National Library of Energy BETA

Sample records for refinery processing units

  1. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific ...

  2. NREL Refinery Process Shows Increased Effectiveness of Producing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 ...

  3. NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Algae | Department of Energy Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 - 5:07pm Addthis A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Bioenergy Technologies Office (BETO) has proven to be significantly more effective at

  4. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters - Fact Sheet 2014 | Department of Energy Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 The goal of this research effort was to develop and demonstrate a combustion system capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery

  5. Bio-Oil Co-Processing: Expanding the Refinery Supply System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bio-Oil Co-Processing: Expanding the Refinery Supply System Bio-Oil Co-Processing: Expanding the Refinery Supply System The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) is hosting a workshop on Thursday, April 3, 2014, at the Renaissance New Orleans Arts Hotel in New Orleans, Louisiana. This workshop will explore the resource expansion potential for conventional refineries by considering biomass-derived oils as a supplemental feedstock. BETO wants to identify

  6. House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece

  7. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  8. Improving energy usage at the Borger Refinery and NGL Process Center

    SciTech Connect (OSTI)

    Haage, P.R.

    1982-05-01

    The Phillips Petroleum Company's Borger Refinery and NGL Process Center energy conservation program began prior to the 1973 oil embargo and was greatly intensified after that event. This paper describes recent progress made in the reduction of energy use at the facility, with emphasis on the furnace and boiler efficiency control program, computer control of fractionation columns, and the steam-trap survey program.

  9. Renewable Fuels from Algae Boosted by NREL Refinery Process - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Renewable Fuels from Algae Boosted by NREL Refinery Process February 9, 2016 A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) has proven to be significantly more effective at producing ethanol from algae than previous research. The process, dubbed Combined Algal Processing (CAP), is detailed in a new paper by NREL's Tao Dong, Eric Knoshaug, Ryan Davis, Lieve Laurens, Stefanie Van Wychen, Philip Pienkos, and Nick

  10. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  11. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect (OSTI)

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  12. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  13. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes

  14. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  15. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  16. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact ...

  17. Associative list processing unit

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  18. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  19. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  20. VEBA-cracking-processes for upgrading heavy oils and refinery residues

    SciTech Connect (OSTI)

    Graeser, U.; Niemann, K.

    1983-03-01

    More than 20 different heavy oils and residues have been processed by the VEBA-Combi-Cracking and VEBA-LQ-Cracking high pressure hydrocracking processes, in a bench scale unit. Conversions up to 99 wt % of to a syncrude, consisting of naphtha middle distillate and vacuum gas oil were obtained. Conversions correlate with space velocity at a given temperature and product pattern depends upon degree of conversion. The VEBA-LQ-Cracking process produces a stable syncrude whereas the products of the VEBA-Combi process are very low in sulfur and nitrogen.

  1. Options for U.S. Petroleum Refineries to Process Additional Light Tight Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    - Energy Information Administration Technical Options for Processing Additional Light Tight Oil Volumes Within the United States Release date: April 6, 2015 Preface U.S. oil production has grown rapidly in recent years. U.S. Energy Information Administration (EIA) data, which reflect combined production of crude oil and lease condensate, show a rise from 5.6 million barrels per day (bbl/d) in 2011 to 8.7 million bbl/d in 2014. Increasing production of light crude oil from low-permeability,

  2. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  3. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    SciTech Connect (OSTI)

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  4. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2014 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 1,348 421 23 513 2,305 Distillate Fuel Oil 0 33 174 0 102 309 Residual Fuel Oil 3 23 28 13 346 413 Still Gas 15,174 48,972 110,958 8,749 46,065 229,918 Marketable Petroleum Coke 0 0 0 493 143 636 Catalyst Petroleum Coke 8,048 16,837 44,599 2,925 12,482 84,891 Natural Gas (million cubic feet)

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Method PAD Districts I II III IV V United States Table 9. Refinery Receipts of Crude Oil by Method of Transportation by PAD District, 2014 (Thousand Barrels) a Pipeline 22,596 1,266,015 1,685,817 168,347 298,886 3,441,661 Domestic 2,632 658,717 1,421,768 82,043 240,522 2,405,682 Foreign 19,964 607,298 264,049 86,304 58,364 1,035,979 Tanker 252,479 0 1,046,008 0 529,319 1,827,806 Domestic 81,055 0 45,006 0 181,307 307,368 Foreign 171,424 0 1,001,002 0 348,012 1,520,438 Barge 39,045 6,360 259,903

  8. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Capacity Report With Data as of January 1, 2015 | Release Date: June 19, 2015 | Next Release Date: June 24, 2016 Previous Issues Year: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 prior issues Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of

  9. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  10. Unit Process Library | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit Process Library A unit process is the smallest building block in a life cycle model. Each unit process contains qualified input and output data including resource requirements and emissions. The NETL Unit Process Library is available to increase the public's understanding of the tools used to inform energy policy and guide energy research. Each NETL unit process contains a DS and DF file. The DS file (Detailed Spreadsheet Documentation) is an Excel file that contains all of the parameters,

  11. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  12. Secretary Bodman Tours Refinery and Calls for More Domestic Refining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    called on Congress to simplify the approval process for refiners to expand their refineries, which will help reduce America's imports of foreign oil and the price of energy. ...

  13. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  14. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. ...

  15. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 135,000 0 45,000 32,000 0 0 0

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) Isooctane a ..................................................................... Alabama 0 0 15,000 711 3,500 0 7,120 33 245 0 Hunt Refining Co 0 0 15,000 0 3,500 0 7,120

  19. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  20. Outlook for Refinery Outages and Available Refinery Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    level of refinery outages outlined in this report. This report does not consider the impacts of refined product logistics and distribution, which could affect the movement of...

  1. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the hydropyrolysis oils had low acidity and caused almost no corrosion in comparison to pyrolysis oils, which had high acidity and caused significant levels of corrosion.

  2. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2014 a b NEW PAD District II 19,000 Dakota Prairie Refining LLC Dickinson, ND 19,000 01/15 PAD District III 42,000 Kinder Morgan Crude & Condensate Galena Park, TX 42,000 01/15 SHUTDOWN PAD District I 28,000 0 Axeon Specialty Products LLC Savannah, GA 28,000 0 09/12 12/14 PAD District II 12,000 0 Ventura Refining & Transmission LLC Thomas, OK 12,000 0 10/10 12/14 PAD District III 0

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  8. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  9. Graphics processing unit-assisted lossless decompression

    DOE Patents [OSTI]

    Loughry, Thomas A.

    2016-04-12

    Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.

  10. Refinery, petrochemical plant injuries decline

    SciTech Connect (OSTI)

    Not Available

    1994-07-25

    The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

  11. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  12. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  13. Advanced Biofuels Processing and Demonstration Unit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Processing and Demonstration Unit - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  14. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2015 PAD District I 570,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc

  16. Combined-cycle cogeneration to power oil refinery

    SciTech Connect (OSTI)

    Broeker, R.J.

    1986-11-01

    A cogeneration plant now under construction at an oil refinery in Martinez, California, is an example of how the energy industry has been responding to the fundamental economic and technological challenges it has been facing over the past ten years. The industry is re-examining cogeneration as one way of meeting the requirements of the Public Utilities Regulatory Policy Act. The new plant is located at Tosco Corporation's Avon Oil Refinery, 45 miles northeast of San Francisco. It was designed by Foster Wheeler to supply process steam for the refinery as well as for a water-treatment installation that will benefit the Contra Costa Water District. Electric power produced will be used primarily by the refinery, with the balance purchased by the Pacific Gas and Electric Company.

  17. U.S. Refineries Competitive Positions

    U.S. Energy Information Administration (EIA) Indexed Site

    Refineries Competitive Positions 2014 EIA Energy Conference July 14, 2014 Joanne Shore American Fuel & Petrochemical Manufacturers Refiners competitive positions Function of optimizing feedstock costs, operating costs, and revenues through mix of products sold 2 Propane/butane Chemicals Gasoline Jet Fuel Diesel/heating oil Lubes Fuel for ships Asphalt FEEDSTOCKS Qualities: - Heavy/Light - Sweet/Sour Location (Distance) - Domestic - International PROCESSING Size Complexity Treating (sulfur)

  18. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  19. Refinery Outages: First-Half 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Outages: First-Half 2016 March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Refinery Outages: First-Half 2016 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  20. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  1. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    11:34:24 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  2. Motiva Refinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some

  3. Mazheikiai refinery modernization study. Executive summary. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

  4. Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.

    SciTech Connect (OSTI)

    Wang, M.; Lee, H.; Molburg, J.

    2004-01-01

    Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

  5. U.S. Refinery Yield

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Liquefied Refinery Gases 4.3 4.0 4.1 3.9 4.0 3.7 1993-2015 Finished Motor Gasoline 45.7 44.9 45.0 45.0 45.0 45.3 1993-2015 Finished ...

  6. Mining machinery/equipment/parts/services. Oil and gas field equipment/machinery/parts/supplies (Ecuador). Refinery equipment, parts, and accessories, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The petroleum sector in Ecuador brings in about 65 percent of the country's revenue. Three of the refineries are located in the coastal region. The other two, plus the Liquified Petroleum Gas Plant (LPG), are located in the Oriente region (Amazon jungle). The refineries operate at about 85% of their installation capacity. The Petroindustrial and Petropeninsula investment plan for 1991 comtemplates the expansion of the Esmeraldas refinery to 110,000 barrels a day, and the up-grading of the Shushufindi and Libertad refineries located near the city of Guayaquil. The United States is by far the largest supplier of refinery equipment, parts and accessories, controlling about 90% of the total market.

  7. Refinery Outages: Fall 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    some Libyan crude oil production to the market, and increasing U.S. crude production. Economic growth in 2014 outside of the United States has been slow, and some recent data...

  8. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

  9. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    process to validate respondent control information and resolve any discrepancies. ... Quality control procedures are employed in the collection and editing operations to ...

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Report June 2015 With Data as of January 1, 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be

  12. The ultimate biomass refinery

    SciTech Connect (OSTI)

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  13. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2006-10-11

    a summary of our collaborative 2005 project Opportunities for Biorenewables in Petroleum Refineries at the Rio Oil and Gas Conference this September.

  14. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2007-02-01

    A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

  15. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  16. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  17. Potential Vulnerability of US Petroleum Refineries to Increasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature andor Reduced Water Availability Potential Vulnerability of US Petroleum Refineries to ...

  18. Coal-fired boiler for petroleum refinery

    SciTech Connect (OSTI)

    Ketterman, W.R.; Heinzmann, D.A.

    1982-01-01

    There has been a significant amount of interest in conversion from oil/gas fired boilers to coal-fired equipment since the Arab oil embargo of 1973. The CRA Incorporated Coffeyville Refinery decided in 1977 to proceed with the installation of a 86.183 Kg/h coal fired boiler to generate process steam at 650 psig (4,482 k Pa) 596/sup 0/F (313/sup 0/C). A significant portion of this steam is passed through steam turbines to obtain mechanical power. Building and operating a coal-fired steam plant is a ''Different Kettle of Fish'' from building and operating an oil/gas-fired steam plant. The intention of this paper is to deal with some of the ''Why's and Wherefores'' of the conversion to coal-fired equipment.

  19. Martinez Refinery Completes Plant-Wide Energy Assessment

    SciTech Connect (OSTI)

    2002-11-01

    This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

  20. EM Marks Milestone at Separations Process Research Unit

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – EM met a major regulatory milestone at the Separations Process Research Unit (SPRU) by completing construction of enclosures and ventilation systems required for cleanup.

  1. Advanced Biofuels (and Bio-products) Process Demonstration Unit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Washington, DC ABPDU Goals Build a process demonstration unit to support ... BETO awareness and input on all projects. 20 5. Future Work 21 Future Work * Build on ...

  2. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Btu Content at Plant Inlets for Processing Plants in the United States, 2009 Minimum Annual Btu Content Maximum Annual Btu Content Average Annual Btu Content Alaska 850 1071 985...

  3. Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based

    Office of Scientific and Technical Information (OSTI)

    Oil Insertions (Technical Report) | SciTech Connect Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions This study examines how existing U.S. refining infrastructure matches in geography and processing capability with the needs projected from anticipated biofuels production. Key findings include:  a potential shortfall in

  4. Former Soviet refineries face modernization, restructuring

    SciTech Connect (OSTI)

    Not Available

    1993-11-29

    A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

  5. Congested site challenges designers of refinery IPP plant

    SciTech Connect (OSTI)

    Collins, S.

    1993-09-01

    This article describes a new IPP plant which has successfully met the challenges of an extremely congested site--including overcoming physical space constraints, meeting low air-emissions regulations, and minimizing water consumption--located next to a busy highway and near a major airport. The 650-MW Linden cogeneration plant is located on a 13.5-acre plot within the confines of Bayway Refinery Co's facility near Newark, NJ. Since starting operation one year ago, the plant has been reliably supplying steam for the refinery's process heating and mechanical drive needs and efficiently generating steam and electricity with minimal environmental impact. To achieve these goals, designers chose a combined-cycle configuration/generators, five supplementary-fired heat-recovery steam generators (HRSGs), and three 90-MW steam turbine/generators. Thus far, the facility has operated with an average availability above 90%.

  6. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10272015 12:31:05 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRXNUS1","MLPRXNUS1","METRXNUS1","MENRXNUS1","MEYRXNUS1","...

  7. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  8. Iran to build new refinery at Arak

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper reports Iranian plans to construct a grassroots 150,000-b/d refinery in Arak. The plant, to be completed in early 1993, will be capable of producing unleaded gasoline and other light products.

  9. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Liquefied Refinery Gases 3.5 2.8 2.0 2.0 2.1 2.6 1993-2016 Finished Motor Gasoline 45.4 45.7 46.7 47.3 49.3 47.5 1993-2016 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.0 0.1 1993-2016 Kerosene-Type Jet Fuel 9.3 9.8 9.8 10.1 9.8 9.9 1993-2016 Kerosene 0.1 0.1 0.1 0.2 0.1 0.1 1993-2016 Distillate Fuel Oil 29.9 30.0 30.3 29.6 27.8 28.9 1993-2016 Residual Fuel Oil 2.5 2.6 2.3 2.2 2.5 2.6 1993-2016 Naphtha for Petrochemical Feedstock Use 1.3 1.3

  10. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  11. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  12. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Refinery Capacity and Utilization, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels Percent 1949 336 6,231 NA 2,027,928 89.2 1950 320 6,223 NA 2,182,828 92.5 1951 325 6,702 NA 2,467,445 97.5 1952 327 7,161 NA 2,536,142 93.8 1953 315 7,620 NA 2,651,068 93.1 1954 308 7,984 NA 2,651,992 88.8 1955 296 8,386 NA 2,854,137 92.2 1956 317 8,583 NA

  13. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  14. Mazheikiai refinery modernization study. Final report. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 2 of the study.

  15. Mazheikiai refinery modernization study. Final report. Volume 3. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 3 of the study.

  16. Mazheikiai refinery modernization study. Final report. Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 1 of the study.

  17. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  18. U.S. Refinery Net Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12,813 12,516 12,287 12,009 12,148 11,916 2005-2014 Liquefied Refinery Gases 623 659 619 630 623 653 2005-2014 EthaneEthylene 19 20 20 18 7 6 2005-2014 Ethane 14 14 14 13 7 5...

  19. Active microchannel fluid processing unit and method of making

    DOE Patents [OSTI]

    Bennett, Wendy D. [Kennewick, WA; Martin, Peter M. [Kennewick, WA; Matson, Dean W. [Kennewick, WA; Roberts, Gary L. [West Richland, WA; Stewart, Donald C. [Richland, WA; Tonkovich, Annalee Y. [Pasco, WA; Zilka, Jennifer L. [Pasco, WA; Schmitt, Stephen C. [Dublin, OH; Werner, Timothy M. [Columbus, OH

    2001-01-01

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  20. Active microchannel fluid processing unit and method of making

    DOE Patents [OSTI]

    Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

    2002-12-10

    The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

  1. Refinery Outages: First Half 2015

    Gasoline and Diesel Fuel Update (EIA)

    to increase by 820,000 bbld in 2015. While global oil supply growth has been strong, economic growth outside of the United States has been slow, particularly in Russia and...

  2. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  3. Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

    2014-08-05

    This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

  4. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  5. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect (OSTI)

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  6. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    SciTech Connect (OSTI)

    Tamascelli, Dario; Dambrosio, Francesco Saverio [Dipartimento di Fisica, Universit degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [Dipartimento di Fisica, Universit degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Conte, Riccardo [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)] [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Ceotto, Michele, E-mail: michele.ceotto@unimi.it [Dipartimento di Chimica, Universit degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)] [Dipartimento di Chimica, Universit degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  7. Special Report: Graphics Processing Units Speed Results in Extreme-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers | Princeton Plasma Physics Lab Special Report: Graphics Processing Units Speed Results in Extreme-Scale Supercomputers American Fusion News Category: U.S. Universities Link: Special Report: Graphics Processing Units Speed Results in Extreme-Scale Supercomputers

  8. U.S. Refinery Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Crude Oil and Petroleum

  9. ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in California | Department of Energy Energy Efficiency Roadmap for Petroleum Refineries in California ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California PDF icon refining_roadmap.pdf More Documents & Publications ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Energy Efficiency Roadmap for Petroleum Refineries in California Bandwidth Study U.S.

  10. Integrating NABC bio-oil intermediates into the petroleum refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrating NABC bio-oil intermediates into the petroleum refinery Integrating NABC bio-oil intermediates into the petroleum refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory PDF icon biomass13_foust_2-d.pdf More Documents & Publications NABC Webinar Opportunities for Biomass-Based Fuels and

  11. Economic impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

  12. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  13. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","22016","1151985" ,"Release Date:","4292016" ,"Next Release Date:","5312016" ,"Excel File ...

  14. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. ...

  15. Refinery Upgrading of Hydropyrolysis Oil from Biomass Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Upgrading of Hydropyrolysis Oil from Biomass March 25,2015 Technology Area Review ... first converting biomass to hydropyrolysis oil and then upgrading the hydropyrolysis oil ...

