Sample records for refinery company samref

  1. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Dhahran Saudi Arabia http www saudiaramco com en home html Saudi Aramco Mobile Refinery Company SAMREF Saudi Aramco Mobile Refinery Company SAMREF P O Box Yanbu S audi...

  2. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump638324°, -122.0230146° Show

  3. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Leveraging existing refining infrastructure potentially reduces costs for biofuel production but we first need to understand the impacts Petroleum Refinery Picture courtesy...

  4. Multiperiod Refinery Planning Optimization

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Multiperiod Refinery Planning Optimization with Nonlinear CDU Models Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development 2 Extension to Multiperiod Planning #12;3 Multiperiod Refinery: refinery configuration Determine · What crude oil to process and in which time period? · The quantities

  5. Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization

    E-Print Network [OSTI]

    Pike, Ralph W.

    Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization Xueyu Chen, Derya) British Petroleum Applications mainly crude units in refineries and ethylene plants #12;Companies

  6. Application of Pinch Technology in Refinery Retrofits

    E-Print Network [OSTI]

    Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

    APPLICATION OF PINCH TECHNOLOGY IN REFINERY RETROFITS W. R. L. Thomas, J. H. Siegell, T. Sideropoulos, J. L. Robertson, S. A. Papoulias Exxon Research and Engineering Company Florham Park, New Jersey ABSTRACT This paper reviews... the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well...

  7. Fluidized bed controls refinery emissions

    SciTech Connect (OSTI)

    Abdulally, I.F.; Kersey, B.R.

    1986-05-01T23:59:59.000Z

    In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

  8. Kyrgyzstan starts up its first refinery

    SciTech Connect (OSTI)

    McLeod, G. [Petrofac LLC, Tyler, TX (United States)

    1997-05-05T23:59:59.000Z

    The Central Asian republic of Kyrgyzstan started up its first oil refinery in October 1996. The 10,000 b/d plant is designed to produce gasoline, diesel, and mazut (heavy fuel oil) from local Kyrgyz crude. Before construction of the Jalalabad refinery, all finished petroleum products were imported from neighboring countries. Kyrgyzstan`s demand for finished products is about 40,000 b/d. The new refinery was designed and constructed by Petrofac of Tyler, Texas, on behalf of Kyrgoil Corp., Calgary. Kyrgoil is a partner with the Kyrgyz state oil company, Kyrgyzsneft, in a venture called Kyrzgyz Petroleum Co. (KPC). KPC has undertaken restoration and continued development of the oil fields in Kyrgyzstan`s Fergana basin, in addition to the refinery project. The company also has marketing rights for finished products within Kyrgyzstan. The refinery comprises: a hydroskimming (atmospheric distillation) section, diesel steam stripping, gasoline blending, and utilities and off-sites, including steam generation, power generation, tank farm, truck and rail tank-car loading and unloading facilities, crude inlet pipeline, high-voltage power line, substation, air compression, laboratory, and maintenance facilities.

  9. Refinery Energy Profiling Procedure

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  10. Refinery Energy Profiling Procedure

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  11. Tenneco revamps chalmette refinery

    SciTech Connect (OSTI)

    Heck, W.E.; Ragsdale, R.

    1985-01-14T23:59:59.000Z

    A major expansion and modernization project has been completed at Tenneco Oil Co.'s Chalmette, La. refinery, which is on the outskirts of New Orleans. The $559 million project, called the Chalmette heavy oil processing program, included revamps and construction of new units. These new and modified facilities have increased the crude oil capacity of the refinery by 30,000 b/d to 127,000 b/d. Gasoline and/or middle distillate output potential has also been lifted by 30,000 b/d. Numerous studies were made and economic cases worked to determine the process configuration and selection for the project. These conclusions varied depending on the raw material chosen as the feedstock (crude source). The configuration finally chosen was driven by the decision to be able to process high metals crudes from around the world.

  12. Analysis Patterns for Oil Refineries

    E-Print Network [OSTI]

    Lei Zhen; Guangzhen Shao

    We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

  13. Ashland outlines $261 million in refinery unit construction

    SciTech Connect (OSTI)

    Not Available

    1992-08-31T23:59:59.000Z

    This paper reports that Ashland Petroleum Co. has spelled out $261 million in projects completed, under way, or planned to produce cleaner fuel and further reduce emissions at two U.S. refineries. The company: Started up at $13 million pollution control system at its 213,400 b/cd Catlettsburg, Ky., plant. Started construction on six projects at its 67,100 b/cd St. Paul Park, Minn., refinery that will cost about $114 million and enable the plant to produce cleaner burning diesel fuel and further reduce emissions.

  14. SELECTED TOPICS in APPLIED COMPUTER SCIENCE Data Mining and Data Gathering in a Refinery

    E-Print Network [OSTI]

    Mahmoud Reza Saybani A; Teh Ying Wah B

    This article handles one of critical steps of data mining, which is data collection. It will show how the researcher could get access to the valuable data of a refinery. And it explains the procedures of refining criteria for data collection. It also briefly explains the oil refining procedures to make the concept of data gathering at the refinery easier to understand. Each manufacturing company has its own specifications and rules that are needed to be considered when collecting data. As such the result of data gathering is almost always different for different manufacturing companies. Key-Words: Data gathering, data collection, data mining, oil refinery Data mining algorithms play an important and successful role in many manufacturing companies including oil refineries. Profit management, quality and process control in

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April 25, 20137a.06 2.013 1.673Refinery

  16. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782A andS FRecord U.S. oilRefinery1

  17. Hulett's South African Refineries Ltd.

    E-Print Network [OSTI]

    R. P. Jennings

    The improvement in the quality of raw sugars sent to Hulett's Refinery during the three seasons, 1963164 to 1965166, was the subject of a paper presented to this association last year. (1) These

  18. Encon Motivation in European Refineries

    E-Print Network [OSTI]

    Gambera, S.; Lockett, W., Jr.

    1982-01-01T23:59:59.000Z

    One essential element in a successful energy conservation or Encon program is effective motivation of employees and organizations to conserve energy. Encon motivation in our European refineries is a continuing effort that requires utilization...

  19. Energy Efficient Refinery Process Developed with U.S. D.O.E. Support

    E-Print Network [OSTI]

    Mings, W. J.

    1983-01-01T23:59:59.000Z

    ENERGY EFFICIENT REFINERY PROCESS DEVELOPED WITH U.S. D.O.E. SUPPORT Walter J. Mings, P.E. EG&G Idaho, Inc. Idaho Falls, Idaho Abstract The United States Department of Energy histori cally has encouraged private efforts to develop en ergy... with potential for extensive industrial energy savings. INTRODUCTION An innovative energy saving refinery process (also called the catalytic distillation process) for pro ducing MTBE (Methyl Tertiary Butyl Ether) was devel oped by two Houston companies...

  20. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  1. Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Nonlinear CDU Models in RefineryCDU Models in Refinery Planning Optimization Carnegie Mellon University EWO Meeting ­ March 2011 1 #12;I t d tiIntroduction Refinery production planning models Optimizing refinery operation C d l ti Crude selection Maximizing profit; minimizing cost

  2. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis...

  3. A Texas Refinery Success Story

    E-Print Network [OSTI]

    Kacsur, D.

    A Texas Refinery Success Story Dennis Kacsur Spirax Sarco Common knowledge rules that maintenance is the key to long-lasting machinery performance. Yet steam traps are often left to their own devices, to fail or succeed alone. And without... steam trap programs, plants are certain to experience a high failure rate. An oil refinery in Texas was continuously experiencing a high failure rate on its 4,790-steam trap system. Finally, the steam losses were judged to be too high, and plant...

  4. Integration of Nonlinear CDU Models in Refinery

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Nonlinear CDU Models in Refinery Planning Optimization Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development Fixed-yieldModels SwingcutsModels LPPlanningModels Aggregate for the CDU #12;Planning Model Example Typical Refinery Configuration (Adapted from Aronofsky, 1978) Cat Ref

  5. Refinery Fuel Balancing with Cogeneration

    E-Print Network [OSTI]

    Passman, K. W.; Taylor, R. I.; Williams, D. E.; Emanuel, D.

    in order to tie-in during a scheduled refinery wide turnaround and to be on line during the summer 1990 operating period. The two gas turbines exhaust to two existing boilers where the oxygen in the turbine exhaust is utilized for combustion. Supplementary...

  6. Energy Guideline Factors Provide a Better Measure of Refinery Energy Performance

    E-Print Network [OSTI]

    Libbers, D. D.

    1980-01-01T23:59:59.000Z

    Exxon Company, U.S.A. refineries reduced energy consumption by 25% between 1972 and 1978 compared with an 18% reduction for the U.S. Petroleum Refining Industry over the same period. The Exxon approach to conserving energy in petroleum refining...

  7. THE NEW GASIFICATION PROJECT AT ENI SANNAZZARO REFINERY AND ITS INTEGRATION WITH A

    E-Print Network [OSTI]

    Mwe Power Plant; Guido Collodi; Dario Camozzi; Snamprogetti Italy

    2004-01-01T23:59:59.000Z

    Following the new regulation introduced in Europe in the last years, defining more stringent limits for the emissions to the atmosphere, the necessity to find an alternative use for the fuel oil has created a new challenge for the refineries. At the same time the need to improve the Italian power production has pushed Eni, the Italian energy company, to enter the electricity market.

  8. Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Refinery Production Planning: Multiperiod MINLP with Nonlinear CDU Model-Rivera (2011) developed a single-period, nonlinear programing refinery planning model production, distribution, sales and inventory management1,2. The refinery

  9. Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...

    Broader source: Energy.gov (indexed) [DOE]

    Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

  10. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters -...

  11. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01T23:59:59.000Z

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  12. Recent trends in refinery hydrogen production

    SciTech Connect (OSTI)

    Aitani, A.M.; Siddiqui, M.A.B. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Refiners are experiencing a rise in hydrogen requirements to improve product quality and process heavy sour crudes. Fuel reformulation has disrupted refinery hydrogen balance in two ways: more hydrogen is needed for hydroprocessing and less hydrogen is coproduced from catalytic naphtha reforming. The purpose of this paper is to review trends in maximizing refinery hydrogen production by modifications and alternatives to the conventional steam methane reforming, recovery from refinery off gases and {open_quote}across-the-fence{close_quote} hydrogen supply. 11 refs., 2 tabs.

  13. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2DBuilding Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  14. Upgrade Your Refinery for Energy Conservation

    E-Print Network [OSTI]

    Johnnie, D. H., Jr.; Klooster, H. J.

    1983-01-01T23:59:59.000Z

    Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test...

  15. Making Refinery Wastewater Clean | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refinery Wastewater Clean Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  16. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost...

  17. Monitoring and Management of Refinery Energy Consumption

    E-Print Network [OSTI]

    Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

    MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

  18. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  19. Steam System Management Program Yields Fuel Savings for Refinery

    E-Print Network [OSTI]

    Gaines, L. D.; Hagan, K. J.

    1983-01-01T23:59:59.000Z

    The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

  20. Getting it right at Catlettsburg: How Ashland Petroleum`s flagship refinery transformed itself

    SciTech Connect (OSTI)

    Whitt, R.E.; Kennison, R.H.M.

    1997-03-01T23:59:59.000Z

    Life has its surprises. In the midst of the pain and excitement of a massive organizational overhaul, Ashland Petroleum`s Catlettsburg refinery--a 220,000-b/d facility in Ashland, Ky.,--experienced an unplanned cracker shutdown, a few production mishaps, a two-week employee walk-out, and belt-tightening necessitated by competitive pressures. Yet, despite these adverse circumstances, the Catlettsburg Refinery Initiative (CRI), a 20-month effort that shifted from planning to implementation in October 1995, yielded remarkable results. By 1996, the refinery began achieving record levels of through-put with lower maintenance costs, increasing company profitability by about 15% in the first half of 1996, over the same period in 1995. In a post-initiative survey, refinery employees expressed enthusiam for the changes and their new work-roles. A number of factors converged to give the initiative drive and direction: a pervasive discomfort with the status quo, a determination by top management to make fundamental changes, a commitment to rapid implementation and effective use of an outside consultant. But above all, success at Catlettsburg was a result of a grassroots approach to the process of change.

  1. Software communications integrated into refinery system

    SciTech Connect (OSTI)

    Goodpaster, R.; Kennedy, J.P.

    1989-01-16T23:59:59.000Z

    Ashland Oil Co. is integrating software communications, using real-time data, into the computerized information system at its Catlettsburg, Ky., refinery. The Ashland real-time information system (Artis) was designed to improve timeliness and accuracy of yield accounting to the refinery, and to standardize software communications between applications. With the system, real-time data are collected in a central data server and used to feed normal data reconciliation software for validation. This part of the system has been successfully implemented. Standardization of software communications is still under design, but most of the communication paths have been defined because a highly evolved information system already exists at the refinery. And efforts are under way to integrate information from the process to optimization.

  2. Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Global Optimization for Scheduling Refinery Crude Oil Operations Ramkumar Karuppiaha , Kevin C at the front-end of a petroleum refinery. The model relies on a continuous time representation making use-412-268-7139. Email address: grossmann@cmu.edu (I.E. Grossmann) #12;2 Keywords: Refinery scheduling; Nonconvex MINLP

  3. Wireless Critical Process Control in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

  4. Determinants of HR Effectiveness and Refinery Performance

    E-Print Network [OSTI]

    Blaine Mccormick; Gary C. Mcmahan; W. Scott Sherman; Patrick M. Wright; Patrick M. Wright; Gary C. Mcmahan; Blaine Mccormick; W. Scott Sherman

    This paper has not undergone formal review or approval of the faculty of the ILR School. It is intended to make results of Center research available to others interested in preliminary form to encourage discussion and suggestions. Page 1SHRM and Refinery Performance WP 97-16 Strategy, Core Competence and HR Involvement as

  5. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  6. Flare Gas Recovery in Shell Canada Refineries

    E-Print Network [OSTI]

    Allen, G. D.; Wey, R. E.; Chan, H. H.

    1983-01-01T23:59:59.000Z

    the flow properties for compressor selection? What controls should be incorporated? How much operator and maintenance effort will be required for safe, efficient operation? What kind of process and hardware problems should be watched for? When...? This paper will touch on all these issues. SYSTEM CONFIGURATION A schematic of a typical refinery flare gas recovery facility is shown in Figure I. The facilities include the following pieces of equipment: - compressor suction drum - compressor set...

  7. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19T23:59:59.000Z

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  8. Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories

    E-Print Network [OSTI]

    Krebsbach, Kurt D.

    Projection and Reaction for Decision Support in Refineries: Combining Multiple Theories Kurt D system to provide decision support for refinery operations personnel (Krebsbach & Musliner 1997; Musliner to provide sufficiently flexible decision support in complex environments. Background: Refinery Control

  9. Test plan: the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon

    SciTech Connect (OSTI)

    Altman, D.J.; Lombard, K.H.; Hazen, T.C.

    1997-03-31T23:59:59.000Z

    The remediation strategies that will be applied at the Czechowice Oil Refinery waste lagoon in Czechowice, Poland are designed, managed, and implemented under the direction of the Westinghouse Savannah River Company (WSRC) for the United States Department of Energy (DOE). WSRC will be assisted in the demonstration by The Institute for Ecology of Industrial Areas (IETU). This collaboration between IETU and DOE will provide the basis for international technology transfer of new and innovative remediation technologies that can be applied in Poland and the Eastern European Region as well.

  10. U.S. Refinery Net Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 0.11 0.0949,797.6(MillionRefinery3,028,561- - -

  11. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  12. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    1989-01-01T23:59:59.000Z

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  13. Reformulated gasoline: Costs and refinery impacts

    SciTech Connect (OSTI)

    Hadder, G.R.

    1994-02-01T23:59:59.000Z

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

  14. INEOS Scholarship Opportunity 2013 INEOS is a young and vibrant leading petrochemical company which has grown

    E-Print Network [OSTI]

    Painter, Kevin

    INEOS Scholarship Opportunity 2013 INEOS is a young and vibrant leading petrochemical company which employees in the company success. The Grangemouth refinery and petrochemicals facility is the largest INEOS and the petrochemical plants. Located 20 miles west of Edinburgh on a 1700-acre site, the petrochemicals facility

  15. Energy Management Program of an Integrated National Oil Company in the Middle-East

    E-Print Network [OSTI]

    Kumana, J. D.; Aseeri, A. S.

    2007-01-01T23:59:59.000Z

    (GOSPs), 5 wholly-owned oil refineries processing 1600 MBD of crude, 5 gas-processing plants, and 2 condensate fractionation plants. The Companys total in-Kingdom energy consumption in 2005 was over 50,000 MMBtu/h of fuel gas and liquids, and 1.55 GW...

  16. Nigerian refineries strive for product balance

    SciTech Connect (OSTI)

    Obuasi, P.A.

    1985-06-17T23:59:59.000Z

    This article discusses the growth patterns of the Nigerian refining industry. Production and consumption are expected to follow the pattern of consumption of fuel products by the domestic market, Presently, however, production and consumption are not evenly balanced for most fuel products, and non-fuel products are domestically consumed but not produced. Some progress has been made in the effort to match production and consumption of fuel products. But the progress that would have been made to balance non-fuel products has been nullified by 50% of the Daduna refinery being idle. This is due to problems associated with importation of heavy crude oil into Nigeria and also a weak market for asphalt in Nigeria.

  17. RCC complex now cornerstone of Ashland refinery

    SciTech Connect (OSTI)

    Busch, L.E.; Hettinger, W.P.; Krock, R.P.

    1984-12-10T23:59:59.000Z

    Performance of the first grassroots RCC process unit during its initial 1 1/2 years of operation at Ashland's principal refinery at Catlettsburg, Ky., has confirmed the commercial viability and process advantages of this new technology for heavy oil conversion. The unit has successfully processed untreated atmospheric residuum having Ramsbottom carbon content as high as 7.1 wt%, and metals contamination up to 70 ppm nickel plus vanadium into high yields of transportation and distillate fuels and other light products. The startup of this 40,000 b/d facility in March 1983 brought to fruition nearly 8 years of diligent process development and a 3-year accelerated engineering and construction program. The commercial unit was expressly designed and built to exploit process, hardware, and catalyst innovations flowing from the development effort and demonstrated to be especially applicable to converting long resids. The unit has generally met and exceeded technical expectations.

