, TN; Smyrna, TN; Farmington Hills, MI; San Diego, CA; Silicon Valley, CA; Irvine, CA Domestic Employees: 19,400 Nissan offers plug-in electric vehicle (PEV) charging to its employees at its headquarters, regional offices, and

  4. Workplace Charging Challenge Partner: Oak Ridge National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Joined the Challenge: November 2014 Headquarters: Oak Ridge, TN Charging Location: Oak Ridge, TN Domestic Employees: 4,400 Oak Ridge National Laboratory's (ORNL's) Sustainable Campus Initiative contains a roadmap for development of electric vehicle charging stations, indicating that plug-in electric vehicle

  5. Workplace Charging Challenge Partner: Pacific Gas & Electric Company |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company Joined the Challenge: October 2014 i>Headquarters: San Francisco, CA Charging Locations: San Francisco, CA; San Ramon, CA ; Concord, CA Domestic Employees: 22,000 In keeping with its strong support for clean transportation, PG&E employees now have an opportunity to charge plug-in

  6. Workplace Charging Challenge Partner: Prairie State College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Prairie State College Workplace Charging Challenge Partner: Prairie State College Workplace Charging Challenge Partner: Prairie State College Joined the Challenge: June 2014 Headquarters: Chicago Heights, IL Charging Location: Chicago Heights, IL Domestic Employees: 525 As part of Prairie State College's sustainability initiatives, the college installed two Level 2 plug-in electric vehicle (PEV) charging stations that are available for employee, student and community use. This

  7. Workplace Charging Challenge Partner: Purchase College, State University of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York | Department of Energy Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Joined the Challenge: June 2015 Headquarters: Purchase, NY Charging Location: Purchase, NY Domestic Employees: 678 Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition

  8. Workplace Charging Challenge Partner: Samsung Electronics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Joined the Challenge: June 2013 Headquarters: Ridgefield Park, NJ Charging Locations: Rancho Dominguez, CA; Pine Brook, NJ; San Diego, CA; Mountain View, CA; San Jose, CA Domestic Employees: 6,800 Samsung Electronics demonstrated an early commitment to plug-in electric vehicle (PEV) charging when it installed 2 EVSEs at its Rancho Dominguez, CA office

  9. Workplace Charging Challenge Partner: SemaConnect, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy SemaConnect, Inc. Workplace Charging Challenge Partner: SemaConnect, Inc. Workplace Charging Challenge Partner: SemaConnect, Inc. Joined the Challenge: July 2014 Headquarters: Bowie, MD Charging Location: Bowie, MD Domestic Employees: 25 SemaConnect develops and produces electric vehicle charging stations and management software. At SemaConnect, all employees are eligible to receive a monthly stipend so they can drive a plug-in electric vehicle (PEV) and reduce their carbon footprint.

  10. Workplace Charging Challenge Partner: State of Oregon | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oregon Workplace Charging Challenge Partner: State of Oregon Workplace Charging Challenge Partner: State of Oregon Joined the Challenge: July 2014 Headquarters: Salem, OR Charging Locations: Salem, OR; Corvallis, OR; Portland, OR Domestic Employees: 82,800 As the first state in the country to sign up for the Workplace Charging Challenge, the State of Oregon has over 20 EVSE available for employees, demonstrating that employers can help to accelerate EV deployment. Oregon is working on

  11. Workplace Charging Challenge Partner: University of Hawaii at Hilo |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hawaii at Hilo Workplace Charging Challenge Partner: University of Hawaii at Hilo Workplace Charging Challenge Partner: University of Hawaii at Hilo Joined the Challenge: September 2015 Headquarters: Hilo, HI Charging Location: Hilo, HI Domestic Employees: 664 University of Hawaii's (UH) Board of Regents has embraced sustainability as a core aspect of the UH mission. UH Hilo offers a level 2 electric vehicle charging station, located in the Life Science Building parking

  12. Workplace Charging Challenge Partner: University of North Carolina at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pembroke | Department of Energy North Carolina at Pembroke Workplace Charging Challenge Partner: University of North Carolina at Pembroke Workplace Charging Challenge Partner: University of North Carolina at Pembroke Joined the Challenge: June 2014 Headquarters: Pembroke, NC Charging Location: Pembroke, NC Domestic Employees: 917 Workplace charging is one of UNCP's commuting transportation strategies that supports the campus' sustainability goal of becoming carbon neutral by the year 2050.