  16. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Informatio...

    Open Energy Info (EERE)

    Company (SAMREF) Name: Saudi Aramco Mobile Refinery Company (SAMREF) Address: P.O. Box 30078 Place: Yanbu, Saudi Arabia Sector: Oil and Gas Product: Crude Oil Refining Phone...

  17. Market Assessment of Refinery Outages Planned for October 2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average values for 2002-2009 excluding months in 2005, 2006, and 2008 affected by hurricanes & refinery closures. Similarly, typical historical values are average planned...

  18. Partial control of complex processing systems. Final Report

    SciTech Connect (OSTI)

    Shinnar, Reuel; Rinard, Irv

    2003-04-17

    Research program for the design and control of advanced chemical process systems, typified by refineries/petro chemical plants.

  19. PSM implementation at a refinery

    SciTech Connect (OSTI)

    Nahale, T.

    1995-12-31

    Prior to the promulgation of the OSHA Standard on Process Safety Management (PSM), the petroleum industry had a precursor developed by the American Petroleum Institute titled Recommended Practice 750, Management of Process Hazards. This Recommended Practice, though not identical with the OSHA regulation, provided the industry with a voluntary standard prior to May, 1992, when PSM went into effect. In formulating a PSM implementation strategy, one of the first decisions encountered at a facility is whether to utilize a separate group dedicated full-time to PSM issues, or to develop the program using key individuals who continue to perform their regulator job duties. Although a PSM manager may prefer one strategy over the other, this staffing decisions is normally made by senior management at the facility.

  20. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009...

  1. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29

    Pre-extraction–kraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called “near neutral” pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 °C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the “near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid from the extract. When operating the facility will produce 1.5 million gallons per year of butanol and create 16 new “green collar” jobs. Previously, a spare pulp digester was converted to a new extractor, and in 2009 it was demonstrated that a good hemicellulose extract could be produced, while simultaneously producing market pulp. Since then more than 250 hours of operational experience has been acquired by the mill generating a hemicellulose extract while simultaneously producing market pulp at a scale of 1000 tonnes (OD)/day of mixed northern hardwood chips.

  2. Design of the Laboratory-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Orton, Robert D.; Rapko, Brian M.; Smart, John E.

    2015-05-01

    This report describes a design for a laboratory-scale capability to produce plutonium oxide (PuO2) for use in identifying and validating nuclear forensics signatures associated with plutonium production, as well as for use as exercise and reference materials. This capability will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including PuO2 dissolution, purification of the Pu by ion exchange, precipitation, and re-conversion to PuO2 by calcination.

  3. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average...

  4. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration,...

  5. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009...

  6. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

  7. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and...

  8. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in...

  9. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf...

  10. Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production

    SciTech Connect (OSTI)

    Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

    2006-04-19

    Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

  11. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State...

  12. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded...

  13. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 352,148 350,299 353,077 362,368 337,235 321,406 2005-2016 Liquefied Refinery Gases 17,388 13,536 9,912 10,243 10,719 12,130 2005-2016 Ethane/Ethylene 158 202 196 226 165 114 2005-2016 Ethane 133 173 165 194 142 96 2005-2016 Ethylene 25 29 31 32 23 18 2005-2016 Propane/Propylene 15,869 16,121 16,574 17,905 17,998 16,402 2005-2016 Propane 7,955 7,965 8,303 8,831 8,571 8,208 2005-2016 Propylene 7,914 8,156 8,271 9,074 9,427 8,194

  14. Evaluating electric-resistance-welded tubing for refinery and chemical plant applications

    SciTech Connect (OSTI)

    Polk, C.J.; Hotaling, A.C. )

    1993-02-01

    A laboratory technique was developed to assess the potential for preferential attack along the longitudinal seam of electric-resistance-welded (ERW) carbon steel tubing exposed to refinery and chemical plant process streams. Used in conjunction with an evaluation of mill fabrication practices, the test procedure can identify high-quality ERW products that can be used in many applications in place of seamless components at significant cost savings.

  15. Regulatory impact analysis for the petroleum refineries neshap. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The report analyzes the regulatory impacts of the Petroleum Refinery National Emission Standard for Hazardous Air Pollutants (NESHAP), which is being promulgated under Section 112 of the Clean Air Act Amendments of 1990 (CCA). This emission standard would regulate the emissions of certain hazardous air pollutants (HAPs) from petroleum refineries. The petroleum refineries industry group includes any facility engaged in the production of motor gasoline, naphthas, kerosene, jet fuels, distillate fuel oils, residual fuel oils, lubricants, or other products made from crude oil or unfinished petroleum derivatives. The report analyzes the impact that regulatory action is likely to have on the petroleum refining industry.

  16. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  17. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12...

  18. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in...

  19. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas...

  20. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  1. Motiva Enterprises Refinery Expansion Groundbreaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprises Refinery Expansion Groundbreaking Motiva Enterprises Refinery Expansion Groundbreaking December 10, 2007 - 4:44pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Bill. It's good to see Congressman Poe, Rob Routs, Mr. Al-Khayyal and Mayor Prince here. Thank you all for inviting me to be part of this occasion. In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the

  2. EIA-820, Annual Refinery Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil that first traveled 5,000 miles by tanker and then traveled 105 miles by pipeline to the refinery, report pipeline as the method of transportation. * If the refinery...

  3. A State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States.

  4. Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

  5. Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

  6. Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

  7. DOE - Office of Legacy Management -- International Rare Metals Refinery Inc

    Office of Legacy Management (LM)

    - NY 38 Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a

  8. Refinery Outages: Description and Potential Impact on Petroleum Product Prices

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that the Energy Information Administration conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

  9. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6,794,407 6,973,710 7,173,730 7,260,943 1981-2015 Liquefied Refinery Gases 240,454 225,992 230,413 227,349 238,485 223,448 1981-2015 EthaneEthylene 7,228 7,148 6,597 2,626 ...

  10. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 600,775 608,595 595,141 614,837 579,640 560,048 1981-2016 Liquefied Refinery Gases 17,388 13,536 9,912 10,243 10,719 ...

  11. Energy Efficiency Roadmap for Petroleum Refineries in California

    SciTech Connect (OSTI)

    none,

    2004-04-01

    Through the California State IOF initiative, the California Energy Commission PIER Program developed a petroleum refining roadmap to identify energy issues and priorities unique to the refining industry in California and create a plan for future R&D that could help California refineries implement energy efficient technologies.

  12. Process control system of a 500-MW unit of the Reftinskaya local hydroelectric power plant

    SciTech Connect (OSTI)

    L.L. Grekhov; V.A. Bilenko; N.N. Derkach; A.I. Galperina; A.P. Strukov

    2002-05-01

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  13. Process Control System of a 500-MW Unit of the Reftinskaya Local Hydroelectric Power Plant

    SciTech Connect (OSTI)

    Grekhov, L. L.; Bilenko, V. A.; Derkach, N. N.; Galperina, A. I.; Strukov, A. P.

    2002-05-15

    The results of the installation of a process control system developed by the Interavtomatika Company (Moscow) for controlling a 500-MW pulverized coal power unit with the use of the Teleperm ME and OM650 equipment of the Siemens Company are described. The system provides a principally new level of automation and process control through monitors comparable with the operation of foreign counterparts with complete preservation of the domestic peripheral equipment. During the 4.5 years of operation of the process control system the intricate algorithms for control and data processing have proved their operational integrity.

  14. EM Celebrates Milestone with Removal of Last Waste Tank at Separations Process Research Unit

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – EM recently marked a notable milestone at the Separations Process Research Unit (SPRU) when workers removed the last of seven large waste storage tanks from a vault and shipped it to an offsite low-level radioactive waste disposal facility.

  15. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  16. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  17. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  18. Alternative future environmental regulatory approaches for petroleum refineries.

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

    2000-01-01

    Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

  19. Application of commercial simulator to reproduce a real natural gas processing unit

    SciTech Connect (OSTI)

    Gomes, L.G.; Maciel, M.R.W.

    1996-12-31

    In this work the intention is, using a commercial simulator, to reproduce the operating conditions of a Natural Gas Processing Unit. This is a complex task since in a real plant there are several kinds of equipments, accessories and designs that the most important available simulators cannot represent properly. This being the case, in this study, the simulation has been built in a unique computer file, simulating 48 equipments and 16 valves of the process unit. It was created five additional equipments and some adjust, recycle and set operations to adjust the simulator equipments to the real ones. The simulations has 84 operations and 116 streams of mass and energy. To bring near the column internal flows and temperatures to the real values, it were incorporated the column stage efficiencies, using a method, beginning with O`Connell global efficiency. 7 refs., 4 tabs.

  20. State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States

    SciTech Connect (OSTI)

    Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

    2015-01-01

    This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

  1. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  2. Refinery & Blender Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended

  3. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  4. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  5. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W.

    2012-05-15

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  6. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding.

    SciTech Connect (OSTI)

    Loughry, Thomas A.

    2015-02-01

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to ten times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.

  7. Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery

    Reports and Publications (EIA)

    2009-01-01

    The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery.

  8. Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability

    Broader source: Energy.gov [DOE]

    This report discusses potential impacts of increased water temperature and reductions in water availability on petroleum refining and presents case studies related to refinery water use. Report...

  9. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn,...

  10. Indiana, Illinois and Kentucky Refinery Yield

    Gasoline and Diesel Fuel Update (EIA)

    Miscellaneous Products 0.4 0.4 0.4 0.4 0.4 0.4 1993-2015 Processing Gain(-) or Loss(+) -6.0 -6.0 -5.5 -5.9 -5.8 -5.6 1993-2015 - No Data Reported; -- Not Applicable;...

  11. Expansion capacity of an SX unit in uranium process pilot tests

    SciTech Connect (OSTI)

    Courtaud, B.; Auger, F.; Morel, P.

    2008-07-01

    The rising price of uranium has led uranium producers to increase their plant capacity. The new project proposed to increase capacity is based on processing low-grade uranium by heap leaching. It is necessary to modify the plant, particularly the solvent extraction unit, to handle the increased flow. The goal of our study is to determine the minimal changes necessary to process the whole flow. Several stages have been carried out (i) thermodynamic modelling of the solvent extraction process to determine the capacities of the SX plant and the impact of the modification and (ii) pilot tests at the plant of the different configurations proposed by modelling. This paper presents results of the pilot tests performed at the plant. (authors)

  12. All-optical quantum computing with a hybrid solid-state processing unit

    SciTech Connect (OSTI)

    Pei Pei; Zhang Fengyang; Li Chong; Song Heshan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-10-15

    We develop an architecture of a hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have a prominent advantage of the insensitivity to dissipation process benefiting from the virtual excitation of subsystems. Moreover, the quantum nondemolition measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid-state systems can merge and be integrated into one quantum processor afterward.

  13. Clean air amendments put big burden on refinery planners

    SciTech Connect (OSTI)

    Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. )

    1991-06-10

    The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

  14. Computation of Large Covariance Matrices by SAMMY on Graphical Processing Units and Multicore CPUs

    SciTech Connect (OSTI)

    Arbanas, Goran [ORNL; Dunn, Michael E [ORNL; Wiarda, Dorothea [ORNL

    2011-01-01

    Computational power of Graphical Processing Units and multicore CPUs was harnessed by the nuclear data evaluation code SAMMY to speed up computations of large Resonance Parameter Covariance Matrices (RPCMs). This was accomplished by linking SAMMY to vendor-optimized implementations of the matrix-matrix multiplication subroutine of the Basic Linear Algebra Library to compute the most time-consuming step. The U-235 RPCM computed previously using a triple-nested loop was re-computed using the NVIDIA implementation of the subroutine on a single Tesla Fermi Graphical Processing Unit, and also using the Intel's Math Kernel Library implementation on two different multicore CPU systems. A multiplication of two matrices of dimensions 16,000 x 20,000 that had previously taken days, took approximately one minute on the GPU. Similar performance was achieved on a dual six-core CPU system. The magnitude of the speed-up suggests that these, or similar, combinations of hardware and libraries may be useful for large matrix operations in SAMMY. Uniform interfaces of standard linear algebra libraries make them a promising candidate for a programming framework of a new generation of SAMMY for the emerging heterogeneous computing platforms.

  15. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect (OSTI)

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  17. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  18. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect (OSTI)

    Scherer, Carolynn P; Long, Jon D

    2010-09-28

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  20. Developing extensible lattice-Boltzmann simulators for general-purpose graphics-processing units

    SciTech Connect (OSTI)

    Walsh, S C; Saar, M O

    2011-12-21

    Lattice-Boltzmann methods are versatile numerical modeling techniques capable of reproducing a wide variety of fluid-mechanical behavior. These methods are well suited to parallel implementation, particularly on the single-instruction multiple data (SIMD) parallel processing environments found in computer graphics processing units (GPUs). Although more recent programming tools dramatically improve the ease with which GPU programs can be written, the programming environment still lacks the flexibility available to more traditional CPU programs. In particular, it may be difficult to develop modular and extensible programs that require variable on-device functionality with current GPU architectures. This paper describes a process of automatic code generation that overcomes these difficulties for lattice-Boltzmann simulations. It details the development of GPU-based modules for an extensible lattice-Boltzmann simulation package - LBHydra. The performance of the automatically generated code is compared to equivalent purpose written codes for both single-phase, multiple-phase, and multiple-component flows. The flexibility of the new method is demonstrated by simulating a rising, dissolving droplet in a porous medium with user generated lattice-Boltzmann models and subroutines.

  1. Bayesian Treed Multivariate Gaussian Process with Adaptive Design: Application to a Carbon Capture Unit

    SciTech Connect (OSTI)

    Konomi, Bledar A.; Karagiannis, Georgios; Sarkar, Avik; Sun, Xin; Lin, Guang

    2014-05-16

    Computer experiments (numerical simulations) are widely used in scientific research to study and predict the behavior of complex systems, which usually have responses consisting of a set of distinct outputs. The computational cost of the simulations at high resolution are often expensive and become impractical for parametric studies at different input values. To overcome these difficulties we develop a Bayesian treed multivariate Gaussian process (BTMGP) as an extension of the Bayesian treed Gaussian process (BTGP) in order to model and evaluate a multivariate process. A suitable choice of covariance function and the prior distributions facilitates the different Markov chain Monte Carlo (MCMC) movements. We utilize this model to sequentially sample the input space for the most informative values, taking into account model uncertainty and expertise gained. A simulation study demonstrates the use of the proposed method and compares it with alternative approaches. We apply the sequential sampling technique and BTMGP to model the multiphase flow in a full scale regenerator of a carbon capture unit. The application presented in this paper is an important tool for research into carbon dioxide emissions from thermal power plants.

  2. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1991-01-02

    Liquid-entrained operations at the LaPorte Liquid Phase Methanol (LPMEOH) Process Development Unit (PDU) continued during June and July 1988 under Tasks 2.1 and 2.2 of Contract No. DE-AC22-87PC90005 for the US Department of Energy. The primary focus of this PDU operating program was to prepare for a confident move to the next scale of operation with an optimized and simplified process. Several new design options had been identified and thoroughly evaluated in a detailed process engineering study completed under the LPMEOH Part-2 contract (DE-AC22-85PC80007), which then became the basis for the current PDU modification/operating program. The focus of the Process Engineering Design was to optimize and simplifications focused on the slurry loop, which consists of the reactor, vapor/liquid separator, slurry heat exchanger, and slurry circulation pump. Two-Phase Gas Holdup tests began at LaPorte in June 1988 with nitrogen/oil and CO- rich gas/oil systems. The purpose of these tests was to study the hydrodynamics of the reactor, detect metal carbonyl catalyst poisons, and train operating personnel. Any effect of the new gas sparger and the internal heat exchanger would be revealed by comparing the hydrodynamic data with previous PDU hydrodynamic data. The Equipment Evaluation'' Run E-5 was conducted at the LaPorte LPMEOH PDU in July 1988. The objective of Run E-5 was to systematically evaluate each new piece of equipment (sparger, internal heat exchanger, V/L disengagement zone, demister, and cyclone) which had been added to the system, and attempt to run the reactor in an internal-only mode. In addition, a successful catalyst activation with a concentrated (45 wt % oxide) slurry was sought. 9 refs., 26 figs., 15 tabs.

  3. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  5. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 570,498 577,057 563,621 580,680 545,351 529,373 1981-2016 Crude Oil 485,221 479,416 494,682 519,726 495,806 460,629 1981-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 16,371 18,692 20,285 20,130 20,717 16,455 1981-2016 Pentanes Plus 4,804 4,844 4,376 4,155 4,878 3,963 1981-2016 Liquefied Petroleum Gases 11,567 13,848 15,909 15,975 15,839 12,492 1981-2016 Ethane 1981-1992 Normal Butane 4,707 7,699 9,213 9,410 9,502 6,776

  6. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 6,345,372 6,422,710 6,406,693 6,577,077 6,779,342 6,882,105 1981-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 1981-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 161,479 178,884 186,270 181,112 186,601 188,270 1981-2015 Pentanes Plus 56,686 63,385 63,596 60,394 56,037 53,404 1981-2015 Liquefied Petroleum Gases 104,793 115,499 122,674 120,718 130,564 134,866 1981-2015 Ethane 1981-1992 Normal Butane 43,802

  7. In-Situ Statistical Analysis of Autotune Simulation Data using Graphical Processing Units

    SciTech Connect (OSTI)

    Ranjan, Niloo; Sanyal, Jibonananda; New, Joshua Ryan

    2013-08-01

    Developing accurate building energy simulation models to assist energy efficiency at speed and scale is one of the research goals of the Whole-Building and Community Integration group, which is a part of Building Technologies Research and Integration Center (BTRIC) at Oak Ridge National Laboratory (ORNL). The aim of the Autotune project is to speed up the automated calibration of building energy models to match measured utility or sensor data. The workflow of this project takes input parameters and runs EnergyPlus simulations on Oak Ridge Leadership Computing Facility s (OLCF) computing resources such as Titan, the world s second fastest supercomputer. Multiple simulations run in parallel on nodes having 16 processors each and a Graphics Processing Unit (GPU). Each node produces a 5.7 GB output file comprising 256 files from 64 simulations. Four types of output data covering monthly, daily, hourly, and 15-minute time steps for each annual simulation is produced. A total of 270TB+ of data has been produced. In this project, the simulation data is statistically analyzed in-situ using GPUs while annual simulations are being computed on the traditional processors. Titan, with its recent addition of 18,688 Compute Unified Device Architecture (CUDA) capable NVIDIA GPUs, has greatly extended its capability for massively parallel data processing. CUDA is used along with C/MPI to calculate statistical metrics such as sum, mean, variance, and standard deviation leveraging GPU acceleration. The workflow developed in this project produces statistical summaries of the data which reduces by multiple orders of magnitude the time and amount of data that needs to be stored. These statistical capabilities are anticipated to be useful for sensitivity analysis of EnergyPlus simulations.