  18. Integrating NABC bio-oil intermediates into the petroleum refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  19. Implementing an Energy Management Strategy for a Houston Refinery

    E-Print Network [OSTI]

    Wood, S. C.; Agrawal, R. K.; Canon, D.

    and maintained energy management program translates to PROFIT added directly to the BOTTOM LINE. Woodward-Clyde Consultants (WCC) recently implemented and energy management program at the Lyondell-Citgo Refinery in Houston, Texas. The basis of the program...

  20. Refinery Energy Conservation Experience with Enhanced Surface Reboilers

    E-Print Network [OSTI]

    Ragi, E. G.; O'Neill, P. S.

    1981-01-01T23:59:59.000Z

    Examples of refinery services where existing reboilers were retubed or replaced with enhanced High Flux tubing to better utilize or conserve energy are reported. (1) Retubing an existing toluene column reboiler permitted the use of low cost 115...

  1. Gas Separation Membrane Use in the Refinery and Petrochemical Industries

    E-Print Network [OSTI]

    Vari, J.

    Membranes have gained commercial acceptance as proven methods to recover valuable gases from waste gas streams. This paper explores ways in which gas separation membranes are used in the refinery and petrochemical industries to recover and purify...

  2. Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs

    E-Print Network [OSTI]

    Viar, W. L.

    1979-01-01T23:59:59.000Z

    . It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

  3. Optimization of Steam Network in Tehran Oil Refinery

    E-Print Network [OSTI]

    Khodaie, H.; Nasr, M. R. J.

    2008-01-01T23:59:59.000Z

    Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper...

  4. Obstacles and Opportunity: Turbine Motorization in Refineries Today

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  5. Obstacles and Opportunity: Turbine Motorization in Refineries Today

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  6. Steps taken at Malelane refinery to improve refined sugar quality

    E-Print Network [OSTI]

    M Moodley; Pm Schorn

    1997-01-01T23:59:59.000Z

    The refinery at Malelane has in the past produced refined sugar for the consumer market. A decision was taken by the management of Transvaal Sugar (TSB) to produce a quality of refined sugar that would also be acceptable to the industrial and the export markets. The processes that were evaluated and implemented at the Malelane refinery during the past three seasons to achieve this objective, are described.

  7. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  8. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  9. VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    VarPetrRef 1 VARIETY AND THE EVOLUTION OF REFINERY PROCESSING Phuong NGUYEN*, Pier-Paolo SAVIOTTI, refinery processes, variety, niche theory, Weitzman measure. JEL classification : L15 -L93 -O3 1

  10. STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas

    E-Print Network [OSTI]

    Leveson, Nancy

    1 STAMP-Based Analysis of a Refinery Overflow Accident Nancy Leveson, Margaret Stringfellow, and John Thomas As an example of STAMP, we have taken an accident report produced for a real refinery

  11. Opportunities for Biomass-Based Fuels and Products in a Refinery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session...

  12. Mixed reality training application for an oil refinery: user requirements

    E-Print Network [OSTI]

    Marjaana Trskbck

    2004-01-01T23:59:59.000Z

    Introducing mixed reality (MR) into safety-critical environment like oil refinery is difficult, since the environment and organization lays demanding restrictions for the application. In order to develop usable and safe MR application, we need to study the context of use and derive user requirements from it. This paper describes the user requirements for an MR based oil refinery training tool. The application is aimed to train employees of a specific process unit in the refinery. Training is currently done mainly in a classroom and on-site only when the process is closed down. On-site training is necessary, but expensive and rarely possible. The use of mixed reality offers a way to train employees on-site while the process is running. Users can virtually see inside the columns and can modify virtually the process..

  13. Potentials for Fuel Cells in Refineries and Chlor-Alkali Plants

    E-Print Network [OSTI]

    Altseimer, J. H.; Roach, F.

    POTENTIALS FOR FUEL CELLS IN REFINERIES AND CHLOR-ALKALI PLANTS John H. Altseimer and Fred Roach Los Alamos National Laboratory Los Alamos, New Mexico ABSTRACT The market potentials for fuel cell cogenera tion systems in petroleum refineries... in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries...

  14. GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning (Performance Analysis. Grossmann #12;2 Motivation · Refinery planning is an active area in process systems that strongly relies HF REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL

  15. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils

    E-Print Network [OSTI]

    The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic lime- stone additions resulted

  16. Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Optimal Industrial Load Control in Smart Grid: A Case Study for Oil Refineries Armen Gholian, Hamed units finish their operations. Considering an oil refinery industry as an example, we not only identify Terms­Demand response, load management, manufactur- ing industries, oil refineries, optimal scheduling

  17. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)

    E-Print Network [OSTI]

    Treatability studies on different refinery wastewater samples using high-throughput microbial, University Park, PA 16802, USA h i g h l i g h t s Refinery wastewaters were tested as fuels in MECs effective for treatment or pre-treatment of some refinery wastewaters. The best way to start up MECs

  18. Wireless channel characterization and modeling in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

  19. Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition Sylvain: refinery planning and crude-oil operations scheduling. The proposed approach consists of using Lagrangian-study and a larger refinery problem show that the Lagrangian decomposition algorithm is more robust than the other

  20. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    E-Print Network [OSTI]

    Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

  1. JANUARY 2007 THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL

    E-Print Network [OSTI]

    Leveson, Nancy

    OF JANUARY 2007 THE REPORT THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL #12;From left;PANEL STATEMENT The B.P. U.S. Refineries Independent Safety Review Panel i Process safety accidents can be prevented. On March 23, 2005, the BP Texas City refinery experienced a catastrophic process accident

  2. Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Perception of an emergency Situation by operators in an oil refinery L.Pioche&J.RPineau Institut de the operators' behaviour during an emergency Situation m an oil refinery. The aim ofthis stage the general objective is to analyse the operators' behaviour during an emergency Situation in an oil refinery

  3. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15T23:59:59.000Z

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  4. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1997. Two companies in

    E-Print Network [OSTI]

    and Use: No domestic primary gallium recovery was reported in 1997. Two companies in Oklahoma and Utah in optoelectronic devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar-than-expected increase in demand. The company planned to operate its refineries in France and Germany using stockpiled

  5. (Data in kilograms of gallium content, unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 1999. Two companies in

    E-Print Network [OSTI]

    and Use: No domestic primary gallium recovery was reported in 1999. Two companies in Oklahoma and Utah in optoelectronic devices, which include light-emitting diodes (LED's), laser diodes, photodetectors, and solar in July. The additional facility was expected to double the company's refinery capacity to 100

  6. The MTBE solution: Octanes, technology, and refinery profitability

    SciTech Connect (OSTI)

    Lander, E.P.; Hubbard, J.N.; Smith, L.A.

    1983-03-01T23:59:59.000Z

    This paper has been developed to provide refiners with business decision insight regarding the production of methyl tertiary butyl ether (MTBE) from refinery - (FCC) produced isobutylene. The driving forces making MTBE an attractive investment are examined with regard to the increasing demand for higher octane unleaded gasolines. The decision to proceed with MTBE production depends on the profitability of such an investment and the refiner's ability to meet market demands using available processing equipment, refinery produced streams and external feedstocks. The factors affecting this decision are analyzed in this paper and include: industry ability to meet rising octane demand; profit potential realized by diverting isobutylene to MTBE; availability of technology for producing MTBE; and investment and operating costs required to produce MTBE. Chemical Research and Licensing and NEOCHEM have developed a simple, low cost process to produce MTBE, reducing the excessive equipment and high operating costs that were associated with conventional MTBE designs. The economics and process benefits of installing a CRandL/NEOCHEM MTBE process are examined within the framework of a generalized medium-sized refinery configuration.

  7. Controlling Silver Dust and Fumes at Mine Refinery

    E-Print Network [OSTI]

    R. A. Haney; M. P. Valoski

    ABSTRACT: As part of the refining of gold and silver molten metal, silver dust and fumes are released into the atmosphere. The Mine Safety and Health Administration (MSHA) enforces an 8-hour, equivalent Time Weighted Average concentration limit for silver dust and fumes of 10 g/m 3. MSHA initiated a program to assess the controls that were being used to control silver dust and fume exposure. Refineries were visited at six mines. The layout of each refinery and the controls used varied at each refinery. At each operation, personal and area silver fume and dust samples were collected to assess worker exposures and to determine sources of fume. Primary source of silver dust and fume exposure was the pouring of molten metal from the furnace. Secondary sources of exposure included: precipitate mixing, bar cooling, and housekeeping. Guidelines were developed addressing housekeeping, exhaust ventilation, general ventilation, administrative controls, and system monitoring. In most cases, housekeeping and general ventilation were adequate; however, the exhaust ventilation systems needed to be improved. 1 INRODUCTION Silver dust and fumes become airborne during the refining step of producing gold and silver. The dust

  8. Refinery gas waste heat energy conversion optimization in gas turbines

    SciTech Connect (OSTI)

    Rao, A.D.; Francuz, D.J.; West, E.W. [Fluor Daniel, Inc., Irvine, CA (United States)

    1996-12-31T23:59:59.000Z

    Utilization of refinery fuel gas in gas turbines poses special challenges due to the combustion characteristics of the fuel gas which contains significant concentrations of hydrogen. Proper modifications to the combustion system of the existing gas turbines are required in order to combust such fuel gas streams in gas turbines while minimizing the NO{sub x} emissions. A novel approach to the utilization of this hydrogen bearing fuel gas in gas turbines consists of humidifying the fuel gas with water vapor by direct contact with hot water in a counter-current column, the feed water to the humidifier being first circulated through the refinery to recover waste heat. The refinery waste heat produces additional motive fluid with a result that the waste heat is converted to power in the gas turbine. Furthermore, the water vapor introduced into the fuel gas reduces the NO{sub x} formation and increases the gas turbine output, while the hydrogen present in the fuel gas provides the flame stability required when combusting a fuel gas containing a large concentration of water vapor.

  9. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23T23:59:59.000Z

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  10. GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 GDP Formulation of a segmented CDU Swing Cut Model for Refinery Planning Department of Chemical · Refinery planning is an active area in process systems that strongly relies on the accuracy of the CDU REFINERY FUEL RG LPG LN HN KN GO1 GO2 VGO VR1 VR2 C1 LPG LIGHT NAPHTHA PMS 98 MOGAS 95 JET FUEL AGO HGO HFO

  11. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

    2010-12-08T23:59:59.000Z

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  12. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2004 producer refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery

  13. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  14. The Energy Minimization Method: A Multiobjective Fitness Evaluation Technique and Its Application to the Production Scheduling in a Petroleum Refinery

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    to the Production Scheduling in a Petroleum Refinery Mayron Rodrigues de Almeida Slvio Hamacher Industrial applied to production scheduling of a petroleum refinery. The experimental results are presented of the method when applied to the production scheduling in a petroleum refinery. Section 5 discusses

  15. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    None

    2009-12-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  16. (Data in kilograms of germanium content, unless noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1995

    E-Print Network [OSTI]

    : The value of domestic refinery production of germanium, based on the 1995 producer price, was approximately industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania. World Refinery Production, Reserves, and Reserve Base: Refinery production Reserves6 Reserve base6 1994

  17. Investment companies

    E-Print Network [OSTI]

    Sauer, Edward F

    1961-01-01T23:59:59.000Z

    stockholder challenged the management fee paid to F. Eberstadt & Co. , Inc. , manager and distributor of Chemical Fund. The court dismissed the case on the grounds that excessive fees had not been proved. This case, however, could hardly be considered a... Tax-Exempt Bond Funds. . . . . . . . Daily Pricing of Mutual Investment Company Shares. 56 57 59 59 60 iv Management Fees. . . . . Tax-Free Exchange Funds . 61 62 V. CONCLUSIONS 63 BIBLIOGRAPHY GLOSSARY OF TERMS Balanced fund...

  18. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01T23:59:59.000Z

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  19. CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario

    E-Print Network [OSTI]

    Manesh, M. H. K; Khodaie, H.; Amidpour, M.

    2008-01-01T23:59:59.000Z

    Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

  20. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01T23:59:59.000Z

    Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NOx emissions while also generating electricity at an attractive heat rate. Design considerations and system costs are presented....

  1. CO2 Reduction through Optimization of Steam Network in Petroleum Refineries: Evaluation of New Scenario

    E-Print Network [OSTI]

    Manesh, M. H. K; Khodaie, H.; Amidpour, M.

    2008-01-01T23:59:59.000Z

    Steam network of petroleum refinery is energy intensive, and consequently contribute significantly to the greenhouse gases emissions. A simple model for the estimation of CO2 emissions associated with operation of steam network as encountered...

  2. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22T23:59:59.000Z

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  3. Exergy Analysis of the Steam Network in Tehran Oil Refinery and Evaluation with New Scenario

    E-Print Network [OSTI]

    Khodaei, H.; Taheri, R.; Arghandeh, R.

    oil refinery, Exergy Analysis, Steam Network, Retrofit, Optimization 1. INTRODUCTION Refinery steam network is considered as a unit that consumes energy greatly. The main objective of the network is to produce the steam, which is required...) Using heat recovery steam generating systems and gas turbines instead of old boilers and so on. Figure 1 shows the opportunities of optimization in steam networks. in this paper, we complete the lost works such as optimization and estimation...

  4. Affordability analysis of lead emission controls for a smelter-refinery. Final report

    SciTech Connect (OSTI)

    Scherer, T.M.

    1989-10-01T23:59:59.000Z

    This document evaluates the affordability and economic impact of additional control measures deemed necessary for a smelter-refinery to meet the lead emission standard. The emphasis in the analysis is on the impact of control costs on the smelter-refinery's profitability. The analysis was performed using control-cost data from two different lead-smelter studies in conjunction with other existing industry data.

  5. Technologies for the separation and recovery of hydrogen from refinery streams

    SciTech Connect (OSTI)

    Wilcher, F.P.; Miller, G.Q.; Mitariten, M.J. [UOP, Des Plaines, IL (United States)

    1995-12-31T23:59:59.000Z

    The effective use and recovery of hydrogen from the major hydrogen-containing streams in the refinery is an important strategy to meet the refining demands of the 1990`s. Hydrogen upgrading in refinery applications can be achieved by pressure swing adsorption (PSA), selective permeation using polymer membranes, and cryogenic separation. Each of these processes has different characteristics which are of advantage in different situations. Process selection and specific application examples are discussed.

  6. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31T23:59:59.000Z

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  7. Soil cleaning at Czechowice Refinery A. Worsztynowicz1

    E-Print Network [OSTI]

    Hazen, Terry

    . Kossutha 6, Poland 2. Westinghouse Savannah River Company, Aiken, South Carolina, 29808 USA 3. Lawrence Berkeley National Laboratory, Berkeley, California, 94720 USA Abstract. As a part of the US DOE - IETU

  8. International Journal of Chemistry; 2013[02] ISSN 2306-6415 Preservation Ways and Energy Consumption in Oil Refinery

    E-Print Network [OSTI]

    Amir Samimi

    Abstract: Preservation increase and energy return is one of the effective tools in saving. Studies show that energy consumption for each productive crude oil barred is dependence on the refinery complicated in reconfiguration of forge. Energy recovery increase in refinery over time that is due to economic factors like consumption fuel increase, it means that return increase is consistent with fuel price. It developed use of crude oil capability, distillation products in modern refinery. Modern refinery recovery dead to 10 to 15 % saving in energy consumption, Modern refinery.can developed energy return in several ways such as: Thermal exchange increase between processes streams, effective hydro exchange in process units, use of heaters with high thermal return and use of gas turbines with preheated air and produce steam of waste thermal. This paper investigates management ways and energy consumption recovery in different parts of oil refinery.

  9. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

    2008-07-01T23:59:59.000Z

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  10. REFEREED PAPER PRE-TREATMENT OF REFINERY FINAL RUN-OFF FOR CHROMATOGRAPHIC SEPARATION

    E-Print Network [OSTI]

    Singh I; Stolz Hnp; Ndhlala T

    In the case of a back-end refinery, the final run-off or return syrup of 92-95 % purity and 75 brix is generally returned to the raw mill to be combined with raw syrup and boiled in the A-pans. Approximately 8 % of the input raw sugar brix into a refinery is returned, consequently locking up A-pan capacity and, in the case of a factory with marginal pan capacity, cane throughput is restricted. In addition, energy consumption is increased and sugar losses in final molasses are elevated. A number of processes have been considered to eliminate recycling refinery run-off, most of which require pre-treatment and/or high capital investment with a high degree of commercial risk. Test work was undertaken at the Tsb Malalane cane sugar refinery to determine the optimal pre-treatment option for decolorising and softening refinery return syrup. The pre-treatment results indicate that chemical softening, followed by the addition of a cationic colour precipitant and pH adjustment with sulphur dioxide, yields appreciable calcium reduction and modest decolourisation. The overall benefit indicates that the treated final run-off is of suitable quality to apply another crystallisation step and/or alternatively consider for further purification by chromatographic separation and/or resin decolourisation.

  11. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01T23:59:59.000Z

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  12. TSNo s02-roberts104537-O Microscopic and Spectroscopic Speciation of Ni in Soils in the Vicinity of a Ni Refinery.

    E-Print Network [OSTI]

    Sparks, Donald L.

    in the Vicinity of a Ni Refinery. abstract Accurately predicting the fate and bioavailability of metals in smelter REFINERY ASA-CSSA-SSSA Annual Meetings - October 21 - 25, 2001 - Charlotte, NC #12;

  13. Competitor Analysis Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    chemical company providing the household and industrial detergent, personal care, lubricant, oilfield

  14. Potentials for fuel cells in refineries and chlor-alkali plants

    SciTech Connect (OSTI)

    Altseimer, J.H.; Roach, F.