  13. Workplace Charging Challenge Plug-In Electric Vehicle Support Networks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Plug-In Electric Vehicle Support Networks Workplace Charging Challenge Plug-In Electric Vehicle Support Networks When promoting PEV deployment, it can be helpful to tap into existing networks. The DOE Clean Cities program, along with Workplace Charging Challenge ambassadors and partners, have a wealth of knowledge on PEVs and workplace charging that can help inform your employees. These groups can also provide assistance in operating an effective workplace charging

  14. Workplace Charging Challenge Summit 2014: Session 2, Track B | Department

    Energy Savers [EERE]

    of Energy 2, Track B Workplace Charging Challenge Summit 2014: Session 2, Track B "Managing increased charging demand": In many parts of the country, employer partners have observed an "if you build it, they will come" phenomenon as an increasing number of their staff have adopted PEVs after they install workplace charging. Panelists from partner organizations who have successfully managed increasing employee charging demand present their experiences. PDF icon Panelist

  15. workplace Charging Challenge Partner: Advanced Micro Devices | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy workplace Charging Challenge Partner: Advanced Micro Devices workplace Charging Challenge Partner: Advanced Micro Devices workplace Charging Challenge Partner: Advanced Micro Devices Joined the Challenge: February 2014 Headquarters: Sunnyvale, CA Charging Locations: Austin, TX; Sunnyvale, CA Domestic Employees: 3,450 AMD recognizes its responsibility as a global citizen to reduce our direct impacts on the environment and to inspire and enable others to do the same. Employee

  16. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  17. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - Charger usage peak is during shift-change when both shifts are charging More ... Happy to share this and make it available to anyone. EV Barriers and Opportunities * ...

  18. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  19. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type Joyce McLaren, John Miller, Eric O'Shaughnessy, Eric Wood, and Evan Shapiro National Renewable Energy Laboratory Technical Report NREL/TP-6A20-64852 April 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at

  20. REFLECT: A computer program for the x-ray reflectivity of bent perfect crystals

    SciTech Connect (OSTI)

    Etelaeniemi, V.; Suortti, P.; Thomlinson, W. . Dept. of Physics; Brookhaven National Lab., Upton, NY )

    1989-09-01

    The design of monochromators for x-ray applications, using either standard laboratory sources on synchrotron radiation sources, requires a knowledge of the reflectivity of the crystals. The reflectivity depends on the crystals used, the geometry of the reflection, the energy range of the radiation, and, in the present case, the cylindrical bending radius of the optical device. This report is intended to allow the reader to become familiar with, and therefore use, a computer program called REFLECT which we have used in the design of a dual beam Laue monochromator for synchrotron angiography. The results of REFLECT have been compared to measured reflectivities for both bent Bragg and Laue geometries. The results are excellent and should give full confidence in the use of the program. 6 refs.

  1. Workplace Charging Challenge Partner: Baxter International Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Baxter International Inc. Workplace Charging Challenge Partner: Baxter International Inc. Workplace Charging Challenge Partner: Baxter International Inc. Baxter International Inc. is committed to advancing sustainability in its workplaces and local communities. The company has a legacy of sustainable development grounded in responsible business practices to create lasting social, environmental and economic value. At its Illinois locations, Baxter has installed four duel

  2. Workplace Charging Challenge Partner: Kankakee Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kankakee Community College Workplace Charging Challenge Partner: Kankakee Community College Workplace Charging Challenge Partner: Kankakee Community College In 2007, Kankakee Community College (KCC) set a goal to make sustainability a locally and regionally recognized feature of the college. This same year, they also signed the American College and University Presidents' Climate Commitment and the Illinois Sustainable Campus Compact, and hired a Dean for Environmental

  3. Method for forming electrically charged laser targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1979-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  4. LiCoO2 cathode charging simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cathode charging simulation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  5. Indian Energy Beat | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Director Indian Country Energy Roundup Sharing Knowledge Opening Doors Building Bridges Leading the Charge Tribal Energy Summit Tackles Challenges, Explores Opportunities ...

  6. Workplace Charging Challenge Partner: Riverside County | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Riverside County Workplace Charging Challenge Partner: Riverside County Workplace Charging Challenge Partner: Riverside County Joined the Challenge: January 2016 Headquarters: Riverside, CA Charging Location: Riverside, CA Domestic Employees: 21,796 Riverside County is a diverse and abundant renewable energy resource region, leading the way toward cleaner, healthier, and more prosperous communities. One of the steps toward this brighter future involves building plug-in electric

  7. Workplace Charging Challenge Partner: Salt River Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Salt River Project Workplace Charging Challenge Partner: Salt River Project Workplace Charging Challenge Partner: Salt River Project Joined the Challenge: December 2014 Headquarters: Tempe, AZ Charging Locations: Phoenix, AZ; Scottsdale, AZ; Tempe, AZ; Tolleson, AZ Domestic Employees: 4,900 The mission of Salt River Project's (SRP) Electric Vehicle Initiative is to encourage greater use of clean energy transportation. Under this program, SRP's headquarters received two Level 2

  8. EV Everywhere: NASCAR and Sprint Race Forward with Workplace Charging

    Broader source: Energy.gov [DOE]

    Today, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson welcomed NASCAR and Sprint to the growing list of employers participating in the EV Everywhere Workplace Charging Challenge to help build the nation’s plug-in electric vehicle charging infrastructure.

  9. Reflection technique for thermal mapping of semiconductors

    DOE Patents [OSTI]

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  10. Electrostatic attraction of charged drops of water inside dropwise cluster

    SciTech Connect (OSTI)

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000 ; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ? 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster with close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.

  11. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle ...

  12. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  13. Primary and Site Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    electricity reflect the amount of energy actually consumed within the building. Site energy data are most useful to building engineers, energy managers, building owners and others...