  8. Density-fitted singles and doubles coupled cluster on graphics processing units

    SciTech Connect (OSTI)

    Sherrill, David; Sumpter, Bobby G; DePrince, III, A. Eugene

    2014-01-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  9. The application of projected conjugate gradient solvers on graphical processing units

    SciTech Connect (OSTI)

    Lin, Youzuo; Renaut, Rosemary

    2011-01-26

    Graphical processing units introduce the capability for large scale computation at the desktop. Presented numerical results verify that efficiencies and accuracies of basic linear algebra subroutines of all levels when implemented in CUDA and Jacket are comparable. But experimental results demonstrate that the basic linear algebra subroutines of level three offer the greatest potential for improving efficiency of basic numerical algorithms. We consider the solution of the multiple right hand side set of linear equations using Krylov subspace-based solvers. Thus, for the multiple right hand side case, it is more efficient to make use of a block implementation of the conjugate gradient algorithm, rather than to solve each system independently. Jacket is used for the implementation. Furthermore, including projection from one system to another improves efficiency. A relevant example, for which simulated results are provided, is the reconstruction of a three dimensional medical image volume acquired from a positron emission tomography scanner. Efficiency of the reconstruction is improved by using projection across nearby slices.

  10. Opportunities for Biomass-Based Fuels and Products in a Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory

  11. Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System

    SciTech Connect (OSTI)

    2005-08-01

    This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

  12. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    Purposes of Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions ...

  13. US DOE Refinery Water Study 01-19-16 PublicE_docx

    Energy Savers [EERE]

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Executive Summary of Final Report Prepared for US Department of Energy January 2016 For Jacobs Consultancy Laura E. Weaver Rob Henderson John Blieszner January 2016 Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Prepared For US Department of Energy 525 West Monroe Chicago, Illinois 60661 Phone: +312.655.9207

  14. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  15. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  16. Emission factors for leaks in refinery components in heavy liquid service

    SciTech Connect (OSTI)

    Taback, H.; Godec, M.

    1996-12-31

    The objective of this program was to provide sufficient screening data so that EPA can develop an official set of emission factors (expressed in lb/hr/component) for refinery components (valves, flanged connectors, non-flanged connectors, pumps, open-ended lines, and other) in heavy liquid (BL) service. To accomplish this, 211,000 existing HL screening values from Southern California refineries were compiled and compared with 2,500 new HL screening measurements taken at two refineries in the state of Washington. Since Southern California is an area in extreme non-attainment of the National Ambient Air Quality Standards (NAAQS) and therefore has tight emission control regulations, it was felt that its screening data may not be representative of refineries without tight emission controls. Thus, the Southern California screening data were compared to screening measurements at refineries in an area that is in attainment of the NAAQS and without emissions control, which is the case for those refineries in Washington. It was found that statistically there was no significant difference in emission factors between the two areas and, therefore, there appears to be no difference in emissions from heavy liquid components in areas with and without leak detection and repair (LDAR) programs. The new emission factors range from 1/7 to 1/3 times the current EPA emission factors. This program was sponsored by the American Petroleum Institute (API) and an API report will soon be released providing complete details.

  17. ROSE{reg_sign} - A flexible process for upgrading heavy crude, atmospheric residue, or vaccum residue

    SciTech Connect (OSTI)

    Lynch, K.Z.; Hood, H.L.; Gomez, O.

    1995-12-31

    The ROSE{reg_sign} Pilot Plant was used to evaluate various fractions of Boscan and Zuata heavy crude oils. The results demonstrated the ability of the ROSE process to remove asphaltene fractions using n-pentane, n-butane, or propane as the solvent while leaving behind an oil that has been greatly reduced in its metal, nitrogen, sulfur, and Conradson carbon contents. The recovered oil could then be used as feedstock to a conventional hydrotreater/FCC process combination. The flexibility of the process is evidenced by its ability to process various feeds. Because of this flexibility, the opportunity exists to use the ROSE process at a wellhead location to reduce the diluent requirements for making a suitable pipeline feed. This technology is also able to process changing feeds when upstream units in a refinery are down during major turnarounds, for example, or when there are problems with a vacuum tower or downstream unit.

  18. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect (OSTI)

    CHANG, ROBERT

    2006-02-02

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  19. Correcting systematic bias and instrument measurement drift with mzRefinery

    SciTech Connect (OSTI)

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; Tabb, David L.; Payne, Samuel H.

    2015-12-01

    MOTIVATION: Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. RESULTS: We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. AVAILABILITY: The mzRefinery tool is part of msConvert, available with the ProteoWizard open source package at http://proteowizard.sourceforge.net/

  20. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  1. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016"

  2. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel

  3. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  4. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  5. Mild Biomass Liquefaction Process for Economic Production of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Approach - Solvent liquefaction using MeOHH 2 O for stable bio-oil production - Bio-oil upgrading via mild HDO for refinery insertion Process development in concert ...

  6. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1990-10-23

    The objectives of this program are to implement and test the process improvements identified through the engineering studies of the current program to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that can be applied to a scaled-up Liquid Phase Methanol (LPMEOH) facility. An optional series of PDU runs is offered to extend the testing of the process improvements. A parallel research program will be performed to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Activities this quarter include: Flow sheet development for La Porte PDU modifications continues. A preliminary P ID review was completed and flow sheet modifications were identified and are being incorporated. A preliminary hazards review was completed on 22 May. Some minor flow sheet modifications resulted and a number of action items were identified. The most significant action item is to develop a materials reactivity and compatibility grid for the different alcohols, ethers, and esters which will be produced at the PDU. Heat and material balances were completed for the maximum production case of the mixed DME/MEOH synthesis campaign. An improved rate expression was developed. 1 fig.

  7. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    SciTech Connect (OSTI)

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  8. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect (OSTI)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste Processing programs. The resulting summary of technical risks and needs was captured in the Roadmap. The Roadmap identifies key Waste Processing initiative areas where technology development work should be focused. These areas are listed below, along with the Work Breakdown Structure (WBS) designation given to each initiative area. The WBS designations will be used throughout this document.

  9. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, June 23--July 1, 2000

    SciTech Connect (OSTI)

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-07-27

    The Conceptual Design Assessment for the Co-Firing of Bio-Refinery Supplied Lignin Project was successfully kicked off on July 23, 2000 during a meeting at the TVA-PPI facility in Muscle Shoals, AL. An initial timeline for the study was distributed, issues of concern were identified and a priority actions list was developed. Next steps include meeting with NETL to discuss de-watering and lignin fuel testing, the development of the mass balance model and ethanol facility design criteria, providing TVA-Colbert with preliminary lignin fuel analysis and the procurement of representative feed materials for the pilot and bench scale testing of the hydrolysis process.

  10. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  11. Flotation process for removal of precipitates from electrochemical chromate reduction unit

    DOE Patents [OSTI]

    DeMonbrun, James R.; Schmitt, Charles R.; Williams, Everett H.

    1976-01-01

    This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.

  12. Strategies for assuring operational reliability of process units: A team effort

    SciTech Connect (OSTI)

    Merlano, N.; Ramirez, J.E.; Merchan, R.

    1996-12-01

    Operational reliability and low operational costs are becoming an important issue in Latin-American Industries. Programs promoting structural integrity and life assessment are becoming part of the strategies of industry to cope with increasingly competitive markets. However, structural integrity and life assessment is not all that is required to attain the goal of operational reliability; it is necessary to integrate in the assessment strategy the relationship between process variables, operational variables, maintenance, inspection, materials science and even instrument reliability. It is also important to take into account environmental regulations and personnel safety. A recent experimental program, aimed at developing and implementing a strategy which combines all the above mentioned aspects, has been undertaken. This article briefly describes an internal ``Guide for Operational Reliability`` developed as part of the program and discusses the Fitness-For-Service assessment of a cracked tower carried out during the first phase of the program.

  13. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect (OSTI)

    Not Available

    1990-11-09

    As part of the liquid phase methanol process development program the present study evaluated adsorptive schemes to remove catalyst poisons from coal gas at pilot scale. In addition to a lab test with coal gas from Coolwater, two field tests were performed at Great Plains with live coal gas. In the lab with Coolwater, gas iron carbonyl, carbonyl sulfide,and hydrogen sulfide were effectively removed from the coal gas. The capacities of H-Y zeolite and BPL carbon for Fe(CO){sub 5} agreed well with the previous bench scale results at similar CO{sub 2} partial pressure. COS appeared to be chemisorbed on FCA carbon; its capacity was non-regenerable by hot nitrogen purge. A Cu/Zn catalyst, used to remove H{sub 2}S adsorptively, worked adequately. With the adsorption system on-line, a downstream methanol catalyst showed stable activity for 120 hours of operation. In the two field tests, it was demonstrated that the Great Plains (GP) syngas could be treated by adsorption for LPMEOH process. The catalyst deactivation observed in the first field test was much improved in the second field test after regular (every three days) regeneration of the adsorbents was practiced. The absorption system, which was designed for the removal of iron/nickel carbonyls, hydrogen/carbonyl sulfide and hydrochloric acid, needed to be modified to accommodate other unexpected impurities, such as acetonitrile and ethylene which were observed during both field tests. A lab test with a simulated GP gas indicated that low CO{sub 2} content (0.5%) in the GP gas does not cause catalyst deactivation. Adjusting the CO{sub 2} content of the feed to 5% by CO{sub 2} addition, increased methanol productivity by 40% in both the lab and the second field test. 6 refs., 25 figs., 14 tabs.

  14. Syngas to Synfuels Process Development Unit Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Brown, Robert C.

    2012-03-30

    The process described is for the gasification of 20 kg/h of biomass (switchgrass) to produce a syngas suitable for upgrading to Fischer-Tropsch (FT) liquid fuels (gas, diesel, waxes, etc.). The gas stream generated from gasification is primarily composed of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), steam (H2O), and methane (CH4), but also includes tars, particulate matter, ammonia (NH3), hydrogen cyanide (HCN), hydrogen chloride (HCl), hydrogen sulfide ( H2S), carbonyl sulfide (COS), etc. as contaminants. The gas stream passes through an array of cleaning devices to remove the contaminants to levels suitable for FT synthesis of fuels/chemicals. These devices consist primarily of an oil scrubber (to remove tars and remaining particulates), sulfur scrubber (to remove sulfur compounds), and a wet scrubber (to remove NH3, HCl and remaining water soluble contaminants). The ammonia and oil scrubbers are absorption columns with a combination of random and structured packing materials, using water and oil as the adsorption liquids respectively. The ammonia scrubber performed very well, while operating the oil scrubber proved to be more difficult due to the nature of tar compounds. The sulfur scrubber is a packed bed absorption device with solid extrudates of adsorbent material, primarily composed of ZnO and CuO. It performed well, but over a limited amount of time due to fouling created by excess tar/particulate matter and oil aerosols. Overall gas contaminants were reduced to below 1 ppm NH3, and less than 1 ppm collective sulfur compounds.

  15. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  16. Energy Bandwidth for Petroleum Refining Processes

    SciTech Connect (OSTI)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  17. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,243 11,231 12,001 12,021 8,782 13,405 12,734 14,373 14,999 14,661 1990's 14,973 18,055 16,732 16,724 8,935 7,568 9,354 9,746 10,900 6,781 2000's 8,684 13,085 3,817 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  2. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect (OSTI)

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  3. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    SciTech Connect (OSTI)

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. )

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  4. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  5. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  6. INDEPENDENT TECHNICAL ASSESSMENT OF MANAGEMENT OF STORMWATER AND WASTEWATER AT THE SEPARATIONS PROCESS RESEARCH UNIT (SPRU) DISPOSITION PROJECT, NEW YORK

    SciTech Connect (OSTI)

    Abitz, R.; Jackson, D.; Eddy-Dilek, C.

    2011-06-27

    The U.S. Department of Energy (DOE) is currently evaluating the water management procedures at the Separations Process Research Unit (SPRU). The facility has three issues related to water management that require technical assistance: (1) due to a excessive rainfall event in October, 2010, contaminated water collected in basements of G2 and H2 buildings. As a result of this event, the contractor has had to collect and dispose of water offsite; (2) The failure of a sump pump at a KAPL outfall resulted in a Notice of Violation issued by the New York State Department of Environment and Conservation (NYSDEC) and subsequent Consent Order. On-site water now requires treatment and off-site disposition; and (3) stormwater infiltration has resulted in Strontium-90 levels discharged to the storm drains that exceed NR standards. The contractor has indicated that water management at SPRU requires major staff resources (at least 50 persons). The purpose of this review is to determine if the contractor's technical approach warrants the large number of staff resources and to ensure that the technical approach is compliant and in accordance with federal, state and NR requirements.

  7. New short contact time processes upgrade residual oils and heavy crudes

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on new short contact time carbon rejection technology developed for upgrading residual oils and converting heavier crudes into high-quality synthetic crudes. The process, called discriminatory destructive distillation, or 3D, has been demonstrated in a Kansas refinery on feedstocks ranging from 13.5 to 30.6{degrees} API. For the past year, Coastal Derby Refining Co. has been operating a revolutionary, according to Bartholic, circulating fluid solids processing apparatus that can be run as either a 3D process unit, to virtually eliminate the residual oil component of crude, or as an MSCC process unit, to upgrade VGO residual oils. Because both of these processes circulate a fluid solid in a manner similar to the well known and commercially accepted fluid catalytic cracking (FCC) process, existing FCC-type units can be easily and economically converted to either 3D or MSCC operation. The 3D process is a low-pressure, carbon-rejection residual oil treating process for preparation of gas oils for fluid catalytic cracking (or MSCC), hydrotreating, mild hydrocracking, or full hydrocracking, says Bartholic. The process is also applicable, he says to upgrading heavy crudes or tar sands bitumen to high-quality reconstituted crudes for world markets.

  8. Hydrocarbon processing symposium - 1987

    SciTech Connect (OSTI)

    Arnoni, Y.J.

    1987-01-01

    This book presents the papers given at a symposium which investigated the processes and equipment used in the petroleum and natural gas industries. Topics considered at the symposium included recirculation is centrifugal pumps, safety and security audits of LNG/LPG export facilities, flames in prestressed concrete LNG storage tanks, refrigerated liquefied gas storage, hydrogen-assisted failure in petroleum equipment, refinery off-gases, cryogenics, refrigerants, computer-aided plant design, and pipe vibration reducers.

  9. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  10. Specific heavy oil processing market study. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    The market potential for two not-yet-commercialized, proprietary processes for upgrading heavy oil was evaluated. Dynacracking (TM) of Hydrocarbon Research Inc. (HRI) and Aurabon of UOP Process Division (UOP), including an integrated commercial hydrotreating unit were the processes studied. The report concludes that while a large market for Heavy Oil Processing (HOP) units was originally forecast as the result of the shift to heavier crudes by US refiners under a given demand slate and refinery configuration, this market has either eroded due to massive demand shifts (both in volumetric and relative product mix terms) or largely been satisfied on an accelerated basis (due to downstream restructuring pressures) by units already constructed or under firm commitment utilizing other HOP technology. Dynacracking or Aurabon does not appear to offer the substantial economic advantage needed to replace other HOP units already committed. However, additional demands for HOP units couold arise, particularly on a regional basis, if significant additional foreign or domestic sources of heavy crude are introduced into the supply picture or the demand structure moves dramatically away from that currently foreseen by the EIA. Expected profit margins were calculated for both processes, allowing $2/barrel extra credit to the Aurabon products because of their higher quality. Both processes appear to produce about the same fraction of vacuum bottoms when processing the same crude. Dynacracking produces a higher proportion of naphtha and Aurabon produces substantially more heavy distillate. This report is not intended to serve as a basis of selecting either process for a particular installation. 10 references, 7 figures, 29 tables.

  11. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products",13,"Monthly","2/2016","1/15/1993" ,"Release

  12. REVISED FINAL REPORT – INDEPENDENT VERIFICATION SURVEY ACTIVITIES AT THE SEPARATIONS PROCESS RESEARCH UNIT SITES, NISKAYUNA, NEW YORK – DCN 0496-SR-06-1

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-10-10

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  13. Solvent-refined-coal (SRC) process. Determination of trace hydrocarbon, sulfur, and nitrogen compounds in SRC-II process development Unit P-99 gas streams. [Impure hydrogen in recycle gas and low pressure gas processing

    SciTech Connect (OSTI)

    Gray, J.A.; Galli, R.D.; McCracken, J.H.

    1982-02-01

    A knowledge of the identity and concentration of trace hydrocarbon, sulfur, and nitrogen compounds in the various gas streams of the SRC-II Coal Liquefaction Process is needed in order to design the recycle gas purification and low pressure gas processing systems in large-scale plants. This report discusses the results of an experimental study to identify and quantify trace compounds in the various high and low pressure gas streams of SRC-II Process Development Unit P-99. A capillary column trace hydrocarbon analysis has been developed which can quantify 41 hydrocarbons from methane to xylenes in SRC-II gas streams. With more work a number of other hydrocarbons could be quantified. A fixed gas analysis was also developed which can be integrated with the hydrocarbon analysis to yield a complete stream analysis. A gas chromatographic procedure using a flame photometric detector was developed for trace sulfur compounds, and six sulfur compounds were identified and quantified. A chemiluminescence method was developed for determination of NO and NO/sub 2/ down to 10 ppB in concentration. A gas chromatographic procedure using an electron capture detector was developed for HCN analysis down to 5 ppM. Drager tube analyses gave semiquantitative data on HCl and NH/sub 3/ content of the gas streams.