    1986-01-01T23:59:59.000Z

    The market potentials for fuel cell cogeneration systems in petroleum refineries and chlor-alkali plants were evaluated. the most promising application appears to be in chlor-alkali plants where the production process is electricity intensive. Future anticipated changes in the production process are favorable to the use of fuel cells. The energy use in refineries is steam intensive with the required steam pressures ranging from approximately 15 to 650 psig. The near-term use of fuel cell cogeneration in refineries is not as attractive as in chlor-alkali plants. The phosphoric acid fuel cell is the most developed and the most competitive, but its use is limited by its being able to produce only low-pressure steam. Over the longer term, the molten carbonate and the solid oxide fuel cell both of which operate at significantly higher temperatures, are technically very attractive. However, they do not appear to be cost competitive with conventional systems.

  15. Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-35 Methods applied to investigate the major ?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ünit at La Mede, France

  16. EVALUATION OF THE SACCHAROFLEX 2000 REFLECTANCE MEASURING INSTRUMENT FOR REFINED SUGAR COLOUR ESTIMATION AT HULETTS REFINERY

    E-Print Network [OSTI]

    M Moodley; N K Padayachee; V Govender

    Due to the successful use of the Saccharoflex 2000 reflectance measurement instrument on the estimation of refined sugar colour elsewhere in the world, it was decided by Tongaat-Hulett Sugar to evaluate the instrument at the refinery in Durban. Tests were carried out on first, second, third and fourth refined sugars, the results of which showed a good correlation between the ICUMSA colour measurement and the reflectance reading obtained from the Saccharoflex 2000. The instrument offers a number of advantages, the main one being that a refined sugar colour value can be obtained in less than a minute. The refinery has therefore purchased one for process control.

  17. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2000

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2000 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and Issues: World refinery production of germanium remained steady in 2000. The recycling of scrap continued

  18. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2003 producer. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics, infrared

  19. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2002

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2002 producer price-bearing materials generated from the processing of zinc ores. The germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. The refinery in Oklahoma doubled its production

  20. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon the 2001

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon the 2001 producer price-bearing materials generated from the processing of zinc ores. The germanium refineries in New York and Oklahoma and set up in New York. The refinery in Oklahoma expanded, and a new secondary facility was built in North

  1. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2008 producer of 2008. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production of fiber optics

  2. Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery

    E-Print Network [OSTI]

    Schilling, Anne

    facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

  3. 2:00-2:30 Beverages, 2:30-4 PM Seminar Chevron operates two refineries on the west coast of California. Large parcels of

    E-Print Network [OSTI]

    4/18/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract Chevron operates two refineries fuel must be moved between the refineries by ship to balance production. The El Segundo Marine Terminal these vapors are returned to the refinery for processing via a vapor return pipeline. El Segundo's terminal

  4. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1999

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1999 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania@usgs.gov, fax: (703) 648-7757] #12;73 GERMANIUM Events, Trends, and Issues: World refinery production

  5. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1996 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1996 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, and chemotherapy), 5%. Salient Statistics--United States: 1992 1993 1994 1995 1996e Production, refinery 13,000 10

  6. (Data in kilograms of germanium content unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based upon an estimated

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based upon an estimated 2007 producer in the fourth quarter of 2007. A germanium refinery in Utica, NY, produced germanium tetrachloride for optical fiber production. Another refinery in Oklahoma produced refined germanium compounds for the production

  7. Consumer Products Companies Company Website Headquarters

    E-Print Network [OSTI]

    McGaughey, Alan

    . www.coach.com New York, NY Coca-Cola Company www.thecoca-colacompany.com Atlanta, GA Cole & Ashcroft L

  8. Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit

    E-Print Network [OSTI]

    Drake, R. L.

    The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

  9. Restoration of Refinery Heaters Using the Technique of Prefabricated Ceramic Fiber Lined Panels

    E-Print Network [OSTI]

    Sento, H. D.

    1981-01-01T23:59:59.000Z

    Refinery heater fuel requirements often represent 50% of a units operating cost. A one percent change in the efficiency of a heater firing 100 MBtu/hr amounts to more than $25,000 per year. Heater efficiency is influenced by casing hot spots, air...

  10. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  11. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    SciTech Connect (OSTI)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10T23:59:59.000Z

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  12. Market Research Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    development - Market research for enterprise and education adoption - Plan and execute a company-wide pingMarket Research Company Description: A company focused on developing web-based graphical and future products and then develop the necessary strategies and collateral to stay on the bleeding edge

  13. QER- Comment of Southern Company

    Broader source: Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, Southern Companies), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  14. Effectiveness of in site biodegradation for the remediation of polycyclic aromatic hydrocarbons at a contaminated oil refinery, Port Arthur, Texas

    E-Print Network [OSTI]

    Moffit, Alfred Edward

    2000-01-01T23:59:59.000Z

    The effectiveness of bioremediation for the removal of polycyclic aromatic hydrocarbons (PAHs) from sediments contaminated with highly weathered petroleum was evaluated at a contaminated oil refinery. The sediments were chronically contaminated...

  15. Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution

    E-Print Network [OSTI]

    Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

    A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver...

  16. Refinery fuel oxygenates in view of the complex model for reformulated gasline

    SciTech Connect (OSTI)

    Crawford, C.D.; Haelsig, C.P. [Fluor Daniel, Irvine, CA (United States)

    1994-12-31T23:59:59.000Z

    The final version of the Complex Model for reformulated gasoline (RFG) has now been issued with some surprising features that will significantly affect refinery fuel oxygenates planning. These include the following: (1) The only oxygenates included in the model are MTBE, ETBE, TAME, and Ethanol. (2) The Complex Model calculates that MTBE and TAME are significantly more effective for reduction of air toxics emissions than Ethanol and ETBE. (3) The Complex Model calculates that MTBE and TAME typically produce about equal reduction in air toxics emissions at the same RFG oxygen content. Although gasoline certification by the Complex Model is optional prior to 1998, after 1998 it will be mandatory for both reformulated and conventional gasolines. This paper considers refinery oxygenates production in view of these features of the Complex Model for RFG, basing the discussion on 2.0 weight percent oxygen content for RFG.

  17. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect (OSTI)

    Hooker, J. N.

    1982-04-01T23:59:59.000Z

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  19. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  20. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  3. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant StocksPetroleum

  4. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    3 05-27-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW STAKEHOLDER MEETING 3 PETROLEUM TRANSMISSION, STORAGE AND DISTRIBUTION ISSUES...

  5. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENERGY POLICY AND SYSTEMS ANALYSIS QUADRENNIAL ENERGY REVIEW STAKEHOLDER...

  6. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATE OF AMERICA DEPARTMENT OF ENERGY ---: : IN RE: : : QUADRENNIAL ENERGY REVIEW : : NEW...

  7. Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy service companies (ESCOs) develop, design, build, and fund projects that save energy, reduce energy costs, decrease operations and maintenance costs at their customers' facilities.

  8. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01T23:59:59.000Z

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  9. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1998 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1998 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania Production, refinery 10,000 10,000 18,000 20,000 22,000e Total imports 14,700 16,200 27,500 23,700 20

  10. (Data in kilograms of germanium content, unless otherwise noted) Domestic Production and Use: The value of domestic refinery production of germanium, based on the 1997 producer

    E-Print Network [OSTI]

    and Use: The value of domestic refinery production of germanium, based on the 1997 producer price. The domestic industry consisted of three germanium refineries, one each in New York, Oklahoma, and Pennsylvania, refinery 10,000 10,000 10,000 18,000 20,000e Total imports 15,000 15,000 16,000 27,000 17,0001 Exports NA

  11. Marketing Plan Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    productivity without the jitters/crash of normal energy drinks and shots. Short Project Name: Internet groups would generate the most profit? How can we cross-market/up-sell to our email database and 20K the model) Company Description: We are a rapidly growing, subscription-based, finance and technology company

  12. Public Service Companies, General Provisions (Virginia)

    Broader source: Energy.gov [DOE]

    Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and all persons authorized to transport passengers or...

  13. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :' ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' i;:z;zy MEETING REPORT : .I.-.-' Y ::,:I :. &, .I7 ENGINEERING REPORT- : T, ...

  14. Capital Reporting Company Quadrennial ...

    Energy Savers [EERE]

    11-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 10: Infrastructure Constraints Monday, August 11, 2014 New Mexico State...

  15. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    07-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 6 MONDAY, JULY 21, 2014 HELD AT: RASHID AUDITORIUM-HILLMAN CENTER...

  16. Capital Reporting Company Quadrenntial ...

    Broader source: Energy.gov (indexed) [DOE]

    Quadrenntial Energy Review 04-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 NEW ENGLAND REGIONAL INFRASTRUCTURE CONSTRAINTS A Public Meeting on the Quadrennial...

  17. Morbidity And Sulfur Dioxide: Evidence From French Strikes At Oil Refineries

    E-Print Network [OSTI]

    Matthew Neidell; Emmanuelle Lavaine

    2012-01-01T23:59:59.000Z

    This paper examines the impact of sulfur dioxide (SO2) in France on health outcomes at a census track level. To do so, we use recent strikes affecting oil refineries in France, in October 2010, as a natural experiment. Our work offers several contributions. We first show that a temporal shut down in the refining process leads to a reduction in sulfur dioxide concentration. We then use this narrow time frame exogenous shock to assess the impact of a change in air pollution concentration on respiratory outcomes. Our estimates suggest that daily variation in SO2 air pollution has economically significant health effects at levels below the current standard. 0

  18. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. Underground NaturalWorking

  20. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W. (Center for Nanoscale Materials); ( ES)

    2012-05-15T23:59:59.000Z

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  1. Company Level Imports Archives

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level Imports Company Level

  2. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S. Manufacturing Energy UseMary

  3. Wilolud Online Journals, 2008. THE NIGERIAN FUEL ENERGY SUPPLY CRISIS AND THE PROPOSED PRIVATE REFINERIES PROSPECTS AND PROBLEMS

    E-Print Network [OSTI]

    Agwom Sani Z

    Dynamism of the world economy has compelled Nigerians to accept the liberalization of its economy to encourage private sector participation and induce managerial efficiency. This has become very imperative most especially, in the downstream sub-sector of the Nigerian oil and gas industry by the establishment and management of private refineries in view of the persistent fuel energy crisis. An attempt is made here at analyzing the prospects and problems of such refineries that are expected to end the fuel energy crisis which started in the 1970s due to increased demand for petroleum products for rehabilitation and reconstruction after the civil war but later metamorphosed into a hydraheaded monster in the 1980s to date. Efforts towards arresting this crisis by the government through the establishment of more refineries, storage depots and network of distribution pipelines etc achieved a short-term solution due to the abysmal low performance of the refineries and facilities in contrast to increasing demand for petroleum products. It is deduced that the low performance resulted from bad and corrupt management by indigenous technocrats and political leaders as well as vandalization of facilities. Prospects for such investments were identified, as well as some of the problems to content with. This is in order to understand the pros and cons of such investments in view of their capital intensiveness and the need to achieve economic goals that must incorporate environmental and social objectives.

  4. Hiring Company: Chevron Oronite Technology Group, a Chevron Company

    E-Print Network [OSTI]

    Southern California, University of

    additives for fuels and lubricating oils. We are a Global company and a subsidiary of Chevron Corporation

  5. European oil companies struggle to meet the challenge of an uncertain future

    SciTech Connect (OSTI)

    Reed, P.

    1996-07-01T23:59:59.000Z

    Oil companies have traditionally favored vertical integration, controlling the flow of oil from the drilling rig through refineries to the gasoline pump. The development of the downstream infrastructure has largely been driven by the retail market, with other fuels often treated as {open_quotes}marginal{close_quotes} businesses that leverage the retail distribution infrastructure. High-margin niche business such as lubricants and bitumen exist, but their volumes are typically small compared to the retail market. Other high-volume businesses such as aviation and heating fuels are closely tied to traded markets and generally have small market margins. Price levels at the retail site are crucial to the profitability of the downstream business. Price levels at European retail stations have historically been high when compared with North American prices, owing to government taxation. Despite the efforts of the oil companies to educate the consumer on what is the real cause of high prices, the oil majors are blamed when fuel prices fall, the consumer often feels as though lower prices had to be forced on the oil companies. Therefore, European consumers are more price sensitive than consumers elsewhere, and in markets which are deregulated on price, oil companies are losing market share to hypermarkets and supermarkets. In the U.S., increases in fuel tax levels are likely to result in a heightened price awareness for the average American, increasing the probability that hypermarkets will also enter the U.S fuels market.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  8. Standard guide for evaluating and qualifying oilfield and refinery corrosion inhibitors in the laboratory

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This guide covers some generally accepted laboratory methodologies that are used for evaluating corrosion inhibitors for oilfield and refinery applications in well defined flow conditions. 1.2 This guide does not cover detailed calculations and methods, but rather covers a range of approaches which have found application in inhibitor evaluation. 1.3 Only those methodologies that have found wide acceptance in inhibitor evaluation are considered in this guide. 1.4 This guide is intended to assist in the selection of methodologies that can be used for evaluating corrosion inhibitors. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

  9. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  10. No Company Is An Island

    E-Print Network [OSTI]

    Maddox, A.

    No company is an island. Utilities and their industrial customers are discovering that collaboration can breed opportunity while isolation can lead to ruin. Inter company relationships have changed over recent years and HL&P and its customers...

  11. Benham Companies ESCO Qualification Sheet

    Broader source: Energy.gov [DOE]

    Document outlines the energy service company (ESCO) qualifications for Leidos Engineering (part of Benham Companies) in relation to the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPC).

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31T23:59:59.000Z

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

  13. In-depth survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc., Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.; Earnest, G.S.; Jensen, P.A.; Zimmer, A.T.

    1996-06-03T23:59:59.000Z

    In an effort to identify effective hazard control methods and work practices, an in depth evaluation was conducted at the East Penn Manufacturing Company Inc. (SIC-3341), Lyon Station, Pennsylvania, which had previously been identified as having the lowest air lead (7439921) concentrations in lead smelter areas during a previous survey. This facility was primarily involved in lead reclamation from recycled automobile and industrial batteries. Control methods employed included automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory and blast furnaces, and in casting and refinery areas. Employees in production areas also wore filtered half mask respirators, adhered to strict company policies on personal hygiene, and participated in incentive programs designed to reduce blood lead levels and encourage good personal hygiene and work practices. The authors noted that there was a potential for significant lead exposure in the blast furnace area, reverberatory furnace area, refinery area, and front end load operations. The authors recommend that efforts be made to improve controls in these areas.

  14. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12T23:59:59.000Z

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  15. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01T23:59:59.000Z

    Company Maoming Petrochemical Corporation ChangqingCompany Anshan Refinery Jinzhou Petrochemical SubsidiaryCompany Jinxi Petrochemical Subsidiary Company Changling

  16. Soot and SO[subscript 2] contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery

    E-Print Network [OSTI]

    Molina, Luisa Tan

    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order ...

  17. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01T23:59:59.000Z

    Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of how the Refinery Industry is Capitalizing on ENERGY STAR Kelly Patrick U.S. Environmental Protection Agency kelly...

  18. Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility.

    E-Print Network [OSTI]

    Hoyle, A.

    2013-01-01T23:59:59.000Z

    PROPRIETARY INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May... Improvements ? Cost-savings initiatives ? Increasing environmental awareness ? Increasing throughput by debottlenecking processes ? Increasing government mandates 2May 2013 Energy Costs for a 200kBPD Complex refinery Typically, energy efficiency programs...

  19. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01T23:59:59.000Z

    2007), Current Chinese Refinery Industry and Its Challenges,42 Figure 2-12 Refinery Capacity and Capacity Utilization (43 Table 2-22 Refinery Capacity by Company (2005-

  20. Results of the radiological survey of the Excelsior Steel Ball Company, Tonawanda, New York (TNY005)

    SciTech Connect (OSTI)

    McKenzie, S.P.; Brown, K.S.

    1998-07-01T23:59:59.000Z

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted two radiological surveys of property belonging to the Excelsior Steel Ball Company, which is surrounded on three sides by the former site of the Linde Uranium Refinery, Tonawanda, New York. The surveys were performed in September 1997 and February 1998. The purpose of the first survey was to determine if radioactive residuals were present from previous activities at the former Linde site. The Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had used radioactive materials at that location for work performed under government contract from 1942 through 1948. The purpose of the second survey was to collect additional biased samples from an area of the site where biased sample results showed slightly elevated levels of thorium-232.

  1. Finding of no significant impact; Atlantic Richfield Company and Intalco Aluminum Corporation

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    On February 27, 1989, the Department of Energy (DOE) issued Opinion and Order No. 301 to Atlantic Richfield Company (ARCO) conditionally authorizing the importation of Canadian natural gas for use in its refinery near Ferndale, Washington. On February 28, 1989, the DOE issued Opinion and Order No. 302 to Intalco Aluminum Corporation (Intalco) conditionally authorizing the importation of Canadian natural gas for use in its aluminum smelting plant near Ferndale, Washington. However, both conditional orders provided that the issues raised in the proceedings would be reexamined upon subsequent completion of National Environmental Policy Act (NEPA) requirements for the Ferndale Pipeline project and that the final action would then be taken on the conditional orders. The DOE reviewed the project and determined that the pipeline project would not affect the quality of the environment.

  2. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved JustificationBio-Inspired PowerRegional companies eye

  3. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  4. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01T23:59:59.000Z

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  5. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum

  6. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Photovoltaics Spain S L REPS Renewable Energies and Photovoltaics Spain S L REPS Spain Solar Spanish solar project developer The firm is a subsidiary of Norwegian energy company...

  7. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    significantly better heating efficiency than conventional coiled wire elements A O Smith A O Smith Wisconsin Efficiency Solar Wisconsin based based company that makes both...

