Powered by Deep Web Technologies
Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative multimedia regulatory programs for next-generation refineries  

Science Conference Proceedings (OSTI)

The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

2000-06-22T23:59:59.000Z

2

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

3

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at the 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic...

4

Analysis of power generation processes using petcoke  

E-Print Network (OSTI)

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has higher carbon content than other hydrocarbons like coal, biomass and sewage residue. This gives petcoke a great edge over other feedstocks to generate power. Models for the two most common processes for power generation, namely combustion and gasification, were developed using Aspen Plus steady state chemical process simulator. Overall plant layouts for both processes were developed by calculating the heat and mass balance of the unit operations. After conducting wide sensitivity analysis, results indicate that one ton of petcoke feedstock can generate up to 4 MW of net available power. Both processes have rates of return greater than 30%, although gasification offers a slightly more attractive opportunity than combustion.

Jayakumar, Ramkumar

2008-05-01T23:59:59.000Z

5

Radioisotope Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioisotope Power Generation Long lived power sources are needed for equipment that is too remote or inaccessible for replacement. By choosing a radioactive element with a long...

6

Non-utility power generation continues to grow  

SciTech Connect

This article examines why the number of non-utility power plants is increasing. The topics include the impact of the changes to the Public Utility Holding Company Act, and bidding for capacity. It includes a look at Texaco's Puget Sound oil refinery and how its efficiency problems were solved using cogeneration including the need to improve energy balance and engineering of the plant. Grayling generating station (wood waste) and Kalaeloa cogeneration power plant (low sulfur fuel oil) are also discussed.

Smith, D.J.

1993-05-01T23:59:59.000Z

7

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

8

Weld Overlay Material Options for Power Systems  

Science Conference Proceedings (OSTI)

The primary applications are for coal fired power plants, but nuclear power .... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, and ...

9

Photovoltaic Power Generation  

E-Print Network (OSTI)

This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Gridconnected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use. Furthermore, as technological advances narrow the cost gap, more applications are becoming economically feasible at an accelerating rate. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES ...................................................................................v

Tom Penick; Gale Greenleaf Instructor; Thomas Penick; Bill Louk; Bill Louk

1998-01-01T23:59:59.000Z

10

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

11

Kyrgyzstan starts up its first refinery  

Science Conference Proceedings (OSTI)

The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

McLeod, G. [Petrofac LLC, Tyler, TX (United States)

1997-05-05T23:59:59.000Z

12

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

13

High power microwave generator  

DOE Patents (OSTI)

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, Carl A. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

14

Generation of electrical power  

DOE Patents (OSTI)

A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

Hursen, Thomas F. (Monroeville, PA); Kolenik, Steven A. (Leechburg, PA); Purdy, David L. (Indiana, PA)

1976-01-01T23:59:59.000Z

15

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

Electrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.for electrokinetic power generation. By creating a jet of

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

16

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

17

Electrokinetic Power Generation from Liquid Water Microjets  

E-Print Network (OSTI)

electrokinetic energy to electrical power. Previous studiescurrents to generate electrical power have employed twodetermine the electrical power that can be generated from

Duffin, Andrew M.

2008-01-01T23:59:59.000Z

18

Electric Power Generation Expansion in Deregulated Markets.  

E-Print Network (OSTI)

??The generation expansion problem involves increasing electric power generation capacity in an existing power network. In competitive environment, power producers, distributors, and consumers all make… (more)

KAYMAZ, PINAR

2007-01-01T23:59:59.000Z

19

Changes related to "Environmentally Protective Power Generation...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Changes related to "Environmentally Protective Power Generation EPPG" Environmentally Protective Power Generation EPPG Jump to:...

20

Electric Power Generation and Transmission (Iowa) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generation and Transmission (Iowa) Electric Power Generation and Transmission (Iowa) < Back Eligibility Agricultural Industrial Investor-Owned Utility MunicipalPublic...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Explanatory Notes Survey Methodology Description of Survey Form The Form EIA-820, “Annual Refinery Report,” is the primary source of data in the “Refinery ...

22

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

23

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

24

Solar energy power generation system  

SciTech Connect

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

25

Recovering heat when generating power  

Science Conference Proceedings (OSTI)

Intelligent use of heat-recovery stream generators (HRSGs) is vital for the efficient operation of cogeneration plants, which furnish both thermal energy (usually in the form of steam) and electric energy. HRSGs are similarly important in combined-cycle power plants, in which the thermal energy rejected from the primary electric-power-generation step is harnessed (as discussed below) to produce additional electrical energy. In these facilities, the HRSG is typically heated by gas-turbine exhaust. Natural gas is the fuel most widely used for gas turbines in the U.S., whereas fuel oil is the main fuel in other countries. Depending on the amount of steam to be produced, HRSGs for gas-turbine-exhaust applications may be unfired, supplementary-fired or furnace fired. The paper describes these three options; the pressure drop encountered in all three systems; the Cheng cycle; catalytic reduction of nitrogen oxides and CO; and performance testing.

Ganapathy, V.

1993-02-01T23:59:59.000Z

26

Magma energy for power generation  

DOE Green Energy (OSTI)

Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

Dunn, J.C.

1987-01-01T23:59:59.000Z

27

Solar-powered aroma generator  

SciTech Connect

In combination with a switch-controlled electric light bulb having a threaded plug and a threaded socket disposed in a room which is also subject to natural ambient light, a switchless aroma generator is installed in the room which is automatically activated only when the electric light bulb is switched on. The activated generator functions to discharge an air current into the room which conveys an aromatic vapor to modify the atmosphere. The generator described in this patent consists of: A.) an air-permeable cartridge containing an aroma supply which is exuded into the atmosphere at a relatively rapid rate as an air current is forced through the cartridge; B.) a fan driven by a low-voltage, direct-current motor having predetermined power requirements, the fan being arranged to force an air current through the cartridge; C.) a housing incorporating the cartridge and the motordriven fan, the housing containing an apparatus for mounting it on a wall in the room; and D.) a solar cell assembly producing a direct-current output placed in close proximity to the bulb in the room and irradiated when the bulb is switched on. The assembly is connected to the motor to supply power, the electrical relationship of the assembly to the motor being such that the cell output is sufficient to power the motor only when the bulb is switched on to irradiate the assembly, and is insufficient when the bulb is switched off. The cell output then depends on ambient light in the room, and the operation of the generator is coordinated with that of the bulb despite the absence of a wired connection between and an aroma is generated only when the bulb is switched on.

Spector, D.

1986-02-04T23:59:59.000Z

28

Inbicon Biomass Refinery Cellulosic Ethanol Technology Platforms  

U.S. Energy Information Administration (EIA)

for biogas production Inbicon Biomass Refinery Energy integrated solutions Wheat Straw 50 t/h (at 86 % dm) C5 molasses Power The Lignin and biogas are used in power

29

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

30

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

31

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

32

Reliability Assessment of Power Systems with Wind Power Generation.  

E-Print Network (OSTI)

??Wind power generation, the most promising renewable energy, is increasingly attractive to power industry and the whole society and becomes more significant in the portfolio… (more)

Wang, Shu

2008-01-01T23:59:59.000Z

33

Conditions on Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

34

Take an integrated approach to refinery automation  

Science Conference Proceedings (OSTI)

An integrated approach to designing refinery automation systems is essential to guaranteeing systems compatibility and maximizing benefits. Several aspects of implementing integrated refinery automation should be considered early in the project. Many refineries have major parts of their business automated, starting from corporate planning at the higher level, down to DCS and field instrumentation. A typical refinery automation system architecture of the mid-eighties is shown. Automation systems help refineries improve their business through: Rationalization of man power; Increased throughputs; Reduced give-away; Reduced energy consumption; Better response to market demands and changes; Effective use of offsite areas through scheduling and automatic line-up systems; Reduced losses; and Decision support systems.

Wadi, I. (Abu Dhabi National Oil Co. (United Arab Emirates))

1993-09-01T23:59:59.000Z

35

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about £28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

36

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

37

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

38

Distributed Generation and Resilience in Power Grids  

E-Print Network (OSTI)

We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

2012-01-01T23:59:59.000Z

39

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

40

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics....

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Long Term Power Generation Planning Under Uncertainty.  

E-Print Network (OSTI)

??Generation expansion planning concerns investment and operation decisions for different types of power plants over a multi-decade horizon under various uncertainties. The goal of this… (more)

Jin, Shan

2009-01-01T23:59:59.000Z

42

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

43

Rotordynamics in alternative energy power generation.  

E-Print Network (OSTI)

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

44

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years – recent venture capital investments

45

Safe Operation of Backup Power Generators (Spanish)  

E-Print Network (OSTI)

It is important to know how to operate backup power generators safely. The tips in this publication can prevent problems with CO poisoning, electrocution, fire and other hazards.

Smith, David

2006-04-19T23:59:59.000Z

46

Safe Operation of Backup Power Generators  

E-Print Network (OSTI)

It is important to know how to operate backup power generators safely. The tips in this publication can prevent problems with CO poisoning, electrocution, fire and other hazards.

Smith, David

2006-04-19T23:59:59.000Z

47

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

48

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

49

Wastewater reuse and recycle in petroleum refineries  

SciTech Connect

The objectives of this study were to identify feasible reuse and recycle techniques that can be successful in reducing wastewater discharge and to estimate their associated costs. Wastewater reduction is a fundamental aspect of the US EPA's proposed regulations for the petroleum refining industry. EPA undertook this study to confirm the cost estimates used in the proposed guidelines, to identify specific technologies, and to accurately assess their costs. Fifteen refineries were chosen to represent the range of refinery characteristics including crude capacity, process employed, and wastewater generation. Significant wastewater reductions were found possible at 12 refineries studied.

Langer, B.S.

1983-05-01T23:59:59.000Z

50

Conditions on Electric Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

and California (CAL). We pay special attention to interdependencies among hydropower and thermal power plant operations because hydropower plants may provide up to 40% of the WECC...

51

Turbine-generator set development for power generation  

DOE Green Energy (OSTI)

The goal of this effort was to design, develop, and demonstrate an integrated turbine genset suitable for the power generation requirements of a hybrid automotive propulsion system. The result of this effort would have been prototype generator hardware including controllers for testing and evaluation by Allison Engine Company. The generator would have been coupled to a suitably sized and configured gas turbine engine, which would operate on a laboratory load bank. This effort could lead to extensive knowledge and design capability in the most efficient generator design for hybrid electric vehicle power generation and potentially to commercialization of these advanced technologies. Through the use of the high-speed turbines as a power source for the hybrid-electric vehicles, a significant reduction in nitrous oxides emissions would be achieved when compared to those of conventional gas powered vehicles.

Adams, D.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Berenyi, S.G. [Allison Engine Co., Indianapolis, IN (United States)

1997-04-15T23:59:59.000Z

52

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

53

The generative powers of demolition  

E-Print Network (OSTI)

When examining the factory within the urban fabric, especially those cases that are abandoned and considered obsolete, it may be possible to see the first generative act as one of un-building. Considering demolition as an ...

Muskopf, Christopher Jon Dalton, 1975-

2005-01-01T23:59:59.000Z

54

Clean Electric Power Generation (Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

55

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

56

Table 9. Refinery Receipts of Crude Oil by Method of ...  

U.S. Energy Information Administration (EIA)

Refinery Receipts of Crude Oil by Method of ... "Annual Refinery Report." 49 Energy Information Administration, Refinery Capacity 2011. Title: Refinery ...

57

Oklahoma, Kansas, Missouri Refinery District API Gravity ...  

U.S. Energy Information Administration (EIA)

Oklahoma, Kansas, Missouri Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

58

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

59

EA-345 New Brunswick Power Generation Corporation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home EA-345 New Brunswick Power Generation Corporation EA-345 New Brunswick Power Generation Corporation Order...

60

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290-A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290 Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario...

62

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-290-B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario...

63

Power and Frequency Control as it Relates to Wind-Powered Generation  

E-Print Network (OSTI)

amount of wind power generation that can be accommodated.ramping of generation Power and Frequency Control as itfrequency to loss of generation Power and Frequency Control

Lacommare, Kristina S H

2011-01-01T23:59:59.000Z

64

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

WOW operates in the energy efficiency field- one of the fastest growing energy sectors in the world today. The two key products - WOWGen® and WOWClean® provide more energy at cheaper cost and lower emissions. •WOWGen® - Power Generation from Industrial Waste Heat •WOWClean® - Multi Pollutant emission control system. Current power generation technology uses only 35% of the energy in a fossil fuel and converts it to useful output. The remaining 65% is discharged into the environment as waste heat at temperatures ranging from 300°F to 1,200°F. This waste heat can be captured using the WOWGen® technology and turned into electricity. This efficiency is up to twice the rate of competing technologies. Compelling economics and current environmental policy are stimulating industry interest. WOWGen® power plants can generate between 1 - 25 MW of electricity. Project payback is between two to five years with IRR of 15% 30%. Nearly anywhere industrial waste heat is present, the WOW products can be applied. Beneficial applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas (pipeline compression stations, processing plants). Sources such as stack flue gases, steam, diesel exhaust, hot oil or combinations of sources can be used to generate power. WOWGen® can also be used with stand alone power plants burning fossil fuels or using renewable energy sources such as solar and biomass.

Romero, M.

2009-05-01T23:59:59.000Z

65

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

66

Solar thermoelectrics for small scale power generation  

E-Print Network (OSTI)

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

67

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

68

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

69

Apparatus and method for thermal power generation  

DOE Patents (OSTI)

An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

Cohen, Paul (Pittsburgh, PA); Redding, Arnold H. (Export, PA)

1978-01-01T23:59:59.000Z

70

Power Quality Impacts of Distributed Generation: Guidelines  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. This report addresses the issue of integrating DG into the electric power system in a way that assures power quality in the grid and at end-use customer facilities.

2000-12-06T23:59:59.000Z

71

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

72

Cascading Closed Loop Cycle Power Generation  

E-Print Network (OSTI)

WOW Energies was issued Patent 6,857,268 B2 on Feb 22, 2005 titled “CASCADING CLOSED LOOP CYCLE (CCLC) and Patent 7,096,665 B2 on August 29, 2006 titled “CASCADING CLOSED LOOP CYCLE POWER GENERATION”. These patented technologies are collectively marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat sources. Waste heat sources can be in the form of exhaust stack flue gases; waste heat from vented steam or steam discharged from steam turbines; hot water; hot oils or combined waste heat sources. A major advantage of the WOWGen® power plant is the ability to produce power without the use, consumption or contamination of valuable water resources. Production of power from waste heat and renewable energy sources is the most viable path to energy independence from foreign oil and reduced emissions from the combustion of fossil fuels. The WOWGen® power plant inherently reduces emissions and Greenhouse Gases (GHG) by producing power from waste heat without consuming fuel, thus increasing the overall energy efficiency of any industrial plant or power generation facility. The presentation will focus on the technology and provide case studies of its application.

Romero, M.