  14. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Define and use models (HCK PNNL primary focus; FCC NREL primary focus) to collect sustainability metrics (e.g. GHG emissions, net fossil energy consumption) that are relevant to ...

  15. Prevention of iron-sulfide deposition in petroleum processing. Final CRADA report.

    SciTech Connect (OSTI)

    Doctor, R. D.; Panchal, C. B.; Energy Systems

    2010-03-25

    The purpose of this CRADA extension which effectively ended in 2003 was to quantify the effect of iron-sulfide formation on the fouling propensity of crude oil. The specific objectives are focused on fouling of the Crude Distillation Unit (CDU-1) at the Shell Refinery in Mobile, Alabama. The technical approach consists of analyzing the plant data, chemical analysis of crude oil to detect key precursors, performing refinery tests using the Argonne Field Fouling Unit, and verifying the effectiveness of a physical device of tube insert and enhanced tubes to change threshold conditions and thereby reducing fouling.

  16. SIPS: A small modular process unit for the in-tank pretreatment of high-level wastes

    SciTech Connect (OSTI)

    Reich, M.; Powell, J.; Barletta, R. [Brookhaven National Lab., Upton, NY (United States)

    1996-12-31

    As a result of the U.S. weapons production program, there are now hundreds of large tanks containing highly radioactive wastes. Safe disposal of these wastes requires their processing and separations into a small volume of highly radioactive waste (HLW) and a much larger volume of low-level waste (LLW). The HLW waste would then be vitrified and transported to a geologic repository. To date, the principal approach proposed for the separation envisions a large, centralized process facility. The small in-tank processing system (SIPS) is a proposed new, small modular concept for the in-tank processing and separation of wastes into HLW and LLW output streams suitable for vitrification. Instead of pumping the retrieved tank wastes as a solid/liquid slurry over long distances to a centralized process facility, SIPS would employ a small process module, typically {approximately}1 m in diameter and 4 m long, which would be inserted into the tank. Over a period of {approx} 6 months, the module would process the solid/liquid materials in the tank, producing separated liquid HLW and liquid LLW output streams that are pumped away in two small-diameter ({approx}3-cm outside diameter) pipes. The SIPS module would be serviced by five auxiliary small pipes - a water feed pipe, a water feed pipe containing micron-size ferromagnetic particles, a nitric acid ({approx}3 M) feed pipe, and input/out pipes to hydraulically load/unload ion exchange beads.

  17. Module Experimental Process System Development Unit (MEPSDU). Quarterly report No. 1, November 26, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The purpose of this program is to demonstrate the technical readiness of a cost-effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of 70 cents or less per Watt peak. During this initial program quarter, the efforts have included preparation and submission of the Work Breakdown Structure, the Baseline Cost Estimate and the Program Plan. The proposed process sequence was reviewed and laboratory verification experiments were conducted. The preliminary process includes the following features: semicrystalline silicon (10 cm x 10 cm) as the silicon input material, spray-on dopant diffusion source, Al paste BSF formation, spray-on AR coating, electroless Ni plate-solder dip Metallization, laser scribe edges, K and S tabbing and stringing machine, and laminated EVA modules.

  18. A 50-month gasifier mechanistic study and downstream unit process development program for the pressurized ash-agglomerating fluidized-bed gasification system

    SciTech Connect (OSTI)

    Haldipur, G.B.; Schmidt, D.K.; Smith, K.J.

    1989-03-01

    This technology development program scope included studies of those processes and components necessary to convert coal, oxidant and steam into a clean fuel gas. The configuration of the processes and components constitutes a Gasifier Island which is a key concept in the application of the KRW gasification and cleanup technologies. This Gasifier Island typically consists of process units that perform the following functions: feedstock preparation, gasification, desulfurization, heat recovery, particulate removal, and solid waste treatment. The processing has been conducted in a variety of gasifier operating modes including air-blown and oxygen-blown, both with and without in-bed desulfurization which includes injection of limestone or dolomite sorbent. Process configurations downstream of the gasifier have included recycle and non-recycle cyclones, sintered filters, and zinc ferrite fixed beds. Because of the developmental nature of the KRW technology program and the flexibility of the pilot plant itself, a wide range of gasifier-cleanup process configurations has been investigated. The KRW pilot plant program evaluated a system comprised of the following major process elements: gasifier and in-bed desulfurizer, particulate cleanup train, external sulfur polishing bed, and solid waste disposal system.

  19. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  20. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.

  1. Qualification of Daiichi Units 1, 2, and 3 Data for Severe Accident Evaluations - Process and Illustrative Examples from Prior TMI-2 Evaluations

    SciTech Connect (OSTI)

    Rempe, Joy Lynn; Knudson, Darrell Lee

    2014-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) Pressurized Water Reactor (PWR) and the Daiichi Units 1, 2, and 3 Boiling Water Reactors (BWRs) provide unique opportunities to evaluate instrumentation exposed to severe accident conditions. Conditions associated with the release of coolant and the hydrogen burn that occurred during the TMI-2 accident exposed instrumentation to harsh conditions, including direct radiation, radioactive contamination, and high humidity with elevated temperatures and pressures. As part of a program initiated in 2012 by the Department of Energy Office of Nuclear Energy (DOE-NE), a review was completed to gain insights from prior TMI-2 sensor survivability and data qualification efforts. This initial review focused on the set of sensors deemed most important by post-TMI-2 instrumentation evaluation programs. Instrumentation evaluation programs focused on data required by TMI-2 operators to assess the condition of the reactor and containment and the effect of mitigating actions taken by these operators. In addition, prior efforts focused on sensors providing data required for subsequent forensic evaluations and accident simulations. To encourage the potential for similar activities to be completed for qualifying data from Daiichi Units 1, 2, and 3, this report provides additional details related to the formal process used to develop a qualified TMI-2 data base and presents data qualification details for three parameters: primary system pressure; containment building temperature; and containment pressure. As described within this report, sensor evaluations and data qualification required implementation of various processes, including comparisons with data from other sensors, analytical calculations, laboratory testing, and comparisons with sensors subjected to similar conditions in large-scale integral tests and with sensors that were similar in design to instruments easily removed from the TMI-2 plant for evaluations. As documented in this report, results from qualifying data for these parameters led to key insights related to TMI-2 accident progression. Hence, these selected examples illustrate the types of activities completed in the TMI-2 data qualification process and the importance of such a qualification effort. These details are documented in this report to facilitate implementation of similar process using data and examinations at the Daiichi Units 1, 2, and 3 reactors so that BWR-specific benefits can be obtained.

  2. Plasma Processing Of Hydrocarbon

    SciTech Connect (OSTI)

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  3. Analysis of the working process and mechanical losses in a Stirling engine for a solar power unit

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-05-01

    In this paper a second level mathematical model for the computational simulation of the working process of a 1-kW Stirling engine has been used and the results obtained are presented. The internal circuit of the engine in the calculation scheme was divided into five chambers, namely, the expansion space, heater, regenerator, cooler and the compression space, and the governing system of ordinary differential equations for the energy and mass conservation were solved in each chamber by Euler`s method. In addition, mechanical losses in the construction of the engine have been determined and the computational results show that the mechanical losses for this particular design of the Stirling engine may be up to 50% of the indicated power of the engine.

  4. Liquid phase methanol LaPorte process development unit: Modification operation, and support studies. Task 3.6/3.7: Alternative catalyst/life run

    SciTech Connect (OSTI)

    Not Available

    1991-01-28

    In April 1987, Air Products started the third and final contract with the US Department of Energy to develop the Liquid Phase Methanol (LPMEOH) process. One of the objectives was to identify alternative commercial catalyst(s) for the process. This objective was strategically important as we want to demonstrate that the LPMEOH process is flexible and not catalyst selection limited. Among three commercially available catalysts evaluated in the lab, the catalyst with a designation of F21/0E75-43 was the most promising candidate. The initial judging criteria included not only the intrinsic catalyst activity but also the ability to be used effectively in a slurry reactor. The catalyst was then advanced for a 40-day life test in a laboratory 300 cc autoclave. The life test result also revealed superior stability when compared with that of a standard catalyst. Consequently, the new catalyst was recommended for demonstration in the Process Development Unit (PDU) at LaPorte, Texas. This report details the methodology of testing and selecting the catalyst.

  5. Summary of the proceedings of the workshop on the refinery of the future

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

  6. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  7. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect (OSTI)

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.

  8. On the effective implementation of a boundary element code on graphics processing units unsing an out-of-core LU algorithm

    SciTech Connect (OSTI)

    D'Azevedo, Ed F [ORNL; Nintcheu Fata, Sylvain [ORNL

    2012-01-01

    A collocation boundary element code for solving the three-dimensional Laplace equation, publicly available from \\url{http://www.intetec.org}, has been adapted to run on an Nvidia Tesla general purpose graphics processing unit (GPU). Global matrix assembly and LU factorization of the resulting dense matrix were performed on the GPU. Out-of-core techniques were used to solve problems larger than available GPU memory. The code achieved over eight times speedup in matrix assembly and about 56~Gflops/sec in the LU factorization using only 512~Mbytes of GPU memory. Details of the GPU implementation and comparisons with the standard sequential algorithm are included to illustrate the performance of the GPU code.

  9. European refiners must seek creative processes to justify heavy-ends projects

    SciTech Connect (OSTI)

    Hunt, P.

    1996-12-09

    There are strong reasons for wanting to upgrade the bottom of the crude oil barrel. But European refiners will not find it easy to get approval and funding for major capital investment projects. In most cases, investment justification will have to be creative and may need to rely on factors traditionally considered to be outside the conventional refinery fence. Examples of such creative upgrading schemes are those employed in four gasification projects planned for refineries in Italy. It is clear that the major obstacles to heavy residue processing are not technical, but economic. A review of these obstacles will set the stage for European investment in bottom-of-the-barrel processing.

  10. Development of a National M and O Contractor Work Prioritisation Process and its Use as a Progress Measure for Nuclear Clean Up in the United Kingdom

    SciTech Connect (OSTI)

    Waite, R.; Hudson, I.D.; Wareing, M.I.

    2006-07-01

    In July 2004, Her Majesty's Government established a Nuclear Decommissioning Authority (NDA) to assume responsibility for the discharge of the vast majority of the United Kingdom's public sector civil nuclear liabilities. The Energy Act of 2004 outlines in greater detail how the NDA functions, what its responsibilities are, and how these fit into the overall structure of the UK programme for managing and disposing of the liabilities created by a significant element of the UK's early commercial and nuclear weapons activities. The amount of Government funding provided to the NDA will be a key factor in determining what can be achieved. In agreeing how the funds are distributed to the licensed sites, the NDA will need to keep in mind the 'guiding principles' stated in 'Managing the Nuclear Legacy - A Strategy for Action': - Focus on getting the job done to high safety, security and environmental standards; - Best value for money consistent with safety, security and environmental performance; - Openness and transparency. To satisfy these requirements there is a need for a transparent process for justifying and prioritising work that aids decisions about what should be done and when, is straightforward to understand and can be applied by a wide range of stakeholders. To develop such a process, a multi-stakeholder group (the 'Prioritisation Working Group') produced a report published in April 2005 that examined how the process would align with the NDA's overall management processes. It also identified six criteria or 'attributes' that should be taken into account, and a variety of measures, or 'metrics' that could be used to assess each attribute. The report formed the basis of preliminary guidance from NDA to the site licensees that was used to guide their submissions on plans and programmes of work in 2005. Since this report the NDA has been working, with stakeholder input, to develop a prioritisation process to be used during the production of future Life Cycle Baseline (LCBL) and Near Term Work Plan (NTWP) submissions. This paper describes: - The key attributes chosen to address the selection criteria important to various stakeholder groups; - The methodology selected for ranking and weighing the relative importance of each proposed activity; - The linkage between the decision-making processes at the national and site-specific levels with the NDA's annual planning cycles; - The stakeholder engagement activities undertaken to ensure that the process will operate in an open and transparent manner; - The proposed methods by which this process will not only assist in the early selection of the highest priority work, but also will facilitate the annual management of the portfolio of activities being performed at each site; and - The status of actions to institutionalise these processes into the formal procedures for future NDA work planning and progress measurement. Further information can be obtained from the NDA web site www.nda.gov.uk. (authors)

  11. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    ethane, propane, and butane; and many other products used for their energy or chemical content. Crude Oil Input The total crude oil put into processing units at refineries. ...

  12. U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of...

    U.S. Energy Information Administration (EIA) Indexed Site

    PAD District 5 Alaska Arizona California Hawaii Nevada Oregon Washington Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series ...

  13. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    refining processes (e.g. impacts on process performance and reliability); and the need to examine the optimum capital investment locations for additional processing equipment. ...

  14. United Cool Air

    Broader source: Energy.gov [DOE]

    While our process may start with a "basic model" it is seldom that we fabricate more than a few units that are identical.  Therefore, the definition of "basic model" has a large impact on the...

  15. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 0 United States Office of Research and Environmental Protection Agency Development Washington, DC 20460 EPA 600/R-94/209 January 1993 Offsite Environment itoring Report adiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS, NEVADA 89193-3478 , 702/798-2100 April 20, 1995 Dear Reader: Since 1954, the U.S.

  16. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the United States and globally have led to favorable margins that encourage refinery investment and high refinery runs. Gulf Coast refinery margins are currently supported by high...

  17. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A refinery turnaround is a planned shutdown of one or more refinery units for maintenance and repair operations. Refinery turnarounds are typically scheduled during off-peak...

  18. EIA-820, Annual Refinery Report Page 1 U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    over the web using secure, encrypted processes. (It is the same method that commercial companies communicate with customers when transacting business on the web.) To use this ...

  19. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  20. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  1. Results of the Independent Radiological Verification Survey of Remediation at Building 31, Former Linde Uranium Refinery, Tonawanda, New York (LI001V)

    SciTech Connect (OSTI)

    McKenzie, S.P.; Uziel, M.S.

    1998-11-01

    As part of the Formerly Utilized Sites Remedial Action Progmq a team from Oak Ridge National Laboratory (ORNL) conducted a radiological veriihtion survey of Building 31 at the former Linde Uranium Refinery, Tonawau& New York. The purpose of the survey was to ver@ that remedial action completed by the project management contractor had reduced contamination levels to within authorized limits. Prior to remediatioq tied radioactive material was prevalent throughout the building and in some of the ductwork Decontaminadon consisted of removing surfhce contamination from floors, baseboards, and overhead areas; removing some air ducts; and vacuuming dust. Building 31 at the former Linde site in TonawandA New Yorlq was thoroughly investigated inside and outside for radionuclide residues. The verification team discovered previously undetected contaminadon beneath the concrete pad on the first floor and underneath floor tiles on the second floor. All suspect floor tiles were removed and any contamination beneath them cleaned to below guideline levels. The verification team also discovered elevated radiation levels associated with overhead air lines that led to the eventual removal of the entire air lige and a complete investigation of the history of all process piping in the building. Final verification surveys showed that residual surface beta-gamma activity levels were slightly elevated in some places but below U.S. Department of Energy applicable guidelines for protection against radiation (Table 1). Similarly, removable radioactive contamination was also below applicable guidelines. Exposure rates within the building were at typical background levels, and no consistently elevated indoor radon concentrations were measured. However, radionuclide analysis of subsurface soil from beneath the concrete floor on the ground level showed concentrations of `*U and'% that exceeded applicable guidelines. At the time of this survey, there was no measured exposure pathway for this subslab contamination under current use scenarios, and there was low risk associated with this contaminadon if the conaete slab is not cracked or penetrated. However, any penetration of the concrete slab caused by renovations, repairs, demolitio% or a naturally-occurring craclq would require further investigation and evaluation. Analysis of the project management contractor's post-remedial action data and results of this independent radiological vaification survey by ORNL confirm that all radiological measurements inside the building, on the exterior walls, and on the roof are below the limits prescribed by applicable guidelines for protection against radiation.

  2. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  3. Assessment of the potential for refinery applications of inorganic membrane technology: An identification and screening analysis. Final report

    SciTech Connect (OSTI)

    Johnson, H.E.; Schulman, B.L.

    1993-05-01

    Commercial application of membrane technology in the separation of gas, liquid, and solid streams has grown to a business with worldwide revenues exceeding $1 billion annually. Use of organic membranes for industrial gas separation, particularly in the refining industry, is one of the major growth areas. However, organic membranes based on polymeric separation barriers, are susceptible to damage by liquids, and careful precautions must be taken to retain the system integrity. Researchers are currently developing small pore sized inorganic membranes which may substantially increase the efficiency and economics in selected refinery separation applications. Expected advantages of these advanced inorganic membranes include high permeability, high selectivity, and low manufacturing cost. SFA Pacific conducted a screening analysis to identify applications for inorganic membrane technology in the petroleum refining industry and their potential cost advantages over competing separation systems. Two meetings were held in connection with this project. Copies of Viewgraphs presented by SFA Pacific at these meetings are attached in Appendices A and C. Potential high priority applications and market impacts of advanced inorganic membrane technology in the refining industry are addressed in this report, and include the following areas: Competitive separation technologies; application of those technologies; incentives for inorganic membranes; market benefits and impacts of inorganic membranes.

  4. Influence of a combustion-driven oscillation on global mixing in the flame from a refinery flare

    SciTech Connect (OSTI)

    Langman, A.S.; Nathan, G.J.