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30T23:59:59.000Z

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of opportunity gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burners aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeecos offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the projects burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the projects technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  9. Allocation of Energy Use LCA Case Studies LCA Case Studies Allocation of Energy Use in Petroleum Refineries to Petroleum Products Implications for Life-Cycle Energy Use and Emission Inventory of Petroleum Transportation Fuels

    E-Print Network [OSTI]

    Michael Wang; Hanjie Lee; John Molburg

    Aim, Scope, and Background. Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products

  10. Kansas Certified Development Companies (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas Certified Development Companies (CDC) assist businesses by developing loan packages that meet the financial need of a project. These packages often contain multiple sources of project...

  11. Regulations For Gas Companies (Tennessee)

    Broader source: Energy.gov [DOE]

    The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

  12. Technical and operational overview of the C[sub 4] Oleflex process at Valero refinery

    SciTech Connect (OSTI)

    Hohnholt, J.F.; Payne, D. (Valero Refining Co., Corpus Christi, TX (United States)); Gregor, J.; Smith, E. (UOP, Des Plaines, IL (United States))

    1994-01-01T23:59:59.000Z

    Changes in gasoline composition stemming from the 1990 Clean Air Act (CAA) Amendments prompted Valero Energy Corporation to evaluate options for producing reformulated gasoline. The evaluation culminated in a project to upgrade butanes into methyl tertiary butyl ether (MTBE). Technology selection focused on the dehydrogenation of isobutane, and the UOP Oleflex process was selected. The MTBE project was implemented in 34 months and was $3 million under budget. The guaranteed MTBE production of 12,500 BPSD was achieved within one month of mechanical completion and has since reached 15,000 BPSD. Even at the low MTBE prices prevailing in late 1993, the butane upgrading project contributed significantly to Valero Refinery's overall profitability. Worldwide demand is expected to increase MTBE prices in 1996, thereby further increasing profits. The paper describes the project evaluation activities which led to the selection of the Oleflex process, engineering and construction, the MTBE complex start-up and operation, the Valero MTBE complex performance, and future plans. The paper also discusses feedstock utilization efficiency and MTBE market analysis.

  13. Gasification of refinery sludge in an updraft reactor for syngas production

    SciTech Connect (OSTI)

    Ahmed, Reem; Eldmerdash, Usama [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4} compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C?=?450?2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup ?3} of, and 2.5 Nm{sup 3} kg{sup ?1} respectively.

  14. Summary of the proceedings of the workshop on the refinery of the future

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

  15. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-03-15T23:59:59.000Z

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  16. Production of ethanol from refinery waste gases. Final report, April 1994--July 1997

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Breshears, F.S.; Gaines, L.D.; Hays, K.S.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1997-08-01T23:59:59.000Z

    The objective of this program was to develop a commercial process for producing ethanol from refinery waste gases. this report presents results from the development phases. The major focus of this work was the preparation of the prototype design which will demonstrate this technology in a 2.5 lb/hr ethanol production facility. Additional areas of focus included efforts in obtaining an industrial partner to help finance the prototype, and advanced engineering experiments concentrating on process optimization in various areas needing future development and optimization. The advanced engineering experiments were performed in the laboratory in these areas: treatment and use of recycle water from distillation back to fermentation; alternative methods of removing cells from the fermentation broth; the fermentation of streams containing CO{sub 2}/H{sub 2} alone, with little to no CO present; dealing with methanogen contaminants that are capable of fermenting CO{sub 2} and H{sub 2} to methane; and acetate tolerance by the culture. Results from the design, industrial partner search and the laboratory R&D efforts are discussed in this report.

  17. Aditya A. Shah Deere & Company,

    E-Print Network [OSTI]

    Aditya A. Shah Deere & Company, Dubuque, IA 52001 e-mail: shahadityaa@johndeere.com Christiaan J. J 30332 e-mail: chris.paredis@me.gatech.edu Roger Burkhart Deere & Company, Moline, IL 61265 e it to an example of a hydraulic log splitter. Based on this initial example, we discuss two advantages

  18. A 39 year follow-up of the UK oil refinery and distribution centre studies: results for kidney cancer and leukaemia. Environ Health Perspect Suppl 101(Suppl

    E-Print Network [OSTI]

    Lesley Rushton

    1993-01-01T23:59:59.000Z

    This paper presents briefly some of the principal results of a mortality analysis of a cohort of workers employed for at least 1 year between 1950 and 1975 at eight oil refineries and approximately 750 distribution centers in the U.K, together with detailed results for kidney cancer and leukemia. Over 99 % of the workers were successfully traced. Their mortality was compared with that of all males in the national population. The mortality from all causes of death is lower than that of the comparison population in both studies, and reduced mortality is also found for many of the major nonmalignant causes of death. In the refinery study, some increased mortality patterns are found for diseases of the arteries, and no healthy worker effect is found in the distribution center study for ischemic heart disease. Mortality from all neoplasms is lower than expected overall in both studies, largely due to a deficit of deaths from malignant neoplasm of the lung. Mortality from malignant neoplasm of the kidney is increased overall in the distribution center study, and in drivers in particular. The mortality from this disease increases with increased time since first exposure. The observed deaths from leukemia are slightly less than expected in the refinery study and slightly more than expected in the distribution center study. One refinery shows increased mortality due to in myeloid leukemia, and mortality is increased among refinery operators. Mortality is also raised in distribution center drivers, particularly for myeloid leukemias, including acute myeloid leukemia.

  19. WASTE INCINERATION wr090203 Activity 090203 SNAP CODE: 090203 SOURCE ACTIVITY TITLE: WASTE INCINERATION Flaring in Oil Refinery NOSE CODE: 109.03.11 NFR CODE:

    E-Print Network [OSTI]

    So Nox; Nmvoc Ch; Co Co; No Nh

    Flares are commonly used during petroleum refining for the safe disposal of waste gases during process upsets (e.g., start-up, shut-down, system blow-down) and emergencies to combust the organic content of waste emission streams without recovering/using the associated energy. 2 CONTRIBUTION TO TOTAL EMISSIONS Although flaring emission estimates are approximate, total hydrocarbon emissions from flaring at Canadian petroleum refineries during 1988 represented about 0.1 % of the refinery sector process and fugitive emissions that also included petroleum marketing emissions (CPPE, 1990). Thus the flaring operation at refineries is estimated to contribute a very small fraction of the total HC emissions in Canada. Emissions from flaring activities may also include: particulate, SOx, NOx, CO and other NMVOC. The CO2 contribution of both miscellaneous vent and flare emission sources represented approximately 9 % of the total petroleum refinery SO2 emission in Canada during 1988. Emissions estimates from flaring in petroleum refineries as reported in the CORINAIR90 inventory are summarised in Table 1. Table 1: Contribution to total emissions of the CORINAIR90 inventory (28 countries) Source-activity SNAP-code Contribution to total emissions [%

  20. Conversion of high carbon refinery by-products. Quarterly report, January 1--March 31, 1996

    SciTech Connect (OSTI)

    Katta, S.; Henningsen, G.; Lin, Y.Y.; O`Donnell, J.

    1996-04-26T23:59:59.000Z

    The overall objective of the project is to demonstrate that a partial oxidation system, which utilizes a transport reactor, is a viable means of converting refinery wastes, byproducts, and other low value materials into valuable products. The primary product would be a high quality fuel gas, which could also be used as a source of hydrogen. The concept involves subjecting the hydrocarbon feed to pyrolysis and steam gasification in a circulating bed of solids. Carbon residue formed during pyrolysis, as well as metals in the feed, are captured by the circulating solids which are returned to the bottom of the transport reactor. Air or oxygen is introduced in this lower zone and sufficient carbon is burned, sub-stoichiometrically, to provide the necessary heat for the endothermic pyrolysis and gasification reactions. The hot solids and gases leaving this zone pass upward to contact the feed material and continue the gasification process. The Transport Reactor Test Unit (TRTU) was commissioned to conduct studies on pyrolysis of Rose Bottoms using spent FCC (Fluid Catalytic Cracker) catalyst as the circulating medium and gasification of this carbon over a temperature range of 1,600 to 1,700 F. The Rose Bottoms (Residuum Oil Supercritical Extraction) was produced in the Rose unit. Studies were done in the Bench Scale Reactor Unit (BRU) to develop suitable catalyst formulations and to study the steam reforming of methane and propane in support of the experiments to be conducted in the TRTU. Studies were also conducted on gasification of coke breeze, petroleum cokes and carbon deposited on FCC catalyst. The catalytic effect of potassium on gasification of these solids was studied. Studies were conducted in the CFS (cold flow simulator) to investigate flow problems experienced in the TRTU. Results from these studies are presented in this report.

  1. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    HF ReEnergy has focused its most recent efforts on the desire to create grid quality electricity from landfill waste The company also plans to focus on making existing coal plants...

  2. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15T23:59:59.000Z

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  3. A variety of opportunities exist for geology graduates in the private and public sectors and in education. Petroleum companies, petroleum service companies, mining companies,

    E-Print Network [OSTI]

    and in education. Petroleum companies, petroleum service companies, mining companies, power companies, computer software companies, and entrepreneurs hire geologists for exploration, development, mining, production, hydrologist, mining geologist, oceanographer, production geologist, researcher, resource evaluator

  4. A variety of opportunities exist for geology graduates in the private and public sectors and in education. Petroleum companies, petroleum service companies, mining companies,

    E-Print Network [OSTI]

    and in education. Petroleum companies, petroleum service companies, mining companies, power companies, computer software companies, and entrepreneurs hire geologists for exploration, development, mining, production geologist, geologist, geophysicist, hydrologist, mining geologist, oceanographer, production geologist

  5. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using the rotating cylinder electrode

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cylinder electrode (RCE) for evaluating corrosion inhibitors for oil field and refinery applications in defined flow conditions. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. New Business Opportunity Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    report and analysis Company Description: A billion dollar, middle market private equity firm. We just trading and transaction comps from relevant databases. Assist in valuing new deals and marking to market organization of radiant heating

  7. energy company opens American branch

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    in clean-energy investment and delivering unique projects and innovative products and servicesenergy company opens American branch in West Sacramento Substainible energy for sustainable energy supply. Ecostream markets such things as solar roof panel installations and other long

  8. How companies can leverage crowdsourcing

    E-Print Network [OSTI]

    Cheung, Sunny

    2012-01-01T23:59:59.000Z

    Crowdsourcing is an increasingly popular phenomenon where companies solicit the help of the public in helping accomplish some of the activities commonly performed by employees or contractors. These activities can range ...

  9. The valuation of construction companies

    E-Print Network [OSTI]

    Sassine, Edmond, 1980-

    2004-01-01T23:59:59.000Z

    The main objective of this thesis is to study the valuation of construction companies in mergers and acquisitions. The thesis is divided into three main parts; Mergers and Acquisitions, Valuation, and a Case Study. Mergers ...

  10. Deere & Company Energy Management Program

    E-Print Network [OSTI]

    Darby, D. F.

    1981-01-01T23:59:59.000Z

    An overview of the Deere & Company Energy Management Program is discussed. A review is made of seven key elements which have contributed to the success of the program. Installed projects and established programs are identified and discussed...

  11. K. S. Telang, R. W. Pike, F. C. Knopf, J. R. Hopper, J. Saleh, S. Waghchoure, S. C. Hedge and T. A. Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers and Chemical Engineering, Vol. 23, p. S727-730 (1999

    E-Print Network [OSTI]

    Pike, Ralph W.

    . Hertwig,"An Advanced Process Analysis System for Improving Chemical and Refinery Processes," Computers Chemical and Refinery Processes K. S. Telang, X. Chen, R. W. Pike and F. C. Knopf Louisiana State and refineries for process improvements. The system integrates programs for on-line optimization, chemical

  12. Eastern Kodak Company

    SciTech Connect (OSTI)

    Y.S. Tyan

    2009-06-30T23:59:59.000Z

    Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. The project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.

  13. Public health assessment for US Smelter and Lead Refinery, Inc. (A/K/A USS Lead Refinery Inc. ) East Chicago, Lake County, Indiana, Region 5. Cerclis no. IND047030226. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-08-24T23:59:59.000Z

    The U.S. Smelter and Lead Refinery, Inc. (USS Lead), in East Chicago, Indiana, has been operating as a primary and secondary smelting facility since 1906. Wastes which were produced during smelting operations are calcium sulfate sludge, blast furnace flue-dust, baghouse bags, rubber and plastic battery casings, and waste slag. Limited sampling information is available, and indicates that on-site soils and wastes are contaminated with lead and other metals. Additional sampling off-site surface soils indicate that the contamination has spread off-site as far as one-half mile from the site. Surface water and sediment on-site has also become contaminated with lead and other metals, as well as waste oil. Based on the completed exposure pathways to lead through soil ingestion and dust inhalation, the Agency for Toxic Substances and Disease Registry concludes that contamination from the USS Lead site is a public health hazard.

  14. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  15. Effective monitoring of non-chromate chemical treatment programs for refinery cooling systems using sewage water as make-up

    SciTech Connect (OSTI)

    AlMajnouni, A.D.; Jaffer, A.E. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-08-01T23:59:59.000Z

    Treated sewage water as make-up to the cooling tower requires novel approaches to control potential cooling water problems common to refineries besides meeting environmental regulations. An intensive field study was conducted to evaluate the effectiveness of non-chromate treatment programs. On-line cleaning of the exchangers occurred prior to instituting the new chemical treatment program. Low carbon steel corrosion rates with minimal deposition was achieved. Microbiological fouling was controlled with chlorination and non-oxidizing biocide program. Field results are presented which compare the efficacy of these proprietary treatments to control corrosion and inhibit scale and fouling. Analytical results which provide a comprehensive performance evaluation of a new non-chromate chemical treatment program are presented.

  16. Reed-Joseph International Company

    E-Print Network [OSTI]

    is offering field downloadable GPS/VHF logging collars and Solar Powered GPS/VHF backpack loggers for birds of battery powered and solar powered PTTs in a wide range of sizes, exclusively for birds. We will startReed-Joseph International Company 55 YEARS OF EXCELLENCE IN BIRD AND WILDLIFE CONTROL THE U

  17. IBM Software Lincoln Trust Company

    E-Print Network [OSTI]

    into account several "lessons learned" from the company's past pre-divestiture past. A process improve- ment team had existed several years prior, but was decommissioned due to lack of meaningful automation, there were also lessons from the past that needed to be integrated into the new program. Prior attempts

  18. Energy Management at Deere & Company

    E-Print Network [OSTI]

    Boyd, M. P.

    1979-01-01T23:59:59.000Z

    Deere & Company appreciates the opportunity to discuss energy management and conservation with you. Energy is a topic that will occupy our thoughts for many years to come and certainly will be in the forefront in the near future. It is a subject...

  19. Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery -DoE's First Demonstration Project in Poland

    E-Print Network [OSTI]

    Hazen, Terry

    2 Westinghouse Savannah River Company, Aiken, South Carolina, 29808 USA 3 Institute for Ecology of Industrial Areas, Katowice, 40-833, Poland 4 Lawrence Berkeley National Laboratory, Berkeley, California Savannah River Company (WSRC) for the United States Department of Energy (DOE), the Institute for Ecology

  20. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  1. Designing for cost In an aerospace company

    E-Print Network [OSTI]

    Hammar, Elizabeth (Elizabeth Deming)

    2014-01-01T23:59:59.000Z

    Companies take different approaches, and achieve different degrees of implementation, in designing products for cost. This thesis discusses Target Costing and its application at The Boeing Company. Target Costing is a ...

  2. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

  3. LETTER TO SUCCESSFUL COMPANY OR ESCO | Department of Energy

    Office of Environmental Management (EM)

    SUCCESSFUL COMPANY OR ESCO LETTER TO SUCCESSFUL COMPANY OR ESCO Document features a letter template and sample to help Federal agencies inform an energy services company (ESCO)...

  4. LETTER TO UNSUCCESSFUL COMPANY OR ESCO | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UNSUCCESSFUL COMPANY OR ESCO LETTER TO UNSUCCESSFUL COMPANY OR ESCO Document features a letter template and sample to help Federal agencies inform energy service companies (ESCOs)...

  5. Nevada Geothermal Power Company, Inc. (Blue Mountain) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal Power Company, Inc. (Blue Mountain) Nevada Geothermal...

  6. Energy Audit Helps Small Company Stay Competitive

    Broader source: Energy.gov [DOE]

    The recommended improvements are saving the West Linn Paper Company in Oregon an annual cost of about $380,000.

  7. UNDERSTANDING OUR COMPANY AN IBM PROSPECTUS

    E-Print Network [OSTI]

    a company or planned venture so that individuals can make informed decisions. Fully understanding the future lay in consolidation, and chose to bulk up. And then some companies just concluded that their core confidence in IBM's future. We have done much in recent years to transform our company. In a number

  8. ENERGY SERVICES COMPANIES SUMMARY OF RESPONSES

    E-Print Network [OSTI]

    a survey of the Energy Services Companies doing business in California. An Energy Services Company (ESCO. In addition, an ESCO frequently guarantees that the project's energy cost savings will be adequate to payCALIFORNIA ENERGY COMMISSION SUMMARY OF ENERGY SERVICES COMPANIES SUMMARY OF RESPONSES STAFFREPORT

  9. ESPC ENABLE Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy Savings Performance Contract (ESPC) ENABLE projects use General Services Administration (GSA) Federal Supply Schedule 84, SIN 246-53 to select a qualified energy service company (ESCO). The ESCO is required to go through a two-step qualification process to become an eligible ESPC ENABLE or Schedule 84 service provider. The two-step process includes first, becoming Department of Energy (DOE)- qualified and second, being awarded a contract under the GSA Schedule.

  10. Illinois Company Implementing Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    J.F. Family Limited Partnership has been awarded $191,000 through the Recovery Act toward the use of solar energy at its Lakefront Parkway property in Edwardsville, Ill., which is the company headquarters for J.F. Electric Inc. The funding will be used to install a 75-kW solar photovoltaic system on the buildings roof, creating electricity on-site and creating or saving a total of 14 jobs.

  11. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  12. Deere & Company Energy Management Program

    E-Print Network [OSTI]

    Darby, D. F.