  14. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  15. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  16. Charge Fluctuations and the Valence Transition in Yb under Pressure

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Charge Fluctuations and the Valence Transition in Yb under Pressure Citation Details In-Document Search Title: Charge Fluctuations and the Valence Transition in Yb under Pressure We present a dynamical mean field theory study of the valence transition (f{sup 14} {yields} f{sup 13}) in elemental, metallic Yb under pressure. Our calculations reproduce the observed valence transition as reflected in the volume dependence of the 4f occupation. The transition

  17. Reflection Survey (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    "On the contrary, in areas with little or no volcanic activity, assumptions on the nature, size and characteristics of the source of the thermal anomaly are generally much more...

  18. Reflection Survey (Majer, 2003) | Open Energy Information

    Open Energy Info (EERE)

    DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir...

  19. Reflection Survey (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    The project objective includes the development and application of active seismic methods for improved understanding of the subsurface structure, faults, fractures lithology,...

  20. AVTA: Blink AC Level 2 Charging System Testing Results | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blink AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Blink AC Level 2 - February 2012 More Documents & Publications AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: Clipper Creek AC Level 2 Charging System Testing Results AVTA: Eaton AC Level 2 Charging System Testing Results

  1. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment ... Energy Engineering High Energy Density Plasmas, Fluids Information Science, ...

  2. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  3. Workplace Charging Challenge Partner: Siemens | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Workplace Charging Challenge Partner: Siemens Workplace Charging Challenge Partner: Siemens Joined the Challenge: January 2013 Headquarters: Washington, DC Charging ...

  4. Electron Charged Graphite-based Hydrogen Storage Material

    SciTech Connect (OSTI)

    Dr. Chinbay Q. Fan R&D Manager Office of Technology and Innovations Phone: 847 768 0812

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  5. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  10. Rapid Solar Mirror Characterization with Fringe Reflection Techniques -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Rapid Solar Mirror Characterization with Fringe Reflection Techniques SOFAST: Sandia Optical Fringe Analysis Slope Tool Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (834 KB) SOFAST Imaging SOFAST Imaging Technology Marketing SummaryThis technology is an automated system in which the reflection of a mirror,

  11. CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Virtual Refrigerant Charge Sensing and Load Metering - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Coordinating

  12. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Workplace Charging Challenge Partner: AVL Powertrain Engineering, Inc. Joined the Challenge: March 2013 Headquarters: Plymouth, MI Charging Locations: Plymouth, MI; Ann Arbor, MI; Lake Forest, CA Domestic Employees: 525 Founded in 1948, AVL provides advanced powertrain engineering services and a broad range of testing technology for the development of internal

  13. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Honda Motor Co., Inc. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. Workplace Charging Challenge Partner: American Honda Motor Co., Inc. Joined the Challenge: March 2015 Headquarters: Torrance, CA Charging Location: Torrance, CA Domestic Employees: 3,200 Honda is working to minimize the environmental impact of virtually every aspect of their business; from improving the fuel efficiency of Honda products to reducing the impact of corporate

  14. Workplace Charging Challenge Partner: American Lung Association in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lung Association in Colorado Workplace Charging Challenge Partner: American Lung Association in Colorado Workplace Charging Challenge Partner: American Lung Association in Colorado Joined the Challenge: September 2015 Headquarters: Greenwood Village, CO Charging Location: Greenwood Village, CO Domestic Employees: 14 The mission of the American Lung Association in Colorado (ALAC) is to improve lung health and prevent lung disease. Encouraging the use of plug-in electric

  15. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Joined the Challenge: July 2015 Headquarters: Livonia, MI Charging Locations: Warren, MI; Livonia, MI; Farmington Hills, MI; Plymouth, MI Domestic Employees: 1,300 Bosch Automotive Service Solutions is committed to reducing their carbon footprint. As a part of that

  16. Workplace Charging Challenge Partner: Broward County, FL | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Broward County, FL Workplace Charging Challenge Partner: Broward County, FL Workplace Charging Challenge Partner: Broward County, FL Joined the Challenge: December 2013 Headquarters: Broward County, FL Charging Locations: N/A Domestic Employees: 5,507 Broward County plays a critical role in sustainability leadership regionally, nationally, and abroad through its participation in the White House Task Force on Climate Preparedness and Resilience, the Southeast Florida Regional Climate

  17. Workplace Charging Challenge Partner: Capital One Financial Corporation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Joined the Challenge: January 2014 Headquarters: McLean, VA Charging Locations: Richmond, VA; McLean, VA; Chester, VA; Plano, TX; Wilmington, DE Domestic Employees: 41,300 Capital One's Environmental Program seeks to reduce greenhouse gas (GHG) emissions throughout the organization's facilities

  18. Workplace Charging Challenge Partner: Cisco Systems, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cisco Systems, Inc. Workplace Charging Challenge Partner: Cisco Systems, Inc. Workplace Charging Challenge Partner: Cisco Systems, Inc. Joined the Challenge: March 2013 Headquarters: San Jose, CA Charging Locations: San Jose, CA; Research Triangle Park, NC; Lawrenceville, GA; Boxborough, MA Domestic Employees: 42,500 Cisco supports the use of plug-in electric vehicles (PEVs) to reduce the carbon footprint of its operations and reduce its employees' commuting costs. Cisco has installed