    2011-01-15

    An assessment of the influence of strong combustion-driven oscillations on mixing rates and visible radiation in the flame from a full-scale refinery flare is reported. Importantly, the oscillations were generated naturally, with no external forcing, and at a high Reynolds number of 4 x 10{sup 6}. These conditions differentiate this study from those of previous investigations, which all involved some external forcing and were at a Re too low to ensure fully turbulent flow within the flame. A frame-by-frame analysis of video footage, providing good resolution of the instantaneous edge of each flame, was used to assess flame dimensions, and so to determine a global residence time. Since the flames are in the fast-chemistry regime, the visual imagers can be used to determine a global mixing rate. The analysis reveals a consistent picture that the combustion-driven oscillations do not result in a significant change to the global mixing rate, but do increase the visible radiation. This is in contrast to previous investigations, using externally forced jets, where forcing at the preferred mode has been found to increase mixing rates and reduce radiation. (author)

  5. Strategic planning for and implementation of reclaimed municipal waste water as make-up to a refinery cooling system

    SciTech Connect (OSTI)

    Francis, W.R.; Mazur, J.J.; Rao, N.M.

    1996-08-01

    This paper discusses the successful use of treated municipal plant waste water effluent (Title 22) in a refinery cooling water system. Conversion from well water to this make-up water source was preceded by developing a carefully crafted transition plan. Steps were taken to identify key system performance indicators, establish desired performance goals, and implement stringent monitoring and control protocols. In addition, all possible contingencies were considered and solutions developed. Treating Title 22 waters is very challenging and entails risks not associated with normal makeup waters. Several novel on-line monitoring and control tools are available which help minimize these risks while enhancing tower operation. Performance monitoring of critical system parameters is essential in order to provide early warning of problems so that corrective measures can be implemented. In addition, a high level of system automation enhances reliable operation. Corrosion, scaling and microbiological performance of the system with Title 22 water is discussed in comparison to previous well water make-up.

  6. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect (OSTI)

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  8. Ammonia Absorption Refrigeration Unit Provides Environmentally...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Challenge Success Story MOTOR SYSTEM UPGRADES SMOOTH THE WAY TO SAVINGS OF 700,000 AT CHEVRON REFINERY BENEFITS * Reduced energy consumption by 1 million kWh per month * ...

  9. United States

    Energy Savers [EERE]

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  10. United States

    Energy Savers [EERE]

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  11. UNITED STEELWORKERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIARequestNovember 13, 2015 UNITED STEELWORKERS " ' " ' " USW Local 12-369 797 Stevens Drive Richland, Washington 99352 --P-hone-509-7-1-3-~J.180-or-FA-X:-509-71-3-1-783- - - * - - - UNRY AND $JIU!N$'!'H FQ.11; wc:HU<Elt5 November 13, 2015 USW-DLR-015-075 Dorothy Riehle, FOIA Officer Depa.rtment of Energy Richland Operations (RL) and (ORP) P.O. Box 550, Mail Stop A7-75 . Richland, WA 99352 SUBJECT: FREEDOM OF INFORMATION ACT AND/OR PRIVACY ACT REQUEST Dear Ms. Riehle: I am

  12. How Much Do Local Regulations Matter? Exploring the Impact of Permitting and Local Regulatory Processes on PV Prices in the United States

    Broader source: Energy.gov [DOE]

    The costs of PV modules and other hardware have declined rapidly over the last decade, primarily due to technology improvements and manufacturing scale. On the other hand, non-hardware "soft" costs have not dropped as rapidly, and now comprise the majority of total costs for residential PV systems. This paper examines the impacts of city-level permitting and other local regulatory processes in the U.S. by combining data from two local regulatory process efficiency scores with the largest dataset of installed U.S. PV prices. Based on analysis, the findings indicate that variations in local permitting procedures can lead to differences in average residential PV prices of approximately $0.18/W between the jurisdictions with the most-onerous and most-favorable permitting procedures. For a typical 5-kW residential PV installation, this equates to a $700 (2.2%) difference in system costs between jurisdictions with scores in the middle 90 percent of the range. Moreover, when considering variations not only in permitting practices, but also in other local regulatory procedures, price differences grow to $0.64-0.93/W. For a typical 5-kW residential PV installation, these results correspond to a price impact of at least $2500 (8%) between jurisdictions with scores in the middle 90 percent of the range.

  13. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  14. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  15. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  16. Radiological health implications of lead-210 and polonium-210 accumulations in LPG refineries

    SciTech Connect (OSTI)

    Summerlin, J. Jr.; Prichard, H.M.

    1985-04-01

    Radon-222, a naturally occurring radioactive noble gas, is often a contaminant in natural gas. During fractionation at processing plants, Radon tends to be concentrated in the Liquified Petroleum Gas (LPG) product stream. Radon-222 decays into a number of radioactive metallic daughters which can plate out on the interior surfaces of plant machinery. The hazards associated with gamma-emitting short-lived radon daughters have been investigated previously. The present work reports an analysis of the hazards associated with the long-lived daughters; Pb-210, Bi-210, and Po-210. These nuclides do not emit appreciable penetrating radiation, and hence do not represent a hazard as long as they remain on the inside surfaces of equipment. However, when equipment that has had prolonged exposure to an LPG stream is disassembled for repair or routine maintenance, opportunities for exposure to radioactive materials can occur. A series of measurements made on an impeller taken from a pump in an LPG facility is reported. Alpha spectroscopy revealed the presence of Po-210, and further measurements showed that the amount on the impeller surface was well above the exempt quantity. Breathing zone measurements made in the course of cleaning the impeller showed that an inhalation exposure equivalent to breathing Po-210 at the Maximum Permissible Concentration (MPC) for 60 hours could be delivered in less than half an hour. It was concluded that maintenance and repair work on LPG and derivitive product stream equipment must be carried out with the realization that a potential radiological health problem exists.

  17. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  18. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  19. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Petroleum Products 354,511 354,703 353,837 349,090 356,014 363,339 1993-2016 Crude Oil 102,678 105,923 101,530 100,805 101,947 108,660 1981-2016 All Oils (Excluding Crude Oil) 251,833 248,780 252,307 248,285 254,067 254,679 1993-2016 Pentanes Plus 778 711 1,018 718 571 835 1993-2016 Liquefied Petroleum Gases 18,650 18,308 16,631 14,329 12,498 11,825 1993-2016 Ethane/Ethylene 190 215 135 86 94 78 1993-2016 Propane/Propylene 4,567 4,837 5,033 4,107 3,074 2,847 1993-2016 Normal

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  1. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Petroleum Products 339,907 336,327 341,211 326,400 343,792 349,090 1993-2015 Crude Oil 88,982 90,640 88,781 85,114 95,794 100,805 1981-2015 All Oils (Excluding Crude ...

  2. Refinery Outages: Fall 2014

    Gasoline and Diesel Fuel Update (EIA)

    gasoline supply in a particular region because pipeline infrastructure, geography and marine shipping regulations constrain the amount of product that can flow among the different...

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... PAD District V 6 6 0 389,980 295,034 94,946 419,700 323,700 96,000 ......605,600 2,510,400 96,000 PAD District V 31,500 0 0 0 12,500 14,200 24,500 0 ...

  4. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  5. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  6. United States Government Departmen

    Energy Savers [EERE]

    7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 DOE F 1325.8 (08-93) United States Government Departmen of Energy memorandum DATE: December 20, 2005 Audit Report Number: OAS-L-06-03 REPLY TO A1TN OF; IG-36 (A05SR025) SUBJECT: Audit of "Defense Waste Processing Facility Operations at the Savannah River Site" TO: Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Savannah River Site stores approximately 36

  7. Coke formation in visbreaking process

    SciTech Connect (OSTI)

    Yan, T.Y. )

    1987-04-01

    Visbreaking is a mild cracking process primarily used to reduce residual oil viscosity and thus decrease the amount of cutter stock required for blending to heavy fuels specification. It can also be used to produce incremental quantities of gasoline, middle distillates and catalytic cracker feeds. This process was widely used in the 1930s and 1940s and became obsolete until a few years ago. When the need for increased conversion of residues to light products became desirable, visbreaking offered economic advantages to many refining schemes - especially in Western Europe. Between 1978-1981, Exxon brought on stream seven visbreakers ranging from 1900 to 9100 tons/SD capacity. In January 1983, the world-wide visbreaking capacity was over 2 MM B/SD. The visbreaking process and its application in refinery operations have been well described. In general, the process economics improve as the process severity is increased but it is limited by coke formation in the process. For this reason, they have studied the kinetics of coke formation in the visbreaking process.

  8. New waste-heat refrigeration unit cuts flaring, reduces pollution

    SciTech Connect (OSTI)

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    1998-05-18

    Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

  9. Heavy oil upgrading using an integrated gasification process

    SciTech Connect (OSTI)

    Quintana, M.E.; Falsetti, J.S.

    1995-12-31

    The value of abundant, low-grade heavy crude oil reserves can be enhanced by appropriate upgrade processing at the production site to yield marketable refinery feedstocks or ultimate products. One of the upgrading process sequences most commonly considered involves vacuum distillation followed by a bottoms processing step such as solvent deasphalting or coking. These schemes can be further enhanced with the addition of a gasification step to convert the unsaleable, bottom-of-the-barrel residues into useful products, such as high-purity hydrogen for hydrotreating, electrical power, steam for enhanced oil recovery and distillation, etc. This paper describes the Texaco Gasification Process and the T-STARs hydrotreating process, and their application in an integrated upgrade processing scheme in which an optimal, virtually bottomless oil utilization can be achieved. Illustrative examples of this integration are provided with comparative economic information.

  10. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  11. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  12. Hydrothermal Processing of Wet Wastes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produces more than 6 million MCFd of methane - Continue growing to 25% of US demand by ... pre-treater depending on refinery * Methane can be used several ways - Use as fuel ...

  13. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  14. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    then, changes in regional market dynamics, including planned and unplanned refinery maintenance in the United States and increased refinery utilization in Europe, have caused...

  15. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Table 5.9 Refinery Capacity and Utilization, Selected Years, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 ...

  16. Composite stabilizer unit

    DOE Patents [OSTI]

    Ebaugh, Larry R.; Sadler, Collin P.; Carter, Gary D.

    1992-01-01

    An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

  17. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  18. Voltage verification unit

    DOE Patents [OSTI]

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  19. United States Government

    Office of Legacy Management (LM)

    81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical...

  20. Waste Processing Annual Technology Development Report 2007

    Office of Environmental Management (EM)

    United States Department of Energy Waste Processing Annual Technology Development ... Dr. S. L. Krahn, Director EM-21 Office of Waste Processing U. S. Department of Energy ...

  1. Innovative Materials Processing Technologies Ltd IMPT | Open...

    Open Energy Info (EERE)

    Materials Processing Technologies Ltd IMPT Jump to: navigation, search Name: Innovative Materials Processing Technologies Ltd (IMPT) Place: United Kingdom Zip: NG1 1GF Sector:...

  2. New noncatalytic heavy-oil process developed in Canada

    SciTech Connect (OSTI)

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1982-11-22

    Describes Gulf Canada's hydrogen addition upgrading process, named Donor Refined Bitumen (DRB), which involves the pyrolysis of the residuum portion of the bitumen or heavy oil in the presence of an efficient hydrogen donor that stabilizes the intermediates from the pyrolyzing bitumen. Advantages are high operability and reliability, low capital and operating costs, high yields and good product quality, feedstock and independence, the use of conventional refinery equipment, and ready availability of high quality donor. Presents a schematic flow sheet of the DRB process showing how bitumen is upgraded sufficiently to allow easy pipelining to a central major upgrading plant. Tables give comparative compositional data on middle distillates; naptha compositions and qualities; and operating costs.

  3. Outlook for Refinery Outages and Available Refinery Capacity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of gasoline and distillate, and to include a more detailed consideration of the impact of unexpected outages on product supplies. This report reviews the potential...

  4. An industrial FT-IR process gas analyzer for stack gas cems analysis

    SciTech Connect (OSTI)

    Welch, G.M.; Herman, B.E.

    1995-12-31

    This paper describes utilizing Fourier Transform Infrared (FT-IR) technology to meet and exceed EPA requirements to Continuously Monitor Carbon Monoxide (CO) and Sulfur Dioxide (SO){sub 2} in an oil refinery. The application consists of Continuous Emission Monitoring (CEMS) of two stacks from a Fluid Catalytic Cracking unit (FCCU). The discussion will follow the project from initial specifications, installation, start-up, certification results (RATA, 7 day drift), Cylinder Gas Audit (CGA) and the required maintenance. FT-IR is a powerful analytical tool suitable for measurement of stack component gases required to meet CEMS regulations, and allows simultaneous multi-component analysis of complex stack gas streams with a continuous sample stream flow through the measurement cell. The Michelson Interferometer in a unique {open_quotes}Wishbone{close_quotes} design and with a special alignment control enables standardized configuration of the analyzer for flue gas analysis. Normal stack gas pollutants: NO{sub x}, SO{sub 2}, and CO; as well as water soluble pollutants such as NH{sub 3} and HCI may be accurately determined and reported even in the presence of 0-31 Vol % water vapor concentrations (hot and wet). This FT-IR analyzer has been operating with EPA Certification in an oil refinery environment since September 1994.

  5. United Arab Emirates and United States Sign MOU at Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arab Emirates and United States Sign MOU at Strategic Energy Dialogue United Arab Emirates and United States Sign MOU at Strategic Energy Dialogue October 1, 2014 - 1:50pm Addthis ...

  6. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  7. Laminated microchannel devices, mixing units and method of making same

    DOE Patents [OSTI]

    Bennett, Wendy D [Kennewick, WA; Hammerstrom, Donald J [West Richland, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA

    2002-10-17

    A laminated microchannel device is described in which there is a unit operation process layer that has longitudinal channel. The longitudinal channel is cut completely through the layer in which the unit process operation resides. Both the device structure and method of making the device provide significant advantages in terms of simplicity and efficiency. A static mixing unit that can be incorporated in the laminated microchannel device is also described.

  8. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    Special Naphthas 0.2 0.2 0.3 0.3 0.3 0.2 1993-2015 Lubricants 1.1 1.1 1.0 1.0 1.0 1.1 1993-2015 Waxes 0.1 0.1 0.1 0.1 0.0 0.0 1993-2015 Petroleum Coke 5.3 5.5 5.5 5.5 5.4 5.3 ...

  9. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (BSD) Catalytic Reforming Charge Capacity (BSD) Catalytic Reforming Low Pressure Charge Capacity (BSD) Catalytic Reforming High Pressure Charge Capacity (BSD) ...

  10. United Nations | Open Energy Information

    Open Energy Info (EERE)

    United Nations Interregional Crime and Justice Research Institute (UNICRI) United Nations International Research and Training Institute for the Advancement of Women (UN-INSTRAW)...

  11. Address conversion unit for multiprocessor system

    SciTech Connect (OSTI)

    Fava, T.F.; Lary, R.F.; Blackledge, R.

    1987-03-03

    An address conversion unit is described for use in one processor in a multi-processor data processing system including a common memory, the processors and common memory being interconnected by a common bus including means for transferring address signals defining a common address space. The processor includes private bus means including means for transferring signals including address signals defining a private address space. A processor unit means is connected to the private bus means and includes means for transmitting and receiving signals including address signals over the private bus means for engaging in data transfers thereover. The address conversion unit is connected to the private bus means and common bus means for receiving address signals over the private bus means from the processor unit means in the private address space. The unit comprises: A. pointer storage means for storing a pointer identifying a portion of the common bus memory space; B. pointer generation means connected to receive a common bus address and for generating a pointer in response thereto for storage in the pointer storage means; and C. common bus address generation means connected to the private bus and the pointer storage means for receiving an address from the processor unit means and for generating a common bus address in response thereto. The common bus address is used to initiate transfers between the processor unit means and the common memory over the common bus.

  12. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

    2007-09-18

    Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  13. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Whyatt, Greg A [West Richland, WA

    2010-01-26

    Various aspects and applications or microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  14. Microsystem process networks

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); TeGrotenhuis, Ward E. (Kennewick, WA); Whyatt, Greg A. (West Richland, WA)

    2006-10-24

    Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.

  15. UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    Menxmmhmz 9 1 UNITED STATES GOVERNMENT i TO : ThcFFles . mx.f I A. B. Piccct, +3lation section : DATE: .@.eti 16, 1949 SUBJECT: VISIT To HAVY OFfDHAlfCE DEPOT, EARIZ, B.J. FmmlTo...

  16. Heavy oil and coal conversion via the Aurabon process

    SciTech Connect (OSTI)

    Luebke, C.P.; Humbach, M.J.; Thompson, G.J.; Gatsis, J.G.

    1986-01-01

    Although time estimates vary, all forecasts point to a reduction in the availability of light crude oils. As the light crude supplies diminish, the role of resid upgrading in the refinery flow scheme must increase to allow the refinery the ability to convert heavier crudes into transportation fuels.

  17. Asad H. Sahir | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asad H. Sahir Asad H. Sahir Postdoctoral Researcher-Chemical Process Engineer, Biorefinery Analysis and Exploratory Research Asad.Sahir@nrel.gov | 303-275-3060 Research Interests Production of transportation fuels from biomass through thermochemical routes Integration of biofuels into existing petroleum refinery infrastructure (blending, refinery planning and unit operation modeling) Combustion and gasification of fuels Carbon capture, utilization and sequestration (CCUS) Modeling of reactors

  18. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  19. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  20. Laser system preset unit

    DOE Patents [OSTI]

    Goodwin, William L.

    1977-01-01

    An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

  1. United States Government

    Energy Savers [EERE]

    * (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 9, 2005 REPLY TO ATTN OF: IG-34 (A05TG036) Audit Report No.: OAS-L-06-01 SUBJECT: Report on Audit of "The Department of Energy's Radio Communications Systems" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) complex-wide radio systems infrastructure supports and facilitates activities such as site emergency response,

  2. stochastic unit commitment engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit commitment engine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phasor Measurement Units - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  4. United States Government

    Office of Legacy Management (LM)

    D;F&g,8 C-r-I 3-3 .*. United States Government . memorandum DATE: JUNZO 1994 -... REPLY TO A?TN OF: EM-421 (W. A. Williams, 903-8149) Authority Determination -- Combustion Engineering Site, Windsor, SUBJECT: Connecticut To' The File The attached review, documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the Combustion Engineering (CE) Site in Windsor, Connecticut, under the Formerly Utilized Sites Remedial Action Program. CE

  5. Good Energies (United Kingdom) | Open Energy Information

    Open Energy Info (EERE)

    Energies (United Kingdom) Jump to: navigation, search Logo: Good Energies (United Kingdom) Name: Good Energies (United Kingdom) Address: 2-5 Old Bond Street Place: London, United...