2008-01-01T23:59:59.000Z

73

Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery  

Science Conference Proceedings (OSTI)

In refinery, fuel gas which is continuously generated during the production process is one of the most important energy sources. Optimal scheduling of fuel gas system helps the refinery to achieve energy cost reduction and cleaner production. However, ... Keywords: Fuel gas, Fuzzy possibilistic programming, Marginal value analysis, Refinery, Scheduling, Sensitivity analysis

J. D. Zhang; G. Rong

2010-04-01T23:59:59.000Z

74

INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM  

Science Conference Proceedings (OSTI)

Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

None

2010-02-28T23:59:59.000Z

75

Power Quality Impacts of Distributed Generation  

Science Conference Proceedings (OSTI)

Distribution systems are designed for one-way power flow and can accommodate only a limited amount of distributed generation (DG) without alterations. This project focused on the economics associated with upgrading and designing distribution systems to support widespread integration of distributed resources, especially distributed generation. Costs were determined in the area of protection requirements and voltage regulation requirements, two of the main areas where changes are required to accommodate DG.

2005-03-22T23:59:59.000Z

76

A Numerical Investigation of a Thermodielectric Power Generation System .  

E-Print Network (OSTI)

??The performance of a novel micro-thermodielectric power generation device (MTDPG) was investigated in order to determine if thermodielectric power generation can compete with current portable… (more)

Sklar, Akiva A.

2005-01-01T23:59:59.000Z

77

Application Filing Requirements for Wind-Powered Electric Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Eligibility Commercial Developer Utility...

78

Renewable Power Options for Electricity Generation on Kaua'i...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

79

Changes related to "Datang Jilin Power Generation Co Ltd" | Open...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Datang Jilin Power Generation Co Ltd" Datang Jilin Power Generation Co Ltd Jump to: navigation,...

80

Pages that link to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Changes related to "Ningxia Yinyi Wind Power Generation Co Ltd...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Changes related to "Ningxia Yinyi Wind Power Generation Co Ltd" Ningxia Yinyi Wind Power Generation Co Ltd Jump to:...

82

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Datang Jilin Power Generation Co Ltd Jump to: navigation, search Name Datang Jilin Power Generation Co...

83

Pages that link to "Environmentally Protective Power Generation...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Pages that link to "Environmentally Protective Power Generation EPPG" Environmentally Protective Power Generation EPPG Jump to:...

84

Changes related to "Next Generation Power Systems Inc" | Open...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Next Generation Power Systems Inc" Next Generation Power Systems Inc Jump to: navigation,...

85

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

86

Pages that link to "Qingdao Hengfeng Wind Power Generator Co...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Qingdao Hengfeng Wind Power Generator Co Ltd" Qingdao Hengfeng Wind Power Generator Co Ltd Jump to:...

87

Changes related to "Qingdao Hengfeng Wind Power Generator Co...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Qingdao Hengfeng Wind Power Generator Co Ltd" Qingdao Hengfeng Wind Power Generator Co Ltd Jump to:...

88

Microelectromechanical power generator and vibration sensor  

DOE Patents (OSTI)

A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

2006-11-28T23:59:59.000Z

89

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

Hammer, J.H.

1993-08-10T23:59:59.000Z

90

Method and apparatus for thermal power generation  

DOE Patents (OSTI)

A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

Mangus, James D. (Hempfield Township, Westmoreland County, PA)

1979-01-01T23:59:59.000Z

91

Solid Oxide Fuel Cell Power Generation Systems  

Science Conference Proceedings (OSTI)

An increasing worldwide demand for premium power, emerging trend towards electric utility deregulation and distributed power generation, global environmental concerns and regulatory controls have accelerated the development of advanced fuel cell based power generation systems. Fuel cells convert chemical energy to electrical energy through electrochemical oxidation of gaseous and/or liquid fuels ranging from hydrogen to hydrocarbons. Electrochemical oxidation of fuels prevents the formation of Nox, while the higher efficiency of the systems reduces carbon dioxide emissions (kg/kWh). Among various fuel cell power generation systems currently being developed for stationary and mobile applications, solid oxide fuel cells (SOFC) offer higher efficiency (up to 80% overall efficiency in hybrid configurations), fuel flexibility, tolerance to CO poisoning, modularity, and use of non-noble construction materials of low strategic value. Tubular, planar, and monolithic cell and stack configurations are currently being developed for stationary and military applications. The current generation of fuel cells uses doped zirconia electrolyte, nickel cermet anode, doped Perovskite cathode electrodes and predominantly ceramic interconnection materials. Fuel cells and cell stacks operate in a temperature range of 800-1000 *C. Low cost ($400/kWe), modular (3-10kWe) SOFC technology development approach of the Solid State Energy Conversion Alliance (SECA) initiative of the USDOE will be presented and discussed. SOFC technology will be reviewed and future technology development needs will be addressed.

Singh, Prabhakar; Pederson, Larry R.; Simner, Steve P.; Stevenson, Jeffry W.; Viswanathan, Vish V.

2001-05-12T23:59:59.000Z

92

Water Use for Electric Power Generation  

Science Conference Proceedings (OSTI)

This report analyzes how thermoelectric plants use water and the strengths, limitations, and costs of available technologies for increasing water use efficiency (gal/MWh). The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2008-02-25T23:59:59.000Z

93

Status of Texas refineries, 1982  

Science Conference Proceedings (OSTI)

This report is a survey of current operations of the Texas refineries during the 1979-82 market slump using publicly available data from the US Department of Energy and the Texas Railroad Commission. The report looks at the small inland refineries, the large inland refineries, the small coastal refineries, the large coastal refineries in Texas, and the Louisiana coastal refineries. The report suggests that about 200 mb/d of inland capacity and 1.3 million b/d of coastal capacity has been permanently idled.

Langston, V.C.

1983-03-01T23:59:59.000Z

94

The Impact of Wind Power Generation on Wholesale Electricity Price ...  

Science Conference Proceedings (OSTI)

price for power generation are examined to forecast LNG price for power genera- tion. Information on future power plant's construction and decommission plan ...

95

Recent advances in RF power generation  

SciTech Connect

This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

Tallerico, P.J.

1990-01-01T23:59:59.000Z

96

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network (OSTI)

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

Girish, T E

2010-01-01T23:59:59.000Z

98

Photovoltaic Power Generation in the Stellar Environments  

E-Print Network (OSTI)

In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

T. E. Girish; S. Aranya

2010-12-03T23:59:59.000Z

99

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

100

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS  

SciTech Connect

The second quarter of the project was dedicated to convert the conceptual designs for the wireless tool and power generator into mechanical and electrical drawings as well as software code to create the new system. The tasks accomplished during this report period were: (1) Basic mechanical design for the wireless communications system was created and the detailed drawings were started. (2) Basic design for the power generator system was created and the detailed machining drawings were started. The generator design was modified to provide a direct action between the wellbore fluid flow and the piezoelectric stack to generate energy. The new design eliminates the inefficiencies related to picking up outside the tubing wall the pressure fluctuations occurring inside the tubing walls. (3) The new piezoelectric acoustic generator design was created and ordered from the manufacturer. The system will be composed of 40 ceramic wafers electrically connected in parallel and compressed into a single generator assembly. (4) The acoustic two-way communications requirements were also defined and the software and hardware development were started. (5) The electrical hardware development required to transmit information to the surface and to receive commands from the surface was started.

Paul Tubel

2003-04-24T23:59:59.000Z

102

Thermal energy storage for power generation  

SciTech Connect

Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s, with most regions of the country experiencing capacity shortages by the year 2000. In many cases, the demand for increased power will occur during intermediate and peak demand periods. Much of this demand is expected to be met by oil- and natural gas-fired Brayton cycle turbines and combined-cycle plants. While natural gas is currently plentiful and reasonably priced, the availability of an economical long-term coal-fired option for peak and intermediate load power generation will give electric power utilities an option in case either the availability or cost of natural gas should deteriorate. 54 refs., 5 figs., 17 tabs.

Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Sathyanarayana, K.

1989-10-01T23:59:59.000Z

103

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

104

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

105

Coal Gasification for Power Generation, 3. edition  

SciTech Connect

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

2007-11-15T23:59:59.000Z

106

For Safer Emergencies, Give Your Power Generator Some ...  

Science Conference Proceedings (OSTI)

For Safer Emergencies, Give Your Power Generator Some Space. For Immediate Release: October 6, 2009. ...

2013-11-26T23:59:59.000Z

107

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

108

Electrokinetic Power Generation from Liquid Water Microjets  

DOE Green Energy (OSTI)

Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

Duffin, Andrew M.; Saykally, Richard J.

2008-02-15T23:59:59.000Z

109

Federal Energy Management Program: New and Underutilized Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

New and New and Underutilized Power Generation Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Power Generation Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Power Generation Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Power Generation Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Power Generation Technologies on AddThis.com... Energy-Efficient Products Technology Deployment

110

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

111

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

112

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

113

Optimization of refinery hydrogen network  

Science Conference Proceedings (OSTI)

Tighter environmental regulations and more heavy-end upgrading in the petroleum industry lead to increased demand for hydrogen in oil refineries. In this paper, the method proposed to optimize the refinery hydrogen network is based upon mathematical ... Keywords: hydrogen management, optimization, refinery, superstructure

Yunqiang Jiao; Hongye Su

2010-09-01T23:59:59.000Z

114

Control system for wind-powered generators  

DOE Green Energy (OSTI)

In a system of wind-powered generators, a reliable yet inexpensive control system is desirable. Such a system would be completely automatic so it could be left unattended for long periods. It would respond to electrical representations of data such as bearing temperature, vibration, wind velocity, turbine velocity, torque, or any other pertinent data. It would respond by starting or stopping the turbine, controlling the loading, or sounding an alarm. A microprocessor-based controller capable of these functions is described.

Kroth, G.J.

1977-05-01T23:59:59.000Z

115

The Fourth Generation of Nuclear Power  

SciTech Connect

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

116

IEP - Water-Energy Interface: Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

117

Cummins Power Generation SECA Phase 1  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

118

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

119

Design of Thermal Power Generation Device for Vehicle Recharging  

Science Conference Proceedings (OSTI)

With thermal power generation as the basis, vehicle heat sources (such as engine and exhaust pipe) as the carrier, and AT89C52 as the control center, this paper has designed a thermal power generation device for vehicle recharging. This device consists ... Keywords: thermal power generation, power supply for recharging, vehicle devices, design

Hong Fang

2012-07-01T23:59:59.000Z

120

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION  

E-Print Network (OSTI)

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation by storing excess power to a battery during excess generation, and then releasing the energy when power

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Neutron generator power supply modeling in EMMA  

SciTech Connect

Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia`s ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described.

Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S; Merewether, K.O.

1996-12-01T23:59:59.000Z

122

SaskPower Geothermal and Self-Generated Renewable Power Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings SaskPower Geothermal and Self-Generated Renewable Power Loan Program (Saskatchewan, Canada) SaskPower...

123

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Ningxia Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name Ningxia Yinyi Wind Power...

124

AWMA 97th Annual Conference & Exhibition Mercury and Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Coal-Fired Power Plants AWMA 97 th Annual Conference & Exhibition Mercury and Power Generation Panel June 23, 2003 Indianapolis, IN Thomas J. Feeley, III...

125

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

126

Voltage Support in Distributed Generation by Power Electronics.  

E-Print Network (OSTI)

?? There is an increasing amount of power processed through power electronics in the areas of generation interface, energy storage and loads. This increment enables… (more)

Strand, Bjørn Erik

2008-01-01T23:59:59.000Z

127

New optimization techniques for power system generation scheduling.  

E-Print Network (OSTI)

??Generation scheduling in restructured electric power systems is critical to maintain the stability and security of a power system and economical operation of the electricity… (more)

Sun, Wei

2011-01-01T23:59:59.000Z

128

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Most recently, a number of factors have led to a continuing electric power industry trend of substituting coal-fired generation with natural gas-fired generation: ...

129

Overview of M-C Power`s MCFC power generation system  

SciTech Connect

The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

Benjamin, T.G.; Woods, R.R.

1993-11-01T23:59:59.000Z

130

NIST Processes to Help Build Next-Generation Nuclear Power ...  

Science Conference Proceedings (OSTI)

NIST Processes to Help Build Next-Generation Nuclear Power Plants. From NIST Tech Beat: June 2, 2009. ...

2011-04-04T23:59:59.000Z

131

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor Operational Status Tables (Information and data on nuclear power reactors Generation: by State and Reactor. Annual Energy Review, ...

132

Next-Generation Power Electronics: Reducing Energy Waste and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation Power Electronics Manufacturing Innovation Institute President Obama Announces New Public-Private Manufacturing Innovation Institute Photovoltaic Cell Material Basics...

133

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

134

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

135

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

136

New power politics will determine generation's path  

Science Conference Proceedings (OSTI)

The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

Maize, K.; Neville, A.; Peltier, R.

2009-01-15T23:59:59.000Z

137

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

138

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

139

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

140

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Diagnostics on the COBRA pulsed power generator  

Science Conference Proceedings (OSTI)

The COBRA pulsed power generator has a variable current pulse wave form and amplitude (95-180 ns rise time, up to 1 MA peak current). It was designed to study wire array Z pinches and X pinches, including plasma formation, pinch implosion dynamics, and pinch plasma parameters as a function of current rise time. These loads have been studied using an extensive set of diagnostics with spatial and/or temporal resolution. The set of electrical diagnostics on the COBRA generator includes Rogowski coils to monitor the total load current and the current through individual return current posts, and there is also an inductive voltage monitor. A set of extreme ultraviolet and x-ray detectors is used to study the load radiation. Wire array and X pinch plasma formation and dynamics are studied using two-frame, point projection X-pinch x-ray imaging as well as with multiframe laser probing. Flat potassium acid phtalate crystal (KAP), convex, extreme luminosity imaging conical spectrograph, and focusing spectrograph with spatial resolution with mica crystal, pinhole cameras, and a camera with a slit and a step filter set (slip step-wedge camera) can be used in each pulse to monitor the x-ray emission from the X pinch(es) and arrays in several spectral bands.

Shelkovenko, T. A.; Chalenski, D. A.; Chandler, K. M.; Douglass, J. D.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; McBride, R. D.; Pikuz, S. A. [Laboratory of Plasma Studies, Cornell University, Rhodes Hall, Ithaca, New York 14853 (United States)

2006-10-15T23:59:59.000Z

142

IEEE Power Engineering Society, papers from the joint power generation conference, 1979  

SciTech Connect

This volume contains 33 IEEE papers presented at the 1979 Joint Power Generation Conference. These papers were presented at the following sessions: Current Limiting Devices; Shutdown Capability for Nuclear Generating Stations; Decentralized Generation; Generator Circuit Breakers for Generating Stations; Application of Solid State Logic Controls for Generating Plants; Power Plant Response; Recent Nuclear Development; Power System Relaying; New Generation Methods and Problems; Batteries. All 33 papers have been indexed previously.