  19. Workplace Charging Challenge Partner: City of Auburn Hills | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills Joined the Challenge: June 2013 Headquarters: Auburn Hills, MI Charging Location: Auburn Hills, MI Domestic Employees: 168 The City of Auburn Hills has been at the forefront in raising awareness about the fueling needs of plug-in electric vehicle (PEV) owners. In July 2011, Auburn Hills was the first municipality in Michigan to adopt a comprehensive

  20. Workplace Charging Challenge Partner: College of Lake County | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy College of Lake County Workplace Charging Challenge Partner: College of Lake County Workplace Charging Challenge Partner: College of Lake County Joined the Challenge: June 2014 Headquarters: Grayslake, IL Charging Location: Grayslake, IL Domestic Employees: 1,177 The College of Lake County is committed to sustainability and strives to both reduce its carbon emissions and provide learning opportunities for students and members of the community. Plug-in electric vehicle (PEV)

  1. Workplace Charging Challenge Partner: Dominion Resources, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Dominion Resources, Inc. Workplace Charging Challenge Partner: Dominion Resources, Inc. Workplace Charging Challenge Partner: Dominion Resources, Inc. Joined the Challenge: June 2013 Headquarters: Richmond, VA Charging Location: Richmond, VA Domestic Employees: 15,500 Dominion is actively participating in the deployment of alternative vehicle technologies to help lower greenhouse gas emissions and reduce our nation's dependence on foreign oil. Dominion Virginia Power (DVP),

  2. Workplace Charging Challenge Partner: FEV North America Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy FEV North America Inc. Workplace Charging Challenge Partner: FEV North America Inc. Workplace Charging Challenge Partner: FEV North America Inc. Joined the Challenge: March 2014 Headquarters: Auburn Hills, MI Charging Location: Auburn Hills, MI Domestic Employees: 450 The FEV Group is a powertrain and vehicle engineering company that supplies the global transportation industry. FEV offers a complete range of engineering services, providing support across the globe to customers in

  3. Workplace Charging Challenge Partner: Florida Power & Light Company |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Florida Power & Light Company Workplace Charging Challenge Partner: Florida Power & Light Company Workplace Charging Challenge Partner: Florida Power & Light Company Joined the Challenge: November 2014 Headquarters: Juno Beach, FL Charging Locations: Juno Beach, FL; Jupiter, FL; West Palm Beach, FL; Plantation, FL; Miami, FL; Riviera Beach, FL; Homestead, FL; Jensen Beach, FL Domestic Employees: 8,700 As an early adopter of plug-in electric vehicles (PEVs),

  4. Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FNST) | Department of Energy Freudenberg-NOK Sealing Technologies (FNST) Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies (FNST) Workplace Charging Challenge Partner: Freudenberg-NOK Sealing Technologies (FNST) Joined the Challenge: February 2015 Headquarters: Plymouth, MI Charging Location: Plymouth, MI Domestic Employees: 3,100 Freudenberg-NOK aims to be an innovation leader and is committed to reducing emissions. As a producer of advanced sealing technologies

  5. Workplace Charging Challenge Partner: Harris Civil Engineers, LLC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Harris Civil Engineers, LLC Workplace Charging Challenge Partner: Harris Civil Engineers, LLC Workplace Charging Challenge Partner: Harris Civil Engineers, LLC Joined the Challenge: March 2014 Headquarters: Orlando, FL Charging Location: Orlando, FL Domestic Employees: 20 Harris Civil Engineers (HCE) understands the impact that its projects have on the environment, and is committed to providing designs that are environmentally and socially responsible both through

  6. Workplace Charging Challenge Partner: Harvard University | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harvard University Workplace Charging Challenge Partner: Harvard University Workplace Charging Challenge Partner: Harvard University Joined the Challenge: August 2014 Headquarters: Cambridge, MA Charging Locations: Boston, MA; Cambridge, MA Domestic Employees: 17,000 Harvard University recognizes the potential for plug-in electric vehicles (PEVs) to significantly reduce the environmental impact associated with commuting to and from campus. Harvard University's Transportation Services

  7. Workplace Charging Challenge Partner: Hollywood Woodwork | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hollywood Woodwork Workplace Charging Challenge Partner: Hollywood Woodwork Workplace Charging Challenge Partner: Hollywood Woodwork Joined the Challenge: November 2014 Headquarters: Hollywood, FL Charging Location: Hollywood, FL Domestic Employees: 120 Proud to be an employee-owned company, Hollywood Woodwork seeks to build one team, champion the positive, build partnerships, and promote integrity. This commitment to the employees fosters a sense of innovation that extends all the