  6. Evaluation of heavy oil upgrading/refining process designs for HRI Dynacracking and UOP Aurabon Process. Final report

    SciTech Connect (OSTI)

    Davis, H.; Adams, D.G.; Fox, J.V.

    1984-04-01

    The process designs examined consist of two non-commercialized heavy oil upgrading processes; namely, the Hydrocarbon Research, Inc. (HRI) Dynacracking Process and the UOP Process Division (UOP) Aurabon Process. The latter process design includes, besides the Aurabon Process, an integrated hydrotreating section which does have commercial stature. The Dynacracking Process designs cover six cases involving three heavy crude feedstocks. The Aurabon Complex designs are based on four cases, two for each of two heavy crude feedstocks. The engineering support services involved engineering review and assessment of data, drawings, reports and other information generated by the two process designers. Background information, the review and assessment methodology employed for evaluating the process designs, and a detailed discussion of the process design data generated by both process contractors are presented in this report. Significant findings for both processes may be summarized as follows: (1) The process designs were executed using sound engineering principles and practices; (2) Both processes may be deemed to perform in accordance with their process design; (3) a wide variety of heavy oil charge stocks can be upgraded by either process to products generally suitable for further refinery processing; (4) no insurmountable operating or environmental problems are anticipated; (5) the estimated capital investments and operating utility requirements are indicative of the increased cost to process contaminated heavy crudes; (6) the cost differential between the higher quantity lighter crudes and the poorer quality heavy crudes must be sufficient to justify these higher expenditures; and (7) both processes merit consideration by refiners contemplating contaminated heavy oil upgrading. 53 references, 40 tables.

  7. EIAs Proposed Definitions for Natural Gas Liquids

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Liquefied refinery gases (LRG): Hydrocarbon gas liquids produced in refineries from processing of crude oil and unfinished oils. They are retained in the liquid state through ...

  8. FAQs for Survey Forms 800, 810, and 820

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Liquefied Refinery Gases (LRG) are products of refinery processing (distillation, cracking, etc.) of crude oil and unfinished oils and include the following product Codes: - 641 ...

  9. United States Government

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOEF 1325.8 {Rev 11*12-91) United States Government Department of Energy (DOE) memorandum Savannah River Operations Office (SR) DATE: OEC 19 2013 REPLY TO ATTN OF: AMMS (Hintze, 803-952-8422) suBJECT: Savannah River Remediation (SRR) Award Fee Determination for Evaluation Period October 1, 2012 to September 30, 2013 To: Charlene Smith, Contracting Officer, Contract DE-AC09-09SR22505 SRR has provided safe, timely, and cost-effective managen1ent and execution of the Liquid Waste program* at the

  10. United States Government

    Energy Savers [EERE]

    30/02 WED 09:58 FAX 423 241 3897 OIG -.- +-+ HQ ]002 rFG (07-;1) United States Government Department of Energy Memorandum DATE: October 29, 2002 REPLY TO 1G-36 (A02DN028) Audit Report No.: OAS-L-03-01 ATTN OF; SUBJECT: Audit of Procurement at the Rocky Flats Environmental Technology Site TO: Eugene Schmitt, Manager, Rocky Flats Field Office ' INTRODUCTION AND OBJECTIVE The Department of Energy (Department) and its site contractor, Kaiser-Hill Company, LLC (Kaiser-Hill), contracted in January

  11. United States Government

    Energy Savers [EERE]

    12.'6/0.2 ...... 13:27 FAX 301 903 4656 CAPITAL REGION 1]003 OE F f325.8 EFG (07.-0) United States Government Deparment of Energy memorandum DATE: 05 2002 REPLY TO: IG-34 (A02AT015) Audit Report Numbser: OAS-L-03-04 SUBJECT: Follow-Up Audit on Internet Privacy TO: Chief Information Officer, IM-1 The purpose of this report is to inform you of the results of our follow-up review of the Department of Energy's Internet Privacy initiatives. This review was performed from June 2002 to October 2002 at

  12. United States Government

    Energy Savers [EERE]

    03/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 DOE F 132,.8 W.I: ((07.9u) United States Government Department of Energy Memorandum DATE: December 2, 2002 REPLY TO REPLY TO -36 (A02SR013) Audit Report No.: OAS-L-03-07 ATTN OF: SUBJECT: Audit of Subcontracting Practices at the Savannah River Site TO: Jeffrey M. Allison, Acting Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy (Department) has contracted with Westinghouse Savannah River Company, LLC

  13. United States Government

    Energy Savers [EERE]

    .. a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and

  14. United States Government

    Energy Savers [EERE]

    cr--ceut w.:3 i-Kun: TO:202 586 1660 P.002/006 DOE F 1325. EFG (07.PO) United States Government Department of Energy memorandum DATE: September 24, 2004 Audit Report Number: OAS-L-04-24 REPLY TO ATTN OF: IG-35 (A04AL004) SUBJECT: Audit Report on "The National Nuclear Security Administration's Secure Transportation Asset Program" TO: Deputy Administrator for Defense Programs, National Nuclear Security Administration INTRODUCTION AND OBIECTV E The Secure Transportation Asset (STA)

  15. UNITED STATES GOVERKMENT

    Office of Legacy Management (LM)

    Ojice Memornndz~nz 0 UNITED STATES GOVERKMENT By application dated ;!ay 11, 1959, as a~zen:ii:d Hay 25, 1959, the a--T+- I-r-- cant requests that its license SW-33 be amend,ed to authorizt? proced- ures for t>e CCLl-ect conversion of LT6 to '3$ and by applicaticn datzci June 29, 1959, a.3 n:odifizd July 15, 1059, the shipment of uranium rdioxide pellets. Based on our rexiew of the information finished by the applicant, it is hereby determined that the applicant is qualified, by training and

  16. Unite2 States Government

    Office of Legacy Management (LM)

    +39J t% (3740~ - Unite2 States Government m e m o randuin L3 DATE: AU6 3, 9 %g4 REPLY TO All-N OF: m -421 (U. A. W illiams, 427-1719) -. - >' SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Hr. Doug Toukay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recouwndations were made to

  17. United States Government

    Office of Legacy Management (LM)

    DOE F t325.8 (s8s) Dl? l 36-z EFG (07-90) United States Government m e m o randum Department of Energy DATE: LUG 2 ' 3 1394 ",cl,'," EM-421 (W. A. W illiams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tonkay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of these sites,

  18. United States Government

    Office of Legacy Management (LM)

    # Xx i' !325 8 I c&egJw, i&l d, 4 -1 United States Government Department of Energy DATE; AUG 3, 9 !gg4 I REPLYTo m-421 (W. A. Williams, 427-1719) sy I AlTN OF: SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Tonkay and Ms. Nichelle Landis, I reviewed a number of sites that had formerly provided goods a&/or services to the Fernald facility as subcontractors. For 24 of these sites,

  19. United States Government

    Office of Legacy Management (LM)

    D;il$;,8 p! A . I I& - ' z United States Government &mtrne&' of Energy DATE: &uG 3, 9 394 REPLY TO AITN OF: EH-421 (W. A. Williams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Toukay and Ms. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recommdations were

  20. United States Government

    Office of Legacy Management (LM)

    73258 18.89, /J" c. j _- /;I_ EFG (07.90) United States Government Department of Energy I memorandum W Y fir ,"1 ti2,ej ? r-l DATE: CE' .' 2 :12; REPLY TO AlTN OF: EM-421 (W. A. W illiams, 903-8149) b/fad; 0' \/A a5 SUBJECT: Elimination of the Sites from the Formerly Utilized Sites ReGbbial Action Program TO: The F ile I have reviewed the attached site summar recommendations for the following sites: ies and elimination '4B : M itts & Merrel Co., Saginaw, M ichigan North Carolina

  1. United States Government

    Office of Legacy Management (LM)

    COE F r31ffs (S-89) EFG (37-90) United States Government memorandum f;' "* 5 P ,A ~4&t&y Department o F7 q;' 3 j-1 - ("J 1 [--A Q ' f ' -\' ( --_-_ -- DATE: MAY 29 l%H R' ;J$ EM-421 SUBJECT: Elimination of the Radiation Applications Incorporated Site Tc: The File I have reviewed the attached site summary and elimination recommendation for the Radiation Applications Incorporated Site in New York City. I have determined that there is little likelihood of radioactive contamination

  2. United States Government

    Office of Legacy Management (LM)

    DOEF1325.8 P4 0 * 1 - 1 - Iq \ b- United States Government memorandum pJ .T\ \b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: .- Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations Office St. Louis Airport Storage Site, MO The House and Senate Reports for the Energy and Water Development

  3. United States Government

    Office of Legacy Management (LM)

    f&E F 1325.8 J ;rgy!w, United States Government m e m o randum 7-L 0 cI - 2, Department of Energy I~27 DATE: !-jEC -2 3 1293 REPLY TO ATTN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program TO: The F ile I have reviewed the attached site summaries and elimination recommendations for the following sites: f' l M itts & Merrel Co., Saginaw, M ichigan l North Carolina State University, Raleigh, North Carolina l

  4. United States Government

    Office of Legacy Management (LM)

    ,. .1 ! 8-L EFi 107 39, 3 United States Government Department of Energy m e m o randum q es. F;,;4 p JAN 3 1 I991 DATE 16% 1 c N W /- e [ q$ ';;','," EM-421 2 & t, SUBJECT Elimination of the Wash-Rite Company Site from FUSRAP T O The F ile I have reviewed the attached preliminary site summary and recommendation for the Wash-Rite Company site in Indianapolis, Indiana. I have determined that there is little likelihood of contamination at this site. Based on the above, the Wash-Rite

  5. l UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    -_ ._ i,;PA.il--l-( ---.~ .-.---.-- .-.-_ L.. ,' 3:. /,y. ; .' ( * ' . bABDFUWW.64 iii4 ! .' - , _ ., - \ *Q@e Menwmzdzkm /-5*-i .-, ? r' / .j CJ ' 7, l UNITED STATES GOVERNMENT TO : FROM : SUBJECT: Reautor Materiala Brash, Bew York DATE : Au-t 2 % 1950 B.S. Pearson, Chief, Admbidratios Serviwr/ w ' Branch, Pittsburgh W fJ3lUAL~FBR~lFICATES MATDl!ALS,-3 @ * l . - -- E&red ia Copy lo. laf &8tewial Tramfor Cerfiiioatu Nor, 303-Z 353-2, 71bds 958-2 and %pZ eoverhg 6hipnsnt6 of sirc~ni\rp~

  6. United States Government

    Office of Legacy Management (LM)

    .8 - EFgzk3) United States Government tiemorandum 0 wt;? -J Department of Energy DATE: SEP 2 5 1992 REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Diamond Magnesium Site in Painesville, Ohio TO: L. Price, OR The former Diamond Magnesium Company site located at 720 Fairport-Nursery Road in Painesville, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The site is owned by Uniroyal

  7. United States Government

    Office of Legacy Management (LM)

    UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action

  8. * United States Government

    Office of Legacy Management (LM)

    -- DE;$r,e /q f-j * I3 - I * United States Government memorandum MAY 21 I991 DATE: REPLY TO Al-fN OF: 4ih55YhL Department of Energy JT:,i 5, f&A 0 ' - j4.~, ' -/ jl.a' \ A t -3 __..-_-. EM-421 SUBJECT: Elimination of the American Potash and Chemical Site The File TO: I have reviewed the attached site summary and elimination recommendation for the American Potash and Chemical Company Site in West Hanover, Massachusetts. I have determined that there is little likelihood of radioactive

  9. - United States Government

    Office of Legacy Management (LM)

    8 my EFG (07.90) . - United States Government . * Department of. Energy * inemorandum DATE: DEC :! ;j 1993 REPLY TO ATTN OF: EM-421 (W.'A. W illiams, 903-8149) : NY 41 I .' 41 G I? SUBJECT: Elimination of the T itanium Alloy Manufacturing Co., Niagara Falls, New York TO: The F ile I have reviewed the attached site. summary and elimination recommendation for the T itanium Alloy Manufacturing Company. I have determined that the potential for radiological contamination is low because of the lim

  10. United States Government

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 (02/06) United States Government Department of Energy memorandum Hanford Site DATE: AUG 30 2010 REPLY TO ATTN OF: SED:PJG/lO-SED-0161 SUBJECT: CORRECTIVE ACTION PLAN IN RESPONSE TO OFFICE OF HEALTH, SAFETY AND SECURITY (HSS) BERYLLIUM ASSESSMENT TO: I. R. Triay, Assistant Secretary for Environmental Management, EM-i, HQ Attached please find the Richland Operations Office (RL)/Office of River Protection (ORP) Corrective Action Plan (CAP) developed in response to the HSS beryllium inspection at

  11. United States Government

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    325.6 (02/98) United States Government Department of Energy rme rm ora nd um Rich land Operations Office DATE: MAY 1 7 2010 REPLY TO ATTN OF: AMSE:ARH/1O-AMSE-0070 SUBJECT: HANFORD ANALYTICAL SERVICES QUALITY ASSURANCE REQUIREMENTS DOCUMENT (HASQARD) FOCUS GROUP CHARTER TO: MEMO TO FILE Attached is a copy of the HASQARD Focus Group Charter. This Charter has been signed to document the cooperation of the Hanford site contractors, RI. and ORP in harmonizing quality assurance requirements for

  12. United States Goveinment *

    Office of Legacy Management (LM)

    wx l ,320.o -. yt!$L, . : I __ United States Goveinment * -memorandum @95861 Department of Energy **J-E: OCT 0 8 19% REPLY TO ATfFd OF: EM-421 (W. A. Williams, 903-8149) [YfZ f;T ! i Fi.1 y: 29 - susJlEcr: Authorization for Remedial Action at Granite City Steel Site, Granite City, Illinois lo: Manager, DOE Oak Ridge Field Office This is to notify you that the Granite City Steel site in Granite City, Illinois, is designated for remedial action under the Formerly Utilized Sites Remedial Action

  13. Energy Exchange Continuing Education Units

    Broader source: Energy.gov [DOE]

    International Association for Continuing Education and Training (IACET) continuing education units (CEUs) will be available for designated training sessions.

  14. United States Government

    Energy Savers [EERE]

    11/07/03 13:UU FAA 301 903 4t00 UAI'I'AL REGION -+ tUK rlvrEA I(JUUZ DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: November 7, 2003 REPLY TO ATTN OF: IG-34 (A03SC050) Audit Report Number: OAS-L-04-04 SUBJECT: Audit of the U.S. Large Hadron Collider Program TO: Director, Office of Science, SC-1 The purpose of this report is to inform you of the results of our audit of the U.S. Large Hadron Collider (LHC) Program. The audit was

  15. United States Green Building Council (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    The next update of the LEED rating system, coined LEED 2012, is the next step in the continuous improvement process and on-going development cycle of LEED." References "United...

  16. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu)...

  17. 6.0 TREATMENT, STORAGE, AND DISPOSAL UNIT PROCESS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to the Resource Conservation and Recovery Act (RCRA) permitting requirements of the Washington Administrative Code (WAC) 173-303 if the waste is managed for greater than 90 days. ...

  18. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    SciTech Connect (OSTI)

    Beckingsale, D. A.; Gaudin, W. P.; Hornung, R. D.; Gunney, B. T.; Gamblin, T.; Herdman, J. A.; Jarvis, S. A.

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  19. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wyoming 4,462 8.7 21 100 61 Colorado 2,934 5.7 15 100 77 Oklahoma 2,789 5.4 12 100 75 New Mexico 2,221 4.3 17 95 73 Illinois 1,601 3.1 35 76 76 Kansas 852 1.7 51 84 68 Alabama 746...

  20. Natural Gas Processing Plants in the United States: 2010 Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    compiled by various sources and published by EIA in 2006. For more information, see http:www.eia.govpuboilgasnaturalgasfeaturearticles2006ngprocessngprocess.pdf...

  1. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    response rate for this survey exceeded 94 percent as of August 2009. Because of the nature of the information, its value in the competitive industry, and to protect the...

  2. Tensor Algebra Library for NVidia Graphics Processing Units

    Energy Science and Technology Software Center (OSTI)

    2015-03-16

    This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion ofmore » the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAM of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less

  3. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average...

  4. Molecular Monte Carlo Simulations Using Graphics Processing Units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    allocation of the GPU hardware resources. We make comparisons between the GPU and the serial CPU Monte Carlo implementations to assess speedup over conventional microprocessors....

  5. Separations Process Research Unit (SPRU) Site Cleanup By the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program Enforcement Letter, Safety and Ecology Corporation - NEL-2011-04

  6. NREL: Process Development and Integration Laboratory - Measurements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization in the Atmospheric Processing Platform Measurements and Characterization in the Atmospheric Processing Platform Photo of box-like unit sitting on a surface. A small card version of the Periodic Table is on the table, in front of the open side of the unit. The unit is labeled as "Solar Metrology, System SMX." X-ray fluorescence unit in the Atmospheric Processing platform. This page provides details on measurements and characterization in the Atmospheric Processing

  7. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  8. Upgrading of heavy oil and residuum by the CANMET hydrocracking process: Comparison of pitch conversion from experiments using CSTR and tubular reactors

    SciTech Connect (OSTI)

    Liu, D.D.S.; Patmore, D.J.; Tscheng, J.S.H.

    1985-01-01

    A model was developed to derive rate of pitch (+524/sup 0/C) conversion as a function of temperature in the CANMET hydrocracking process for upgrading heavy oils and refinery residues using gas-liquid-solid concurrent slurry reactors. The model considered the gas void fraction and degree of vaporization to be important parameters. For the CSTR model, complete mixing in the liquid phase was assumed, whereas an axial dispersion model was used for tubular reactors. Rate constants can be derived from experimental data obtained from either continuous stirred tank reactor (CSTR) or tubular reactor experiments, or from both data simultaneously.