1979-01-01T23:59:59.000Z

143

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

144

Refinery IGCC plants are exceeding 90% capacity factor after 3 years  

SciTech Connect

Steep learning curves for commercial IGCC plants in Italy show annual capacity factors of 55-60% in the first year of service and improvement to over 90% after the third year. The article reviews the success of three IGCC projects in Italy - those of ISAB Energy, Sarlux Saras and Api Energy. EniPower is commissioning a 250 MW IGCC plant that will burn syngas produced by gasification of residues at an adjacent Eni Sannazzaro refinery in north central Italy. The article lists 14 commercially operating IGCC plants worldwide that together provide close to 3900 MW of generating capacity. These use a variety of feedstock-coals, petroleum coke and refinery residues and biomass. Experience with commercial scale plants in Europe demonstrates that IGCC plants can operate at capacity factors comparable to if not better than conventional coal plants. 2 figs., 1 photo.

Jaeger, H.

2006-01-15T23:59:59.000Z

145

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

146

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

147

EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-820, Annual Refinery Report Page 1 U.S. DEPARTMENT OF ENERGY ... production outside the refinery gate. Note: capacity should include base stocks and process oils

148

Indiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

149

Number of Idle Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

150

California Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

151

Engineering firm has designed refinery of the future  

SciTech Connect

Four years ago, JGC Corp. organized a project team called ``Refinery Engineering for the Future in the Twenty-First Century,`` or REF-21. The purpose of the team was to forecast the environment facing the refining industry in Japan, long-range energy supply and demand, population and economic growth, traffic system trends, and technology and science progress through the middle of the twenty-first century. The REF-21 team also was charged with developing a conceptual design for the future refinery. The team proposed four types of configurations for the so-called new-generation refineries. These schemes included some new technologies that it deemed commercializable by 2000. JGC evaluated these new-generation refinery schemes in terms of overall yields, energy efficiencies, emissions, and economics, as compared with existing refineries. JGC also has developed an amenity design program (ADP), and is applying it to a refinery in Japan to produce a new-concept operation center. Through amenity design, JGC intends to improve the operating environment for employees in order to enhance overall productivity.

Inomata, Makoto; Sato, Kyohei; Yamada, Yu; Sasaki, Hajime [JGC Corp., Yokohama (Japan)

1997-04-28T23:59:59.000Z

152

Refinery, petrochemical plant injuries decline  

Science Conference Proceedings (OSTI)

The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

Not Available

1994-07-25T23:59:59.000Z

153

Using Backup Generators: Alternative Backup Power Options | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Backup Power Options Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options Using Backup Generators: Alternative Backup Power Options In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue operating lights, refrigerators and other appliances, fans, and communications during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an emergency. You can also recharge many of these battery systems with diesel generators. The length of time you will be able to draw electricity from your batteries will depend on the size of your

154

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

155

Direct charge radioisotope activation and power generation  

DOE Patents (OSTI)

An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

2002-01-01T23:59:59.000Z

156

Generation Scheduling in Microgrids under Uncertainties in Power Generation.  

E-Print Network (OSTI)

??Recently, the concept of Microgrids (MG) has been introduced in the distribution network. Microgrids are defined as small power systems that consist of various distributed… (more)

Zein Alabedin, Ayman

2012-01-01T23:59:59.000Z

157

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

159

High Frequency High Power RF Generation using a Relativistic...  

NLE Websites -- All DOE Office Websites (Extended Search)

FREQUENCY HIGH POWER RF GENERATION USING A RELATIVISTIC ELECTRON BEAM C. Jing , S. Antipov, P. Schoessow, and A. Kanareykin, Euclid Techlabs LLC, Solon, OH-44139 J.G. Power, M....

160

Combined Heat and Power in Biofuels Production and Use of Biofuels for Power Generation  

Science Conference Proceedings (OSTI)

The rise of the biofuels industry presents electric utilities with two types of opportunities: combined heat and power (CHP) applications in biofuel production facilities using topping and bottoming power generation cycles and the use of the biofuels as a fuel in electric power generation. This report reviews production processes for ethanol and biodiesel, including the prospects for CHP applications, and describes power generation opportunities for the use of biofuels in power production, especially in ...

2007-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Figure 79. Electricity sales and power sector generating ...  

U.S. Energy Information Administration (EIA)

Title: Figure 79. Electricity sales and power sector generating capacity, 1949-2040 (index, 1949 = 1.0) Subject: Annual Energy Outlook 2013 Author

162

Combined desalination and power generation using solar energy.  

E-Print Network (OSTI)

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while… (more)

Zhao, Y

2009-01-01T23:59:59.000Z

163

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm.  

E-Print Network (OSTI)

??Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation… (more)

Therien, Scott G.M.

2010-01-01T23:59:59.000Z

164

Integrative Power Supply Solution for Future Generation Vehicles.  

E-Print Network (OSTI)

?? Abstract: How to secure the power supply for future generation vehicles is an open question. This thesis uses Web-HIPRE as a tool of Decision… (more)

Zhou, Qinsheng

2012-01-01T23:59:59.000Z

165

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

166

The Feasibility of Thermoelectric Power Generation: Linking Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Department Contacts Media Contacts The Feasibility of Thermoelectric Power Generation: Linking Materials, Systems, and Cost Speaker(s): Saniya LeBlanc Date:...

167

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

168

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF CBS CORPORATION, FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT...

169

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

170

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation,...

171

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

172

REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations REQUEST BY ABB POWER GENERATION, INC., FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER...

173

Power conversion effectiveness and generation | Open Energy Informatio...  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Power conversion effectiveness and generation Jump to: navigation, search Retrieved from...

174

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

175

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

176

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

177

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

178

Next-Generation Distributed Power Management for Photovoltaic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth...

179

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

180

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

182

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

183

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

184

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Sector Services Product KWU is a provider of components and services to the commercial nuclear utility industry. References Kraftwerk Union (KWU) - Siemens Power Generation.1...

185

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

186

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network (OSTI)

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability… (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

187

North Brawley Power Plant Placed in Service; Currently Generating...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for North Brawley Power Plant Placed in Service; Currently Generating 17 MW;...

188

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

189

Figure 29. Power sector electricity generation capacity by fuel in ...  

U.S. Energy Information Administration (EIA)

Power sector electricity generation capacity by fuel in five cases, 2011 ... Natural gas combined cycle Natural gas combustion turbine Nuclear Renewable/other Reference

190

Competition among fuels for power generation driven by changes ...  

U.S. Energy Information Administration (EIA)

Fossil fuels—coal, natural gas, and petroleum—supplied 70% of total electric power generation in 1950, with that share rising to 82% in 1970, ...

191

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

192

Renewable Power Options for Electricity Generation on Kauai...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coming from renewable energy by 2023. vii List of Acronyms Btu British thermal unit CSP concentrating solar power DER distributed energy resource DG distributed generation DOE...

193

NANODEVICES FOR GENERATING POWER FROM MOLECULES AND ...  

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are ...

194

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

195

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

196

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

197

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

198

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

199

Mississippi Refinery Vacuum Distillation Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

200

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Minnesota Refinery Marketable Petroleum Coke Production ...  

U.S. Energy Information Administration (EIA)

Minnesota Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

202

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

203

Analysis of hybrid power system incorporating squirrel cage induction generators  

Science Conference Proceedings (OSTI)

This paper presents generic model of hybrid power system consisting in a combined solution one wind turbine with asynchronous generator and on hydro generator with synchronous machine. This technology was developed by to reduce the cost of supplying ... Keywords: asynchronous generator, homer, optimal design, renewable energy, variable speed generation, voltage and frequency controller, water flow

Sorin Ioan Deaconu; Marcel Topor; Gabriel Nicolae Popa; Diana Bistrian

2009-07-01T23:59:59.000Z

204

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

205

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

206

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

A privately held Texas corporation, which provides a direct-fired, biomass-fueled cogeneration system that generates electricity and process heat while consuming on-site...

207

Pipelines to Power Lines: Gas Transportation for Electricity Generation  

Science Conference Proceedings (OSTI)

Gas-fired power generation represents a major growth market for the natural gas industry; but the large, high pressure, highly variable loads required for individual power generators can be difficult to serve. This report, cosponsored by the Gas Research Institute and EPRI, is a design stage assessment of the engineering and costs of the pipelines needed to handle these types of loads.

1995-03-10T23:59:59.000Z

208

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

209

A learning control of unused energy power generation  

Science Conference Proceedings (OSTI)

In recent years, the development of new clean energy without dependence on fossil fuel has become urgent. This article proposes a learning control system for power generation using a low-temperature gap which has been designed to maintain the speed of ... Keywords: BP neural network, Evaporator, Learning control, Low thermal gap, Power generator, Turbine

Satomi Shikasho; Kun-Young Han; Ji-Sun Shin; Chui Chengyou; Hee-Hyol Lee

2010-12-01T23:59:59.000Z

210

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

Paul Tubel

2004-02-01T23:59:59.000Z

211

Power and Voltage Smooth Control of Doubly Fed Induction Generator  

Science Conference Proceedings (OSTI)

Doubly-fed induction generator (DFIG) is the leading in wind power technology currently. In this paper, decoupling control of DFIG is studied and a new energy storage device is used in the smooth control of DFIG system's power and voltage. This new method ... Keywords: Doubly fed induction generator, Energy storage device, Decoupling control

An-Ren Ma, Cai-Xia Wang, Zhi-Wen Zhou, Tao Wu

2012-07-01T23:59:59.000Z

212

Market concentration and marketing power among electricity generators in Texas  

SciTech Connect

Policy initiatives designed to foster competition among electricity generators in Texas face a special challenge due to the relative isolation of that system. This isolation contributes to high levels of market concentration and market power that could hinder the development of a truly competitive market. This paper examines market concentration and market power in the ERCOT market for electricity generation by calculating the Herfindahl-Hirschman index (HHI) under various assumptions to gauge the degree of market concentration among generators in ERCOT. In addition, some ongoing studies of market power in ERCOT are discussed. The distinction between market concentration and market power is highlighted.

Zarnikau, J.; Lam, A. [Planergy Inc., Austin, TX (United States)

1998-11-01T23:59:59.000Z

213

Self-Powered Signal Processing Using Vibration-Based Power Generation  

E-Print Network (OSTI)

Low power design trends raise the possibility of using ambient energy to power future digital systems. A chip has been designed and tested to demonstrate the feasibility of operating a digital system from power generated by vibrations in its environment. A moving coil electromagnetic transducer was used as a power generator. Calculations show that power on the order of 400 W can be generated. The test chip integrates an ultra-low power controller to regulate the generator voltage using delay feedback techniques, and a low power subband filter DSP load circuit. Tests verify 500 kHz self-powered operation of the subband filter, a level of performance suitable for sensor applications. The entire system, including the DSP load, consumes 18 W of power. The chip is implemented in a standard 0.8 m CMOS process. A single generator excitation produced 23 ms of valid DSP operation at a 500 kHz clock frequency, corresponding to 11 700 cycles.

Rajeevan Amirtharajah; Anantha P. Chandrakasan

1998-01-01T23:59:59.000Z

214

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

Siemens Westinghouse Power Generation SWPG Siemens Westinghouse Power Generation SWPG Jump to: navigation, search Name Siemens Westinghouse Power Generation (SWPG) Place Pittsburgh, Pennsylvania Zip PA 15235-5 Product Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary solide oxide fuel cells. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Nuclear power generation and fuel cycle report 1997  

SciTech Connect

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

1997-09-01T23:59:59.000Z

216

Emergency Power Generation in Healthcare Facilities  

Science Conference Proceedings (OSTI)

The effectiveness of a hospital or other healthcare facility's emergency power supply system can literally mean the difference between life and death, especially for patients connected to life support systems and other critical medical devices.

1999-10-27T23:59:59.000Z

217

Application Filing Requirements for Wind-Powered Electric Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application Filing Requirements for Wind-Powered Electric Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio) < Back Eligibility Commercial Developer Utility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Savings Category Wind Buying & Making Electricity Program Info State Ohio Program Type Siting and Permitting Provider Ohio Power Siting Board Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be used to assess the environmental effects of the proposed facility. An applicant for a certificate to site a wind-powered electric generation

218

Biological treatment of refinery wastes  

SciTech Connect

A detailed study of the treatment situation at a Thai refinery that used an API separator with no equalization tank, followed by an activated-sludge system, showed that only 42% of the total COD and 57% of the soluble COD was degradable. In a study of the possibility of additional treatments, an aerated lagoon showed promising results. The wastewater composition of the three main Thai refineries was surveyed.

Mahmud, Z.; Thanh, N.C.

1978-01-01T23:59:59.000Z

219

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

220

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sustainable Power Generation in Microbial Fuel Cells Using  

E-Print Network (OSTI)

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer) isolation and selection of electricity- generating bacteria (3­5), (ii) selection and modification studies (11­21) to maintain a suitable pH for electricity- generating bacteria and/or to increase

Tullos, Desiree

222

Protection and Control for Grid Connected Photovoltaic Power Generation System Based on Instantaneous Power Theory  

Science Conference Proceedings (OSTI)

Reliable protection and reasonable control run an important role in grid connected PV power generation system. The detection and calculation of real and reactive power are the bases of many inverter resident passive and active islanding detection method ... Keywords: Distributed generation, photovoltaic system, grid connected, protection and control, power theory

Fei Wang; Chengcheng Zhang

2009-05-01T23:59:59.000Z

223

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network (OSTI)

designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

224

Protective, Modular Wave Power Generation System  

Science Conference Proceedings (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

225

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators Powering Curiosity: Multi-Mission Radioisotope Thermoelectric Generators January 29, 2008 - 7:06pm Addthis Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. Mars Science Laboratory, aka Curiosity, is part of NASA's Mars Exploration Program, a long-term program of robotic exploration of the Red Planet. It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASA/JPL-Caltech. What are the key facts? Over the last four decades, the United States has launched 26

226

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

227

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network (OSTI)

Technological breakthroughs in recent years have allowed the homopolar generator to be developed to a point where it can now be considered a highly reliable industrial pulsed power supply. These power supplies are capable of producing repetitive high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic electrical and mechanical nature of the homopolar generator is described, and a brief discussion of the recent technological advances that have led to its development as a pulsed power supply is given. The homopolar generator is then discussed as a pulsed power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each of these application areas is discussed in detail including, technical advantages of the pulsed homopolar generator power, supply, as well as economic advantages of the system based on time and energy savings as compared with conventional power and heat sources. Each application discussion includes analytical and empirical data on the performance of an actual homopolar generator used for tests on that particular application. Information on current availability of various size homopolar generators is also presented.

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

228

Wind-powered generator. Final report  

DOE Green Energy (OSTI)

Completion of a wind energy conversion system for a private home is reported. The system included three blades constructed of an aluminum center with marine plywood sandwiched between the aluminum center and the fiberglass outer covering. The wind turbine drives a 1800 rpm generator by a chain drive mechanism. Battery storage is included. (LEW)

Whitesides, R E

229

Generating power with drained coal mine methane  

SciTech Connect

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

230

Cascade Failures from Distributed Generation in Power Grids  

E-Print Network (OSTI)

Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

Scala, Antonio; Scoglio, Caterina

2012-01-01T23:59:59.000Z

231

Power generating system and method utilizing hydropyrolysis  

DOE Patents (OSTI)

A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

Tolman, R.