  8. Workplace Charging Challenge Partner: IDEXX Laboratories | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories Workplace Charging Challenge Partner: IDEXX Laboratories Joined the Challenge: November 2014 Headquarters: Westbrook, ME Charging Location: Westbrook, ME Domestic Employees: 4,300 IDEXX Laboratories is committed to providing a multitude of alternative transportation option to employees in the effort to reduce greenhouse gas emissions and increase sustainability efforts. The IDEXX ParXX program encourages

  9. Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Workplace Charging Challenge Partner: Lawrence Berkeley National Laboratory Joined the Challenge: April 2013 Headquarters: Berkeley, CA Charging Location: Berkeley, CA Domestic Employees: 4,200 Lawrence Berkeley National Laboratory has made plug-in electric vehicle (PEV) readiness a major focus of its site sustainability strategy. The laboratory began PEV

  10. Workplace Charging Challenge Partner: Lewis & Clark College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy College Workplace Charging Challenge Partner: Lewis & Clark College Workplace Charging Challenge Partner: Lewis & Clark College Joined the Challenge: June 2015 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 712 Lewis & Clark College is committed to sustainability across its operations. The college is an active member in several external programs broadly focused on sustainability, which also target reducing their impact from fossil fuels.

  11. Workplace Charging Challenge Partner: Lewis & Clark Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Community College Workplace Charging Challenge Partner: Lewis & Clark Community College Workplace Charging Challenge Partner: Lewis & Clark Community College Joined the Challenge: June 2014 Headquarters: Godfrey, IL Charging Locations: Godfrey, IL; Alton, IL Domestic Employees: 663 Lewis & Clark Community College is committed to reaching campus carbon neutrality by 2058. The single largest hurdle to overcome in meeting this goal is reducing commuter

  12. Workplace Charging Challenge Partner: New York Power Authority | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New York Power Authority Workplace Charging Challenge Partner: New York Power Authority Workplace Charging Challenge Partner: New York Power Authority Joined the Challenge: February 2013 Headquarters: White Plains, NY Charging Location: White Plains, NY Domestic Employees: 1,623 Following their comprehensive sustainability plan, the New York Power Authority (NYPA) works to integrate sustainable programs and projects into all aspects of the Power Authority's operations. In 2013, as

  13. Workplace Charging Challenge Partner: Oregon State University | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Oregon State University Workplace Charging Challenge Partner: Oregon State University Workplace Charging Challenge Partner: Oregon State University Joined the Challenge: June 2015 Headquarters: Corvallis, OR Charging Location: Corvallis, OR Domestic Employees: 6,080 Oregon State University (OSU) is an organization committed to sustainability and carbon emissions reduction. In an effort to reduce their impact on the environment, OSU supports, offers and promotes a number of more

  14. Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pentair Water Pool and Spa, Inc. Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc. Workplace Charging Challenge Partner: Pentair Water Pool and Spa, Inc. Joined the Challenge: June 2014 Headquarters: Sanford, NC Charging Location: Sanford, NC Domestic Employees: 8,900 Pentair Water Pool and Spa, Inc. a provider of equipment, accessories and water technology solutions to the swimming pool, aquaculture and environmental water monitoring industries, is

  15. Workplace Charging Challenge Partner: Pepco Holdings, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pepco Holdings, Inc. Workplace Charging Challenge Partner: Pepco Holdings, Inc. Workplace Charging Challenge Partner: Pepco Holdings, Inc. Joined the Challenge: March 2013 Headquarters: Washington, DC Charging Locations: N/A Domestic Employees: 4,610 Over the past 20 years, Pepco Holdings, Inc. (PHI) has been a leader in the use of alternative fuel vehicles, most specifically with plug-in electric vehicles (PEVs) and hybrid plug-in electric vehicles (PHEVs). PHI currently has 207

  16. Workplace Charging Challenge Partner: Phil Haupt Electric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Phil Haupt Electric Workplace Charging Challenge Partner: Phil Haupt Electric Workplace Charging Challenge Partner: Phil Haupt Electric Joined the Challenge: March 2014 Headquarters: Roseville, CA Charging Location: Roseville, CA Domestic Employees: 5 Phil Haupt Electric has more than 28 years of experience in the electrical industry. The company demonstrated its commitment to sustainability by adding a PEV as the company vehicle in (INSERT YEAR) and encouraging its employees to adopt

  17. Workplace Charging Challenge Partner: SUNY Empire State College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SUNY Empire State College Workplace Charging Challenge Partner: SUNY Empire State College Workplace Charging Challenge Partner: SUNY Empire State College Joined the Challenge: September 2015 Headquarters: Saratoga Springs, NY Charging Location: Saratoga Springs, NY Domestic Employees: 1,884 SUNY Empire State College recognizes the leading role that institutions of higher education play in the movement towards a more environmentally sustainable nation, and proudly joins

  18. Workplace Charging Challenge Partner: San Diego Gas & Electric | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy San Diego Gas & Electric Workplace Charging Challenge Partner: San Diego Gas & Electric Workplace Charging Challenge Partner: San Diego Gas & Electric Joined the Challenge: January 2013 Headquarters: San Diego, CA Charging Locations: San Diego, CA; South Orange County,CA Domestic Employees: 5,000 To serve the growing list of SDG&E employees that have purchased plug-in electric vehicles (PEVs), and to provide implementation examples for our commercial/industrial