    1981-01-01T23:59:59.000Z

    for evaluating each unit's ene~gy savings techniques. Two more key elements merit attention. These are "energy ethic" and "feedback". The people that comprise a company can enhance a conservation program if they are convinced it is for their good as well... vital but "good business" as well. Meet Lester! One of our factories has had an an:i mated movie produced which ~eatures a polar bear: hero. He represents the central theme of an ene~gy conservation awareness program. The program con~ tinues...

  13. Broin Companies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP: ChallengesEnergyEnergyBroin Companies

  14. Wyrulec Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York:State ParksWyrulec Company Jump to:

  15. Benjamin Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind LtdFengliBenjamin Company Jump

  16. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01T23:59:59.000Z

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  17. refinery BP Oil's Alliance refinery in Louisiana

    E-Print Network [OSTI]

    unknown authors

    is the focus of an environmental control program, which is also being implemented in other BP plants

  18. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION

  19. New Mexico Gas Company- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water heating. Prescriptive incentives for specified...

  20. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    to: navigation, search Name: Panasonic Corporation Energy Company (formerly Matsushita Battery Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of...

  1. Colonial Pipeline Company Timothy C. Felt

    Broader source: Energy.gov (indexed) [DOE]

    that are critically important to our nation's economy. History In 1961, a handful of energy companies came together to build what was then the single largest privately funded...

  2. POWER PURCHASE AGREEMENT DELMARVA POWER & LIGHT COMPANY

    E-Print Network [OSTI]

    Firestone, Jeremy

    POWER PURCHASE AGREEMENT between DELMARVA POWER & LIGHT COMPANY ("Buyer") and BLUEWATER WIND 3.5 Energy Forecasts, Scheduling and Balancing.......................................... 39 3

  3. MENTOR MEET New Student/Company Information

    E-Print Network [OSTI]

    MENTOR MEET New Student/Company Information Venture Connection Mentor Meet Info ________ Mentoring ________ Funding ________ NEXT STEPS - Office use Mentor: Actions Who By Date Other

  4. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  5. B Allison Adams, BSBA `91 Caspers Company

    E-Print Network [OSTI]

    Wu, Dapeng Oliver

    Jeremy Foley UF Athletic Association B Kristen Foley Nielsen B Dr. James R. Follain Nelson A. Rockefeller Acquisition Center B Darin Cook, BS `87 Infinite Energy B Kyle Cooper, BSBA `05 Orlando Predators B James Columbia Timber Company B Katie Davis James Moore & Company B Stuart Davis, BSAc '80, MAcc `81 Titan

  6. Company number 5857955 Wellcome Trust Finance plc

    E-Print Network [OSTI]

    Rambaut, Andrew

    Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2012 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report for the year ended 30 September 2012 Report of the Directors

  7. Company number 5857955 Wellcome Trust Finance plc

    E-Print Network [OSTI]

    Rambaut, Andrew

    Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2013 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report For the year ended 30 September 2013 Report of the Directors

  8. Researching Careers, Industries, and Companies Tracie Thomas

    E-Print Network [OSTI]

    Shull, Kenneth R.

    /Industry Increased certainty when selecting an internship Demonstrates a sincere interest in working this internship?" "I have always been interested in working in Finance, and Ford Motor Company is a well-know company" OR " I am very interested in working for a top-3 automaker in the US especially since Ford

  9. Tennessee Small Business Investment Company Credit Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Tennessee Small Business Company Credit Act offers $120 million in gross premiums tax credits to insurance companies that invest in companies certified by the State of Tennessee as TNInvestcos....

  10. Sun Life Assurance Company of Canada is a member of the Sun Life Financial group of companies. 2005 Sun Life Assurance Company of Canada. All rights reserved.

    E-Print Network [OSTI]

    Mullins, Dyche

    JL 5/26/09 Sun Life Assurance Company of Canada is a member of the Sun Life Financial group of companies. © 2005 Sun Life Assurance Company of Canada. All rights reserved. Sun Life Financial and the globe symbol are registered trademarks of Sun Life Assurance Company of Canada. SLPC 5302 07/02 H I G H

  11. Private Company Uses EERE-Supported Chemistry Model to Substantially...

    Office of Environmental Management (EM)

    Private Company Uses EERE-Supported Chemistry Model to Substantially Improve Combustion Engine Simulation Software Private Company Uses EERE-Supported Chemistry Model to...

  12. Vermont Wind Measurement Company Still Strong | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Vermont Wind Measurement Company Still Strong Vermont Wind Measurement Company Still Strong April 9, 2010 - 3:16pm Addthis NRG's new building utilizes solar power, but their...

  13. Regulation of Gas, Electric, and Water Companies (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

  14. National Interest Security Company NISC Formerly Technology Management...

    Open Energy Info (EERE)

    National Interest Security Company NISC Formerly Technology Management Services TMS Inc Jump to: navigation, search Name: National Interest Security Company (NISC) (Formerly...

  15. Sandia National Laboratories: UOP-a Honeywell Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UOP-a Honeywell Company ECIS and UOP (a Honewell Company): CSTs Clean Radioactive Waste in Fukushima and Worldwide On February 14, 2013, in Energy, Materials Science, Nuclear...

  16. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  17. Sandia National Laboratories: Ocean Renewable Power Company TidGen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company TidGen turbine High-Fidelity Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine On March 19, 2014, in Computational Modeling &...

  18. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01T23:59:59.000Z

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  19. New Mexico Gas Company- Residential Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

  20. Deere and Company Energy Management Program

    E-Print Network [OSTI]

    Boyd, P. M.

    1980-01-01T23:59:59.000Z

    An overview of the Deere & Company energy management program is discussed. A review is made of seven key elements which have contributed to the success of the program. Installed projects and established programs are identified and discussed...

  1. Fall 2012 FUPWG Meeting Welcome: Southern Company

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the Southern Company's retail service territory, financials, customers and sales, power generation, U.S. military projects, and more.

  2. CompanieswithPNNLRoots All of these companies

    E-Print Network [OSTI]

    Devary Communications ­ 1995 Directed Technologies Drilling, Inc. ­ 1992 Ebasco, (Foster Wheeler Toro Prepaid, Inc., now Coinstar) ­ 1997 New Horizon Technologies, Inc. ­ 1995 Nortec (formerlyCompanieswithPNNLRoots All of these companies have received foundational technology and

  3. Deere and Company Energy Management Program

    E-Print Network [OSTI]

    Boyd, P. M.

    1980-01-01T23:59:59.000Z

    An overview of the Deere & Company energy management program is discussed. A review is made of seven key elements which have contributed to the success of the program. Installed projects and established programs are identified and discussed...

  4. A virtual company concept for reservoir management

    SciTech Connect (OSTI)

    Martin, F.D. [Dave Martin and Associates, Inc. (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States)

    1998-12-31T23:59:59.000Z

    This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

  5. An analysis of the bank holding company

    E-Print Network [OSTI]

    Facka, David William

    1969-01-01T23:59:59.000Z

    company exercises more supervision over the investments of each affiliate bank than over any of the other affiliate bank's activities. This service improves the flow of information, thus increasing the productivity of investments . Many of the services...) the conven- ience, needs, and welfare of the communities and the area concerned; and (5) whether or not the effect of such acquisition or merger or consolidation would be to expand the size or extent of the bank holding company system involved beyond...

  6. Energy Conservation Design Features of Retrofit and New Units . . . One Company's Experience

    E-Print Network [OSTI]

    Prothro, B.

    1981-01-01T23:59:59.000Z

    The Cities Service Energy Management Program emphasizes long-term objectives implemented in several stages. This paper presents our approach to energy management and highlights the success of this program at our Lake Charles Refinery....

  7. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    by State as of January 1, 2006 PDF 5 Refiners' Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2006 PDF 6 Operable Crude Oil and Downstream Charge...

  8. Hydrogen Generation for Refineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Cycle Shown for ATB SteamCarbon 3 * ATB reforming * Steamcarbon 3 * Syngas generated during reforming * 70% H 2 * 20% CO * Syngas composition agrees with...

  9. Refinery Capacity Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436INCIDENCE OF AN2009

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report

  12. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Report5

  13. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  14. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity Operable

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacity

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacityof Last

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21Capacityof

  18. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table 1.1;"21CapacityofVacuum

  19. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for Table

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / Refiner /

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / Refiner

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / RefinerAlkylates

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION / RefinerAlkylates

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION /

  5. Refinery Outages: Fall 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION /Product:

  6. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    Capacity Report June 2014 With Data as of January 1, 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by...

  7. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  8. Refinery Capacity Report Historical

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail

  9. Hydrogen Generation for Refineries

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protectionof

  10. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrude Oil and Petroleum

  11. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,902672009Dec-14

  12. Parallel Processing Letters fc World Scientific Publishing Company

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    World Scientific Publishing Company http://ejournals.wspc.com.sg/ppl/ppl.shtml SCHEDULING AND MANAGEMENT

  13. Property:CompanyType | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProjectAffiliated CompaniesCompanyType Jump

  14. Oman Oil Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas CompanyOklahoma/WindOkpilakIIOmahaOman

  15. Hydrogen Technology Park DTE Energy -Company Overview

    E-Print Network [OSTI]

    Gas Production Detroit Edison Power Generation Energy Services* Energy Trading Biomass Energy Coal billion · 2.6 million customers · 11,000 MW of generation · 600 BCF natural gas delivery · 11,000 employees #12;3 Diversified Energy and Energy Technology Company * Energy Services: Coal Based Fuels

  16. Search Business News, Stocks, Funds, Companies

    E-Print Network [OSTI]

    Yaghi, Omar M.

    To capture the carbon dioxide generated by coal plants, chemical companies like Dow Chemical Co. and energy in Business Search All NYTimes.com Energy & Environment WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE's Revival May Combat Climate Change Build a Better Carbon Trap and ... And Now, Climate Bill's Supporters

  17. Grid Reliability- An Electric Utility Company's Perspective

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingcovers Southern Company's business continuity, North American Electric Reliability Corporation (NERC) cybersecurity, and homeland security as well as physical recovery after a major outage, and five questions to ask your local utility.

  18. AD CONTENT CHECK LIST: o Company logo

    E-Print Network [OSTI]

    Zakharov, Vladimir

    AD CONTENT CHECK LIST: o Company logo o Address o Contact Info: Phone, web site, and/or e-mail o that will perfectly reflect your image! Acceptable Formats For Logos/Graphics/Photos High-Res (300 dpi) PDF, EPS

  19. Portland General Electric Company Pilot Evaluation and

    E-Print Network [OSTI]

    . The purposes of this pilot were to measure the load impact of turning off water heaters during peak hours, test customer acceptance of remote control of their water heater, determine the company's capability to control) was installed in each participant's home. Water heaters were shut off remotely (curtailed), using the paging

  20. Aeroseal, LLC a JMD, Inc Company

    E-Print Network [OSTI]

    Aeroseal, LLC a JMD, Inc Company 6838 Ellicott Drive East Syracuse, NY 13057 www.aeroseal.com Seal the Savings! May 26, 2011 Brady Peeks Northwest test procedure using an Aeroseal SmartSeal system. The total leakage of the duct system to the outside

  1. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01T23:59:59.000Z

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  2. Biomass Company Sets Up Shop in High School Lab | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy...

  3. SEP Success Story: Green Launching Pad Taps Six More Companies...

    Office of Environmental Management (EM)

    Green Launching Pad Taps Six More Companies for Take-off SEP Success Story: Green Launching Pad Taps Six More Companies for Take-off April 29, 2011 - 9:58am Addthis Yesterday, U.S....

  4. Geothermal Business on the Rise for Kansas Company | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Business on the Rise for Kansas Company Geothermal Business on the Rise for Kansas Company April 16, 2010 - 4:43pm Addthis Paul Lester Communications Specialist, Office of Energy...

  5. Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

  6. Corporate Energy Management: A Survey of Large Manufacturing Companies

    E-Print Network [OSTI]

    Norland, D. L.; Lind, L.

    Corporate practices regarding energy management vary substantially from one company to another. Some companies pay close attention to energy use throughout the corporation while others pay scant attention. This paper first describes what we call...

  7. SunShot Incubator Awardee Helps Companies Offer Discount Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Incubator Awardee Helps Companies Offer Discount Solar as Employee Perk SunShot Incubator Awardee Helps Companies Offer Discount Solar as Employee Perk March 31, 2015 -...

  8. Matching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation

    E-Print Network [OSTI]

    Gilchrist, James F.

    Corporation Foundation The Eaton Charitable Fund Electroline Corporation Eli Lilly and Company FoundationMatching Gift Companies LEHIGH UNIVERSITY 1 3M Corporation Abbott Laboratories Accenture Foundation Technologies, Inc. Air Products Air Products Foundation Albemarle Corporation Alcoa Foundation Alliance Capital

  9. Intern experience at URS Company: an internship report

    E-Print Network [OSTI]

    Elkarmi, Fawwaz, 1950-

    2013-03-13T23:59:59.000Z

    This report describes the author's internship experience with URS Company - Dallas, Texas, from May 1980 to May 1981. The internship company is a consulting engineering firm engaged in providing professional services...

  10. Optimal capital structure of deep sea foreign freight transportation companies

    E-Print Network [OSTI]

    Georgiadis, Vasilis

    2014-01-01T23:59:59.000Z

    This thesis aims to understand the optimal leverage range for shipping companies (maritime foreign freight transportation companies - SIC 4412), through data analysis. This study confirms that in a traditional industry ...

  11. Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry

    E-Print Network [OSTI]

    Stuart, Elizabeth

    2014-01-01T23:59:59.000Z

    disadvantage compared to solar companies that are verticallydisadvantage compared to solar companies that are verticallysolar leasing models with no upfront costs). These companies

  12. Evaluation and redesign of a company's distribution network

    E-Print Network [OSTI]

    Burgos Fuentes, Sergio Armando

    2004-11-15T23:59:59.000Z

    EVALUATION AND REDESIGN OF A COMPANY?S DISTRIBUTION NETWORK A Record of Study by SERGIO ARMANDO BURGOS FUENTES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF ENGINEERING August 2004 Major Subject: Engineering College of Engineering EVALUATION AND REDESIGN OF A COMPANY?S DISTRIBUTION NETWORK A Record of Study by SERGIO ARMANDO BURGOS FUENTES Approved...

  13. Pacific Gas and Electric Company_14-36-NG_3422

    Broader source: Energy.gov (indexed) [DOE]

    ) PACIFIC GAS AND ELECTRIC COMPANY ) DOCKET NO. 14-36-NG ) ORDER GRANTING BLANKET AUTHORIZATION TO IMPORT NATURAL GAS FROM...

  14. Evaluation and redesign of a company's distribution network

    E-Print Network [OSTI]

    Burgos Fuentes, Sergio Armando

    2004-11-15T23:59:59.000Z

    EVALUATION AND REDESIGN OF A COMPANY?S DISTRIBUTION NETWORK A Record of Study by SERGIO ARMANDO BURGOS FUENTES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF ENGINEERING August 2004 Major Subject: Engineering College of Engineering EVALUATION AND REDESIGN OF A COMPANY?S DISTRIBUTION NETWORK A Record of Study by SERGIO ARMANDO BURGOS FUENTES Approved...

  15. Software Quality Modeling Experiences at an Oil Company Constanza Lampasona &

    E-Print Network [OSTI]

    Basili, Victor R.

    Software Quality Modeling Experiences at an Oil Company Constanza Lampasona & Jens Heidrich by Ecopetrol, a Colombian oil and gas company. The general approach taken is illustrated and excerpts from is to become one of the 30 most important companies in the oil and gas domain by 2020. IT plays an important

  16. Company Name: Oracle Web Site: www.oracle.com

    E-Print Network [OSTI]

    New Hampshire, University of

    , current product ownership, current and future technology plans and targeted areas of opportunity To viewCompany Name: Oracle Web Site: www.oracle.com Industry: Technology Brief Company Overview: Oracle company. With more than 370,000 customers including 100 of the Fortune 100 in more than 145 countries

  17. Dutch Wholesale Company Highway 57 North Elnora, IN 47529

    E-Print Network [OSTI]

    2011 Dutch Wholesale Company Highway 57 North · Elnora, IN 47529 TOLL FREE: (800) 472-9178 · FAX States only. J enclosed is a check payable to Dutch Wholesale Company J J please send payment with your! Thank You! Dutch Wholesale Company Highway 57 North Elnora, IN 47529 Phone: (800) 472-9178 Fax: (812

  18. Kharisma Jaya Gemilang (KJG), an Indonesian company part-

    E-Print Network [OSTI]

    companies based in Asia, Africa, and South America. We are also engaged in timber trade policy initiativesKharisma Jaya Gemilang (KJG), an Indonesian company part- nering with TTAP received the Tropical verification through a variety of site visits of companies engaged in the process. Rachel But- ler, Head

  19. A Start-up company to start your career

    E-Print Network [OSTI]

    A Start-up company to start your career Professional Development Seminar March 6, 2013 #12;What is a start-up company? Small, just started Typically 1-5 years old Often no products, no sales Developing something totally new May, or may not be a market #12;What is a start-up company? Funding

  20. Research Investments in Large Indian Software Companies Pankaj Jalote

    E-Print Network [OSTI]

    Jalote, Pankaj

    of the company can use to improve the business. Research is typically not a business or a profit center to bring out newer products in the market place. But why does a service company need investment in researchResearch Investments in Large Indian Software Companies Pankaj Jalote Professor, Department

  1. THE STRUCTURE OF PATENT AUTHORSHIP NETWORKS IN JAPANESE MANUFACTURING COMPANIES

    E-Print Network [OSTI]

    Thawonmas, Ruck

    THE STRUCTURE OF PATENT AUTHORSHIP NETWORKS IN JAPANESE MANUFACTURING COMPANIES Kohei Tsuda, Frank of these strategies is the creation of patents, which help eliminate or contain competition. Companies seek to learn the research strategies of their competitors. At the same time, all companies try to hide their own strategies

  2. Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty

    E-Print Network [OSTI]

    Hashimoto, Susumu

    This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

  3. Company Name: The Timken Company Web Site: http://www.timken.com/en-us/careers/Pages/default.aspx

    E-Print Network [OSTI]

    New Hampshire, University of

    Company Name: The Timken Company Web Site: http, clean steel making, precision manufacturing, metrology, and engineered surfaces and coatings they typically recruit: Engineering Brief description of typical entry-level position: Sales Engineering, Field

  4. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Companys Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Companys Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  5. Foreign Energy Company Competitiveness: Background information

    SciTech Connect (OSTI)

    Weimar, M.R.; Freund, K.A.; Roop, J.M.