1986-12-30T23:59:59.000Z

232

Power production, generating capacity data for 1972--1977  

SciTech Connect

Statistics on trends in electric power production, generating capacity, and consumption of fossil fuels over the past six-year period are reported. Included are monthly production by fuel, fuel consumption and stocks for the past six years, installed capacity, and net generation by type of prime mover and class of ownership. Most data are by State for the past year. A narrative section discusses the highlights and trends supported by the tables. This document continues the annual series on power production and generating capacity previously published by the Federal Power Commission. This publication was discontinued with this issue. 8 tables.

1978-06-01T23:59:59.000Z

233

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

The design of a low temperature Rankine cycle system using R-113 working fluid for recovery and conversion of process waste heat is described for typical applications in oil refineries and chemical plants. The system is designed to produce electric power from waste heat available in a temperature range from 180oF to 400oF. The design of a new ORC turbo generator uniquely adapted to applications of this type is presented. The unit has been designed for power outputs from 3/4 to 2 1/2 MW and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW and waste heat streams from 20 to 130 million BTU/hr.

Meacher, J. S.

1981-01-01T23:59:59.000Z

234

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

235

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

236

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

237

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

238

New Jersey Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

239

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-Print Network (OSTI)

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

240

Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)  

E-Print Network (OSTI)

A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

Xia, YuXin, M.B.A. Sloan School of Management.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network (OSTI)

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter-junction solar cells. Prof. Khan is the founder of the Power Engineering and Automation Research Lab (PEARL

Ellis, Randy

242

Pressurized circulating fluidized-bed combustion for power generation  

SciTech Connect

Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

Weimer, R.F.

1995-08-01T23:59:59.000Z

243

Safety of next generation power reactors  

Science Conference Proceedings (OSTI)

This book is organized under the following headings: Future needs of utilities regulators, government, and other energy users, PRA and reliability, LMR concepts, LWR design, Advanced reactor technology, What the industry can deliver: advanced LWRs, High temperature gas-cooled reactors, LMR whole-core experiments, Advanced LWR concepts, LWR technology, Forum: public perceptions, What the industry can deliver: LMRs and HTGRs, Criteria and licensing, LMR modeling, Light water reactor thermal-hydraulics, LMR technology, Working together to revitalize nuclear power, Appendix A, luncheon address, Appendix B, banquet address.

Not Available

1988-01-01T23:59:59.000Z

244

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time – usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

245

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Optimization Online - Robust mid-term power generation management  

E-Print Network (OSTI)

Feb 23, 2011 ... Robust mid-term power generation management. Vincent Guigues(vguigues *** at*** puc-rio.br) René Aid(rene.aid ***at*** edf.fr) Papa Momar ...

248

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council NYC-Westchester This dataset comes...

249

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool South This dataset comes from the Energy Information...

250

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

251

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Northeast This dataset comes from...

252

ORC Scroll Turbine and its Applications for Micro Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts ORC Scroll Turbine and its Applications for Micro Power Generation Speaker(s): Malick Kane Date: October 17, 2002 - 12:00pm Location: Bldg....

253

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

254

Clean Electric Power Generation (Canada) | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Clean Electric Power Generation (Canada) This is the approved revision of this page, as well as being the...

255

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

256

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

257

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Long Island This dataset comes from...

258

STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE CH 630 252 2779 TO AGCP-HQ P.0203 * * STATEMENT OF CONSIDERATIONS REQUEST BY HYBRID POWER GENERATION SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE...

259

AEO2011: Renewable Energy Generation by Fuel - Northeast Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council Upstate New York This dataset comes...

260

Microsoft Word - Power Generation in Pipeline Report.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

correctness. LA-UR-05-6354 Approved for public release; distribution is unlimited. Title: Power Generation in Pipeline: Report Author(s): Dipen N. Sinha Submitted to: Gas...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AEO2011: Renewable Energy Generation by Fuel - Southwest Power...  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Southwest Power Pool North This dataset comes from the Energy Information...

262

Integration of decentralized generators with the electric power grid  

E-Print Network (OSTI)

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

263

Doing better with less energy [fuel-efficient power generation  

Science Conference Proceedings (OSTI)

The authors describe how many fuel-efficient coal-fired power generation technologies can be adopted at reduced net cost, but argue that, unless barriers to innovation are removed, their adoption will be far from automatic

J. Sathbye; J. Sinton; T. Heller

1999-12-01T23:59:59.000Z

264

A thermally efficient micro-reactor for thermophotovoltaic power generation  

E-Print Network (OSTI)

Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

Nielsen, Ole Mattis, 1977-

2006-01-01T23:59:59.000Z

265

Improving heat capture for power generation in coal gasification plants  

E-Print Network (OSTI)

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

266

Power Generation from Solid Fuels in Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Gorte vohs@seas.upenn.edu, 215-898-6318 Abstract In this study we demonstrate the generation of electricity at high power densities, >300 mWcm 2 at 973 K, from a solid...

267

Evaluation of renewable energy development in power generation in Finland  

Science Conference Proceedings (OSTI)

Renewable energy resources have historically played an important role for heat/electricity generation in Finland. Although diffusion costs of renewable energy utilization are higher than fossil fuels and nuclear power plants

2013-01-01T23:59:59.000Z

268

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG)Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in power generation and energy storage infrastructure. The 2009 TAG has been significantly enhanced. The following topics are among those that are new or enhanced: several options on CO2 capture controls and costs for existing retrofits and for new Pulverized Coal and Combustion Turbine Combined Cycle plants; several options on hybrid and dry cooling f...

2009-12-11T23:59:59.000Z

269

Selection of Alloys for Power Generation Applications  

Science Conference Proceedings (OSTI)

Table 16   Soft magnetic materials used for transformers...thickness Material mm in. Continuous duty (a) Distribution 0.27 0.011 M-3, M-4 0.30 0.012 M-5 0.35 0.014 M-6 Power 0.30 0.012 M-5 0.35 0.014 M-6 Voltage regulator 0.30 0.012 M-5 0.35 0.014 M-15 0.63 0.025 M-22 Welding transformer 0.30 0.012 M-5 0.35 0.014 M-6 0.63 0.025 M-43, M-36, M-27 Application...

270

HOM Power Generation and Propagation in the PEP II Rings  

SciTech Connect

Most of the HOM power that propagates in the PEP-II rings is generated in the RF cavities but its content in terms of TE and TM components has not been accurately determined. For purpose of estimating power deposition at the cavity HOM loads, and also of shielding beamline components such as bellows from TE power penetration, this HOM power content and its distribution profile around the rings are needed. We calculate the TE and TM contributions of the RF cavity to the circulating HOM power and their transmission properties at another cavity downstream. By taking into account the generation in, and scattering by the cavities, as well as the attenuation along the vacuum chamber, a realistic estimate of the HOM power propagating out of a RF station is obtained. The formulation can include the HOM contributions of other beamline components such as collimators.

Lin, Xintian; Ng, Cho-Kuen; Ko, Kwok; /SLAC

2011-08-26T23:59:59.000Z

271

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Respondents are operators of all operating and idle petroleum refineries ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption

272

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

273

Michigan Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

274

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

275

Washington Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

276

Ohio Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

277

Mississippi Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

278

Utah Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

279

Number of Operating Refineries - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

280

Montana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alaska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

282

Oklahoma Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Oklahoma Downstream Charge Capacity of Operable Petroleum Refineries ...

283

Florida Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

284

Mississippi Refinery Catalytic Hydrotreating, Heavy Gas Oil ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Heavy Gas Oil Downstream Charge Capacity (B/SD)y ; Mississippi Downstream Charge Capacity of Operable Petroleum Refineries ...

285

Nebraska Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

286

North Carolina Refinery Operable Atmospheric Crude Oil ...  

U.S. Energy Information Administration (EIA)

North Carolina Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

287

Refinery suppliers face tough times  

SciTech Connect

Despite a handful of bright spots in hydroprocessing and petrochemical sectors, economic woes plague much of the refinery and petrochemical catalysts business, as suppliers are feeling the impact of mature markets and refiners` ongoing cost cutting. Industry experts say the doldrums could spur further restructuring in the catalyst business, with suppliers scrambling for market share and jockeying for position in growing sectors. Expect further consolidation over the next several years, says Pierre Bonnifay, president of IFP Enterprises (New York). {open_quotes}There are still too many players for the mature [refinery catalyst] markets.{close_quotes} Others agree. {open_quotes}Only about seven [or] eight major suppliers will survive,{close_quotes} says Robert Allsmiller, v.p./refinery and petrochemical catalysts at United Catalysts Inc. (UCI; Louisville, KY). {open_quotes}Who they [will be] is still up in the air.{close_quotes}

Rotman, D.; Walsh, K.

1997-03-12T23:59:59.000Z

288

Motiva Refinery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refinery Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some oil-producing regions has tightened supply. The transition from winter gasoline to summer blends, and the phase out of the additive MTBE in favor of ethanol, have increased the pressure on the market. Most significantly, we have very little spare refining capacity in this

289

Generator of pumping pulses for powerful semiconductor lasers  

Science Conference Proceedings (OSTI)

The generator of electric and optic pulses are built using powerful MOS transistors and an ILPI-103 semiconductor laser generates pumping pulses with an amplitude of 15 A and optic pulses with a duration of 9 to 30 nsec at a repetition rate of up to 90 kHz. The output signal is TTL. The device is designed for open optic communication lines.

An, V.I.; Kolesnikov, Yu.Yu. [Voronezh Scientific Research Institute of Communications, Voronezh (Russian Federation)

1995-06-01T23:59:59.000Z

290

Hybrid distributed generation for power distribution systems planning  

Science Conference Proceedings (OSTI)

This paper presents planning models for hybrid distributed generation systems, as well as the results corresponding to a distribution systems planning problem obtained using a new computational tool based on a Geographic Information System, GIS. This ... Keywords: distributed generation (DG), geographical information systems (GIS), hybrid power systems, optimal planning

I. J. Ramírez-Rosado; P. J. Zorzano-Santamaría; L. A. Fernández-Jiménez; E. García-Garrido; P. Lara-Santillán; E. Zorzano-Alba; M. Mendoza-Villena

2006-02-01T23:59:59.000Z

291

On Low-Frequency Electric Power Generation With PZT Ceramics  

E-Print Network (OSTI)

Piezoelectric materials have long been used as sensors and actuators, however their use as electrical generators is less established. A piezoelectric power generator has great potential for some remote applications such as in vivo sensors, embedded MEMS devices, and distributed networking. Such materials are capable of converting mechanical energy into electrical energy, but developing piezoelectric generators is challenging because of their poor source characteristics (high voltage, low current, high impedance) and relatively low power output. In the past these challenges have limited the development and application of piezoelectric generators, but the recent advent of extremely low power electrical and mechanical devices (e.g., MEMS) make such generators attractive. This paper presents a theoretical analysis of piezoelectric power generation that is verified with simulation and experimental results. Several important considerations in designing such generators are explored, including parameter identification, load matching, form factors, efficiency, longevity, energy conversion and energy storage. Finally, an application of this analysis is presented where electrical energy is generated inside a prototype Total Knee Replacement (TKR) implant.

Stephen R. Platt; et al.

2005-01-01T23:59:59.000Z

292

Experimental power reactor dc generator energy storage study  

DOE Green Energy (OSTI)

This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection.

Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

1978-08-25T23:59:59.000Z

293

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

294

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

295

FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation  

SciTech Connect

This presentation will highlight the U.S. Department of Energy's FutureGen Initiative. The nearly $1 billion government-industry project is a stepping-stone toward future coal-fired power plants that will produce hydrogen and electricity with zero-emissions, including carbon dioxide. The 275-megawatt FutureGen plant will initiate operations around 2012 and employ advanced coal gasification technology integrated with combined cycle electricity generation, hydrogen production, and carbon capture and sequestration. The initiative is a response to a presidential directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. The FutureGen plant will be based on cutting-edge power generation technology as well as advanced carbon capture and sequestration systems. The centerpiece of the project will be coal gasification technology that can eliminate common air pollutants such as sulfur dioxide and nitrogen oxides and convert them to useable by-products. Gasification will convert coal into a highly enriched hydrogen gas, which can be burned much more cleanly than directly burning the coal itself. Alternatively, the hydrogen can be used in a fuel cell to produce ultra-clean electricity, or fed to a refinery to help upgrade petroleum products. Carbon sequestration will also be a key feature that will set the Futuregen plant apart from other electric power plant projects. The initial goal will be to capture 90 percent of the plant's carbon dioxide, but capture of nearly 100 percent may be possible with advanced technologies. Once captured, the carbon dioxide will be injected as a compressed fluid deep underground, perhaps into saline reservoirs. It could even be injected into oil or gas reservoirs, or into unmineable coal seams, to enhance petroleum or coalbed methane recovery. The ultimate goal for the FutureGen plant is to show how new technology can eliminate environmental concerns over the future use of coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

Zitney, S.E.

2006-11-01T23:59:59.000Z

296

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

297

Flux compression generators as plasma compression power sources  

SciTech Connect

A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches.

Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

1979-01-01T23:59:59.000Z

298

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

299

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

300

Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions  

E-Print Network (OSTI)

Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented.

Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Power Quality and Harmonic Impacts of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

The PQ TechWatch report series builds on EPRI's broad expertise and power quality testing and evaluation work to provide a vital flow of data, including important information on emerging trends powering ebusinesses and developments in next-generation power quality mitigation and energy storage technologies.This PQ TechWatch aims to present an overview of power quality impacts resulting from operation of DG technologies on the grid. An emphasis on harmonic effects is included here. Concerns in this area a...

2010-12-14T23:59:59.000Z

302

Optimization of Piezoelectric Electrical Generators Powered by Random Vibrations  

E-Print Network (OSTI)

This paper compares the performances of a vibrationpowered electrical generators using PZT piezoelectric ceramic associated to two different power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented and implemented with a particular power conditioning circuit topology. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor up to 4 compared to the Standard optimization technique. Properties of this new technique are analyzed in particular in the case of broadband, random vibrations, and compared to those of the Standard interface.

Lefeuvre, E; Richard, C; Petit, L; Guyomar, D

2007-01-01T23:59:59.000Z

303

Refinery and Blender Net Inputs  

Annual Energy Outlook 2012 (EIA)

Refinery and Blender Net Inputs Crude OIl ... 14.54 15.14 15.26 15.08 14.51 15.30 15.70 14.93 14.47 15.30 15.54 14.97 15.01...