  19. Workplace Charging Challenge Partner: Schneider Electric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Schneider Electric Workplace Charging Challenge Partner: Schneider Electric Workplace Charging Challenge Partner: Schneider Electric Joined the Challenge: March 2013 Headquarters: Palatine, IL Charging Locations: Cedar Rapids, IA; Palatine, IL; O'Fallon, MO; Des Plaines, IL; Knightdale, NC; West Kingston, RI; North Andover, MA; Billerica, MA; Nashville, TN; LaVergne, TN; Smryna, TN; Clovis, CA; Costa Mesa, CA; Carrollton, TX; Seneca, SC; Lexington, KY; Detroit, MI Domestic Employees:

  20. Workplace Charging Challenge Partner: Sierra Nevada Brewing Co. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sierra Nevada Brewing Co. Workplace Charging Challenge Partner: Sierra Nevada Brewing Co. Workplace Charging Challenge Partner: Sierra Nevada Brewing Co. Joined the Challenge: January 2014 Headquarters: Chico, CA Charging Locations: Chico, CA; Mills River, NC Domestic Employees: 950 Sierra Nevada Brewing Co. strives to maintain a balance between environmental stewardship, social equity, and economic stability and has engaged in a sustainability program that touches every

  1. Workplace Charging Challenge Partner: Southern Company | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Company Workplace Charging Challenge Partner: Southern Company Workplace Charging Challenge Partner: Southern Company Joined the Challenge: August 2013 Headquarters: Atlanta, GA Charging Locations: Anniston, AL; Atmore, AL; Auburn, AL; Bay Minette, AL; Birmingham, AL; Calera, AL; Clanton, AL; Enterprise, AL; Eufaula, AL; Fayette, AL; Gadsden, AL; Greenville, AL; Haleyville, AL; Jackson, AL; Jasper, AL; Mobile, AL; Montgomery, AL; Oak Grove, AL; Pelham, AL; Pell City, AL; Phoenix City,

  2. Workplace Charging Challenge Partner: Straus Family Creamery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Straus Family Creamery Workplace Charging Challenge Partner: Straus Family Creamery Workplace Charging Challenge Partner: Straus Family Creamery Joined the Challenge: May 2015 Headquarters: Petaluma, CA Charging Locations: Petaluma, CA; Marshall, CA Domestic Employees: 135 Sustainability is both a founding principle and a core value of Straus Family Creamery, the first certified 100% organic creamery in the United States. To date, the company owns three plug-in electric vehicles

  3. Workplace Charging Challenge Partner: Suffolk County Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Suffolk County Community College Workplace Charging Challenge Partner: Suffolk County Community College Workplace Charging Challenge Partner: Suffolk County Community College Joined the Challenge: February 2015 Headquarters: Selden, NY Charging Locations: Brentwood, NY; Selden, NY; Riverhead, NY Domestic Employees: 3,210 With approximately 27,000 students enrolled at three campuses in Selden, Brentwood and Riverhead, Suffolk County Community College is the largest

  4. Workplace Charging Challenge Partner: Territo Electric, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Territo Electric, Inc. Workplace Charging Challenge Partner: Territo Electric, Inc. Workplace Charging Challenge Partner: Territo Electric, Inc. Joined the Challenge: March 2014 Headquarters: Ocoee, FL Charging Locations: Ocoee, FL; Clermont, FL Domestic Employees: 60 Territo Electric, Inc. seeks to provide innovative solutions when helping clients and achieving corporate sustainability goals. In 2012, Territo began a plug-in electric vehicle (PEV) pilot with the purchase of two

  5. Workplace Charging Challenge Partner: The University of Rhode Island |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The University of Rhode Island Workplace Charging Challenge Partner: The University of Rhode Island Workplace Charging Challenge Partner: The University of Rhode Island Joined the Challenge: July 2015 Headquarters: Kingston, RI Charging Location: Kingston, RI Domestic Employees: 1,815 The University of Rhode Island (URI) is committed to maintaining its reputation as an institution that values practices and principles of sustainability. URI drafted a detailed Strategic

  6. Workplace Charging Challenge Partner: The Venetian and The Palazzo |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Venetian and The Palazzo Workplace Charging Challenge Partner: The Venetian and The Palazzo Workplace Charging Challenge Partner: The Venetian and The Palazzo Joined the Challenge: April 2013 Headquarters: Las Vegas, NV Charging Location: Las Vegas, NV Domestic Employees: 8,445 As part of the hotels' Sands ECO360º Global Sustainability program, The Venetian and The Palazzo have made alternate transportation a priority to help reduce greenhouse gas emissions,

  7. Workplace Charging Challenge Partner: University at Albany: State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of New York | Department of Energy at Albany: State University of New York Workplace Charging Challenge Partner: University at Albany: State University of New York Workplace Charging Challenge Partner: University at Albany: State University of New York Joined the Challenge: October 2015 Headquarters: Albany, NY Charging Location: Albany, NY Domestic Employees: 5,900 The Office of Environmental Sustainability and the Office of Parking & Mass Transit Services are committed to