  9. Module Encapsulation Materials, Processing and Testing (Presentation...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ENCAPSULATION; PROCESSING; RELIABILITY; TESTING PV; MODULE ENCAPSULATION; ...

  10. NREL: Technology Deployment - Understanding Processes and Timelines...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Processes and Timelines for Distributed Photovoltaic Interconnection in the United States Kristen Ardani, Carolyn Davidson, Robert Margolis, and Erin Nobler NREL's...

  11. ARM Mentor Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Mentor Selection Process Revision 1 DL Sisterson October 2015 DOE/SC-ARM-13-003 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  12. ARM Mentor Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Mentor Selection Process DL Sisterson October 2015 DOE/SC-ARM-TR-171 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

  13. Retrofitting heavy oil processes

    SciTech Connect (OSTI)

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  14. The United States Nuclear Regulatory Commission and the United...

    Office of Environmental Management (EM)

    3 NUCLEAR REGULATORY COMMISSION and 4 the UNITED STATES 5 DEPARTMENT OF ENERGY 6 7 PUBLIC MEETING 8 9 ... in complying with its Atomic Energy Act responsibilities, ...

  15. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S.; Drost, M. Kevin; Call, Charles J.; Birmingham, Joseph G.; McDonald, Carolyn Evans; Kurath, Dean E.; Friedrich, Michele

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  16. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  17. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  18. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  19. United States Department of Energy

    Energy Savers [EERE]

    Energy -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan was the first nation to endorse President Bush's Global Nuclear Energy Partnership. This describes a background of the partnership. PDF icon United States -Japan Joint Nuclear Energy Action Plan

  20. United Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: United Biofuels Place: York, Pennsylvania Product: Waste and animal fats to biofuel producer, switched to animal fats from soy in fall of...

  1. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  2. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of

  3. Fact #887: August 24, 2015 The United States Supplies 15% of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notes: Includes crude oil, natural gas plant liquids, other liquids, and processing gain. ... Shares of World Petroleum Production, 1992-2014 Year United States OPEC Canada Russia ...

  4. Advanced Unit Commitment Strategies in the United States Eastern Interconnection

    SciTech Connect (OSTI)

    Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

    2011-08-01

    This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

  5. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  6. A novel process for upgrading heavy oil emulsions

    SciTech Connect (OSTI)

    Ng, F.T.T.; Rintjema, R.T.

    1994-12-31

    Canada has extensive reserves of high sulfur heavy oils. These heavy oils are recovered primarily by steam injection techniques. As a result, the heavy oils are obtained as emulsions at well-heads. The heavy oils, being high in sulfur and metals, and low in hydrogen to carbon atomic ratio, require upgrading such as desulfurization and hydrocracking before it can be used in conventional refineries. Conventional emulsion treatment and desulfurization technology require multistage processing. Thus, alternative technologies for processing heavy oil emulsions would be attractive. The authors have recently developed a novel single stage process for upgrading emulsions via activation of water to provide hydrogen in situ for catalytic desulfurization and hydrocracking. Current work is focused on the desulfurization aspect of upgrading, using benzothiophene as the model sulfur compound and molybdic acid as the catalyst. At 340 C and a CO loading pressure of 600 psi, up to 86% sulfur removal was obtained. As well, in situ generated H{sub 2} was found to be more active than externally supplied molecular H{sub 2}. A likely pathway for desulfurization of benzothiophene was via the initial hydrogenation of benzothiophene to dihydrobenzothiophene followed by hydrogenolysis to give ethylbenzene and H{sub 2}S.

  7. A comparative assessment of resource efficiency in petroleum refining

    SciTech Connect (OSTI)

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; Cai, Hao; Wang, Michael; DiVita, Vincent B.

    2015-03-25

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study were incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.

  8. A comparative assessment of resource efficiency in petroleum refining

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Jeongwoo; Forman, Grant S.; Elgowainy, Amgad; Cai, Hao; Wang, Michael; DiVita, Vincent B.

    2015-03-25

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study weremore » incorporated in Argonne National Laboratory’s GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio.« less

  9. A Comparative Assessment of Resource Efficiency in Petroleum Refining

    SciTech Connect (OSTI)

    Han, Jeongwoo; Forman, G; Elgowainy, Amgad; Cai, Hao; Wang, Michael; Divita, V

    2015-10-01

    Because of increasing environmental and energy security concerns, a detailed understanding of energy efficiency and greenhouse gas (GHG) emissions in the petroleum refining industry is critical for fair and equitable energy and environmental policies. To date, this has proved challenging due in part to the complex nature and variability within refineries. In an effort to simplify energy and emissions refinery analysis, we delineated LP modeling results from 60 large refineries from the US and EU into broad categories based on crude density (API gravity) and heavy product (HP) yields. Product-specific efficiencies and process fuel shares derived from this study were incorporated in Argonne National Laboratory's GREET life-cycle model, along with regional upstream GHG intensities of crude, natural gas and electricity specific to the US and EU regions. The modeling results suggest that refineries that process relatively heavier crude inputs and have lower yields of HPs generally have lower energy efficiencies and higher GHG emissions than refineries that run lighter crudes with lower yields of HPs. The former types of refineries tend to utilize energy-intensive units which are significant consumers of utilities (heat and electricity) and hydrogen. Among the three groups of refineries studied, the major difference in the energy intensities is due to the amount of purchased natural gas for utilities and hydrogen, while the sum of refinery feed inputs are generally constant. These results highlight the GHG emissions cost a refiner pays to process deep into the barrel to produce more of the desirable fuels with low carbon to hydrogen ratio. (c) 2015 Argonne National Laboratory. Published by Elsevier Ltd.

  10. START 48 Contiguous United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    48 Contiguous United States START 48 Contiguous United States The U.S. Department of Energy (DOE) Office of Indian Energy Strategic Technical Assistance Response Team (START) Program helps competitively selected tribes in the 48 contiguous states, as well as Alaska Native regional corporations, further the development of renewable energy projects. START-supported projects are selected through a competitive application process. Learn more about START projects. The START team is comprised of DOE

  11. United Cooperative | Open Energy Information

    Open Energy Info (EERE)

    which agreed to purchase a former VeraSun Energy ethanol plant in Iowa from AgStar Financial Services in August 2009. References: United Cooperative1 This article is a...

  12. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  13. New Mexico grape growers unite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico grape growers unite, increase production Grape Growers Association enlivens agriculture Growers association unites small parcels of land, enlivens production, protects water rights for Northern New Mexico agriculturists. August 6, 2012 Northern New Mexico Micro Grape Growers Association The NMSBA Entrepreneurial Networking program is helping Lucia Sanchez (C) Tim Martinez (R) and Robert Naranjo, the Northern New Mexico Micro Grape Growers Association, put small parcels of land back

  14. Cyclic membrane separation process

    DOE Patents [OSTI]

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  15. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  16. Cyclic membrane separation process

    DOE Patents [OSTI]

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  17. Executive Order 13653-Preparing the United States for the Impacts of

    Energy Savers [EERE]

    Climate Change | Department of Energy 53-Preparing the United States for the Impacts of Climate Change Executive Order 13653-Preparing the United States for the Impacts of Climate Change PDF icon Executive Order 13653-Preparing the United States for the Impacts of Climate Change More Documents & Publications Executive Order -- Preparing the United States for the Impacts of Climate Change EO 13690: Establishing a Federal Flood Risk Management Standard and a Process for Further Soliciting

  18. United States Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Granting one requester expedited processing gives that person a preference over previous requesters, by moving his request "up the line" and delaying the processing of earlier ...

  19. Petroleum Processing Efficiency Improvement

    SciTech Connect (OSTI)

    John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

    2012-09-01

    A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

  20. United Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    United Power, Inc Place: Colorado Website: unitedpower.com Twitter: @UnitedPowerCoop Facebook: https:www.facebook.comUnitedPower Outage Hotline: 1-303-637-1350 Outage Map:...

  1. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  2. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e'-ä\r., a"àT#j UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 6 14,15 ROSS AVENUE, SUITE 1200 DALLAS, TX 752A2-n33 JA¡t 5 20ll cERTrrmD rytAlr- RETIIRN RECETPT REOITESIEn COPY Edward Ziemianski Acting Manager U.S. Department of Energy Carlsbad Field Offïce P.O. Box 3090 Carlsbad, NM 88221 RE: United States Environmental Protection Agency (EPA) Region 6 Response to the Waste Isolation Pilot Plant OVPP) Approval Request to Use Panel 8 to Store and Land Dispose Polychlorinated

  3. United States Enwronmental Protection Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Agency Research and Development Enwronmental Monitoring Systems Laboratory P 0. Box 15027 Las Vegas NV 89114-5027 EPA-600/ 4-83-032 DOE 'DP?0539-048 July 1983 Offsite Environmental Monitoring Report Radati.on monitoring around United States nuclear test areas, calendar year 1982 prepared for the U.S. Department of Energy EPA-600/4-83-032 DOE/DP/b0539-048 July 1983 OFFSITE ENVIRONMENTAL MONITORING REPORT Radiation monitoring around United States nuclear test areas, calendar year 1982

  4. United Group Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: United Group Limited Place: Perth, Western Australia, Australia Zip: 6001 Product: The United Group Resources (UGL) division is an EPC and...

  5. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  6. United Biofuels Private Limited | Open Energy Information

    Open Energy Info (EERE)

    United Biofuels Private Limited Jump to: navigation, search Name: United Biofuels Private Limited Place: Tamil Nadu, India Sector: Biomass Product: India-based owner and operator...

  7. Unit Energy Europe AG | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Unit Energy develops and operates wind parks and hydroelectric power plants all across Europe. References: Unit Energy Europe AG1 This article is a stub....

  8. Sunton United Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    United Energy LLC Jump to: navigation, search Name: Sunton United Energy LLC Place: Salt Lake City, Utah Sector: Renewable Energy Product: Utah-based investment company seeking...

  9. United Energy Group PLC | Open Energy Information

    Open Energy Info (EERE)

    Group PLC Jump to: navigation, search Name: United Energy Group PLC Place: Haslemere, United Kingdom Sector: Hydro, Wind energy Product: The company develops small hydro, gas...

  10. Biofuels Atlas (United States) | Open Energy Information

    Open Energy Info (EERE)

    Atlas (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Atlas (United States) Focus Area: Clean Transportation Topics: Potentials & Scenarios...

  11. GEO UNIT AGREEMENT | Open Energy Information

    Open Energy Info (EERE)

    GEO UNIT AGREEMENT Jump to: navigation, search GEO UNIT AGREEMENT Mineral interest joined together to explore, develop and produce geothermal resources Retrieved from "http:...

  12. Low Carbon Transition Unit | Open Energy Information

    Open Energy Info (EERE)

    Transition Unit Jump to: navigation, search Name Low Carbon Transition Unit AgencyCompany Organization Danish Government Partner Danish Ministry of Climate, Energy and Buildings;...

  13. United Nations Industrial Development Organization Feed | Open...

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  14. United Nations Foundation Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  15. Fusion-fission hybrid studies in the United States

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  16. Continuous improvement in nitrogen rejection unit design

    SciTech Connect (OSTI)

    O`Brien, J.V.; Maloney, J.J.

    1997-12-31

    The design and fabrication of Nitrogen Rejection Units (NRU) has advanced considerably over the past 15 years. Improvements have been made in all aspects of producing an NRU plant and cold box. This paper presents the primary areas involved that have seen these improvements. (1) Process design: the two-column process has been superseded by an approach which utilizes multiple flash drums and one column. This leads to a smaller and lower cost cold box. With low nitrogen content feeds, the prefractionater recovers half the methane as a high pressure residue gas and reduces the cold box size. (2) Mechanical Design: improved software enables the design process to be more accurate, eliminate piping and equipment interferences, reduce the size of the box and save design time. (3) Manufacturing: the interfacing of the 3D software design tools and the manufacturing process enables the shop floor personnel to reduce the manufacturing time by 10%. All of these individual improvements have reduced the real cost of an NRU substantially over the past 15 years.

  17. Quartz resonator processing system

    DOE Patents [OSTI]

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  18. A lube hydrodearomatization process

    SciTech Connect (OSTI)

    Ramos, R.Z. )

    1988-06-01

    The current worldwide demand of lubricating oils has increased the research for new technologies to obtain products with better quality, using processes less complicated than the current ones and at the same time decrease the process costs. The most familiar general process to obtain lubricating oils is by means of aromatic extraction with solvent. However, this stage represents elevated cost by raw materials consumptions; for that reason, it has increased the study of new catalytic technologies to substitute this step. In this work we are showing the last advances obtained by IMP developments about the application of the catalytic hydrogenation of aromatic compounds in lubricating oils, using a catalyst containing molybdenum as active metal and nickel and/or phosporous as promoters, - supported on gamma alumina with different concentration of metals. These catalysts have been evaluated in a pilot plant unit using several feeds of lubricating oils at different operating conditions, obtaining products with better quality than those produced by solvent extraction.

  19. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  20. Heavy oil processing utilizing the dynacracking process. Final report

    SciTech Connect (OSTI)

    Parthasarathy, R.

    1983-01-01

    This report covers preliminary design of a heavy oil conversion unit based on HRI's Dynacracking Process. The unit is designed for operation in any of the six cases described in this report. The six cases presented demonstrate the versatility of the unit to process three different feedstocks with different product objectives and at various process conditions while keeping the reactor configuration and design fixed. The reactor incorporated in the design is identical to the one proposed for a plant to be built in Pittsburg, CA., with California Synfuels Research Corporation as the operator. An evaluative study is presented of the product qualities and possible alternatives for product utilization and upgrading. An indicative summary is made of the quality of effluents from the unit. Estimated utilities and operating requirements are presented. Overall plant material balances are included for each of the six cases. Process equipment duty specifications and offsite tankage requirements are provided and a preliminary cost estimate presented. Basic operating principles (outside the reactor) for smooth plant operation are included. Suggestions plants arrangement and layout are provided. 18 tables.

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  2. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,

  3. Process Technology Group of Warwick School of Engineering | Open...

    Open Energy Info (EERE)

    Technology Group of Warwick School of Engineering Jump to: navigation, search Name: Process Technology Group of Warwick School of Engineering Place: Coventry, United Kingdom Zip:...

  4. This Week In Petroleum Summary Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand resulting from the restart of a 250,000 barrels per day (bbld) crude distillation unit at BP's Whiting, Indiana, refinery. Total U.S. refinery utilization increased...

  5. Gulf Canada donor refined bitumen heavy oil upgrading process

    SciTech Connect (OSTI)

    Fisher, I.P.; Souhrada, F.; Woods, H.J.

    1982-09-01

    The method is a moderate-pressure, noncatalytic alternative which has been shown to be applicable to a wide range of bitumens and heavy oils. It offers the potential of efficiency and reliability at a low capitalized investment and operating cost. The raw distillates are separated from the bitumen or heavy oil and the vacuum residuum is blended with an efficient hydrogen donor stream containing a high proportion of substituted tetralins, and is thermally cracking in the liquid phase. The exhausted donor is recovered from the middle distillate reactor product, reactivated by fixed bed hydrogenation before being recycled to the reactor. The process can be self-sufficient in donor and is independent of the metal content of the feed. The products are blanded with the raw distillates and further hydrogenated to high quality petroleum products. While the primary hydrogen consumption is low, the reconstituted naphtha, distillate and gas oil fractions require less hydrogen than the coker liquids to achieve acceptable refinery feed quality. 1 figure, 9 tables.

  6. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Televisions in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Household Demographics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" "Household

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)"

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Air Conditioning in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Air

  14. United States Department of Energy

    Energy Savers [EERE]

    United States Department of Energy Office of Hearings and Appeals In the Matter of: Washington State ) Fleet Operations ) ) Filing Date: November 13, 2013 ) Case No.: EXA-13-0001 ____________________________________) Issued: February 27, 2014 _______________ Decision and Order _______________ This Decision and Order considers an Appeal filed by Washington State Fleet Operations (Washington) from a determination issued on September 25, 2013, by the Department of Energy's (DOE) Alternative Fuel

  15. United States Department of Energy

    Energy Savers [EERE]

    Washington, DC 20585 United States Department of Energy Office of Hearings and Appeals In the Matter of Tektronix , Inc. ) ) Case No. : EXS-16-0007 Filing Date: February 5, 2016 ) Issued: February 17, 2016 Decision and Order on Application for Stay On February 5, 201 6, Tektronix, Inc. (Tektronix) filed an Application for Stay from enforcemen t of the energy conservation standards for external power supp l ies set forth in DOE's February 2014 Energy Conservation Standard s for External Power

  16. Other United States Government Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other United States Government Awards As a Department of Energy (DOE) national laboratory, LLNL tracks achievements recognized by awards from the DOE. These awards span a wide range of accomplishments and include recognition of exemplary programmatic achievements. . Name Year Citation Dexter Lenoir, Rochelle Aguilar, Ramon Martinez, Erik Simmons, Chelle Blocker, Camerino Gutierrez, Joseph Chilton, Janet Cortez, Gary Brown, Judith Juarez, Sobhana Singh, Ronald Washington, Lorraine Rivera, Dana

  17. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    A.' +4 @4.dY MDDC - 1613 UNITED STATES ATOMIC ENERGY COMMISSION 34.27 : . Production of Rarer Metals by George Meister Westinghouse Electric Corporation This document consists ofllpages. Date of ianuscrtpt: unknown Date Declassified: February 11, 1948 This document is issued for official use. Its issuance does not constitute authority to declassify coptes or versions of the same or similar content and title and by the same author(s). Technical Information Division. Oak Ridge DIrected Operations

  18. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10 AND THE STATE OF WASHINGTON DEPARTMENT OF ECOLOGY IN THE MATTER OF: ) ) The U.S. Department of Energy, ) HANFORD FEDERAL FACILITY Richland Operations Office, ) AGREEMENT AND CONSENT ORDER Richland, Washington ) ) EPA Docket Number: 1089-03-04-120 Respondent ) Ecology Docket Number: 89-54 Based on the information available to the Parties on the effective date of this HANFORD FEDERAL FACILITY AGREEMENT AND CONSENT ORDER

  19. Dixie Valley Bottoming Binary Unit

    SciTech Connect (OSTI)

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  20. United States National Seismographic Network

    SciTech Connect (OSTI)

    Buland, R.