304

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

305

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup power, and stationary power are expected to generate a range of new jobs in the  

E-Print Network (OSTI)

Growth of fuel cell applications for specialty vehicles, portable power, auxiliary power, backup engineers · Power plant operators · Power plant maintenance staff · Bus, truck and other fleet drivers power, and stationary power are expected to generate a range of new jobs in the near term

306

D0 Experimental Area Emergency Backup Power and Generator Test  

SciTech Connect

The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic control and ODH system continued to function properly throughout the entire test due to the UPS responding correctly to each power situation. The cryogenic control system isolated both the Utility(UV) and insulating(IV) vacuum systems as to preserve their vacua while the pumps were off. Once the vacuum pumps were reestablished the IV and UV vacua were put back on line to their respective pumps by the cryogenic control system. The instrument air is backed up by a high pressure trailer, regulated down to instrument air pressure and switches automatically on line through a check valve. During the time that the instrument air compressor was off, instrument air never went below 80 psig (high pressure regulator setting).

Markley, D.; /Fermilab

1991-01-24T23:59:59.000Z

307

D0 Experimental Area Emergency Backup Power and Generator Test  

SciTech Connect

The DO experimental area has a generator designated as emergency power. This generator provides power for critical loads and starts automatically upon loss of commercial power. This note concerns the testing of this generator. A list of loads is attached to this note. One of the loads on the emergency power grid is a 10KVA Uninterruptable Power Supply(UPS). The UPS powers the cryogenic controls and Oxygen deficiency hazard equipment(ODH) and has a minimum rating of 20 minutes while on its batteries(to cover the transfer time to/from the emergency generator). Jan 23,1991 at 1640 hrs this system was tested under the supervision of the Terry Ross, Marv Johnson, Dan Markley, Kelly Dixon, and John Urbin. The power feeder to the emergency power grid at DO was disconnected. The generator responded immediately and was supplying power to the emergency power grid in less than 10 seconds. During the 10 seconds that there was no power on the emergency grid the UPS switched on its inverter and provided uninterrupted power to the cryogenic control system and the ODH system. All of the motorized equipment shut off instrument air compressor, vacuum pumps 1 and 2, insulating vacuum blower, glycol cooling pumps, cooling tower fan, and Exhaust Fan 7(EF7). Upon reengagement of power to the grid from the emergency generator, all of the motorized loads started back up with the exception of vacuum pumps 1 and 2, and the UPS inverter turned off. Vacuum pumps 1 and 2 were delay started 20 seconds by the cryogenic control system as not to cause too large of a surge in power by all of the inductive loads starting at once. The DO building elevator which is also on emergency power was test run while the emergency generator was on line with all other emergency loads. The emergency generator current was 140 amps with all loads on line and running except the building elevator. This load of 140 amps is 27% of the generator's capacity. The cryogenic control and ODH system continued to function properly throughout the entire test due to the UPS responding correctly to each power situation. The cryogenic control system isolated both the Utility(UV) and insulating(IV) vacuum systems as to preserve their vacua while the pumps were off. Once the vacuum pumps were reestablished the IV and UV vacua were put back on line to their respective pumps by the cryogenic control system. The instrument air is backed up by a high pressure trailer, regulated down to instrument air pressure and switches automatically on line through a check valve. During the time that the instrument air compressor was off, instrument air never went below 80 psig (high pressure regulator setting).

Markley, D.; /Fermilab

1991-01-24T23:59:59.000Z

308

Obstacles and Opportunity: Turbine Motorization in Refineries Today  

E-Print Network (OSTI)

Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned in the refineries. This paper discusses the key aspects that should be considered in evaluating the feasibility of motorization projects. Based on the literature review and a refinery survey conducted by the authors, the key factors include the critical level of the related equipment, the potential energy savings and capital cost, the steam and power balance in the related area, and the reliability in the refinery's power supply. Based on the authors' experience, the utilities' energy efficiency incentive programs in California also influence the decision-making process for turbine motorization projects. Therefore, this paper includes a description of the utilities' guidelines for fuel substitution projects. In particular, the utilities' three-prong requirements on net source-BTU energy savings, cost effectiveness, and avoidance of adverse impacts to the environment are discussed. Two real life case studies are presented to demonstrate how the above criteria should be applied for determining if a motorization opportunity is economically viable. A discussion on suggested features is also included for prescreening turbine motorization project candidates for better energy and environment economics such as venting of exhaust steam from a back pressure turbine and oversized design of the existing turbine and pump.

Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

2012-01-01T23:59:59.000Z

309

Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongsheng Biomass Power Generation Co Ltd Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name Jiangsu Dongsheng Biomass Power Generation Co Ltd Place Dongtai, Jiangsu Province, China Zip 224212 Sector Biomass Product A biomass project developer in China. Coordinates 32.845699°, 120.301224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845699,"lon":120.301224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

311

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

312

Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qingdao Hengfeng Wind Power Generator Co Ltd Qingdao Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name Qingdao Hengfeng Wind Power Generator Co Ltd Place Jiaonan, Shandong Province, China Sector Wind energy Product Shandong, Jiaonan-based wind turbine supplier. Coordinates 35.875°, 119.977203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.875,"lon":119.977203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Environmentally Protective Power Generation EPPG | Open Energy Information  

Open Energy Info (EERE)

Environmentally Protective Power Generation EPPG Environmentally Protective Power Generation EPPG Jump to: navigation, search Name Environmentally Protective Power Generation (EPPG) Place Tucson, Arizona Sector Wind energy Product Seeking financing for a Tower system, about which little has been disclosed, which would have wind and other backup. Coordinates 32.221553°, -110.969754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221553,"lon":-110.969754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Solar Power Generates Big Savings in Salinas, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generates Big Savings in Salinas, California Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

315

New San Antonio Airport Terminal Generating Clean Power | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Antonio Airport Terminal Generating Clean Power San Antonio Airport Terminal Generating Clean Power New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. Todd G. Allen Project Officer, Golden Field Office What are the key facts? The City of San Antonio's EECBG proram staff awarded a block grant for a solar photovoltaic (PV) system at the airport, designed and built the project, and complied with all local and federal regulations... all in seven months. In early 2010, the City of San Antonio's Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at their fingertips. The opening of the new San

316

Solar Power Generates Big Savings in Salinas, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

317

Power Plant Emission Reductions Using a Generation Performance Standard  

Gasoline and Diesel Fuel Update (EIA)

Power Plant Emission Reductions Power Plant Emission Reductions Using a Generation Performance Standard by J. Alan Beamon, Tom Leckey, and Laura Martin There are many policy instruments available for reducing power plant emissions, and the choice of a policy will affect compliance decisions, costs, and prices faced by consumers. In a previous analysis, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and carbon dioxide (CO 2 ) emissions, assuming a policy instru- ment patterned after the SO 2 allowance program created in the Clean Air Act Amendments of 1990. 1 This report compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard (GPS) as an instrument for reducing CO 2 emissions. 2 In general, the results of the two analyses are similar: to reduce

318

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

319

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

320

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Renewables for the Power Rangan Banerjee  

E-Print Network (OSTI)

/Trigeneration Decentralised Distributed Generation Isolated Demand Side Management (Solar Water Heater, Passive Solar) #12 & SYSTEMS USEFUL ENERGY END USE ACTIVITIES (ENERGY SERVICES) COAL, OIL, SOLAR, GAS POWER PLANT, REFINERIES 95700 MU (21 %) COMMERCIAL 31400 MU (7 %) TRACTION 9500 MU (2 %) WATER WORKS , PUMPING & LIGHTING 14600

Banerjee, Rangan

322

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation Cooperative Corporation * Generation and Transmission Cooperative headquartered in Little Rock * Wholesale power provider for 16 distribution cooperatives * Serves about 62% of Arkansas with over 400,000 consumers O b 2 600 MW f i 12 * Owns about 2,600 MW of generation at 12 different facilities. Arkansas Electric Cooperative Corporation Cooperative Corporation 2009 G i b S f A CC 2009 Generation by Energy Source for AECC Owned and Co-Owned Plants * Natural Gas and Oil 4.0% * Wyoming Coal 88.8% * Water 7.2% Water 7.2% Arkansas Electric Cooperative Corporation Cooperative Corporation E i ti H d l t i Existing Hydroelectric Generating Resources

323

Program on Technology Innovation: Power Generation and Water Sustainability  

Science Conference Proceedings (OSTI)

This brochure summarizes the Electric Power Research Institute (EPRI) Report 1015371, Program on Technology Innovation: An Energy/Water Sustainability Program for the Electric Power Industry. It presents a research planbased on business, economic, and technical considerationsthat would create and test new technology and science to overcome present and future constraints on thermoelectric and hydroelectric generation resulting from limited fresh water availability. The 10 year plan has an overall budget o...

2007-09-10T23:59:59.000Z

324

Program on Technology Innovation: Nuclear Power Generation Technologies  

Science Conference Proceedings (OSTI)

The United States and other countries are currently planning to expand their nuclear power electrical generation base in order to provide energy security and price stability while reducing greenhouse gas emissions. Since the existing fleet of nuclear plants was built during or before the 1970s, new plants will incorporate more advanced designs. This report documents the current status and potential for advanced nuclear power technology development and/or commercialization over the next 5 to 15 years.

2007-06-20T23:59:59.000Z

325

PEM fuel cells for transportation and stationary power generation applications  

Science Conference Proceedings (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

326

A Power Energy Generation Systems Ltd APWR | Open Energy Information  

Open Energy Info (EERE)

Generation Systems Ltd APWR Generation Systems Ltd APWR Jump to: navigation, search Name A-Power Energy Generation Systems Ltd (APWR) Place Shenyang, Liaoning Province, China Zip 110021 Product Chinese-based provider of power generation systems, acting as the holding company of Liaoning Gaoke Energy. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

328

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

329

System for generating power with top pressure of blast furnaces  

SciTech Connect

A system for generating power with the top pressure of a plurality of blast furnaces by leading a gas from the top of the furnaces into turbines, corresponding in number to the furnaces, to convert the pressure of the gas into rotational energy and generate power by a generator coupled to the turbines. The turbines connected to the furnaces by main gas channels individually are aligned with their rotor shafts connected together into a single shaft which is connected to the generator. Preferably each pair of the adjacent turbines are arranged with their intake ends positioned in the center of the arrangement so that the gas flows toward the exhaust ends at both sides, or with their intake ends positioned at both sides to cause the gas to flow toward the exhaust ends in the center. The single shaft connecting the pair of turbines together has no intermediate bearing between these turbines.

Kihara, H.; Mizota, T.; Ohmachi, M.; Takao, K.; Toki, K.; Tomita, Y.

1983-06-14T23:59:59.000Z

330

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents (OSTI)

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, M.M.

1993-01-01T23:59:59.000Z

331

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

332

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

333

New low cost IGCC designs for competitive power generation  

SciTech Connect

Design studies of coal based 450 MW new IGCC power plants reveal their ability to compete in today's power generation market. Single train unit designs coupled with significant improvements in IGCC net output and efficiency have brought down the installed costs to the range of 850--1,000 $/kW and net thermal efficiency up to 43--47%. These improvements are shown to result from IGCC design configurations integrating new generation gas turbine combined cycles with High Pressure Texaco Gasification Technology and Elevated Pressure Air Separation Units.

Brdar, D.R.; Depuy, R.A.; Gulko, G.; Jandrisevits, M.; Paolino, J.

1999-07-01T23:59:59.000Z

334

Technical Manual for the SAM Biomass Power Generation Model  

SciTech Connect

This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

Jorgenson, J.; Gilman, P.; Dobos, A.

2011-09-01T23:59:59.000Z

335

Technical Manual for the SAM Biomass Power Generation Model  

DOE Green Energy (OSTI)

This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

Jorgenson, J.; Gilman, P.; Dobos, A.

2011-09-01T23:59:59.000Z

336

Fixed and variable speed induction generators for real power loss minimization  

Science Conference Proceedings (OSTI)

The application of induction generators in the wind power industry is standard practice. An induction generator draws reactive power from the network depending on its real power output, such that the greater the real power exported to the network, the ... Keywords: doubly- fed induction generator, induction generator, line loss, reactive power

S. Durairaj; D. Flynn; B. Fox

2008-02-01T23:59:59.000Z

337

Pages that link to "Ningxia Yinyi Wind Power Generation Co Ltd...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Pages that link to "Ningxia Yinyi Wind Power Generation Co Ltd" Ningxia Yinyi Wind Power Generation Co Ltd Jump to:...

338

Pages that link to "Datang Jilin Power Generation Co Ltd" | Open...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Datang Jilin Power Generation Co Ltd" Datang Jilin Power Generation Co Ltd Jump to: navigation,...

339

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

340

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Power Generation 74 18.1 Combined Heat and Power Generation (as feedstock, and power generation. In the view of Katzer et

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

342

Photovoltaic power conditioners: Development, evolution, and the next generation  

DOE Green Energy (OSTI)

Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

Bulawka, A. [USDOE, Washington, DC (United States); Krauthamer, S.; Das, R. [Jet Propulsion Lab., Pasadena, CA (United States); Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

343

The potential application of fuel cell cogeneration systems in petroleum refineries. [Phosphoric acid, molten carbonate and solid oxide fuel cells  

Science Conference Proceedings (OSTI)

The market potential for fuel cell cogeneration systems within the petroleum refinery industry is evaluated. Phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells were considered. Conventional competitive systems now available including purchased power plus boiler-generated steam, gas turbine combined cycle, and a relatively new coke fluidized bed-boiler were characterized. Refineries use large quantities of steam at pressures ranging from about 15 to 650 psig. PAFCs can only meet a limited number of steam requirements because of their relatively low operating temperature. The high temperature MCFC and SOFC are technically much more attractive for this application. However, current estimates of their capital costs are too large to make the technologies competitive. The capital costs of MCFCs and SOFCs would have to decrease approx.50% from their present estimated $1300/kWe. If costs could be decreased to give a 10% energy cost advantage to fuel cells, the industry projects that fuel cells might supply about 300 MWe by the year 2000, and modules in the 5- to 20-MWe size would be of interest. The market opportunities in refineries are varied - the industry is large, each plant is unique, thermal energy consumption is large, and both domestic and international competitiveness is intense. 10 refs., 26 figs., 17 tabs.

Altseimer, J.H.; Roach, F.; Anderson, J.M.; Krupka, M.C.

1987-08-01T23:59:59.000Z

344

CTR/ANL, July 2010 1 Updated Estimation of Energy Efficiencies of U.S. Petroleum Refineries  

E-Print Network (OSTI)

for emissions associated with hydrogen production. Hydrogen is generated in a refinery's catalytic reformer-process distillate material into commercial diesel and jet fuel. From this perspective catalytic reforming transfers refinery operations, most notably catalytic reforming. References Bredeson, L., Quiceno-Gonzalez, R., Riera

Argonne National Laboratory

345

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

346

Zirconia-based fuel cells for power generation  

DOE Green Energy (OSTI)

This paper reviews the design and operation of the high temperature solid oxide fuel cells based on yttria-stabilized zirconia electrolyte. The functional requirements of the various cell components are presented; and the materials and fabrication processes used for different cell components are described. Finally, the recent progress made toward commercialization of these cells for clean and efficient power generation is discussed.

Singhal, S.C.