    1994-10-01T23:59:59.000Z

    This report provides background information to the report Energy Company Competitiveness: Little to Do With Subsidies (DOE 1994). The main body of this publication consists of data uncovered during the course of research on this DOE report. This data pertains to major government energy policies in each country studied. This report also provides a summary of the DOE report. In October 1993, the Office of Energy Intelligence, US Department of Energy (formerly the Office of Foreign Intelligence), requested that Pacific Northwest Laboratory prepare a report addressing policies and actions used by foreign governments to enhance the competitiveness of their energy firms. Pacific Northwest Laboratory prepared the report Energy Company Competitiveness Little to Do With Subsidies (DOE 1994), which provided the analysis requested by DOE. An appendix was also prepared, which provided extensive background documentation to the analysis. Because of the length of the appendix, Pacific Northwest Laboratory decided to publish this information separately, as contained in this report.

  6. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-01-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit [number sign]1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  7. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-10-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit {number_sign}1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  8. Company Template (Fixed Support) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 BuildingEnergy EfficiencyPast ProjectsCommunityCompany Template

  9. Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Swesey, J.R.; Magill, L.G.

    1987-09-01T23:59:59.000Z

    An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

  10. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas Company Address Place Zip Website Abu

  11. Pennsylvania company prepares year-end review

    SciTech Connect (OSTI)

    Not Available

    1990-04-12T23:59:59.000Z

    Equitable Resources, Inc., in Pittsburgh, Pennsylvania, reports that consolidated income for calendar year 1989 was $50.9 million, or $2.43 per share, up from 1988's $47.1 million, or $2.27 per share. The difference was primarily due to a general increase in retail rates which became effective in January 1989 for distribution customers in the state. A December 1989 settlement of a pipeline subsidiary's rate increase also added to the increase. The rate increase had been in effect since 1986, but the full effect had been reserved pending the outcome of regulatory proceedings, the company stated.

  12. Maan Development Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaan Development Company Jump to:

  13. First Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at MethilGlobalFirstFirst Hydro Company

  14. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills, NewWestbrook, Minnesota:Western Ethanol Company LLC

  15. Category:MHK Companies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies" TheLists

  16. Shanghai TL Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScottsOklahoma:SevinShamilTL Chemical Company Jump to:

  17. Shenzhen Chuangyin Industrial Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy ResourcesShelton,Chuangyin Industrial Company

  18. Evans Capacitor Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEuricoOpenCompany Jump to:

  19. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogen Company Jump to: navigation, search

  20. Hydroenergy Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy Company Ltd Jump to: navigation,

  1. Xinjiang Wind Energy Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifang SwisselectronicXian Jieli ElectricHuitongCompany

  2. Wellsboro Electric Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)Wellington Middle SchoolCompany

  3. Winslow Management Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:WilsonIIa extension679°,Manitoba:Company

  4. Property:Affiliated Companies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProjectAffiliated Companies Jump to:

  5. Property:CompanyOwnership | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformationProjectAffiliated Companies

  6. OpenEI Community - Utility Companies

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff thedriving

  7. Ovonic Battery Company Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelf Lands

  8. Phasor Energy Company Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformation USPerseus| Open EnergyU.S. DOEII

  9. Phoenix Canada Oil Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformationLumileds Lighting Co Jump to:Phoenix

  10. Corsicana Chemical Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa ValleyCorsicana Chemical Company Jump

  11. DMS Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergyDLC+VIT4IP CountryDMS Company

  12. Woodward Governor Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County,NewWoodward Governor Company Jump

  13. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China Datang CorporationCenter Ethanol Company LLC Jump

  14. Narayanpur Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/AmesNSNanotectureNarayanpur Power Company

  15. Ocean Energy Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasys WaterCity, New Jersey:OceanCompany

  16. BP Energy Company (Washington) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy ResourcesBurleyBLMUSFWSBP Energy Company

  17. Diablo Research Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan:Dewey-Humboldt, Arizona:Research Company Place:

  18. Tecumseh Products Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVC Jump to:TecogenProducts Company

  19. The Social Carbon Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial Carbon Company Jump

  20. JM E3 Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunanInformation sourceInvensysIsland GasItronJM E3 Company

  1. The Timken Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book JumpTimken Company Jump to:

  2. Ameren Illinois Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmeren Illinois Company Jump to:

  3. Chevron Hydrogen Company LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER es unaChelmsford,VolcanicChevron Hydrogen Company

  4. Community Management Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, NorthCommunity Management Company Jump to:

  5. Nevis Engine Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis Engine Company Jump to: navigation,

  6. Utility Companies | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AGUser page EditUsinasource HistoryCompanies

  7. Wisconsin River Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWindManitoba,Wisconsin River Power Company

  8. United Oil Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver Dam,PopulationOil Company

  9. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California:AgriFuel Company Jump

  10. Group Retirement Services are provided by Sun Life Assurance Company of Canada, a member of the Sun Life Financial group of Sun Life Assurance Company of Canada, 2011.

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Group Retirement Services are provided by Sun Life Assurance Company of Canada, a member of the Sun Life Financial group of companies. © Sun Life Assurance Company of Canada, 2011. McLean Budden name

  11. QER- Comment of Pacific Gas and Electric Company

    Broader source: Energy.gov [DOE]

    PG&E is committed to protecting our customers' privacy. To learn more, please visit http://www.pge.com/about/company/privacy/customer/

  12. Asset Score Webinar Slides: Energy Efficiency Services Companies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Score Webinar Slides: Energy Efficiency Services Companies The Asset Score is a free, web-based software tool developed by DOE and the Pacific Northwest National Laboratory...

  13. Thirteen Major Companies Join Energy Department's Workplace Charging...

    Energy Savers [EERE]

    electric vehicles is expanding dramatically, giving drivers more options to save money on gasoline while reducing carbon pollution," said Secretary Chu. "These 13 companies are...

  14. Campbell Soup Company: Harmonizing Processes and Empowering Workers

    E-Print Network [OSTI]

    Ross, Jeanne W.

    2008-06-01T23:59:59.000Z

    In 2007 Campbell Soup Company was implementing Project Harmony: a multi-year effort to implement SAP and create more standardized and integrated business processes across

  15. Model Energy Service Company Pre-Qualification Contract

    Broader source: Energy.gov [DOE]

    This page contains information and documents for creating a contract between an Energy Service Company and a state energy office (or other entity managing a performance contracting program).

  16. US Energy Service Company Industry: History and Business Models

    Broader source: Energy.gov (indexed) [DOE]

    Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases *...

  17. Dutch Company Powers Streetlights With Living Plants; Will Your...

    Open Energy Info (EERE)

    Dutch Company Powers Streetlights With Living Plants; Will Your Cell Phone Be Next? Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 16...

  18. Gas Companies Operating Within the State of Connecticut (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply a broad definition of gas company, which includes any person or entity involved in the manufacture or transportation of gas within Connecticut. The regulations set...

  19. Geothermal: Sponsored by OSTI -- ESMERALDA ENERGY COMPANY FINAL...

    Office of Scientific and Technical Information (OSTI)

    ESMERALDA ENERGY COMPANY FINAL SCIENTIFIC TECHNICAL REPORT, January 2008, EMIGRANT SLIMHOLE DRILLING PROJECT, DOE GRED III (DE-FC36-04GO14339) Geothermal Technologies Legacy...

  20. AEP Public Service Company of Oklahoma- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Public Service Company of Oklahoma (PSO), an electric utility, encourages residential energy efficiency under a variety of incentive programs. General rebates for HVAC equipment, appliances and...

  1. Sandia National Laboratories: Public Service Company of New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Service Company of New Mexico Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership,...

  2. New Energy Dept., Berkeley Lab Report on Energy Service Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lawrence Berkeley National Laboratory today released a new report on the market size, trends and growth projections for America's energy service company (ESCO)...

  3. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  4. Peninsula Light Company- Commercial Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service....

  5. Peninsula Light Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Peninsula Light Company offers a rebate program for residential customers who want to install energy efficient products in homes. Rebates are provided for window replacements, water heaters, heat...

  6. Joint Maintenance Status Report of Potomac Electric Power Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    amd PJM Interconnection, LLC Docket No. EO-05-01: Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby jointly submit this Maintenance...

  7. EECBG Success Story: Seven Cities and a Utility Company Team...

    Broader source: Energy.gov (indexed) [DOE]

    management software company OPOWER to help nearly 100,000 residents reduce their home energy consumption. The program, which was made possible in part by Energy Efficiency and...

  8. The Davey Tree Expert Company Davey Foundation Arbor Grant Program

    E-Print Network [OSTI]

    of intent explaining future plans and financial need must be attached. Grades do not have to be fromThe Davey Tree Expert Company Davey Foundation Arbor Grant Program Purpose To provide financial Administrator, Education and Training Services The Davey Tree Expert Company 1500 North Mantua Street Kent, Ohio

  9. Faculty of MANAGEMENT Alberta Oil & Gas Company1

    E-Print Network [OSTI]

    Nakayama, Marvin K.

    Faculty of MANAGEMENT Alberta Oil & Gas Company1 Daphne Jackson, operations manager for Alberta Oil & Gas Company (AOGC) hangs up the phone in her home. Her boss, Will Russell, has phoned from Calgary's interest in the Waptaman oil field. Ordinarily, Will would lead such negotiations himself, but he has been

  10. The Boeing Company Project Fuel Tank Design Project Recap

    E-Print Network [OSTI]

    Demirel, Melik C.

    which consist of a 15o double angle displacement, 10 to 12 oscillations per minute oscillation frequencyThe Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came to the Pennsylvania State University with a project for the mitigation of fuel slosh by utilizing different baffle

  11. Internet Security Systems, an IBM Company Threat Insight Monthly

    E-Print Network [OSTI]

    Internet Security Systems, an IBM Company X-Force Threat Insight Monthly www . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Contents www.iss.netwww.iss.net Internet Security Systems, an IBM Company X-Force Threat Insight Monthly April 2007 #12;X-Force Threat Insight Monthly > April 2007 www.iss.netwww.iss.net About

  12. The Cost of Power Disturbances to Industrial & Digital Economy Companies

    E-Print Network [OSTI]

    Schrijver, Karel

    's Consortium for Electric Infrastructure for a Digital Society (CEIDS) By 1001 Fourier Drive, Suite 200 MadisonThe Cost of Power Disturbances to Industrial & Digital Economy Companies Submitted to: EPRI To Client #12;The Cost of Power Disturbances to Industrial & Digital Economy Companies Confidential

  13. Vets company installing solar across Massachusetts

    Broader source: Energy.gov [DOE]

    Dan Leary, a U.S. Army veteran, is president of Nexamp Inc., a clean energy company that specializes in solar installation. Dan founded the company in 2006 and has witnessed its impressive growth from six employees to 65 and counting as of July 2010.

  14. Company name PhiloMetron, Inc. Contact name Carl Edman

    E-Print Network [OSTI]

    Wang, Deli

    description of your company PhiloMetron is a technology incubator with a primary focus on wireless "smart band-aids". We are located in Sorrento Valley. Our first spinout company, Corventis, is focused on at-home heart failure and arrhymia markets. Our current platform derives and expands from this core physiological

  15. The state of the energy service company today

    SciTech Connect (OSTI)

    Mozzo, M.A. Jr.

    1998-10-01T23:59:59.000Z

    Energy service companies have been around for several years. Every year, experts predict their demise. The traditional energy service company (ESCo), whose work utilizes utility rebates, will probably be long gone as rebates disappear. The new energy service company will arise in this industry. This new company will be one that can provide a vast menu of services to their customers. These services can include, but are not necessarily limited to, the following: (1) corporate energy management services, (2) natural gas transportation services, (3) electrical deregulation services, (4) energy engineering services, (5) economics and forecasting, and (6) project financing. The new energy service company must have the engineering, financial, and managerial resources and skills to provide these services. It must also have the ability to recognize the needs of a changing industry and adapt to these changes in order to survive and ultimately provide a benefit to society.

  16. Ultra-Low Sulfur diesel Update & Future Light Duty Diesel

    Broader source: Energy.gov (indexed) [DOE]

    MARATHON PETROLEUM COMPANY LLC PARENT-MARATHON OIL COMPANY FIFTH LARGEST US REFINERY (OVER 1 MILLION BBLS OF CRUDE CAPACITY) MAJOR MARKETS IN MIDWEST AND SOUTHEAST ...

  17. LBNL/ Adopt Fall Protection Program 2010 Here is the Company Letter Certification Template to address if your company has

    E-Print Network [OSTI]

    Eisen, Michael

    LBNL/ Adopt Fall Protection Program 2010 Here is the Company Letter Certification Template to address if your company has decided to work under LBNL fall protection program. See attached Chapter 30 protection matrix. All fall protection equipment will be inspected before work begins by LBNL SME of fall

  18. Position: Polymer Chemist Company: ExxonMobil Research and Engineering Company, a wholly owned subsidiary of Exxon Mobil

    E-Print Network [OSTI]

    Alpay, S. Pamir

    candidate will apply his or her knowledge to improve existing olefin-based products and develop new ones productive collaborations internally and with outside research organizations, and grow new science areas. JobPosition: Polymer Chemist Company: ExxonMobil Research and Engineering Company, a wholly owned

  19. Energy service company opportunities get hotter

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1995-08-01T23:59:59.000Z

    An option of growing interest to utilities and their customers is the energy service company or ESCO. It typically provides or coordinates several energy services including performing energy audits or analyses, designing and engineering of retrofit projects, managing the installation of more efficient equipment, and maintaining systems for optimal performance. Perhaps the key distinguishing feature of an ESCO is financing that allows the customer to avoid or reduce first costs and pay for the energy services through savings on electric and fuel bills. By paying for the energy services through savings on energy bills, the arrangement becomes a performance contract. It is difficult to find a major utility in North America that is not considering establishing or working with an ESCO. Many have made that commitment and many more are likely to do so. From the perspective of the facility owner, the increased presence of ESCOs will present some challenges in determining the best option, but the rewards for selecting an ESCO of high quality and reliability should be worth it. A facility manager considering a contract with an ESCO that is not a utility subsidiary should call their local utility for comparative information. A facility manager considering a contract with an ESCO that is a utility subsidiary should be aware that other organizations may be able to provide equivalent services.

  20. Energy service companies -- The sky's the limit

    SciTech Connect (OSTI)

    Fraser, M.; Montross, C.

    1998-07-01T23:59:59.000Z

    The term ESCO has a different meaning to different people. Increasingly, the term is used in its broadest sense to describe any company providing services related to a customer's energy acquisition and use. Previously, the term ESCO was synonymous with contractors who installed new equipment that was paid for by the energy cost savings that resulted. As a result of competition, restructuring and de-regulation of the electricity and gas sectors, the range of firms offering energy services now includes: local utilities using services to retain customers, remote utilities offering services to customers outside their franchise as a door opener to future commodity sales, local and remote utilities who see services as a more lucrative growth opportunity than commodities or transportation of the commodity, facility managers taking advantage of outsourcing trends and using energy management to reduce costs, power marketers, power brokers, aggregators combining energy analysis to segment their customers with processes to identify potential conservation and load management opportunities, cogeneration developers, and agents who help their customers navigate the uncharted waters of the deregulated energy business. This paper will review the impact of the broader definition of ESCOs with a view toward forecasting future trends in the industry including consideration of the fact that the term, energy service, may, itself, be too narrow a definition for a successful business of industry.

  1. Appraisal Seattle, Renton and Southern Railway Company

    E-Print Network [OSTI]

    Fletcher, John H.

    1913-01-01T23:59:59.000Z

    r e a s o n a b l y co r r ec t . * however , your e n g i n e e r was den i ed a c c e s s t o t h e company 's r e c o r d s , thus making the work doubly ha rd , and i m p o s s i b l e i n some p a r t i c u l a r s t o s e c u r e d e f i n i... a l u a t i o n t h e r e o f . Now, T h e r e f o r e , Be i t r e s o l v e d by t h e C i t y o f S e a t t l e as f o l l o w s ; S e c t i o n 1. T h a t t h e Boa rd of P u b l i c Works be and i t h e r e b y i s a u t h o r i z e d and d...

  2. Design for implementation : redesigning a planning process in a multinational company

    E-Print Network [OSTI]

    Azrielant, Liron

    2011-01-01T23:59:59.000Z

    As a consumer-packaged-goods company dealing with multiple suppliers, "Company X" (the company's real name has been disguised) has a clear need for an accurate raw material forecast. The current planning process has not ...

  3. ARCO Chemical Company Research and Engineering Center, "The Meadows" [The Inhabited Landscape: An Exhibition

    E-Print Network [OSTI]

    Ltd., Hanna/Olin

    1988-01-01T23:59:59.000Z

    D ARCO Chemical Company Research and Engineering C e n t eA R C O Chemical Company Research and Engineering Center, "A ARCO Chemical Company Research and Engineering Center, " T

  4. Results of the Independent Radiological Verification Survey of Remediation at Building 14, Former Linde Uranium Refinery, Tonawanda, New York (LI001V)

    SciTech Connect (OSTI)

    McKenzie, S.P.