    1993-09-01

    The concept of a United States National Seismograph Network (USNSN) dates back nearly 30 years. The idea was revived several times over the decades. but never funded. For, example, a national network was proposed and discussed at great length in the so called Bolt Report (U. S. Earthquake Observatories: Recommendations for a New National Network, National Academy Press, Washington, D.C., 1980, 122 pp). From the beginning, a national network was viewed as augmenting and complementing the relatively dense, predominantly short-period vertical coverage of selected areas provided by the Regional Seismograph Networks (RSN`s) with a sparse, well-distributed network of three-component, observatory quality, permanent stations. The opportunity finally to begin developing a national network arose in 1986 with discussions between the US Geological Survey (USGS) and the Nuclear Regulatory Commission (NRC). Under the agreement signed in 1987, the NRC has provided $5 M in new funding for capital equipment (over the period 1987-1992) and the USGS has provided personnel and facilities to develop. deploy, and operate the network. Because the NRC funding was earmarked for the eastern United States, new USNSN station deployments are mostly east of 105{degree}W longitude while the network in the western United States is mostly made up of cooperating stations (stations meeting USNSN design goals, but deployed and operated by other institutions which provide a logical extension to the USNSN).

  1. Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

  2. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  3. Housekeeping category corrective action unit work plan

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of this Corrective Action Unit (CAU) Work Plan is to provide a strategy to be used by the US Department of Energy Nevada Operations Office (DOE/NV), the US Department of Defense (DoD) Defense Special Weapons Agency (DSWA) (formerly the Defense Nuclear Agency), and contractor personnel for conducting corrective actions at the Nevada Test Site (NTS) and Nevada off-site locations including the Tonopah Test Range (TTR), the Project Shoal Area, and the Central Nevada Test Area. This Work Plan applies to housekeeping category CAUs already listed in the Federal Facility Agreement and Consent Order (FFACO) Appendices (FFACO, 1996) as well as newly identified Corrective Action Sites (CASs) that will follow the housekeeping process.

  4. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging ... Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU ...

  5. The United States Code - Printing, Title 44 Excerpts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts The United States Code - Printing, Title 44 Excerpts PDF icon The United ...

  6. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Total 321,878 318,765 321,561 328,213 302,955 290,718 2005-2016 Crude Oil 485,221 479,416 494,682 519,726 495,806 460,629 2005-2016 Natural Gas Plant Liquids 14,690 15,903 17,686 18,057 18,673 14,924 2005-2016 Pentanes Plus 4,693 4,431 3,897 3,932 4,389 3,616 2005-2016 Liquefied Petroleum Gases 9,997 11,472 13,789 14,125 14,284 11,308 2005-2016 Normal Butane 3,144 5,323 7,093 7,560 7,947 5,592 2005-2016 Isobutane 6,853 6,149 6,696 6,565

  7. Refinery Net Input of Renewable Diesel Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    670 564 582 488 476 355 2009-2016 PADD 1 23 15 89 9 14 11 2010-2016 East Coast 80 2014-2015 Appalachian No. 1 23 15 9 9 14 11 2010-2016 PADD 2 139 114 94 109 101 109 2009-2016 Ind., Ill. and Ky. 92 75 72 88 85 94 2011-2016 Minn., Wis., N. Dak., S. Dak. 35 24 17 13 11 11 2009-2016 Okla., Kans., Mo. 12 15 5 8 5 4 2011-2016 PADD 3 290 253 224 170 185 95 2011-2016 Texas Inland 68 61 57 28 25 26 2011-2016 Texas Gulf Coast 11 14 12 12 11 12 2012-2016 La. Gulf Coast 151 134 121 111 126 39 2012-2016 N.

  8. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    File Name:","petpnpinpt2dcnusmbblm.xls" ,"Available from Web Page:","http:www.eia.govdnavpetpetpnpinpt2dcnusmbblm.htm" ,"Source:","Energy Information ...

  9. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    16,394 15,690 16,673 16,848 16,365 16,167 1985-2016 Operable Capacity (Calendar Day) 18,125 18,125 18,172 18,186 18,315 18,317 1985-2016 Operating 18,015 17,932 17,846 18,044 ...

  10. U.S. Fuel Consumed at Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas (Million Cubic Feet) 713,532 756,062 791,753 843,228 897,049 893,203 1985-2014 Coal (Thousand Short Tons) 34 29 31 30 20 16 1985-2014 Purchased Electricity (Million ...

  11. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 ...

  12. Refinery Outages: First-Half 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical Frequency Tag Cloud Full report Previous

  13. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -based Succinic Acid * Life Cycle Analysis of Bio-succinic acid production using the IPCC 2007 (GWP) method 5 MySAB Quad Chart Overview * Project start date BP1 - 3...

  14. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Petrochemical Feedstocks 119,344 112,263 110,319 123,577 114,001 106,153 2005-2015 Naphtha For Petrochemical Feedstock Use 76,367 75,347 75,054 87,357 74,553 69,214 2005-2015 Other ...

  15. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1 MJ biofuel from unmanaged hardwood -3E-16 -2E-16 -1E-16 0 1E-16 2E-16 3E-16 4E-16 5E-16 0 100 200 300 400 500 GWI inst W.m -2 Years Plant at zero Cut at zero Where do we go ...

  16. Refinery & Blenders Net Input of Hydrogen

    U.S. Energy Information Administration (EIA) Indexed Site

    6,351 6,405 6,834 6,276 6,172 6,399 2009-2015 PADD 1 132 134 117 119 128 125 2009-2015 East Coast 106 112 96 99 103 100 2009-2015 Appalachian No. 1 26 22 21 20 25 25 2009-2015 PADD...

  17. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,178,588 4,091,601 4,007,375 4,037,265 3,954,862 3,894,471 2005-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 2005-2015 Natural Gas Plant Liquids 154,941 171,074 175,607 168,808 172,563 171,936 2005-2015 Pentanes Plus 54,697 61,059 59,432 56,153 52,853 50,850 2005-2015 Liquefied Petroleum Gases 100,244 110,015 116,175 112,655 119,710 121,086 2005-2015 Normal Butane 39,253 42,087 45,747 42,461 45,916 47,870 2005-2015

  18. Texas Number and Capacity of Petroleum Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual 70,000 70,000 70,000 70,000 70,000 75,000 2004-2015 Catalytic Reforming 993,290 995,290 996,890 1,078,390 1,076,290 1,076,880 1982-2015 Low Pressure 801,600 804,600 ...

  19. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    - Reformulated, RBOB for Blending w Alcohol MGBC - Reformulated, RBOB for Blending w ... Notes: RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending ...

  20. Process Rule

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) conducted a formal effort between 1995 and 1996 to improve the process it used to develop appliance efficiency standards. This effort involved many different...

  1. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear science and relevance to Global Security or Science of Campaign missions. Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email The Seaborg internal advisory committee will judge applications based on academic excellence, relevance of the

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Space Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Space Heating Equipment" "Use

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Storage Tank Water Heaters"

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Computers and Other Electronics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Household Demographics of U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Household Demographics" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Number of Household

  8. 1997 Housing Characteristics Tables Housing Unit Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied

  9. Compact monolithic capacitive discharge unit

    DOE Patents [OSTI]

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  10. E-831 United States Government

    Office of Legacy Management (LM)

    bOE 51325.8 - E-831 United States Government memorandum pa? 1.- -g..bJ %i7Dm--~, I' )! f&,:& Department of Energy DATE: OCT 9 1984 REPLY T O NE-20 ATTN OF: Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, M O . and the W . R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations O ffice St. Louis Airport Storage Site, M O The House and Senate Reports for the Energy

  11. United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    United Ethanol LLC Place: Wisconsin Product: Developed a 43m gallon ethanol plant in Milton, Wisconsin. References: United Ethanol LLC1 This article is a stub. You can help...

  12. First United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: First United Ethanol LLC Place: Camilla, Georgia Zip: 31730 Product: First United Ethanol LLC (FUEL) was formed to construct a 100 MGY...

  13. Hills Creek Powerhouse Turbine and Unit Rehabilitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hills Creek Powerhouse Turbine and Unit Rehabilitation This project will replace the runners and windings for the two 17.5 MW units at the Hills Creek powerhouse. Hills Creek is a...

  14. Efficiency United (Gas) - Commercial Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Furnace Tune-up: 15-100unit Infrared Heaters: 4MBH Hotel Guest Room Occupancy Sensor: 13unit Demand Control Ventilation: 0.05sq. ft. HVAC Occupancy Sensor: 0.02...

  15. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  16. DEPARTMENT OF ENERGY UNITED STATES OF AMERICA

    Office of Environmental Management (EM)

    DEPARTMENT OF ENERGY UNITED STATES OF AMERICA Request for Information Addressing Policy ... 27 Utilities, Device Manufacturers and Energy Management Firms ......

  17. BP Oil Company`s approach to the analysis of process plant buildings

    SciTech Connect (OSTI)

    Fryman, C.E. [BP Oil Co., Cleveland, OH (United States). HSE Dept.

    1996-11-01

    Explosions occurring in petroleum refineries and chemical plants have caused fatalities in occupied buildings. For the 5-year period from 1989 through 1994, there were four major incidents. All of these incidents caused multiple fatalities to people working in process buildings, and all of these incidents resulted in very large losses, exceeding $100 million dollars for most of the incidents. The OSHA Process Safety Management (PSM) regulation requires sites to address facility siting when conducting process hazards and analyses. This requirement applies to all occupied buildings in a facility, not just control rooms. OSHA has issued several citations for failure to comply with this PSM requirement, and some companies have disputed the validity of some of these citations. The US industry experienced some difficulties deciding on the proper methodology to use in meeting this regulatory requirement. To address these industry concerns, the American Petroleum Institute (API) and the Chemical Manufacturers Association (CMA) developed guidance that was published in June 1995, RP-752, Management of Hazards Associated with the Location of Process Plant Buildings.

  18. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Net Stocks Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Butylene (C4H8) An olefinic hydrocarbon recovered from refinery processes. Ethane (C2H6) A normally gaseous straight-chain hydrocarbon. It is a colorless paraffinic gas that boils at a temperature of -127.48º F. It is extracted from natural gas and refinery gas streams. Isobutane (C4H10) A normally gaseous branch-chain hydrocarbon. It is a colorless paraffinic gas that boils at a

  19. PERMITTING LEADERSHIP IN THE UNITED STATES

    SciTech Connect (OSTI)

    Ken Nemeth

    2002-09-01

    In accordance with the Southern States Energy Board (SSEB) proposal, as incorporated into NETL/DE-FC26-97FT34199, the objective of this agreement is to streamline the environmental technology permitting process site-to-site, state-to-state, and industry-to-industry to achieve remediation and waste processing faster, better and cheaper. SSEB is working with member Governors, legislators and regulators to build consensus on streamlining the permitting process for new and innovative technologies for addressing the legacy of environmental problems from 50 years of weapons research, development and production. This report reviews mechanisms whereby industry consortiums and the Department of Energy (DOE) have been working with State regulators and other officials in technology deployment decisions within the DOE complex. The historic development of relationships with State regulators is reviewed and the current nature of the relationships examined. The report contains observations from internal DOE reviews as well as recommendations from the General Accounting Office (GAO) and other external organizations. The report discusses reorganization initiatives leading up to a DOE Top-to-Bottom review of the Environmental Management (EM) Program and highlights points of consideration for maintaining effective linkages with State regulators. It notes how the proposed changes will place new demands upon the National Energy Technology Laboratory (NETL) and how NETL can leverage its resources by refocusing existing EM efforts specifically to states that have DOE facilities within their borders (host-states). Finally, the report discusses how SSEB's Permitting Leadership in the United States (PLUS) program can provide the foundation for elements of NETL's technical assistance program that are delivered to regulators and other decision- makers in host-states. As a regional compact commission, SSEB provides important direct linkages to regulators and stakeholders who need technical assistance to evaluate DOE's cleanup plans. In addition, the PLUS program has facilitated the involvement of key regulators from host-states beyond the Southern region.

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Fuels Used and End

  2. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  3. Process Monitor

    Energy Science and Technology Software Center (OSTI)

    2003-12-01

    This library is used to get process information (eg memory and timing). By setting an environment variable, the runtime system loads libprocmon.so while loading your executable. This library causes the SIGPROF signal to be triggered at time intervals. The procmon signal handler calls various system routines (eg clock_gettime, malinfo, getrusage, and ioctl {accessing the /proc filesystem}) to gather information about the process. The information is then printed to a file which can be viewed graphicallymore » via procmon_plot.pl. This information is obtained via a sampling approach. As with any sampling approach, the information it gathers will not be completely accurate. For example, if you are looking at memory high-water mark the memory allocation and freeing could have occurred between samples and thus would not be "seen" by this program. See "Usage" below for environment variables that affect this monitor (eg time between sampling).« less

  4. Process Limits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Records Management » Procedures and Instructions Procedures and Instructions keyboard-886462_960_720.jpg Records Management Processes Procedure for Conducting a Records Inventory (PDF) Procedure for Preparing a Records Inventory and Disposition Schedule (RIDS) (PDF) Instructions/Brochures Managing Social Media Records (PDF) Procedures for Departing Employees (PDF) Reminder for Senior Officials (PDF) Your Records Responsibility Pamphlet (PDF) Vital Records Pamphlet (PDF) Records Management

  5. Hydropyrolysis process

    DOE Patents [OSTI]

    Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph

    1986-01-01

    An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

  6. Plutonium Oxide Process Capability Work Plan

    SciTech Connect (OSTI)

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  7. METHOD OF FABRICATING TUBULAR UNITS

    DOE Patents [OSTI]

    Ohlinger, L.A.

    1961-06-20

    A process is described for making a fuel element comprising a tubular jacket and fuel slugs held by the jacket in longitudinally spaced relation to one another. The jacket is lengthened as a result of being drawn down to grip the fuel slugs. As an intentional incident to this operation, the fuel slugs become longitudinally spaced from one another.

  8. Inverted fractionation apparatus and use in a heavy oil catalytic...

    Office of Scientific and Technical Information (OSTI)

    PETROLEUM REFINERIES; CHEMICAL REACTIONS; CRACKING; DECOMPOSITION; ENERGY SOURCES; FOSSIL FUELS; FUELS; INDUSTRIAL PLANTS; PYROLYSIS; THERMOCHEMICAL PROCESSES 020400* -- ...

  9. Energy Literacy: NARA and Imagine Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Refineries Chemical Industries HarvestersHaulers Forest Landowners Project Team ... and support through the coaching process * Monthly meetings throughout ...

  10. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect (OSTI)

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  11. Ceramic Processing

    SciTech Connect (OSTI)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  12. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  13. Polyestercarbonates which exhibit improved processibility

    DOE Patents [OSTI]

    Krabbenhoft, Herman Otto (Scotia, NY)

    1999-01-01

    The invention relates to a polyestercarbonate polymer which comprises repeating units of a mono-unsaturated aliphatic dicarboxylic acid having about 12 to about 20 carbon atoms. Preferred dicarboxylic acids for incorporation into the polymer are cis-octadec-9-enedioic acid or trans-octadec-9-enedioic acid. The use of these mono-unsaturated acids results in polymers with lower glass transition temperatures, and enhances processibility.

  14. Mixing in SRS Closure Business Unit Applications

    SciTech Connect (OSTI)

    POIRIER, MICHAELR.

    2004-06-23

    The following equipment is commonly used to mix fluids: mechanical agitators, jets (pumps), shrouded axial impeller mixers (Flygt mixers), spargers, pulsed jet mixers, boiling, static mixers, falling films, liquid sprays, and thermal convection. This discussion will focus on mechanical agitators, jets, shrouded axial impeller mixers, spargers, and pulsed jet mixers, as these devices are most likely to be employed in Savannah River Site (SRS) Closure Business applications. In addressing mixing problems in the SRS Tank Farm, one must distinguish between different mixing objectives. These objectives include sludge mixing (e.g., Extended Sludge Processing), sludge retrieval (e.g., sludge transfers between tanks), heel retrieval (e.g., Tanks 18F and 19F), chemical reactions (e.g., oxalic acid neutralization) and salt dissolution. For example, one should not apply sludge mixing guidelines to heel removal applications. Mixing effectiveness is a function of both the mixing device (e.g., slurry pump, agitator, air sparger) and the properties of the material to be mixed (e.g., yield stress, viscosity, density, and particle size). The objective of this document is to provide background mixing knowledge for the SRS Closure Business Unit personnel and to provide general recommendations for mixing in SRS applications.

  15. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any

  16. Dursley, United Kingdom: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom. Registered Energy Companies in Dursley, United Kingdom Hermes Energy Services Retrieved from "http:en.openei.orgwindex.php?titleDursley,United...

  17. The United States Plutonium Balance, 1944-2009 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Pits The United States Plutonium Balance, 1944-2009 The United States Plutonium Balance, 1944-2009 The United States has released an inventory of its plutonium balances...

  18. Nuclear Decommissioning Authority of the United Kingdom NDA ...

    Open Energy Info (EERE)

    Decommissioning Authority of the United Kingdom NDA Jump to: navigation, search Name: Nuclear Decommissioning Authority of the United Kingdom (NDA) Place: Cumbria, England, United...

  19. United Arab Emirates-NREL Cooperation | Open Energy Information

    Open Energy Info (EERE)

    United Arab Emirates-NREL Cooperation Jump to: navigation, search Logo: United Arab Emirates-NREL Cooperation Name United Arab Emirates-NREL Cooperation AgencyCompany...

  20. United Utilities Green Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Ltd Jump to: navigation, search Name: United Utilities Green Energy Ltd Place: England, United Kingdom Sector: Hydro, Renewable Energy Product: United Utilities Green...