1992-04-01T23:59:59.000Z

347

Zirconia-based fuel cells for power generation  

DOE Green Energy (OSTI)

This paper reviews the design and operation of the high temperature solid oxide fuel cells based on yttria-stabilized zirconia electrolyte. The functional requirements of the various cell components are presented; and the materials and fabrication processes used for different cell components are described. Finally, the recent progress made toward commercialization of these cells for clean and efficient power generation is discussed.

Singhal, S.C.

1992-01-01T23:59:59.000Z

348

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

Paul Tubel

2003-03-24T23:59:59.000Z

349

Wind Power Generation Dynamic Impacts on Electric Utility Systems  

Science Conference Proceedings (OSTI)

This technical planning study is an initial assessment of potential dynamic impacts on electric utility systems of wind power generation via large wind turbines. Three classes of dynamic problems-short-term transient stability, system frequency excursions, and minute-to-minute unit ramping limitations - were examined in case studies based on the Hawaiian Electric Co. System.

1980-11-01T23:59:59.000Z

350

Design of Wind Power Generator's Vane which Based on Computer  

Science Conference Proceedings (OSTI)

In this paper, we have mainly analyzed the relationship between virtual prototype and concurrent design. Then we have concluded the model of virtual prototype and simulation method which based on field object. We also have studied the design of wind ... Keywords: Vanes of wind power generator, Physical Prototype, Digital prototype, Virtual Prototype, Aerodynamics

Rui Chang; Yiming He

2011-03-01T23:59:59.000Z

351

Maximum power tracking control scheme for wind generator systems  

E-Print Network (OSTI)

The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor speed measurements as control variable inputs. The dependence on the accuracy of the measurement devices makes the controller less reliable. The proposed control scheme is based on the stiff system concept and provides a fast response and a dynamic solution to the complicated aerodynamic system. This control scheme provides a response to the wind changes without the knowledge of wind speed and turbine parameters. The system consists of a permanent magnet synchronous machine (PMSM), a passive rectifier, a dc/dc boost converter, a current controlled voltage source inverter, and a microcontroller that commands the dc/dc converter to control the generator for maximum power extraction. The microcontroller will also be able to control the current output of the three-phase inverter. In this work, the aerodynamic characteristics of wind turbines and the power conversion system topology are explained. The maximum power tracking control algorithm with a variable step estimator is introduced and the modeling and simulation of the wind turbine generator system using the MATLAB/SIMULINK® software is presented and its results show, at least in principle, that the maximum power tracking algorithm developed is suitable for wind turbine generation systems.

Mena Lopez, Hugo Eduardo

2007-12-01T23:59:59.000Z

352

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

Paul Tubel

2003-07-05T23:59:59.000Z

353

Nonlinear power flow control applications to conventional generator swing equations subject to variable generation.  

Science Conference Proceedings (OSTI)

In this paper, the swing equations for renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generator system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. In particular, this approach extends the work done by developing a formulation which applies to a larger set of Hamiltonian Systems that has Nearly Hamiltonian Systems as a subset. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device to enable the maximum power output of a wind turbine while meeting the power system constraints on frequency and phase. The FACTS/storage device is required to operate as both a generator and load (energy storage) on the power system in this design. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generator system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate.

Robinett, Rush D., III; Wilson, David Gerald

2010-05-01T23:59:59.000Z

354

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

355

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

356

Encon Motivation in European Refineries  

E-Print Network (OSTI)

One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization of various techniques and approaches, dependent on the local environment and effectiveness of the Encon program. In this paper, we begin with the importance for stimulating personnel, note the essential ingredients required to motivate our people, and briefly review several techniques used for Encon motivation. Two examples of Encon motivation programs are presented before introducing the characteristics of a successful Encon motivation program. The paper concludes with a review of the needs and suggestions for maintaining a continuing program. Energy utilization efficiency in Esso Europe's refineries improved about 16% in the mid 70's, due primarily to Encon motivation. Experience has since demonstrated that additional improvements can be achieved through operational and maintenance practices.

Gambera, S.; Lockett, W., Jr.

1982-01-01T23:59:59.000Z

357

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01T23:59:59.000Z

358

Energy Payback Optimization of Thermoelectric Power Generator Systems  

E-Print Network (OSTI)

An analytic model for optimizing thermoelectric power generation system is developed and utilized for parametric studies. This model takes into account the external thermal resistances with hot and cold reservoirs. In addition, the spreading thermal resistance in the module substrates is considered to find the impact of designing small fraction of thermo elements per unit area. Previous studies are expanded by a full optimization of the electrical and thermal circuits. The optimum condition satisfies both electrical load resistance match with the internal resistance and the thermal resistance match with the heat source and the heat sink. Thermoelectric element aspect ratio and fill factor are found to be key parameters to optimize. The optimum leg length and the maximum output power are determined by a simple formula. The output power density per mass of the thermoelectric material has a peak when thermo elements cover a fractional area of ~1%. The role of the substrate heat spreading for thermoelectric power generation is equally significant as thermoelement. For a given heat source, the co-optimization of the heat sink and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to find the energy payback for the power generation system. The model includes both the air cooled heat sinks and the water cooled micro channels. We find that one can reduce the mass of thermoelement to around 3~10 % of that in commercial modules for the same output power, as long as the module and elements are designed properly. Also one notes that higher heat flux sources have significantly larger energy payback and reduced cost per output power.

Kazuaki Yazawa; Ali Shakouri

2010-01-01T23:59:59.000Z

359

Remote-site power generation opportunities for Alaska  

Science Conference Proceedings (OSTI)

The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1997-03-01T23:59:59.000Z

360

Application of Pinch Technology in Refinery Retrofits  

E-Print Network (OSTI)

This paper reviews the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well as attractive process-utility system integration (co-generation). An example of an atmospheric pipestill-alkylation unit integration evaluation is given using both composite stream and Grand composite stream methods. In the second part of the paper, the application of pinch technology in a typical intra-unit heat integration problem is given. It is explained how inefficiencies in an APS crude preheat train are identified, and a typical small retrofit project is described.

Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

362

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 104, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Long Island Renewable Energy Generation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

363

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Upstate New York Upstate New York Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 105, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Upstate New York Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Upstate New York- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed

364

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

Northeast Northeast Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 102, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Northeast Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / Northeast- Reference Case (xls, 119 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

365

AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating  

Open Energy Info (EERE)

NYC-Westchester NYC-Westchester Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment

366

HTGR power plant turbine-generator load control system  

SciTech Connect

A control system is disclosed for a high temperature gas cooled reactor power plant, wherein a steam source derives heat from the reactor coolant gas to generate superheated and reheated steam in respective superheater and reheater sections that are included in the steam source. Each of dual turbine-generators includes a high pressure turbine to pass superheated steam and an associated intermediate low pressure turbine to pass reheated steam. A first admission valve means is connected to govern a flow of superheated steam through a high pressure turbine, and a second admission valve means is connected to govern a flow of reheated steam through an intermediate-low pressure turbine. A bypass line and bypass valve means connected therein are connected across a second admission valve means and its intermediate-low pressure turbine. The second admission valve means is positioned to govern the steam flow through the intermediate-low pressure turbine in accordance with the desired power output of the turbine-generator. In response to the steam flow through the intermediate-low pressure turbine, the bypass valve means is positioned to govern the steam flow through the bypass line to maintain a desired minimum flow through the reheater section at times when the steam flow through the intermediate-low pressure turbine is less than such minimum. The power output of the high pressure turbine is controlled by positioning the first admission valve means in predetermined proportionality with the desired power output of the turbine-generator, thereby improving the accuracy of control of the power output of the high pressure turbine at low load levels.

Braytenbah, A.S.; Jaegtnes, K.O.

1976-12-28T23:59:59.000Z

367

Table 12. Refinery Sales During 2010  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2010

368

Opportunities for Biorenewables in Petroleum Refineries  

SciTech Connect

A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2007-02-01T23:59:59.000Z

369

Areas of Corrosion in the Refinery  

Science Conference Proceedings (OSTI)

...J.D. Poindexter, Corrosion Inhibitors for Crude Oil Refineries, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM Handbook, ASM International, 2003, p 887â??890...

370

Opportunities for Biorenewables in Petroleum Refineries  

Science Conference Proceedings (OSTI)

a summary of our collaborative 2005 project “Opportunities for Biorenewables in Petroleum Refineries” at the Rio Oil and Gas Conference this September.

Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

2006-10-11T23:59:59.000Z

371

Refinery Investments and Future Market Incentives  

U.S. Energy Information Administration (EIA)

Presentation given at the Annual NPRA Meeting that discusses factors affecting refinery investments. Refiners have plunged from a seeming “golden age” investment ...

372

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

373

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

MTC. Marano, J.J. , 2003. Refinery Technology Profiles:Deep Desulfurization of Oil Refinery Streams: A Review. FuelSavings for Flying J Refinery. Oil & Gas Journal, December 2

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

374

E&WR - Water-Energy Interface: Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

E&WR - Water-Energy Interface E&WR - Water-Energy Interface Mine Water for Thermoelectric Power Generation: A Modeling Framework The purpose of this study, conducted by the National Mine Land Reclamation Center at West Virginia University, is to develop and demonstrate a framework for assessing the costs, technical and regulatory aspects, and environmental benefits of using mine water for thermo-electric power generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering, and environmental factors to be considered and evaluated in using mine water as an alternative to traditional freshwater supply. Development and demonstration of the framework involves the following activities: A field investigation and case study conducted for the proposed Beech Hollow Power Plant located in Champion, Pennsylvania. This 300 megawatt power plant has been proposed to burn coal refuse from the Champion coal refuse pile, which is the largest coal waste pile in Western Pennsylvania. The field study, based on previous mine pool research conducted by the National Mine Land Reclamation Center (NMLRC), identifies mine water sources sufficient to reliably supply the 2,000 to 3,000 gpm power plant water requirement.

375

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network (OSTI)

results of the power generation loading optimization based on a coal-fired power plant demonstratesPower Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via PSO power industry. A major objective for the coal-fired power generation loading optimization

Li, Xiaodong

376

Optimal Reactive Power Planning of Radial Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

The paper analyzes reactive power optimization problem in distribution system with wind power and PV generators. Reactive power optimization mathematical model including the active power loss, reactive power compensation capacity and static voltage margin ... Keywords: Distributed generation, Distributed Generation, Immune Algorithm, Cluster Evolutionary

Li Shengqi, Zeng Lilin, Li Yongan, He Zhengping

2013-01-01T23:59:59.000Z

377

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinery’s maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSI’s Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSI’s annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

378

Method and apparatus for powering engine with exhaust generated steam  

SciTech Connect

An apparatus for installation in an automobile to generate steam with heat from the exhaust of an engine is provided. The steam is generated at a sufficient pressure for entry into the combustion chambers of the engine to increase the power output of the engine. The apparatus includes a water storage unit and a steam generator for generating steam with the water from the unit through transfer of heat from combusted gases in the exhaust system. The steam travels through steam inlet manifolds for entry into the combustion chambers. The entry is controlled by a cylinder injection timing valve assembly timed to the operation of the engine to enter the steam during the power stroke. A steam throttling control valve assembly is provided to throttle the steam input to the combustion chambers. A throttle proportioning control unit proportions the carburetor throttle and steam throttle assembly to the operator throttle input to provide the greatest efficiency in engine operation. The throttle proportioning control unit operates in response to the steam temperature and pressure within the steam generator. The apparatus may be adapted for use on an engine design for solely air fuel combustion with the cylinder adapter. A throttle linkage interchange unit may be provided to initiate operation of steam input only upon reaching a minimum engine temperature. An intake manifold vacuum control valve may be provided for selectively entering exhaust gases into the intake manifold of the engine to compensate for the vacuum variation due to the steam input to the combustion chamber.

Gill, P.A.

1983-10-18T23:59:59.000Z

379

Coal gasification for power generation. 2nd ed.  

SciTech Connect

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

2006-10-15T23:59:59.000Z

380

The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation  

E-Print Network (OSTI)

Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

Jaworsky, Christina A

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

382

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

383

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

384

ADVANCED CO{sub 2} CYCLE POWER GENERATION  

SciTech Connect

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-07-01T23:59:59.000Z

385

Crop residues as a fuel for power generation  

DOE Green Energy (OSTI)

Crop residues could serve as an alternative energy source for producing electric power and heat in agricultural regions of the United States. Nearly 2 quads of residues are estimated to be available as a sustainable annual yield. These can substitute for up to one quad of conventional fuels used to generate electricity and up to an additional quad of petroleum and natural gas currently used for producing heat. The most promising routes to residue conversion appear to be regional generators sized in the megawatt range, and the mixing of residues with coal for burning in coal power plants. Costing farmers from $0.70 to $1.25 per million Btu, to harvest and prepare for use as a fuel, residues can be a competitive renewable energy supply.

Bhagat, N.; Davitian, H.; Pouder, R.

1979-07-01T23:59:59.000Z

386

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

Nguyen Minh; Faress Rahman

2002-12-31T23:59:59.000Z

387

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

388

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

389

National-Scale Wind Resource Assessment for Power Generation (Presentation)  

SciTech Connect

This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

Baring-Gould, E. I.

2013-08-01T23:59:59.000Z

390

Rail gun powered by an integral explosive generator  

SciTech Connect

We propose the use of a rail gun powered by an explosive magnetic flux compression generator built into the rail gun itself in which the rails of the gun are driven together behind the projectile by explosives. The magnetic field established between the rails by an initial current supplied by an external source at the breech of the gun is trapped and compressed by the collapsing rails to accelerate the projectile down the bore of the gun.

Peterson, D.R.; Fowler, C.M.

1979-01-01T23:59:59.000Z

391

Table 2. Production Capacity of Operable Petroleum Refineries by ...  

U.S. Energy Information Administration (EIA)

Includes hydrogen production capacity of hydrogen plants on refinery grounds. MMcfd = Million cubic feet per day. a ... (EIA), Form EIA-820, "Annual Refinery Report."

392

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

fuels in the graph. Source: Petroleum Supply Annual, Energypetroleum products, refineries are still a substantial sourceadded produced by petroleum refineries. Source: U.S. Census,

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

393

Petroleum refineries vary by level of complexity - Today in Energy ...  

U.S. Energy Information Administration (EIA)

A refinery is an industrial complex that manufactures petroleum products, such as gasoline, from crude oil and other feedstocks. Many different types of refineries ...

394

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

395

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

Aspropyrgos Refinery Combined Cycle Cogeneration System.refineries operate combined cycles with higher efficiencies.in an Integrated Gasifier Combined Cycle (IGCC). In this

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

396

EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

EIA-800, Weekly Refinery and Fractionator Report Page 3 Crude Oil (Code 050) Report all refinery input of domestic and foreign crude oil (including ...

397

PAD District 4 Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Notes: Idle refineries represent refineries where distillation units were completely idle but not permanently shutdown as of January 1 of the year.