    2000-08-21T23:59:59.000Z

    As part of the Formerly Utilized Sites Remedial Action Program, a team from Oak Ridge National Laboratory (ORNL) conducted a radiological verification survey of Building 14 at the former Linde Uranium Refinery, Tonawanda, New York. The purpose of the survey was to verify that remedial action completed by the project management contractor had reduced contamination levels to within authorized limits. Prior to remediation, fixed and removable beta-gamma emitting material was Prevalent throughout Building 14 and in some of the process piping. Decontamination consisted of removal of surface contamination from floors, floor-wall interfaces, walls, wall-ceiling interfaces, and overhead areas; decontamination or removal of process piping; excavation and removal of subsurface soil; and vacuuming of dust. This independent radiological assessment was performed to verify that the remedial action had reduced contamination levels to within authorized limits. Building 14 at the former Linde site in Tonawanda, New York, was thoroughly investigated inside for radionuclide residues. Surface residual activity levels were generally well below applicable guidelines for protection against radiation. Similarly, removable alpha and beta-gamma activity levels were below guidelines. Gamma exposure rates within the building were at typical background levels, and no elevated indoor radon concentrations were measured. However, numerous areas exceeding U.S. Department of Energy (DOE) applicable guidelines still remain inside and underneath the building. These areas were either (1) inaccessible or (2) removal was not cost-effective or (3) removal would affect the structural integrity of the building. These above-guideline areas have been listed, described, and characterized by the remediation subcontractor (Appendix A), and dose to an exposed worker during typical exposure scenarios has been calculated. Based on the remediation subcontractor's characterization data and dose assessment calculations, these areas pose insignificant risk to building inhabitants under current use scenarios. However, future renovations, repairs, or demolition of the building must require prior evaluation and consideration of the areas. Analysis of the project management contractor's post-remedial action data and results of this independent radiological verification survey by ORNL confirm that residual contamination inside the building is either below the limits prescribed by DOE applicable guidelines for protection against radiation or areas exceeding applicable guidelines have been characterized and a risk assessment completed. Building 14 can be released for unrestricted use under current use scenarios; however, arrangements must be made to inform current and future building owners of the locations of areas exceeding DOE guidelines and any associated restrictions concerning renovations, repairs, or demolition of the building.

  5. Results of the Independent Radiological Verification Survey of Remediation at Building 31, Former Linde Uranium Refinery, Tonawanda, New York (LI001V)

    SciTech Connect (OSTI)

    McKenzie, S.P.; Uziel, M.S.

    1998-11-01T23:59:59.000Z

    As part of the Formerly Utilized Sites Remedial Action Progmq a team from Oak Ridge National Laboratory (ORNL) conducted a radiological veriihtion survey of Building 31 at the former Linde Uranium Refinery, Tonawau& New York. The purpose of the survey was to ver@ that remedial action completed by the project management contractor had reduced contamination levels to within authorized limits. Prior to remediatioq tied radioactive material was prevalent throughout the building and in some of the ductwork Decontaminadon consisted of removing surfhce contamination from floors, baseboards, and overhead areas; removing some air ducts; and vacuuming dust. Building 31 at the former Linde site in TonawandA New Yorlq was thoroughly investigated inside and outside for radionuclide residues. The verification team discovered previously undetected contaminadon beneath the concrete pad on the first floor and underneath floor tiles on the second floor. All suspect floor tiles were removed and any contamination beneath them cleaned to below guideline levels. The verification team also discovered elevated radiation levels associated with overhead air lines that led to the eventual removal of the entire air lige and a complete investigation of the history of all process piping in the building. Final verification surveys showed that residual surface beta-gamma activity levels were slightly elevated in some places but below U.S. Department of Energy applicable guidelines for protection against radiation (Table 1). Similarly, removable radioactive contamination was also below applicable guidelines. Exposure rates within the building were at typical background levels, and no consistently elevated indoor radon concentrations were measured. However, radionuclide analysis of subsurface soil from beneath the concrete floor on the ground level showed concentrations of `*U and'% that exceeded applicable guidelines. At the time of this survey, there was no measured exposure pathway for this subslab contamination under current use scenarios, and there was low risk associated with this contaminadon if the conaete slab is not cracked or penetrated. However, any penetration of the concrete slab caused by renovations, repairs, demolitio% or a naturally-occurring craclq would require further investigation and evaluation. Analysis of the project management contractor's post-remedial action data and results of this independent radiological vaification survey by ORNL confirm that all radiological measurements inside the building, on the exterior walls, and on the roof are below the limits prescribed by applicable guidelines for protection against radiation.

  6. Thinking globally - acting locally an energy company`s response to land stewardship

    SciTech Connect (OSTI)

    McIntyre, D. [Sasaki Associates, Inc., Watertown, MA (United States)

    1995-12-01T23:59:59.000Z

    This paper explores the application of contemporary land use planning principles in the Kingdom of Saudi Aramco, the world`s largest oil company, relative to Company-controlled land located in the Eastern Province of the Kingdom. The Eastern Province is the world`s most productive hydrocarbon resource. The Province has witnessed extraordinary industrialization over 25 years due to the exploitation of the oil resource. Saudi Aramco commissioned the planning study to set a course of action which fully considers the consequences such development may have on the social, economic and environmental characteristics of the metropolitan area. In addition to existing developed areas, the study area encompasses a unique desert environment including salts flats, native vegetation, habitat for migrating wildlife and extraordinary geologic formations overlying an important water resource. A Master Plan established a framework of land use, open space, transportation and infrastructure to guide the development of the region over the next 25 years. The Plan emphasizes the redevelopment of industrialized areas for other uses leveraging capital investment to improve quality of the built environment and establishes institutional mechanisms necessary to fully achieve implementation. The study is innovative because (1) a global energy company assumes a leadership role in stewarding its land resource, (2) incorporates contemporary land use planning techniques within a context where such planning is absent, (3) emphasizes redevelopment of industrialized areas, where historically development has simply been directed to the next available undeveloped site, and (4) applies the principles of sustainable land use planning by responding to cultural influences, strengthening local economies and preserving important natural assets. The study establishes a precendent for {open_quotes}corporate environmentalism{close_quotes}and offers a model approach to land use planning in the developing world.

  7. Waste treatment and metal recovery at the Robbins Company

    SciTech Connect (OSTI)

    Clark, P.

    1990-05-01T23:59:59.000Z

    The Robbins Company, of Attleboro, Massachusetts, a medium-sized jewelry manufacturing and plating company, installed a new wastewater treatment and metal recovery system, which forms a closed-loop, completed in February, 1988. The company now generates very small quantities of hazardous wastes non-contact cooling water from the annealing furnaces, and intends to complete it`s water conservation program by installing one or more chillers on the furnaces. Since 1986, chemical usage has dropped 81.8%, hazardous waste generation 89% and water usage by 47.7%, generating an annual savings of over $71,000.

  8. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31T23:59:59.000Z

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  9. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    of the U.S. Energy Service Company Industry: Market Size andTitle: U.S. Energy Service Company Industry: Market Size and

  10. Incidence of Negative Appendectomy: Experience From a Company Hospital in Nigeria

    E-Print Network [OSTI]

    Osime, O C; Ajayi, P A

    2005-01-01T23:59:59.000Z

    From a Company Hospital in Nigeria OC Osime, FMCS, FICSHospital Benin City, Nigeria ABSTRACT Objective: The aim ofin a company hospital in Nigeria. Background: Appendicitis

  11. Interim activities report. [Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Majzlik, E.H. Jr.

    1992-01-01T23:59:59.000Z

    Several developments have occurred since the 32nd WANTO Meeting that effect the status of the Savannah River Site. A request to restart K-Reactor was issued after nearly three years of intensive engineering analysis, procedure revisions and enhanced operator training to upgrade all aspects of reactor operation. In early December 1991, the Westinghouse Savannah River Company requested permission from DOE to start the K-Reactor. In mid-December the DOE and the Defense Nuclear Facility Safety Board concurred with readiness to operate and a Federal Circuit Court of Appeals ruled against a lawsuit to delay restart until a cooling tower is completed. The K-Reactor was restarted and has been in an evaluation and testing mode. Full power operation at thirty percent of maximum capacity is projected for March 1992 after which actual tritium generation will begin. Operation will continue until October when the cooling tower will be tied into the reactor cooling system. In conjunction with the restart of K-Reactor, the P-Reactor has been placed in permanent shutdown status and the L-Reactor has been placed in warm stand-by. In another reactor related situation, the DOE will delay the decision on construction of the New Production Reactor (NPR) until 1993. The choice of reactor type and location of the NPR will be integrated into the overall programmatic decision on Reconfiguration of the Weapons Complex. Finally, construction of the Replacement Tritium Facility (RTF) was resumed in December 1991 after several months stoppage for evaluation and revision of project funding procedures.

  12. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2012-05-01T23:59:59.000Z

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  13. VEE-0021- In the Matter of Jacobs Oil Company

    Broader source: Energy.gov [DOE]

    On August 16, 1996 Jacobs Oil Company (Jacobs) of Dysart, Pennsylvania filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  14. LEE-0152- In the Matter of Sound Oil Company

    Broader source: Energy.gov [DOE]

    On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

  15. VEE-0039- In the Matter of Froman Oil Company

    Broader source: Energy.gov [DOE]

    On February 11, 1997, Froman Oil Company (Froman) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Froman requests that it...

  16. VEE-0035- In the Matter of Rice Oil Company, Inc.

    Broader source: Energy.gov [DOE]

    On October 22, 1996, Rice Oil Company, Inc. (Rice) of Greenfield, Massachusetts filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

  17. VEE-0064- In the Matter of Belcourt Oil Company

    Broader source: Energy.gov [DOE]

    On July 23, 1999, Belcourt Oil Company (Belcourt) of Belcourt, North Dakota filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In...

  18. VEE-0030- In the Matter of Lee Oil Company

    Broader source: Energy.gov [DOE]

    On July 19, 1996, Lee Oil Company (Lee), located in Greensboro, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy. In its...

  19. VEE-0028- In the Matter of Laney Oil Company, Inc.

    Broader source: Energy.gov [DOE]

    On June 18, 1996, the Laney Oil Company, Inc., (Laney Oil) of Monroe, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

  20. Microsoft Word - PSEG Companies Comments in OE Docket No RRTT...

    Broader source: Energy.gov (indexed) [DOE]

    In addition, PSE&G shares a critical interface with New York City. PSEG Power is a wholesale energy supply company that integrates its generation asset operations with its...

  1. Minnesota Company 3M Awarded $3 Million by Energy Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell...

  2. Fast Company covers "Just Your Typical New Mexico Image Recognition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Not) just your typical Lab spin off Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Far from Silicon Valley, Descartes...

  3. VEE-0076- In the Matter of Green Mountain Energy Company

    Broader source: Energy.gov [DOE]

    On August 23, 2000, the Green Mountain Energy Company (Green Mountain) of Austin, Texas, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy (DOE)...

  4. Inventory management in a pharmaceutical company : minimizing discard practices

    E-Print Network [OSTI]

    Wang, Xiaojun, M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Pharmaceutical company SPM has over 400 cases of inventory discards over the past five years which constitute a significant operating cost. Due to the complexity and randomness of each case, the root causes that result in ...

  5. Kentucky Utilities Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  6. Engineering & Science Careers Fair Booth Company Recruiting in

    E-Print Network [OSTI]

    Hickman, Mark

    Sciences, Geography, Geology, Statistics 24 Northrop Consulting Engineers Civil, Electrical and Electronic and Electronic, Mechanical 40 ITL Engineering Chemical and Process, Electrical and Electronic, MechanicalEngineering & Science Careers Fair Booth Company Recruiting in 1 Abley Transportation Consultants

  7. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  8. Utilizing Industrial Engineers to Implement "Lean Enterprise" at Company A

    E-Print Network [OSTI]

    Stein, Jean D'Ann

    2012-12-14T23:59:59.000Z

    in the implementation of continuous improvement and lean thinking. This skillset has recently allowed IEs to work outside their normal realm of manufacturing, and focus on areas more closely related to service organizations. At Company A, Industrial Engineers...

  9. Do Small Companies Care About Energy Savings?: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01T23:59:59.000Z

    DO SMALL COMPANIES CARE ABOUT ENERGY SAVINGS?: A CASE STUDY Sanjay Agrawal Assistant Director Richard Jensen Director Industrial Assessment Center Department of Engineering Hofstra University, Hempstead, NY 11549 ABSTRACT Often times small...

  10. Patent Litigation for High Technology and Life Sciences Companies

    E-Print Network [OSTI]

    Shamos, Michael I.

    Patent Litigation for High Technology and Life Sciences Companies #12; 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

  11. VES-0071- In the Matter of Mississippi Power Company

    Broader source: Energy.gov [DOE]

    On May 1, 2000, the Mississippi Power Company, of Gulfport, Mississippi (Mississippi Power), filed with the Office of Hearings and Appeals (OHA) of the Department of Energy an Application for...

  12. Interactive Energy Management Tool (IEMT) for Arkansas Companies

    E-Print Network [OSTI]

    Pidugu, S. B.; Menhart, S.; Midturi, S.

    2005-01-01T23:59:59.000Z

    To benefit small and medium industries located in Arkansas, the Engineering Technology Department at the University of Arkansas at Little Rock (UALR) is currently developing an Interactive Energy Management Tool (IEMT) for Arkansas Companies...

  13. VEE-0032- In the Matter of Thomas Oil Company

    Broader source: Energy.gov [DOE]

    On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

  14. Metropolitan Edison Company SEF Loans (FirstEnergy Territory)

    Broader source: Energy.gov [DOE]

    FirstEnergy (formerly GPU) established the Metropolitan Edison Company Sustainable Energy Fund in 2000 with an initial contribution of $5.7 million. The fund later received an additional...

  15. AEP Texas Central Company- SMART Source Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to...

  16. AEP Texas North Company- SMART Source Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g.,...

  17. A classification of carbon footprint methods used by companies

    E-Print Network [OSTI]

    Andrews, Suzanne L. D. (Suzanne Lois Denise)

    2009-01-01T23:59:59.000Z

    The percent increase in greenhouse gas (GHG) concentration in the atmosphere can be harmful to the environment. There is no single preferred method for measuring GHG output. How can a company classify and choose an appropriate ...

  18. atomic power company: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CiteSeer Summary: INTRODUCTION BlackLight Power, Inc. (the Company), a Delaware corporation based in its 53,000 sq. ft. headquarters in Cranbury, New Jersey, believes it has...

  19. VEE-0043- In the Matter of Greenville Automatic Gas Company

    Broader source: Energy.gov [DOE]

    On March 11, 1997, Greenville Automatic Gas Company (Greenville) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  20. Internship in Toulouse FRANCE / Girona SPAIN / Nottingham UK The Company

    E-Print Network [OSTI]

    Rostock, Universität

    Internship in Toulouse FRANCE / Girona SPAIN / Nottingham UK The Company Stipje is an organisation. We have offices in the United Kingdom, France and Spain and have students working with us from almost

  1. VBR-0002- In the Matter of Westinghouse Savannah River Company

    Broader source: Energy.gov [DOE]

    This supplemental order concerns a Motion for Reconsideration (Case No. VBR-0002) filed by Westinghouse Savannah River Company (WSRC) on November 12, 1999. The reconsideration motion relates to an...

  2. LWZ-0031- In the Matter of Westinghouse Hanford Company

    Broader source: Energy.gov [DOE]

    This determination will consider a Motion to Dismiss filed by Westinghouse Hanford Company (WHC) on April 5, 1994. In its Motion, WHC seeks the dismissal of the underlying complaint and hearing...

  3. Otter Tail Power Company- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company offers incentives to all of its customers to install energy efficient equipment in their homes or facilities. Rebates are available for high-efficiency electric heating...

  4. Otter Tail Power Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company offers incentives to all residential customers in South Dakota to install energy efficient equipment in residences. Rebates are available for geothermal and air source heat...

  5. Otter Tail Power Company- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company offers incentives to all of its commercial customers in South Dakota to install energy efficient equipment in eligible facilities. Rebates are available for geothermal and...

  6. Otter Tail Power Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Rebate Program offers rebates to qualifying residential customers for the installation of high-efficiency equipment upgrades. See the program web site for applicability and...

  7. VEE-0066- In the Matter of Taylor Oil Company

    Broader source: Energy.gov [DOE]

    On July 30, 1999, Taylor Oil Company (Taylor) of Somerville, New Jersey filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  8. Otter Tail Power Company- Dollar Smart Financing Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company's Dollar Smart Financing Program offers loans of $150 - $40,000 to residential and business customers. Customers who have satisfactory 12-month payment histories with Otter...

  9. Otter Tail Power Company- Dollar Smart Financing Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company's Dollar Smart Financing Program offers $150 - $40,000 loans to its residential and business customers. Customers who have satisfactory 12-month payment histories with...

  10. Answer of Potomac Electric Power Company and PJM lnterconnection...

    Broader source: Energy.gov (indexed) [DOE]

    ("FERC" or "Commission"), 18 C.F.R. 385.213, Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby answer the Motion of Robert G....

  11. Potomac Electric Power Company's Motion for Leave to Answer and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 C.F.R. 385.212 and 385.213 (2005), Potomac Electric Power Company ("Pepco") hereby (i) moves for leave to answer and (ii) answers certain of the comments and...

  12. Potomac Electric Power Company's Motion to Intervene and Comment...

    Broader source: Energy.gov (indexed) [DOE]

    18 C.F.R. 385.211 and 385.214 (2004), Potomac Electric Power Company ("Pepco") hereby moves to intervene in the above-captioned proceeding and supports the August...

  13. Vertical integration in the beef cattle industry: Harris Ranch Company

    E-Print Network [OSTI]

    Pedretti Fernandez, Carlos Luis

    1990-01-01T23:59:59.000Z

    to 350 Ib in a 6 mo period (McNeill, 1985). Ranch mana ement. The ranching operation is organized around three company-owned ranches, plus several leased pastures and ranches. Each company- owned ranch is operated by only one person. The availability... of ranches to lease, marketing necessities, and grass condition determines the usage of pastures and the placement of cattle. One ranch supervisor oversees the entire operation and coordinates the work of each of the ranch foremen. The ranch foreman...

  14. The Role of Marketing at Duke Power Company

    E-Print Network [OSTI]

    Paules, W. R. Jr.