  8. Workplace Charging Challenge Partner: University of Alaska Southeast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Alaska Southeast Workplace Charging Challenge Partner: University of Alaska Southeast Workplace Charging Challenge Partner: University of Alaska Southeast Joined the Challenge: October 2015 Headquarters: Juneau, AK Charging Location: Juneau, AK Domestic Employees: 200 University of Alaska Southeast (UAS) lies in the heart of Alaska's Southeast rainforest receiving over 100 inches of rain each year. Hydroelectric power is plentiful, renewable and one of the great

  9. Workplace Charging Challenge Partner: University of California, Santa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barbara | Department of Energy California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Joined the Challenge: May 2015 Headquarters: Santa Barbara, CA Charging Location: Santa Barbara, CA Domestic Employees: 4,305 The University of California, Santa Barbara consistently rates among the top public universities for a wide range of sustainability measures. The University

  10. Workplace Charging Challenge Partner: University of Maine | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Maine Workplace Charging Challenge Partner: University of Maine Workplace Charging Challenge Partner: University of Maine Joined the Challenge: November 2014 Headquarters: Orono, ME Charging Locations: N/A Domestic Employees: 180 The Advanced Structures and Composites Center at the University of Maine provides research, education, and economic development encompassing material sciences, manufacturing and engineering of composites and structures. With support from the U.S. Department

  11. Workplace Charging Challenge Partner: University of Maryland Baltimore

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Medical Center | Department of Energy Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Workplace Charging Challenge Partner: University of Maryland Baltimore Washington Medical Center Joined the Challenge: March 2014 Headquarters: Glen Burnie, MD Charging Location: Glen Burnie, MD Domestic Employees: 2,700 The University of Maryland Baltimore Washington Medical Center (UM BWMC) is an

  12. Workplace Charging Challenge Partner: University of Wisconsin-Madison |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Wisconsin-Madison Workplace Charging Challenge Partner: University of Wisconsin-Madison Workplace Charging Challenge Partner: University of Wisconsin-Madison Joined the Challenge: January 2016 Headquarters: Madison, WI Charging Location: Madison, WI Domestic Employees: 21,796 The University of Wisconsin-Madison (UW-Madison) seeks to be a living model for sustainability, exemplifying values and actions that demonstrate their commitment to stewardship of resources,

  13. Workplace Charging Challenge Partner: Vernier Software & Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vernier Software & Technology Workplace Charging Challenge Partner: Vernier Software & Technology Workplace Charging Challenge Partner: Vernier Software & Technology Joined the Challenge: June 2015 Headquarters: Beaverton, OR Charging Location: Beaverton, OR Domestic Employees: 105 As part of their commitment to the environment and to business practices that are Earth friendly, Vernier Software & Technology provide to employees a variety of alternative

  14. Workplace Charging Challenge Partner: Volkswagen Group of America |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Volkswagen Group of America Workplace Charging Challenge Partner: Volkswagen Group of America Workplace Charging Challenge Partner: Volkswagen Group of America Joined the Challenge: July 2014 Headquarters: Herndon, VA Charging Locations: Herndon, VA; Oxnard, CA; Belmont, CA; Allendale, NJ; Maricopa, AZ; Auburn Hills, MI; Golden, CO; Clearwater, FL; Buffalo Grove, IL; Davie, FL; Irving, TX; Livermore, CA; Atlanta, GA; Dublin, OH; Marlborough, MA; Renton, WA; Santa Monica,

  15. Workplace Charging Challenge Partner: World Learning Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Learning Inc. Workplace Charging Challenge Partner: World Learning Inc. Workplace Charging Challenge Partner: World Learning Inc. Joined the Challenge: November 2014 Headquarters: Brattleboro, VT Charging Location: Brattleboro, VT Domestic Employees: 334 World Learning Inc. is a nonprofit organization advancing leadership in more than 60 countries. World Learning envisions a just world, driven by engaged citizens and thriving communities. SIT Graduate Institute is a program of World

  16. Workplace Charging Challenge Partner: World Wildlife Fund | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wildlife Fund Workplace Charging Challenge Partner: World Wildlife Fund Workplace Charging Challenge Partner: World Wildlife Fund Joined the Challenge: April 2014 Headquarters: Washington, DC Charging Location: Washington, DC Domestic Employees: 470 World Wildlife Fun (WWF) works in 100 countries and is supported by 1.2 million members in the United States and close to 5 million globally in their conservation efforts. WWF's unique way of working combines global reach with a foundation

  17. Workplace Charging Toolkit: Workshop Outreach Templates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Toolkit: Workshop Outreach Templates Workplace Charging Toolkit: Workshop Outreach Templates These templates have been developed based on lessons learned from more than 20 employer workplace charging events held across the U.S. between 2013 and 2015. Workshop Agenda Template - Develop a streamlined workshop with this half-day agenda focused on introductory-level PEV education and firsthand employer workplace charging experience. Workshop Host Outreach Letter Template - Approach