398

Executive Summary: Research in Nuclear Power—Workshop on the Needs of the Next Generation of Nuclear Power Technology  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

A. David Rossin; Kunmo Chung; K. L. Peddicord

399

Next Generation Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Next Generation Power Systems Inc Next Generation Power Systems Inc Jump to: navigation, search Name Next Generation Power Systems Inc. Place Pipestone, Minnesota Zip 56164 Sector Services, Wind energy Product NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems. Coordinates 43.99413°, -96.317104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99413,"lon":-96.317104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

M.Nagrial, Switched reluctance generator for wind power applications  

E-Print Network (OSTI)

Abstract—Green house effect has becomes a serious concern in many countries due to the increase consumption of the fossil fuel. There have been many studies to find an alternative power source. Wind energy found to be one of the most useful solutions to help in overcoming the air pollution and global. There is no agreed solution to conversion of wind energy to electrical energy. In this paper, the advantages of using a Switched Reluctance Generator (SRG) for wind energy applications. The theoretical study of the self excitation of a SRG and the determination of the variable parameters in a SRG design are discussed. The design parameters for the maximum power output of the SRG are computed using Matlab simulation. The designs of the circuit to control the variable parameters in a SRG to provide the maximum power output are also discussed.

M. Nassereddine; J. Rizk; M. Nagrial

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SLAC Next-Generation High Availability Power Supply  

SciTech Connect

SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

Bellomo, P.; MacNair, D.; /SLAC; ,

2010-06-11T23:59:59.000Z

402

Thermal energy storage for coal-fired power generation  

DOE Green Energy (OSTI)

This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

1990-11-01T23:59:59.000Z

403

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

404

Computer controlled MHD power consolidation and pulse generation system  

DOE Green Energy (OSTI)

The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

Johnson, R.; Marcotte, K.; Donnelly, M.

1990-01-01T23:59:59.000Z

405

Regional Refinery Utilization Shows Gulf Coast Pressure  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: But there is some room for hope. Refineries generally begin maintenance in February or March, and finish in April. The East Coast was experiencing some lengthy refinery maintenance outages, as shown by the drop in utilization that remained low in most of March and April. In the meantime, the East Coast was drawing on extra supplies from the Gulf Coast and imports. The Midwest refineries seem to have been ramping up in April as they finished what maintenance was needed. But the Midwest no longer has the Blue Island refinery, so it also is pulling more product from the Gulf Coast. The high Gulf Coast prices this spring reflect extra "pull" on product from both the Midwest and the East Coast, and probably from California as well. Inputs into Gulf Coast refineries over the last 4 weeks

406

Refinery burner simulation design architecture summary.  

SciTech Connect

This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

2011-10-01T23:59:59.000Z

407

Coal-fired high performance power generating system. Final report  

SciTech Connect

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

1995-08-31T23:59:59.000Z

408

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

409

Energy efficiency improvement and cost saving opportunities for petroleum refineries  

E-Print Network (OSTI)

in steam generation, distribution and end-use are possible.that steam generation, distribution, and cogeneration offerIntegration Steam Distribution Power Generation Power

Worrell, Ernst; Galitsky, Christina

2005-01-01T23:59:59.000Z

410

Update on use of mine pool water for power generation.  

Science Conference Proceedings (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

411

Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets  

E-Print Network (OSTI)

In current restructured wholesale power markets, the short length of time series for prices makes it difficult to use empirical price data to test existing price forecasting tools and to develop new price forecasting tools. This study therefore proposes a two-stage approach for generating simulated price scenarios based on the available price data. The first stage consists of an Autoregressive Moving Average (ARMA) model for determining scenarios of cleared demands and scheduled generator outages (D&O), and a moment-matching method for reducing the number of D&O scenarios to a practical scale. In the second stage, polynomials are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time frame. Time series data from the Midwest ISO (MISO) are used as a test system to validate the proposed approach. The simulation results indicate that the proposed approach is able to generate price scenarios for distinct seasons with empirically realistic characteristics.

Qun Zhou; Leigh Tesfatsion; Chen-Ching Liu

2009-01-01T23:59:59.000Z

412

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

413

Regional comparison of nuclear and fossil electric power generation costs  

SciTech Connect

Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures.

Bowers, H.I.

1984-01-01T23:59:59.000Z

414

Documentation: The automated ORAD (Oil Refinery and Distribution Model) to RYMs (Refinery Yield Model) linked system  

SciTech Connect

The Refinery Evaluation Modeling System (REMS) is an analytic tool used by the Energy Information Administration (EIA) to provide insight into the domestic operations of United States refineries. REMS can be used to determine the potential impacts of changes in demands for petroleum products, crude and feedstock qualities, refinery processing capacities, foreign and domestic crude availabilities, transportation modes and costs, and government regulations. REMS is a set of linear programming models that solve for a partial equilibrium in the US refinery market by equating supply and demand while maximizing profits for US refiners. REMS consists of two models: the Refinery Yield Model (RYM), and the Oil Refinery and Distribution Model (ORAD). RYMs consists of nine separate regional models that represent the contiguous US refinery system. These nine regions are aggregates of the 13 Bureau of Mines (BOM) refinery districts. ORAD integrates the results from the individual RYMs into a transportation network which represents the US refinery market. ORAD uses the extreme point refinery representation from RYMs to solve for the optimal product prices in ORAD.

Sanders, R.P.; Kydes, A.S.

1987-01-01T23:59:59.000Z

415

Coal-fired power plants the next generation  

Science Conference Proceedings (OSTI)

Coal is today a very important source of energy and the resources are sufficient for a long period. To keep power generation with coal up-to-date in view of minimizing the pollution (especially the CO{sub 2}) and of better economy, we will have introduce new plant technologies. After a general overview three of these are presented and compared with the state-of-the-art PCF technology, in respect to plant efficiency, environmental impact, investment cost, cost of electricity, and unit size.

Schemenau, W.; Schoedel, J. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

416

Method and apparatus for automated, modular, biomass power generation  

DOE Patents (OSTI)

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

2013-11-05T23:59:59.000Z

417

Method and apparatus for automated, modular, biomass power generation  

DOE Patents (OSTI)

Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

2011-03-22T23:59:59.000Z

418

Protection system design for power distribution systems in the presence of distributed generation.  

E-Print Network (OSTI)

??The increasing presence of distributed generation and the steady modernization of power distribution system equipment have presented new opportunities in power distribution system studies. This… (more)

Mao, Yiming

2005-01-01T23:59:59.000Z

419

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

420

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Midwest (PADD 2) Refinery and Blender Net Production of ...  

U.S. Energy Information Administration (EIA)

Midwest (PADD 2) Refinery and Blender Net Production of Finished Motor Gasoline (Thousand Barrels per Day)

422

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Michigan Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

423

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

424

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

425

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

426

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

427

Rocky Mountains (PADD 4) Gross Inputs to Refineries (Thousand ...  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units ; PAD District 4 Refinery Utilization and Capacity ...

428

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

429

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

430

Ohio's fuel mix for power generation is changing - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Although coal remains the dominant fuel for Ohio's electric power generation, accounting for 81% of total statewide generation during the first 9 months of 2011, the ...

431

Z: A Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation  

SciTech Connect

Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times - 100 ns. The largest such pulsed power drive r today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z is capable of delivering more than 20 MA with a time-to-peak of 105 ns to low inductance (- 1 nH)loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 -cm3, volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression scheme~: are not new and are, in fact, the basis of all explosive flux-compression generators but we propose the use of plasma armatures rather than solid, conducting armatures. We will present experimental results from the Z accelerator in which magnetic fields - 2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields will be reviewed in context with Z experiments. We will describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

Asay, J.R.; Bailey, J.E.; Bernard, M.A.; Hall, C.A.; McDaniel, D.H.; Spielman, R.B.; Struve, K.W.; Stygar, W.A.

1998-11-04T23:59:59.000Z

432

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

433

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

434

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

Faress Rahman; Nguyen Minh

2003-07-01T23:59:59.000Z

435

Tracking new coal-fired power plants: coal's resurgence in electric power generation  

Science Conference Proceedings (OSTI)

This information package is intended to provide an overview of 'Coal's resurgence in electric power generation' by examining proposed new coal-fired power plants that are under consideration in the USA. The results contained in this package are derived from information that is available from various tracking organizations and news groups. Although comprehensive, this information is not intended to represent every possible plant under consideration but is intended to illustrate the large potential that exists for new coal-fired power plants. It should be noted that many of the proposed plants are likely not to be built. For example, out of a total portfolio (gas, coal, etc.) of 500 GW of newly planned power plant capacity announced in 2001, 91 GW have been already been scrapped or delayed. 25 refs.

NONE

2007-05-01T23:59:59.000Z

436

Framing Scenarios of Electricity Generation and Gas Use: EPRI Report Series on Gas Demands for Power Generation  

Science Conference Proceedings (OSTI)

This report provides a systematic appraisal of trends in electric generation and demands for gas for power generation. Gas-fired generation is the leading driver of forecasted growth in demand for natural gas in the United States, and natural gas is a leading fuel for planned new generating capacity. The report goes behind the numbers and forecasts to quantify key drivers and uncertainties.

1996-08-28T23:59:59.000Z

437

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

DOE Green Energy (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

438

Texas facility treats, recycles refinery, petrochemical wastes  

Science Conference Proceedings (OSTI)

A US Gulf Coast environmental services company is treating refinery and petrochemical plant wastes to universal treatment standards (UTS). DuraTherm Inc.`s recycling center uses thermal desorption to treat a variety of refinery wastes and other hazardous materials. The plant is located in San Leon, Tex., near the major Houston/Texas City refining and petrochemical center. DuraTherm`s customers include major US refining companies, plus petrochemical, terminal, pipeline, transportation, and remediation companies. Examples of typical contaminant concentrations and treatment levels for refinery wastes are shown. The paper discusses thermal desorption, the process description and testing.

NONE

1996-09-16T23:59:59.000Z

439

Former Soviet refineries face modernization, restructuring  

Science Conference Proceedings (OSTI)

A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

Not Available

1993-11-29T23:59:59.000Z

440

MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...  

Open Energy Info (EERE)

Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

442

A Texas Refinery Success Story  

E-Print Network (OSTI)

"Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant management called on Spirax Sarco Inc. (SSI) to reduce costs. The SSI team noticed symptoms of subpar efficiency within the steam system. Steam traps were improperly installed, water hammer problems were evident and the condensate recovery system was damaged."

Kacsur, D.

2009-05-01T23:59:59.000Z

443

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

DOE Green Energy (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

444

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

445

Table 8.2c Electricity Net Generation: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... 10 Batteries, chemicals, hydrogen, pitch, ...

446

Table 8.2b Electricity Net Generation: Electric Power Sector ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... 10 Batteries, chemicals, hydrogen, pitch, ...

447

Unified power quality conditioner for grid integration of wind generators.  

E-Print Network (OSTI)

?? A Unified Power Quality Conditioner (UPQC) is relatively a new member of the custom power device family. It is a comprehensive custom power device,… (more)

Ganesh, Jayanti Navilgone, (Thesis)

2008-01-01T23:59:59.000Z

448

Modal Analysis of Power Systems with Doubly Fed Induction Generators.  

E-Print Network (OSTI)

?? To ensure the reliable operation of the power system, stability analysis considering the interaction between wind power and power system must be understood. In this… (more)

Li, Jialin

2010-01-01T23:59:59.000Z

449

The ultra-thin solar cells that could generate power through windows  

E-Print Network (OSTI)

The ultra-thin solar cells that could generate power through windows By Claire Bates Last updated, generating enough electricity to power the GPS or air conditioning. Solar cells, which convert solar energy into tinted windows Page 1 of 3The ultra-thin solar cells that could generate power through windows | Mail

Rogers, John A.

450

Application of genetic algorithms for optimal reactive power planning of doubly fed induction generators  

Science Conference Proceedings (OSTI)

This paper describes optimal reactive power control of a doubly fed induction generator (DFIG), which is widely used in a distributed generating plant. Although its structure is similar to that of induction motors, its reactive power control is more ... Keywords: doubly fed induction generator, genetic algorithms, optimal reactive power planning, optimization

P. Sangsarawut; A. Oonsivilai; T. Kulworawanichpong

2010-03-01T23:59:59.000Z

451

Optimal reactive power planning of doubly fed induction generators using genetic algorithms  

Science Conference Proceedings (OSTI)

This paper describes optimal reactive power control of a doubly fed induction generator (DFIG), which is widely used in a distributed generating plant. Although its structure is similar to that of an induction motor, its reactive power control is more ... Keywords: doubly fed induction generator, genetic algorithms, optimal reactive power planning, optimization

P. Sangsarawut; A. Oonsivilai; T. Kulworawanichpong

2010-02-01T23:59:59.000Z

452

The Simulation of Doubly Fed Induction Generators Accessing Gansu Jiajiu Power Grid Based on PSASP  

Science Conference Proceedings (OSTI)

Due to the asynchronous generator has many negative factors such as large power fluctuation, poor transient performance, low energy efficiency, etc. The doubly fed induction generator(DFIG) is becoming a popular concept and thus the modeling of DFIG ... Keywords: double fed induction generator, decoupling control, power flow, power system transient stability, PSASP/UD

Wei Wei; Wang Yu-Hong; Li Xing-yuan; Deng Jing

2010-10-01T23:59:59.000Z

453

Hubei Shenzhou New Energy Power Generation Stock Co Ltd | Open Energy  

Open Energy Info (EERE)

Hubei Shenzhou New Energy Power Generation Stock Co Ltd Hubei Shenzhou New Energy Power Generation Stock Co Ltd Jump to: navigation, search Name Hubei Shenzhou New Energy Power Generation Stock Co Ltd Place Hubei Province, China Sector Biomass Product Hubei-based biomass power project developer. References Hubei Shenzhou New Energy Power Generation Stock Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Hubei Shenzhou New Energy Power Generation Stock Co Ltd is a company located in Hubei Province, China . References ↑ "Hubei Shenzhou New Energy Power Generation Stock Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Hubei_Shenzhou_New_Energy_Power_Generation_Stock_Co_Ltd&oldid=346655

454

Motiva Enterprises Refinery Expansion Groundbreaking | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

it. When this expansion is complete this facility which is now one of the preeminent refineries on the Gulf Coast will become the largest in the United States and one of the...

455

Impact of wind generators on the stability of power system network  

Science Conference Proceedings (OSTI)

This paper investigates the impacts of wind generators on the transient stability of a small power system. Two types of wind generators are considered, a fixed speed and variable speed induction generators. The behavior of synchronous generator's rotor ... Keywords: distributed generators, fixed and variable speed wind generators, transient stability

K. A. Folly; K. Tjiuma

2007-05-01T23:59:59.000Z

456

Power-generation alternatives. The Hellenic power system. Volume 1. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Phase I study was performed to assist the Public Power Corporation (PPC) of Greece in making decisions regarding the need for new power generation or for repowering existing facilities. An analysis of both new power generation requirements and the feasibility of repowering the existing Aliveri and St. George Stations with coal is provided. The study concludes: Repowering of Aliveri Units 3 and 4 with coal should commence now. Present and committed capacity of the PPC system is adequate until 1997 to 1999, at which time a new 600 MW pulverized coal boiler unit at the Aliveri Station would be commissioned. St. George Station has very little possibility for siting of coal-based new generation or repowering. New facilities should be designed for imported coal to conserve lignite resources for existing and committed units. An alternative to PPC ownership is private sector ownership. A Phase II study for repowering should be initiated and funded by PPC following acceptance of the Phase I study.