    POLICY Because their use of computerized and solid-state equipment is increasing, our industrial customers are sensitive not only to the quantity of electricity -- but also the quality. Last year, Duke Power implemented a power system disturbance...THE ROLE OF MARKETING AT DUKE POWER COMPANY W. ROGER PAULES, JR., P. E. Industrial Marketing Specialist Duke Power Company Charlotte, North Carolina ABSTRACT This paper examines the changes that have taken place in Duke Power's marketing...

  15. Drugs offshore: companies stepping up fight against hidden adversary

    SciTech Connect (OSTI)

    Redden, J.

    1986-01-01T23:59:59.000Z

    Oil companies worldwide are effectively fighting a growing nemesis, drug and alcohol abuse on offshore installations. It is estimated that companies are losing millions of dollars in lost productivity, accidents, and thefts caused by on-the-job use of illegal drugs. Some of the measures being employed to combat the use of such drugs, e.g., tight control, better communications, diversions for employees, and the use of sniffer dogs, are discussed.

  16. Recycle of oily refinery wastes

    SciTech Connect (OSTI)

    Bartilucci, M.P.; Karsner, G.G.; Tracy, W.J. III.

    1989-10-17T23:59:59.000Z

    This patent describes a process for recycling of petroleum containing sludge. It comprises segregating waste oil-containing sludges into a relatively high oil content sludge and a relatively high water content sludge; introducing the high oil content sludge into a delayed coking drum under delayed conditions in the presence of a liquid coker hydrocarbon feedstock to form coke; introducing the high water content sludge into a delayed coking drum to quench the coke formed in the coking drum.

  17. Recycle of oily refinery wastes

    SciTech Connect (OSTI)

    Bartilucci, M.P.; Karsner, G.G.; Tracy, W.J.

    1991-04-23T23:59:59.000Z

    This patent describes a process for disposing of petroleum containing sludge. It comprises segregating waste oil-containing sludges into a first sludge and a second sludge, the first sludge being of high oil content relative to the second sludge and the second sludge being of high water content relative to the first sludge; dewatering the first, high oil content sludge; introducing the dewatered sludge into a delayed coking drum under delayed coking conditions in the presence of a liquid coker hydrocarbon feedstock to form coke; introducing the second, high water content sludge into a delayed coking drum to quench the coke formed in the coking drum.

  18. A Louisiana Refinery Success Story

    E-Print Network [OSTI]

    Kacsur, D.

    recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves...

  19. Refinery Fuel Balancing with Cogeneration

    E-Print Network [OSTI]

    Passman, K. W.; Taylor, R. I.; Williams, D. E.; Emanuel, D.

    1990-01-01T23:59:59.000Z

    of independent operation of boilers and turbines dictated that a dump stack be provided. CONTROL SYSTEM The turbines are controlled locally. Remote monitoring and shutdown are provided in the Refine& Control Center. The existing system of remote boiler... control was left in place. The turbines will normally operate in a base load mode. At normal steaming rates, sUPPlementa~ firing will maintain steam header pressure utilizing the oxygen in the turbine exhaust. During peak stea GENERAL ARRANGEMENT...

  20. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29T23:59:59.000Z

    Pre-extractionkraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called near neutral pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the near-neutral green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid fr

  1. Refinery Outages: First Half 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors for TableCORPORATION /Product:First

  2. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEndData

  3. U.S. Refinery Stocks

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S. East Coast (PADD 1)

  4. Refinery Outages: First Half 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4.April 25, 20137a.06 2.013

  5. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrude OilNov-14

  6. Motiva Refinery | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |February 2013

  7. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010 2011 2012 2013

  8. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0622Product:Refiners Switch

  9. Post-Acquisition Integration: The Cultural Side of the Ferguson Paper Company, Inc. Acquisition of Seastrand Oil Company, Inc.

    E-Print Network [OSTI]

    Beadleston, Scott K.

    2008-12-19T23:59:59.000Z

    Paper Company, Inc.s post-acquisition integration efficiency and effectiveness. Research indicated employees expectations (e.g., level of integration and synergy level) are difficult to gauge. Employees and integration leaders agreed on the most...

  10. U.S. Energy Service Company Industry: Market Size and Project Performance from 1990-2008

    E-Print Network [OSTI]

    Larsen, Peter

    2014-01-01T23:59:59.000Z

    verification ESCO energy service company ESPC energy savingstrends in the ESCO industry, administrators of ESPC programs

  11. The Use of Standard Forms by a Small to Mid-Size Consulting Company

    E-Print Network [OSTI]

    Cotter, Erik

    2009-05-15T23:59:59.000Z

    ...9 Consulting Company A Interviews.....16 Consulting Company A Case Studies....19 Case Study 1: City A Agreement..20 Case Study 2: Company B AGC... are recommended by major engineering companies and public works associations (AWWA Construction Contract Administration). In September 2007 a set of documents called ConsensusDOCS were published with the intention of replacing EJCDC and AIA as the defining...

  12. Energy services companies: Where are international markets going?

    SciTech Connect (OSTI)

    Sullivan, J.B.

    1997-09-01T23:59:59.000Z

    The power industry in developing and reindustrializing countries continues its historic shift toward privatization and competition. This shift opens the door to the very large technical market for the goods and services that energy services companies offer. Signs indicate however that the energy services market will develop along competitive lines with energy being supplied by companies that provide a variety of power marketing, efficiency services and other services. This articles summarizes estimates of current energy efficient market size, lists projects that are viewed as pilot energy services projects, and discusses a number of factors that will affect the ESCO market abroad.

  13. Company shelves dam to avoid agency's conservation edict

    SciTech Connect (OSTI)

    Springer, N.

    1985-01-06T23:59:59.000Z

    The Great Northern Paper Co. is shelving plans to build a hydroelectric dam because of two stipulations by the Maine Land Use Regulation Commission (LURC) requiring the company to fund a comprehensive energy audit of several mills in the area and submit a plan for modernizing outdated paper producing machines. Critics of the dam contend that in-plant conservation would free up more power than the dam would produce. The basis for this was an internal memo citing possible large amounts of wasted energy from motors that need rewinding. Although the company is retaining the option to build, the future of the Big A dam is uncertain.

  14. Office of Inspector General audit report on Westinghouse Savannah River Company`s health benefit plan

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    Westinghouse Savannah River Company (Westinghouse) manages and operates the Savannah River Site, located in Aiken, South Carolina, for the US Department of Energy (Department). Westinghouse was self-insured for health benefits and contracted with Aetna Insurance to administer the plan (service payments to providers) from Calendar Year (CY) 1989 through 1996. Westinghouse`s administrative service contract with Aetna Insurance expired on December 31, 1996. Westinghouse chose Blue Cross/Blue Shield of South Carolina (BC/BS) to administer its health plan, effective January 1, 1997. After the contract was awarded to BC/BS, 47 health care providers in the Aiken area submitted their resignations as preferred providers for BC/BS. The health care providers complained that the fees received from BC/BS were less than they were previously paid through Aetna Insurance. As a result, Westinghouse instructed BC/BS to negotiate a modified fee schedule for all the health care providers in the Aiken area. The audit objective was to determine whether the health benefit costs incurred by Westinghouse under the BC/BS contract were necessary and reasonable.

  15. Modeling a coupled two-layer team-assembly model for inventors and companies

    E-Print Network [OSTI]

    Inoue, Hiroyasu

    2012-01-01T23:59:59.000Z

    Since companies are exposed to rigid competition, they are seeking how best to cultivate the ability of innovations. As one strategy, they capitalize on other companies' knowledge more and more in order to speed up their innovations. However, acquiring other companies' knowledge is not easy since they have different climates and tacit knowledge. To tackle this problem, we consider not only companies but the inventors in companies because the actual providers of innovations are inventors and there definitely exists synergy between inventors and companies. In this paper, the dynamics between two networks whose nodes represent inventors and companies are clarified. By using US and JP patent data, we extracted collaborations between inventors and companies and created two different projected networks where one of nodes are inventors and another of nodes are companies, respectively. We discussed the relationship between networks and the impact of patents and found that the impact was strongly affected by both inve...

  16. Job Opportunity: Website Developer Company: Dougherty Forestry Mfg.

    E-Print Network [OSTI]

    Liblit, Ben

    Job Opportunity: Website Developer Company: Dougherty Forestry Mfg. Start Date: June 1 st Deadline@doughertymfg.com Dougherty Forestry Mfg. is proud to be an Equal Opportunity Employer. Applicants are considered for all, ancestry, marital or veteran status. Dougherty Forestry Mfg, 211 W. Canyon Run, Hinton, OK 73047, (405) 542

  17. A contingency plan helps companies prepare for oilfield, pipeline spills

    SciTech Connect (OSTI)

    Duey, R.

    1996-02-01T23:59:59.000Z

    There are many hazards associated with oilfield, pipeline spills such as fires, litigation, fines, etc. Operators and companies need to have a plan in place and make sure their employees know what to do when disaster strikes. This paper describes emergency preparedness plans.

  18. Mobile phone companies sell more batteries than phones to

    E-Print Network [OSTI]

    Starner, Thad E.

    Mobile phone companies sell more batteries than phones to consumers. The devices users buy gen- erally include rechargeable batteries so that they are immediately useful. On average, however, the consumer must own more than one battery during the phone's life. The same is probably true for laptops

  19. Tuesday May 22 2007 Company owners pave way to success

    E-Print Network [OSTI]

    Saskatchewan, University of

    companies Global Infobrokers and RSVP Event Design and the college of commerce at the University of Saskatchewan. Monica Kreuger, president of Global Infobrokers Inc. and a sessional entrepreneurship lecturer. Elyse and Halayna Franke won $10,000, invested by Global Infobrokers and RSVP Event Design

  20. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18T23:59:59.000Z

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  1. Modelling spot and forward prices for energy companies

    E-Print Network [OSTI]

    Bhulai, Sandjai

    Modelling spot and forward prices for energy companies Dafydd Steele MSc Stochastics and Financial forward and spot prices for energy com- panies. The two main ways of modelling power prices are stochastic Mathematics dafydd.steele@edf-energy.com August 5, 2010 #12;Abstract The focus of this thesis is on modelling

  2. Principal Research Engineer Cooper Tire and Rubber Company,

    E-Print Network [OSTI]

    Fatemi, Ali

    W. V. Mars Principal Research Engineer Cooper Tire and Rubber Company, 701 Lima Ave., Findlay, Ohio Natural Rubber Under Monotonic and Cyclic Multiaxial Stress States This work explores the monotonic and cyclic behaviors of filled, natural rubber. Results of stress-strain experiments conducted under stress

  3. Crumpled graphene: Conductive inks made by startup company Vorbeck

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    Crumpled graphene: Conductive inks made by startup company Vorbeck Materials contain crumpled graphene. This atomic-force microscope image is colorized to show the topography of a piece of graphene Technology Review in English | en Espaol | auf Deutsch | in Italiano | Bringing Graphene to Market

  4. General Electric Company Evaluation of Sustainable Energy Options

    E-Print Network [OSTI]

    and performance of each electricity infrastructure scenario in various timescales of power system operation. In addition, three different 2018 electricity infrastructure scenarios were developed. The impact of eachGeneral Electric Company Evaluation of Sustainable Energy Options for the Big Island of Hawaii

  5. Mirror Film Company Has 'Concentrated' Plans for Expansion

    Broader source: Energy.gov [DOE]

    ReflecTech Inc. is using a silvered polymer-based film -- instead of glass -- to make mirror panels for focusing sunlight onto a heat generator. Their innovation helped them land a Recovery Act tax credit to expand their Colorado company.

  6. Companies Hiring by Majors Booth # Organization Name Majors Recruited

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Pont Electrical,Mechanical,Chemical 83 Eaton Corporation Electrical,Mechanical #12;Companies Hiring by Majors),Computer & Systems,Industrial,Aerospace 106 BASF Corporation Electrical,Mechanical,Civil,Chemical 86 Bayer Technology Engineering Corporation Engineering 108 Conestoga-Rovers & Associates Engineering 3/4 Conoco

  7. Information Visualization Evaluation in Large Companies: Challenges, Experiences and Recommendations

    E-Print Network [OSTI]

    Isenberg, Petra

    environments, whereas field experiments are a compromise strategy where features of the system are ma visualization and visual analyt- ics tools within a large automotive company (BMW Group). From our own visualization in general. Within such an environment a wide range of real data analy- sis problems, tasks

  8. UoS Motor Accident Report Form COMPANY DETAILS

    E-Print Network [OSTI]

    Sussex, University of

    UNIV01FL02 UoS Motor Accident Report Form COMPANY DETAILS INSURED: University of Sussex ADDRESS: LOCATION: DESCRIPTION OF HOW ACCIDENT HAPPENED: PLEASE DRAW A SKETCH OF THE ACCIDENT: #12;DRIVER DETAILS: PREVIOUS ACCIDENTS: ADDRESS: VEHICLE DETAILS DATE VEHICLE PURCHASED: MAKE/MODEL: REGISTRATION: MILEAGE

  9. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01T23:59:59.000Z

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  10. Getting along with reporters, environmentalists, and regulators: How to get your company`s message on the air

    SciTech Connect (OSTI)

    Pearson, A. [Mitchell Energy & Development Corp., Woodlands, TX (United States)

    1994-12-31T23:59:59.000Z

    Oil and gas companies continue to get clobbered with expensive and punishing environmental regulations and drilling bans because they have done a poor job of convincing the public, the press, and the government that their operating practices are environmentally safe. The oil industry also continues to be perceived of as arrogant and secretive, which only aggravates its problems. Smart operators must learn to balance profitable development with earth-friendliness. They also must learn to tell their story more effectively and openly, not just through big trade groups like the API and IPAA, but as individual small businessmen working to improve the economies and job bases of their local communities. That means being more forthcoming with next-door neighbors and environmental groups, befriending local and national reporters who cover their companies, and fine-tuning messages and communications skills. Companies also can improve their images and, ideally, lighten their regulatory burdens by thinking of creative, win-win solutions to environmental problems their projects create. One company, for example, solved the problem of where to dump offshore channel dredging waste by creating a new island off South Texas with a carefully planted habitat that last year attracted a pair of endangered whooping cranes. State regulators loved it, it cost very little, and the press coverage was extremely positive.

  11. Getting along with reporters, environmentalists, and regulators: how to get your company`s message on the air

    SciTech Connect (OSTI)

    Pearson, A. [Mitchell Energy & Development Corp., Woodlands, TX (United States)

    1994-09-01T23:59:59.000Z

    Oil and gas companies continue to get clobbered with expensive and punishing environmental regulations and drilling bans because they have done a poor job of convincing the public, the press, and the government that their operating practices are environmentally safe. The oil industry also continues to be perceived as arrogant and secretive, which only aggravates its problems. Smart operators must learn to balance profitable development with earth-friendliness. They also must learn to tell their story more effectively and openly, not just through big trade groups like the API and IPAA, but as individual small businessmen working to improve the economies and job bases of their local communities. That means being more forthcoming with next-door neighbors and environmental groups, befriending local and national reporters who cover their companies, and fine-tuning messages and communications skills. Companies also can improve their image and hopefully lighten their regulatory burden by thinking up creative, win-win solutions to environmental problems their projects create. One company solved the problem of where to dump offshore channel dredging waste, for example, by creating a new island off south Texas with a carefully planted habitat that last year attracted a pair of endangered whooping cranes. State regulators loved it, it cost very little, and the press coverage was extremely positive.

  12. Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry

    E-Print Network [OSTI]

    Stuart, Elizabeth

    2014-01-01T23:59:59.000Z

    of the U.S. Energy Service Company Industry: Market Size andof the U.S. Energy Service Company Industry: Market Size andenergy savings (MMBtu/ft 2 ) to determine total ESCO market size

  13. Company Name: Linear Technology Corporation Web Site: www.linear.com

    E-Print Network [OSTI]

    New Hampshire, University of

    Company Name: Linear Technology Corporation Web Site: www.linear.com Industry: Semiconductor Brief worldwide for three decades. The Company's products provide an essential bridge between our analog world

  14. Company Name: Tighe & Bond, Inc. Web Site: www.tighebond.com

    E-Print Network [OSTI]

    New Hampshire, University of

    Company Name: Tighe & Bond, Inc. Web Site: www.tighebond.com Industry: Engineering Brief Company Business. Majors they typically recruit: Civil Engineering, Earth Sciences Do they offer internships: Yes in civil, geotechnical and environmental engineering, environmental science, hydrogeology and geographic

  15. A decision-support model for managing the fuel inventory of a Panamanian generating company

    E-Print Network [OSTI]

    Perez-Franco, Roberto, 1976-

    2004-01-01T23:59:59.000Z

    Bahia Las Minas Corp (BLM) is a fuelpowered generating company in the Panamanian power system. The purpose of this thesis is to design and evaluate a decision-support model for managing the fuel inventory of this company. ...

  16. FY 2013 Small Business Awards Bestowed on 12 Companies at DOE...

    Energy Savers [EERE]

    FY 2013 Small Business Awards Bestowed on 12 Companies at DOE's 2014 Small Business Forum & Expo, Tampa FL, June 12, 2014 FY 2013 Small Business Awards Bestowed on 12 Companies at...

  17. FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38...

    Energy Savers [EERE]

    FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38-LNG FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38-LNG The Office of Fossil Energy gives notice of...

  18. The Business Case for Fuel Cells 2010: Why Top Companies are...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Why Top Companies are Purchasing Fuel Cells Today The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today This report was developed by Fuel...

  19. Aftermarket vehicle hybridization : designing a supply network for a startup company

    E-Print Network [OSTI]

    Causton, Marcus S

    2010-01-01T23:59:59.000Z

    Our thesis introduces a supply chain framework catered for startup companies. Startup companies face unique circumstances such as constraints on financial and human resources, and greater uncertainty in demand. From our ...

  20. SunShot-Supported Companies to Build One of the World's Largest...

    Office of Environmental Management (EM)

    SunShot-Supported Companies to Build One of the World's Largest Module Factories SunShot-Supported Companies to Build One of the World's Largest Module Factories June 25, 2014 -...