  18. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  19. EV Everywhere Grand Challenge - Charge to the Breakout Groups | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy - Charge to the Breakout Groups EV Everywhere Grand Challenge - Charge to the Breakout Groups Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. PDF icon 7_howell_b.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Grand Challenge - Battery Workshop Agenda EV Everywhere EV Everywhere Grand Challenge - Electric Drive (Power Electronics and Electric

  20. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Workshop Attendence List | Department of Energy Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon companies_in_attendance_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda EV

  1. Renewable liquid reflecting zone plate

    DOE Patents [OSTI]

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  2. Workplace Charging Challenge Partner: State University of New York at New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paltz | Department of Energy University of New York at New Paltz Workplace Charging Challenge Partner: State University of New York at New Paltz Workplace Charging Challenge Partner: State University of New York at New Paltz Joined the Challenge: February 2015 Headquarters: New Paltz, NY Charging Location: New Paltz, NY Domestic Employees: 1,465 In Fall 2014, SUNY New Paltz installed three Level 2 charging stations creating six total charging spots. The college is in the process of assessing

  3. Charges/Reports | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charges/Reports Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC 2016-2017 Membership Charges/Reports Charter .pdf file (128KB) BES Committees of Visitors Federal Advisory Committees BES Home Charges/Reports Print Text Size: A A A FeedbackShare Page Charges Title Reports BES Committee of Visitors reports can be accessed via the left-hand menu. pdf .pdf file (349KB) Charge related to the prioritization of upgrades of existing user facilities and major construction

  4. AVTA Voltec AC Level 1 and Level 2 Charging Systems Testing Results |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy testing done on the Voltec Level 1 and Level 2 charging systems for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Voltec AC Level 1 - November 2012 PDF icon Voltec AC Level 2 - October 2012 More Documents & Publications AVTA: Eaton AC Level 2 Charging System Testing Results AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results

  5. AVTA: Leviton AC Level 2 Charging System Testing Results | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy describes results from testing done on the Leviton Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Leviton AC Level 2 - February 2012 More Documents & Publications AVTA: Eaton AC Level 2 Charging System Testing Results AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results

  6. A Step Towards New, Faster-Charging, and Safer Batteries | U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Step Towards New, Faster-Charging, and Safer Batteries Basic Energy Sciences (BES) BES ... A Step Towards New, Faster-Charging, and Safer Batteries First prototypes of aluminum-ion ...

  7. Method of making reflecting film reflector

    DOE Patents [OSTI]

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  8. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  9. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  10. Three Arrested and Charged in a Scheme to Defraud Federal Research Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Three Arrested and Charged in a Scheme to Defraud Federal Research Funding Three Arrested and Charged in a Scheme to Defraud Federal Research Funding PDF icon Three Arrested and Charged in a Scheme to Defraud Federal Research Funding More Documents & Publications Proceedings of the Computational Needs for the Next Generation Electric Grid Workshop, April 19-20, 2011 Before the House Energy and Commerce Subcommittee on Energy and Power Funding for Energy Efficiency

  11. Sustainable Federal Fleets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in hybrid electric vehicles charge at a rapid charging system powered by a solar canopy. The Federal Energy Management Program's (FEMP) Sustainable Federal Fleets section ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Benefits Charge New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings System Benefits Charge New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy...

  14. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Mid-Program Review: Employees Plug In U.S. Department of Energy's EV Everywhere Workplace 2 Almost three years ago, we kicked off the Workplace Charging Challenge with the goal of having 500 U.S. employers commit to installing workplace plug-in electric vehicle (PEV) charging and joining the Challenge by 2018. I am pleased to share that with more than 250 participants in the Challenge, we are more than halfway there, and the adoption of workplace charging as a

  15. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  16. Electron-exchange effects on the charge capture process in degenerate quantum plasmas

    SciTech Connect (OSTI)

    Jung, Young-Dae; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 ; Akbari-Moghanjoughi, M.; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum

    2014-03-15

    The electron-exchange effects on the charge capture process are investigated in degenerate quantum plasmas. The Bohr-Lindhard formalism with the effective interaction potential is employed to obtain the charge capture radius, capture probability, and capture cross section as functions of the impact parameter, projectile energy, electron-exchange parameter, Fermi energy, and plasmon energy. The result shows that the electron-exchange effect enhances the charge capture radius and the charge capture cross section in semiconductor quantum plasmas. It is also found that the charge capture radius and charge capture cross section increases with an increase of the Fermi energy and, however, decreases with increasing plasmon energy. Additionally, it is found that the peak position of the charge capture cross section is receded from the collision center with an increase of the electron-exchange parameter.

  17. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  18. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  19. Beep Beep! King County, Washington Is Charging Up Savings

    Broader source: Energy.gov [DOE]

    King County uses $6.1 million to make investments that dramatically reduce energy waste, improve the quality of life for the residents of an area senior housing community, and lead regional efforts to install electric vehicle charging stations.

  20. Influence of Topological Spin Fluctuations on Charge Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eV. The PrincetonALS group performed a detailed investigation of low-energy electronic structure and charge dynamics of the parent cobaltite compound Na0.7CoO2 at ALS Beamlines...