Not Available

1987-06-01T23:59:59.000Z

457

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

458

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

459

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

460

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

462

Autonomous induction generator/rectifier as regulated DC power supply for hybrid renewable energy systems  

Science Conference Proceedings (OSTI)

The present article deals with the wind power-generating unit of a Hybrid Photovoltaic-Wind Renewable Energy System (HPVWRES). The dynamic flux model of the self-excited induction generator used in the wind power-generating unit is given. This model, ... Keywords: experimental investigation, hybrid, induction generator, modeling, rectifier, regulation, renewable Energy

A. Nesba; R. Ibtiouen; S. Mekhtoub; O. Touhami; N. Takorabet

2005-10-01T23:59:59.000Z

463

Impact assessment of wind generation on the operations of a power system  

SciTech Connect

The impact of intermittent wind generation on the operations of the Tennessee Valley Authority (TVA) power system is investigated. The operations of the TVA power system are outlined, and the hypothetical reconfiguration of the TVA transmission system to accommodate wind generation is described. Simulations and analyses of wind generation impacts on unit commitment, unit predispatch, and automatic control of generation are also presented.

Sadanandan, N.D.; Hilson, D.W.; Morris, K.W.; Needham, M.E.; Sendaula, M.

1983-09-01T23:59:59.000Z

464

Refinery siting workbook: appendices A and B  

Science Conference Proceedings (OSTI)

The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

Not Available

1980-07-01T23:59:59.000Z

465

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

466

Refinery analytical techniques optimize unit performance  

Science Conference Proceedings (OSTI)

Refinery process engineers need to consider benefits of laboratory analytical techniques when evaluating unit performance. Refinery heavy-oil laboratory analytical techniques use both old and new technologies. Knowing how to use available laboratory analytical techniques within their limitations are critical to obtain correct refinery optimization decisions. Better refinery stream distillation and contaminant data ultimately improves the accuracy of various refinery decision-making tools. These laboratory analytical techniques are covered: high-temperature simulated distillation (HTSD); true boiling point (TBP) distillation--ASTM D2892; vacuum distillation--ASTM D5236; continuous-flash vaporizers; wiped-film evaporators; inductively coupled plasma atomic-emission spectroscopy (ICP-AES); Conradson--ASTM D189/Microcarbon residue--ASTM D4530; and asphaltene IP-143, ASTM D3279, ASTM D4124. Analysis of atmospheric crude, vacuum crude and delayed coker units highlight these laboratory techniques to identify potential yield and product quality benefits. Physical distillation or wiped-film evaporation in conjunction with HTSD, ICP-AES, microcarbon residue and asphaltened data will better characterize a feedstock as well as determine the source of contaminants. Economics are refinery specific, therefore, these examples focus on applying laboratory techniques as opposed to discussing specifics of unit improvement. These are discussed qualitatively.

Golden, S.W. [Process Consulting Services Inc., Grapevine, TX (United States); Craft, S. [Chempro, Inc., LaPorte, TX (United States); Villalanti, D.C. [Triton Analytics Corp., Houston, TX (United States)

1995-11-01T23:59:59.000Z

467

Complexity index indicates refinery capability, value  

Science Conference Proceedings (OSTI)

Refinery size usually is measured in terms of distillation capacity. Relative size, however, can be measured using refinery complexity--a concept developed by W.L. Nelson in the 1960s. Nelson developed the complexity index to quantify the relative cost of components that make up a refinery. It is a pure cost index that provides a relative measure of the construction costs of a particular refinery based on its crude and upgrading capacity. The Nelson index compares the costs of various upgrading units--such as a fluid catalytic cracking (FCC) unit or a catalytic reformer--to the cost of a crude distillation unit. Computation of the index is an attempt to quantify the relative cost of a refinery based on the added cost of various upgrading units and the relative upgrading capacity. A review of complexity calculations, and an explanation of how indices have changed, provide a simple means of determining the complexity of single refineries or refining regions. The impact of complexity on product slate is also examined in this paper.

Johnston, D. [Daniel Johnston and Co. Inc., Dallas, TX (United States)

1996-03-18T23:59:59.000Z

468

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

469

Feasibility investigation of the giromill for generation of electrical power  

DOE Green Energy (OSTI)

The cyclogiro computer program, obtained from Prof. H. C. Larsen of the United States Air Force Institute of Technology, was modified to incorporate computation of blade loads for the normal operating and gust loading conditions. The program was also changed to allow computation of the effects of smoothing the blade rock angles in the region where they experienced large oscillations due to passing through a vortex shed by the previous blade. Using this program the various effects of rotor geometric parameters were investigated. Giromill configuration design concepts were explored. A baseline concept was adopted having an upper structural triangular tower extending through the lower support tower and supported by two main rotor bearings. Twenty-one different Giromill systems covering a power range of 120, 500 and 1500 kW were then synthesized. These were structurally analyzed and sized. An automatic electronic control concept built around existing equipment and employing state of the art techniques was developed. Preliminary cost estimates for generating electrical power from the Giromill systems were completed. Cost estimating relationships of the major items of equipment were formulated. 10 references. (auth)

Brulle, R.V.

1975-11-01T23:59:59.000Z

470

Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Cooperative Corporation Cooperative Corporation AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas Electric Cooperative Corporation...

471

The life cycle CO2 emission performance of the DOE/NASA solar power satellite system: a comparison of alternative power generation systems in Japan  

Science Conference Proceedings (OSTI)

Solar power generation and, in particular, space solar power generation seem to be one of the most promising electric power generation technologies for reducing emissions of global warming gases (denoted collectively as CO2 emissions below). ... Keywords: Alternative technology, CO, Department of Energy (DOE)/NASA reference system, life cycle assessment (LCA), power generation, solar power satellite (SPS)

H. Hayami; M. Nakamura; K. Yoshioka

2005-08-01T23:59:59.000Z

472

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Integrated gasification fuel cell systems or IGFCs were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems.

Nguyen Minh

2005-12-01T23:59:59.000Z

473

Tidal Energy System for On-Shore Power Generation  

DOE Green Energy (OSTI)

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-scale, for ti

Bruce, Allan J

2012-06-26T23:59:59.000Z

474

Tidal Energy System for On-Shore Power Generation  

SciTech Connect

Addressing the urgent need to develop LCOE competitive renewable energy solutions for US energy security and to replace fossil-fuel generation with the associated benefits to environment impacts including a reduction in CO2 emissions, this Project focused on the advantages of using hydraulic energy transfer (HET) in large-scale Marine Hydrokinetic (MHK) systems for harvesting off-shore tidal energy in US waters. A recent DOE resource assessment, identifies water power resources have a potential to meet 15% of the US electric supply by 2030, with MHK technologies being a major component. The work covered a TRL-4 laboratory proof-in-concept demonstration plus modeling of a 15MW full scale system based on an approach patented by NASA-JPL, in which submerged high-ratio gearboxes and electrical generators in conventional MHK turbine systems are replaced by a submerged hydraulic radial pump coupled to on-shore hydraulic motors driving a generator. The advantages are; first, the mean-time-between-failure (MTBF), or maintenance, can be extended from approximately 1 to 5 years and second, the range of tidal flow speeds which can be efficiently harvested can be extended beyond that of a conventional submerged generator. The approach uses scalable, commercial-off-the-shelf (COTS) components, facilitating scale-up and commercialization. All the objectives of the Project have been successfully met (1) A TRL4 system was designed, constructed and tested. It simulates a tidal energy turbine, with a 2-m diameter blade in up to a 2.9 m/sec flow. The system consists of a drive motor assembly providing appropriate torque and RPM, attached to a radial piston pump. The pump circulates pressurized, environmentally-friendly, HEES hydraulic fluid in a closed loop to an axial piston motor which drives an electrical generator, with a resistive load. The performance of the components, subsystems and system were evaluated during simulated tidal cycles. The pump is contained in a tank for immersion testing. The COTS pump and motor were selected to scale to MW size and were oversized for the TRL-4 demonstration, operating at only 1-6% of rated values. Nevertheless, in for 2-18 kW drive power, in agreement with manufacturer performance data, we measured efficiencies of 85-90% and 75-80% for the pump and motor, respectively. These efficiencies being 95-96% at higher operating powers. (2) Two follow-on paths were identified. In both cases conventional turbine systems can be modified, replacing existing gear box and generator with a hydraulic pump and on-shore components. On a conventional path, a TRL5/6 15kW turbine system can be engineered and tested on a barge at an existing site in Maine. Alternatively, on an accelerated path, a TRL-8 100kW system can be engineered and tested by modifying a team member's existing MHK turbines, with barge and grid-connected test sites in-place. On both paths the work can be expedited and cost effective by reusing TRL-4 components, modifying existing turbines and using established test sites. (3) Sizing, performance modeling and costing of a scaled 15MW system, suitable for operation in Maine's Western Passage, was performed. COTS components are identified and the performance projections are favorable. The estimated LCOE is comparable to wind generation with peak production at high demand times. (4) We determined that a similar HET approach can be extended to on-shore and off-shore wind turbine systems. These are very large energy resources which can be addressed in parallel for even great National benefit. (5) Preliminary results on this project were presented at two International Conferences on renewable energy in 2012, providing a timely dissemination of information. We have thus demonstrated a proof-in-concept of a novel, tidal HET system that eliminates all submerged gears and electronics to improve reliability. Hydraulic pump efficiencies of 90% have been confirmed in simulated tidal flows between 1 and 3 m/s, and at only 1-6% of rated power. Total system efficiencies have also been modeled, up to MW-sca

Bruce, Allan J

2012-06-26T23:59:59.000Z

475

Power and Frequency Control as it Relates to Wind-Powered Generation  

SciTech Connect

This report is a part of an investigation of the ability of the U.S. power system to accommodate large scale additions of wind generation. The objectives of this report are to describe principles by which large multi-area power systems are controlled and to anticipate how the introduction of large amounts of wind power production might require control protocols to be changed. The operation of a power system is described in terms of primary and secondary control actions. Primary control is fast, autonomous, and provides the first-line corrective action in disturbances; secondary control takes place on a follow-up time scale and manages the deployment of resources to ensure reliable and economic operation. This report anticipates that the present fundamental primary and secondary control protocols will be satisfactory as wind power provides an increasing fraction of the total production, provided that appropriate attention is paid to the timing of primary control response, to short term wind forecasting, and to management of reserves for control action.

Lacommare, Kristina S H

2010-12-20T23:59:59.000Z

476

Low voltage ride-through capability improvement of wind power generation using dynamic voltage restorer  

Science Conference Proceedings (OSTI)

Recently, the total amount of generation from wind power plants has been increased all over the world. In this situation, a large amount of disconnection of wind generation may give a serious influence in the power system. Consequently, Low Voltage Ride-Through ... Keywords: dynamic voltage restorer, energy storage, fault ride-through, fixed-speed induction generator, low voltage ride-through, voltage sag, wind power generation

Naohiro Hasegawa; Teruhisa Kumano

2010-02-01T23:59:59.000Z

477

Optimal power generation in microgrids using agent-based technology.  

E-Print Network (OSTI)

??The existing power grids that form the basis of the respective electrical power infrastructures for various states and nations around the world, are expected to… (more)

Mahmoud, Thair

2013-01-01T23:59:59.000Z

478

Japanese power companies using more LNG to generate electricity ...  

U.S. Energy Information Administration (EIA)

... which led to the accident at Tokyo Electric Power Company's (TEPCO) Fukushima Daiichi nuclear power plant and subsequent outages at other plants.

479

A peak power tracker for low-power permanent-magnet-synchronous-generator-based wind energy conversion systems  

Science Conference Proceedings (OSTI)

This paper presents the results of experimental investigation of a low-power wind energy conversion system (WECS), based on a permanent-magnet synchronous generator (PMSG) connected directly to the turbine. A test rig was built in order to carry out ... Keywords: hardware-in-the-loop simulation, maximum power point tracking, optimal control, permanent-magnet synchronous generator, wind system

C. Vlad; I. Munteanu; A. I. Bratcu; E. Ceanga

2008-07-01T23:59:59.000Z

480

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "refinery power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-820 ANNUAL REFINERY ...  

U.S. Energy Information Administration (EIA)

the comparable capacity numbers reported on the Form EIA-810, "Monthly Refinery Report," filed for January 2014. ... ANNUAL REFINERY REPORT.

482

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

483

R.Perez, K.Zweibel, T.Hoff Solar Power Generation in the US  

E-Print Network (OSTI)

© R.Perez, K.Zweibel, T.Hoff Solar Power Generation in the US: Too expensive, or a bargain that solar electric power plants deliver to utilities' rate payers and society's tax payers. Benefits. Introduction "Economically viable" solar power generation remains a remote and elusive goal for the solar

Perez, Richard R.

484

Power quality analysis of wind generator connected to the weak grid during low wind speed  

Science Conference Proceedings (OSTI)

Power quality analysis based on measurements performed on wind generator during low wind speed is presented in the paper. Wind generator is connected via 10 kV cable to the distribution network, where grid is weak with low value of short-circuit power. ... Keywords: distribution network, harmonics, power quality, wind speed, wind turbine

Aleksandar Nikolic; Branka Kostic; Maja Markovic; Sasa Minic; Srdjan Milosavljevic

2011-07-01T23:59:59.000Z

485

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors  

E-Print Network (OSTI)

Grid-Connected Marine Current Generation System Power Smoothing Control Using Supercapacitors to reduce the fluctuation of generator power. In the second step, Supercapacitor (SC) Energy Storage System fluctuation, swell effect, power smoothing control, supercapacitor. I. [NTRODUCTION [n the recent years

Paris-Sud XI, Université de

486

A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

The power from wind varies depending on the environmental factors. Many methods have been proposed to locate and track the maximum power point (MPPT) of the wind, such as the fuzzy logic (FL), artificial neural network (ANN) and neuro-fuzzy. In this ... Keywords: ANFIS, MPPT, Power generation, Variable speed wind generator, Wind energy

A. Meharrar; M. Tioursi; M. Hatti; A. Boudghène Stambouli

2011-06-01T23:59:59.000Z

487

Proceedings: Conference on Coal Gasification Systems and Synthetic Fuels for Power Generation, Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The international effort to develop synthetic fuels and advanced power systems for the commercial generation of electric power from coal, oil shale, and tar sands has been an outstanding technical success. This conference highlighted the work that brought new fuels and power generation systems to reality.

1986-01-01T23:59:59.000Z

488

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

489

Coal-fueled diesels for modular power generation  

DOE Green Energy (OSTI)

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power